Evolving surface finite element method  v0.3.0-14-g3598512
Numerical experiments for my papers
Classes | Namespaces
secOrd_op_linearHeat.h File Reference

Standard heat resp. diffusion equation for an evolving or stationary surface problem. More...

#include <memory>
#include "esfem_fwd.h"
Include dependency graph for secOrd_op_linearHeat.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

class  Esfem::SecOrd_op::Linear_heat
 

Namespaces

 Esfem
 The evolving surface finite element method.
 
 Esfem::SecOrd_op
 Parabolic and elliptic second order operators.
 

Detailed Description

Standard heat resp. diffusion equation for an evolving or stationary surface problem.

Author
Christian Power
Date
17. March 2016

Revision history

 Revised by Christian Power dd.mm.yyyy
 Originally written by Christian Power
      (power22c@gmail.com) 28. Januar 2016

Idea

Provides a class that performs the standard Dziuk Elliott evolving surface finite element discretization with implicit euler time discretization.

Partial differential equation

Parameter

Smooth problem

Search for $u\colon \surface \to \R$ for

\begin{equation*} \matd u + u \diver(v) - \laplaceBeltrami u = f \end{equation*}

Finite element discretization

Search for $\nodalValue{u}\colon I \to \R^N $ for

\begin{equation*} \dell_t \parentheses[\big]{M(t) \nodalValue{u} } + A(t) \nodalValue{u} = M(t)\nodalValue{Pf}, \end{equation*}

where $ \nodalValue{Pf} $ are the nodal values of the $ L^2 $-projection of $ f $.

Full discretization

Given $ \nodalValue{u}^n $ solve for $ \nodalValue{u}^{n+1} $

\begin{equation*} (M\nodalValue{u})^{n+1} + \tau (A \nodalValue{u})^{n+1} = (M \nodalValue{w})^n + \tau (M \nodalValue{Pf})^{n+1} \end{equation*}

This programm implements a basic expression calculator.
Input from cin; output to cout.  The grammar for input is: etc.

Created by Christian Power on 28.01.2016 Copyright (c) 2016 Christian Power. All rights reserved.

Definition in file secOrd_op_linearHeat.h.