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Abstract. Low-rank approximations to large time-dependent matrices and tensors are the
subject of this paper. These matrices and tensors are either given explicitly or are the unknown
solutions of matrix and tensor differential equations. Based on splitting the orthogonal projection
onto the tangent space of the low-rank manifold, novel time integrators for obtaining approximations
by low-rank matrices and low-rank tensor trains were recently proposed. By standard theory, the
Lie–Trotter and Strang projector-splitting methods are first and second order accurate, respectively,
but the usual error bounds break down when the low-rank approximation has small singular values.
This happens when the singular values of the solution decay without a distinct gap or when the
effective rank of the solution is overestimated. On the other hand, the integrators are exact when
given time-dependent matrices or tensors are already of the prescribed rank. We provide an error
analysis which unifies these properties. We show that in cases where the exact solution is an ε-
perturbation of a low-rank matrix or tensor train, the error of the projector-splitting integrator is
favorably bounded in terms of ε and the stepsize, independently of the smallness of the singular
values. Such a result does not hold for any standard integrator. Numerical experiments illustrate
the theory.

Key words. Tensor train, low-rank approximation, tensor differential equations, splitting inte-
grator

AMS subject classifications. 15A18, 65L05, 65L70

1. Introduction. Low-rank approximations to matrices and tensors are a basic
tool in data and model reduction; see, e.g., [4, 5]. In this paper we are concerned
with the low-rank approximation of time-dependent matrices and tensors, which are
either given explicitly by their increments or are the unknown solutions of differen-
tial equations. In [11] such time-dependent problems and their numerical treatment
were first studied for matrices. Differential equations for the factors of a low-rank
factorization similar to the singular value decomposition were derived and their ap-
proximation properties were studied. Extensions to time-dependent tensors in various
tensor formats were given in [2, 12, 18, 19]; see also [15] for a review of dynamical
low-rank approximation.

The approach yields differential equations on low-rank matrix and tensor mani-
folds, which need to be solved numerically. Recently, very efficient integrators based
on splitting the projection onto the tangent space of the low-rank manifold have
been proposed and studied for matrices and for tensors in the tensor train format in
[16] and [17], respectively. The objective of the present paper is to show that these
projector-splitting integrators are insensitive to the presence of small singular values
in the low-rank approximation, a property that is not shared by any standard integra-
tor such as explicit or implicit Runge–Kutta methods, whose behavior deteriorates
when singular values become small.

The presence of small singular values in the low-rank approximation of a large
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Germany (lubich@na.uni-tuebingen.de)
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matrix is very common. Unless the matrix has a distinct gap in the distribution
of its singular values, truncating all the smallest singular values below a tolerance ε
yields a remaining matrix of reduced rank that still has singular values of magnitude
O(ε). Even if there is a distinct gap in the singular value distribution such that
two groups of large and negligibly small singular values, respectively, are formed, it
is typically not known a priori at which rank the former group ends. We are also
in a time-dependent setting where the distribution of singular values may change
over time. Underestimating the effective rank means we neglect a significant part
of the matrix, which leads to poor accuracy, but overestimating the effective rank
yields an approximation with small singular values. A similar situation arises in the
approximation of tensors.

In the matrix case, we are concerned with time-dependent matrices A(t) ∈ C
m×n,

t0 ≤ t ≤ T , for large m and n. These matrices are either known explicitly or are the
unknown solution of a matrix differential equation

(1.1) Ȧ(t) = F (t, A(t)), A(t0) = A0.

We seek an approximate solution Y (t) to (1.1) on the manifold Mr of complex rank-r
m × n-matrices. To construct an evolution equation for Y (t) ∈ Mr we project the
right-hand side of the differential equation onto the tangent space TY (t)Mr of Mr

at the current approximation Y (t). This can be interpreted as a Galerkin method
on the solution-dependent tangent space. In the context of quantum physics, such a
procedure is known as the Dirac–Frenkel time-dependent variational principle [13, 14]
and can be traced back to [3] for a special application. Denoting the orthogonal
projection onto TY (t)Mr by P (Y (t)), we get the differential equation for Y (t) on the
manifold Mr,

(1.2) Ẏ (t) = P (Y (t))F (t, Y (t)), Y (t0) = Y0 ∈ Mr.

In the case where A(t) is instead given explicitly, the dynamical low-rank approxima-
tion Y (t) is still determined by a differential equation, where the right-hand side is
of the same form with F (t, Y ) = Ȧ(t) independent of Y . A first difficulty with small
singular values is already seen at this abstract level: the local Lipschitz constant of
the tangent space projection P at Y , or in other words the curvature of the manifold
Mr at Y , is proportional to the inverse of the smallest nonzero singular value of Y ;
see [11, Lemma 4.2].

The rank-r matrix Y (t) is not computed via its m× n entries, but is considered
in factorized form as

Y (t) = U(t)S(t)V (t)∗

with U(t) ∈ C
m×r and V (t) ∈ C

n×r having orthonormal columns and with invertible
S(t) ∈ C

r×r. This non-unique decomposition is similar to the singular value decompo-
sition, except that S(t) is not assumed diagonal. When r ≪ m,n, this representation
offers a significant reduction in memory requirements, compared to storing the full
matrix Y (t). The factors are determined from (1.2) as the solution of the following
system of differential equations [11]:

U̇(t) = (I − U(t)U(t)∗)F (t, Y (t))V (t)S(t)−1,

V̇ (t) = (I − V (t)V (t)∗)F (t, Y (t))∗U(t)S(t)∗
−1

,(1.3)

Ṡ(t) = U(t)∗F (t, Y (t))V (t).
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The nonzero singular values of Y (t) are those of the r× r matrix S(t), whose inverse
appears in the first two differential equations. The presence of small singular values
therefore leads to severe problems when these differential equations are integrated
numerically by standard methods such as explicit or implicit Runge–Kutta methods.

In contrast, the projector-splitting integrator of [16] does not deteriorate in the
case of an ill-conditioning of S(t), although it also computes the factors U, S, V . In [16]
this was observed numerically and shown analytically in the special case of a distinct
gap in the distribution of the singular values of given time-dependent matrices A(t).
Moreover, if the given matrices A(t) are all of rank at most r, then the splitting
integrator was shown to reproduce A(t) exactly. This remarkable exactness property
will be an important tool in the present paper.

In Section 2 we give an approximation result for the projector-splitting integrator
applied with stepsize h to the differential equation (1.2) with Lipschitz-continuous
functions F (t, Y ) that map onto the tangent space ofMr at Y up to a small remainder
of size ε. We prove an O(ε+ h) error bound when the initial value is chosen of rank
r. The constants in this error bound are independent of the singular values of A(t) or
Y (t) or S(t). Such a robust error bound cannot be obtained for standard integrators
applied to (1.3).

A limitation of our theoretical result is that it requires a (local) Lipschitz condi-
tion on F and is applicable to stiff differential equations such as discretized partial
differential equations only under a severe CFL condition hL ≪ 1, where h is the step-
size and L is the Lipschitz constant. Such a restriction is not observed to be necessary
in numerical experiments, and it would thus be of interest to improve the results of
this paper beyond such a limitation in future work.

As is shown in Section 3, the robust error bound extends to the projector-splitting
integrator of [17] for approximations of time-dependent tensors in the tensor train
format. This is a data-sparse tensor format introduced in [20] in the mathematical
literature. It has previously been used in physics under the name of matrix product
states; see, e.g., [22, 25] and, in a time-dependent context, [6, 7].

Numerical experiments presented in Section 4 conclude the paper. They corrobo-
rate our theoretical results and further illustrate the potential of the projector-splitting
method beyond the numerical experiments presented in [16, 17].

2. The projector-splitting integrator for matrix differential equations.

In this section, after briefly presenting the projector-splitting integrator of [16], we
state and prove local and global error bounds for the integrator that do not deteri-
orate in the presence of small singular values in the exact solution or its low-rank
approximation. But first, we use a small numerical example to illustrate how small
singular values pose a problem to a standard integrator, while the projector-splitting
integrator performs well also in this situation.

2.1. A motivating numerical example. We present the results of numerical
experiments with two explicit numerical methods for (1.2): Using the classical fourth-
order Runge–Kutta method to solve (1.3), and the (first-order) Lie–Trotter projector-
splitting integrator of [16]. In this example A(t) ∈ R

100×100 is given explicitly by
constructing two 100 × 100 skew-symmetric matrices W1,W2 and a diagonal matrix
D of the same dimension with exponentially decreasing diagonal elements dj = 2−j ,
j = 1, . . . , 100. By means of those matrices, we generate

A(t) = etW1etD
(
etW2

)T
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on the time interval 0 ≤ t ≤ 1. The singular values of A(t) are σj(t) = etdj , j =
1, . . . , 100.

Figure 1 shows the approximation errors, that is, the norm of the difference
between the given matrix A(t) and the numerical solution Yn = UnSnV

T
n of rank r

obtained with n steps of stepsize h for t = nh, at t = 1. The errors versus the stepsize
are shown for both methods and for different ranks.

time step size
10 -5 10 -4 10 -3 10 -2 10 -1

er
ro

r

10 -5

10 0
4 th  order Runge-Kutta method

rank 4

rank 8

rank 16

time step size
10 -5 10 -4 10 -3 10 -2 10 -1

er
ro

r

10 -10

10 -5

10 0

Lie-Trotter projector splitting integrator

rank 32

rank 16

rank 8
rank 4

Fig. 1. Comparing the Runge–Kutta method (left) and the Lie–Trotter integrator (right) for
different approximation ranks and stepsizes.

The Runge–Kutta method with approximation rank r turns out to be stable only
for small stepsizes and small approximation ranks. For larger approximation ranks
r the Runge–Kutta method demands very small step sizes, proportional to σr. This
restriction is due to the small singular values of S(t) in (1.3).

In contrast, we are able to choose large time steps for the Lie–Trotter projector-
splitting integrator independently of the chosen rank. The error decays linearly with
h as h → 0, and decreases with increasing rank, which indicates that the method is
accurate and robust with respect to small singular values.

It is the objective of this paper to explain this favorable error behavior.

2.2. The practical integration algorithm. A step of the integrator for (1.3)
given in [16] proceeds as follows, starting from the factorized rank-r matrix Y0 =
U0S0V

∗
0 and computing the factors of the approximation Y1 = U1S1V

∗
1 at time t1 =

t0 + h:
1. Solve the differential equation on C

m×r

K̇(t) = F (t,K(t)V ∗
0 )V0, K(t0) = U0S0,

and orthonormalize the columns of K(t1) (by QR factorization):

U1Ŝ1 = K(t1),

where U1 ∈ C
m×r has orthonormal columns and Ŝ1 ∈ C

r×r.
2. Solve the differential equation on C

r×r

Ṡ(t) = −U∗
1F (t, U1S(t)V

∗
0 )V0, S(t0) = Ŝ1,

and set S̃0 = S(t1).
3. Solve the differential equation on C

n×r

L̇(t) = F (t, U1L(t)
∗)∗U1, L(t0) = V0S̃

∗
0 ,
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and orthonormalize the columns of L(t1) (by QR factorization):

V1S
∗
1 = L(t1),

where V1 ∈ C
n×r has orthonormal columns and S1 ∈ C

r×r.
The algorithm computes a factorization of the rank-r matrix

Y1 = U1S1V
∗
1 ,

which is taken as an approximation to Y (t1).
We note that the differential equations in the substeps can be solved exactly

when F (t, Y ) = Ȧ(t) for given matrices A(t). In the first substep we then have
K(t1) = K(t0)+∆AV0 with the increment ∆A = A(t1)−A(t0), and similar formulas
are obtained also for the second and third substeps. The algorithm just uses the
increment ∆A, but does not require the time derivative Ȧ(t).

In the general case, the differential equations need to be solved approximately,
e.g., using a step of a Runge–Kutta method or, when F is independent of t and linear
in Y , by Krylov methods for computing the action of a matrix exponential [9, 21].

2.3. The integrator as a projector-splitting scheme. The above algorithm
and its time-symmetrized variant can be interpreted as splitting integrators based on
splitting the tangent space projection P (Y ) in (1.2). With Y = USV ∗, the projection
P (Y ) can be decomposed as (cf. [11])

(2.1) P (Y ) = P+
1 (Y )− P−

1 (Y ) + P+
2 (Y ),

with

P+
1 (Y )Z = ZV V ∗, P−

1 (Y )Z = UU∗ZV V ∗, P+
2 (Y )Z = UU∗Z.

UU∗ and V V ∗ are the orthogonal projections to the ranges of Y and Y ∗, respectively,
and do not depend on how we decompose Y = USV ∗. The notation P±

i , which might
seem odd at this point, is chosen to be consistent with the projections for the tensor
case.

We introduce the notation

F±
i (t, Y ) = ±P±

i (Y )F (t, Y )

for the right-hand sides of the subproblems. The first order Lie–Trotter projector-
splitting scheme is the consecutive solution of the partial problems Ẏ = F+

1 (t, Y ), Ẏ =
F−
1 (t, Y ), and Ẏ = F+

2 (t, Y ). We denote the solution operator of Ȧ = F (t, A), A(t0) =
A0 by

A(t) = ΦF (t, t0, A0),

and similarly

Y ±
i (t) = ΦF±

i

(t, t0, Y
±
i (t0))

for F±
i instead of F . We can then write one step of the splitting scheme from t0 to

t1 = t0 + h as

Y1 = S(t1, t0, Y0) = ΦF+

2

(t1, t0,ΦF−

1

(t1, t0,ΦF+

1

(t1, t0, Y0))).
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This matrix Y1 is the same as that obtained by the algorithm of the previous sub-
section; see [16]. By Yn we denote the solution after n time steps with the splitting
method. The adjoint scheme is

S∗(t1, t0, Y0) = ΦF+

1

(t1, t0,ΦF−

1

(t1, t0,ΦF+

2

(t1, t0, Y0))).

The Strang splitting scheme is formed by concatenating a half-step of the Lie–Trotter
scheme with a half-step of its adjoint,

Y1 = S(S)(t1, t0, Y0) = S∗(t0 + h, t0 + h/2,S(t0 + h/2, t0, Y0)).

2.4. Error bounds. We assume that F is Lipschitz continuous and bounded,

‖F (t, Y )− F (t, Ỹ )‖ ≤ L‖Y − Ỹ ‖ for all Y, Ỹ ∈ C
m×n,

‖F (t, Y )‖ ≤ B for all Y ∈ C
m×n.(2.2)

Here and in the following, the chosen norm ‖ · ‖ is the Frobenius norm. As usual in
the numerical analysis of ordinary differential equations, this could be weakened to
a local Lipschitz condition and local bound in a neighborhood of the exact solution
A(t) = ΦF (t, t0, A0), but for convenience we will work with the global Lipschitz
condition and bound.

We further assume that F (t, Y ) is in the tangent space TY Mr up to a small
remainder, in the sense that

F (t, Y ) = M(t, Y ) +R(t, Y ),

where M maps to the tangent bundle of Mr and the remainder R is small on Mr:

(2.3) M(t, Y ) ∈ TY Mr and ‖R(t, Y )‖ ≤ ε for all Y ∈ Mr and all t.

This implies that the flow of M preserves the rank for initial data Y0 ∈ Mr,

Y0 ∈ Mr ⇒ ΦM (t, t0, Y0) ∈ Mr for all t.

The assumption (2.3) is needed along the trajectory {Y (t) : 0 ≤ t ≤ T} ⊂ Mr in
order to obtain an approximation error Y (t) − A(t) = O(ε) for the time-continuous
dynamical low-rank approximation Y (t) ∈ Mr. It is reasonable to make this assump-
tion in a neighborhood onMr of the trajectory. For convenience only, this assumption
is made here for all Y ∈ Mr, but we would obtain the same result if we impose the
assumption only in a small neighborhood on Mr of the trajectory.

The obvious choice for the decomposition of F is M(t, Y ) = P (Y )F (t, Y ) ∈
TY Mr, where again P (Y ) denotes the orthogonal projection onto the tangent space.
We will not use any Lipschitz bound for M , since this would involve a local Lipschitz
constant of P (Y ), which is inversely proportional to the smallest non-zero singular
value of Y and can thus become arbitrarily large. The objective in the following is
to avoid invoking local Lipschitz bounds for the projections P and P±

i in the error
analysis, so that the error bounds do not deteriorate in the presence of small singular
values.

By (2.2) and (2.3), M is bounded by B + ε. For convenience we assume that M
is also bounded by the same bound B as F , that is, ‖M(t, Y )‖ ≤ B for all Y ∈ Mr

and all t.
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For the initial value A0 ∈ C
m×n we denote again by A(t) the solution of the

original problem (1.1). We assume that the initial value A0 and the starting value
Y0 ∈ Mr of the numerical method are δ-close:

‖Y0 −A0‖ ≤ δ.

We are now in the position to state the error estimate of the projector-splitting
integrators. Remarkably, this error bound is independent of the singular values of
A(t) and Yn.

Theorem 2.1. Under the above assumptions, the errors of the Lie–Trotter and
the Strang splitting schemes at tn = t0 + nh are bounded by

‖Yn −A(tn)‖ ≤ c0δ + c1ε+ c2h for tn ≤ T,

where ci depend only on L, B and T .
Section 2.5 is devoted to the proof of this theorem. There we will also obtain

explicit expressions for ci.

2.5. Proof of Theorem 2.1. The difficulty in the proof lies in the fact that
we analyze the numerical integrator for the differential equation Ẏ = P (Y )F (t, Y ) in
a situation in which the local Lipschitz constant of the projection P (·) can become
arbitrarily large in any neighborhood of the solution Y (t), inversely proportional to
the smallest non-zero singular value of Y (t) [11]. Similarly, also the local Lipschitz
constants of the projections P±

i (·) that are used in the splitting integrator can become
arbitrarily large near matrices with small singular values. We therefore need to avoid
using the Lipschitz continuity of these projections. What comes to our rescue are two
ingredients:

– The exactness result of [16, Theorem 4.1], which states that when the integrator
is applied to Ẏ (t) = P (Y (t))Ẋ(t) with X(t) ∈ Mr, then it yields the exact solution
Y (t) = X(t) at the time gridpoints t = tn.

– Range and co-range preservation under the split flows, cf. [16, Lemma 3.1]:
Under the solution operators ΦF±

i

(t, s, Y ), the range of Y ∗ for i = 1 and +, the range

of both Y and Y ∗ for −, and the range of Y for i = 2 and +, respectively, do not
change, and so we have

(2.4) P±
i (ΦF±

i

(t, s, Y )) = P±
i (Y ) for all Y ∈ Mr.

Moreover, P±
i (Y ) is invariant under adding a multiple of P±

i (Y )Z to the argument
Y :

(2.5) P±
i (Y + P±

i (Y )Z) = P±
i (Y ) for all Y ∈ Mr, Z ∈ C

m×n.

With these tools we will prove the following local error bound. Here we denote by

(2.6) X(t) = ΦM (t, t0, X0) ∈ Mr

the solution to the problem with R = 0, i.e., Ẋ(t) = M(t,X(t)), X(t0) = X0 ∈ Mr

for an appropriately chosen initial value X0.
Lemma 2.2. In the situation of Theorem 2.1, there exists an initial value X0 ∈

Mr with ‖X0 − Y0‖ ≤ h(4BLh + 2ε) such that for X(t) of (2.6), there is the local
error bound

(2.7) ‖Y1 −X(t0 + h)‖ ≤ h(9BLh+ 4ε).
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Proof. We concentrate on the simpler Lie–Trotter scheme, and only briefly men-
tion at the end how the arguments extend to the Strang scheme. We rewrite the
differential equation (1.2) as

Ẏ (t) = P (Y (t))F (t, Y (t)) = M(t, Y (t)) + P (Y (t))R(t, Y (t))

= Ẋ(t)−M(t,X(t)) +M(t, Y (t)) + P (Y (t))R(t, Y (t))

= Ẋ(t)− F (t,X(t)) + F (t, Y (t))

+ R(t,X(t))−R(t, Y (t)) + P (Y (t))R(t, Y (t))

so that, with the perturbation term

∆(t, Y ) = F (t, Y )− F (t,X(t))− (I − P (Y ))R(t, Y ) +R(t,X(t)),

we have the differential equation

Ẏ (t) = Ẋ(t) + ∆(t, Y (t)).

By the Lipschitz condition on F and the bound of R, the perturbation term is bounded
by

(2.8) ‖∆(t, Y )‖ ≤ L‖Y −X(t)‖+ 2ε.

Since P±
i (Y )P (Y ) = P±

i (Y ), the differential equations solved in the substeps of the
splitting integrator can be written as

Ẏ ±
i (t) = ±P±

i (Y ±
i (t))Ẋ(t)± P±

i (Y ±
i (t))∆(t, Y ±

i (t)), t0 ≤ t ≤ t0 + h,

which on setting G±
i (t, Y ) = ±P±

i (Y )Ẋ(t) and ∆±
i (t, Y ) = ±P±

i (Y )∆(t, Y ) becomes

Ẏ ±
i (t) = F±

i (t, Y ±
i (t)) = G±

i (t, Y
±
i (t)) + ∆±

i (t, Y
±
i (t)), t0 ≤ t ≤ t0 + h.

We will use the fact that without the perturbation term, the initial value problem
Ẏ (t) = P (Y (t))Ẋ(t), Y (t0) = X(t0) with the solution Y (t) = X(t) is solved exactly
by the splitting integrator according to [16, Theorem 4.1]:

X(t1) = ΦG+

2

(t1, t0,ΦG−

1

(t1, t0,ΦG+

1

(t1, t0, X(t0)))).

The challenge is to bound the effect of the perturbation ∆(t, Y ) without invoking
Lipschitz constants of the projections P and P±

i .
For each substep, we split the contributions G±

i and ∆±
i using the Gröbner–

Alekseev lemma [8, Theorem I.14.5]: with ∂ΦG±

i

(t1, t, Y ) = (∂/∂Y )ΦG±

i

(t1, t, Y ) and

Y ±
i (t) = ΦF±

i

(t, t0, Y
±
i (t0)) we have at t1 = t0 + h

(2.9)

ΦF±

i

(t1, t0, Y
±
i (t0)) = ΦG±

i

(t1, t0, Y
±
i (t0))

+

∫ t1

t0

∂ΦG±

i

(t1, t, Y
±
i (t))∆±

i (t, Y
±
i (t)) dt.

We want to bound the integrand, but cannot bound ∂ΦG±

i

(t1, t, Y ) directly in the

operator norm, since that would give an undesired dependence on the singular values
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of Y . Instead we consider the directional derivative explicitly. To simplify notation,
we fix Y ∈ Mr and Z ∈ C

m×n and consider expressions of the form

K±
i (τ) = ∂ΦG±

i

(t1, τ, Y )P±
i (Y )Z.

The integrand is of this form with Y = Y ±
i (t) and Z = ±∆(t, Y ±

i (t)). At τ = t1 we
get

K±
i (t1) = ∂ΦG±

i

(t1, t1, Y )P±
i (Y )Z = P±

i (Y )Z,

since ∂ΦG±

i

(t1, t1, Y ) is the identity matrix.

We now show that K±
i (τ) is actually independent of τ . By (2.4) and (2.5) (for

G±
i instead of F±

i ) we have

P±
i (ΦG±

i

(t1, τ, Y + θ P±
i (Y )Z)) = P±

i (Y ) = P±
i (ΦF±

i

(t1, τ, Y )) for θ ∈ R.

To compute the derivative of K±
i , we express the directional derivative with respect

to the initial data by explicitly taking the limit

K±
i (τ) = lim

θ→0

1

θ

(
ΦG±

i

(t1, τ, Y + θP±
i (Y )Z)− ΦG±

i

(t1, τ, Y )
)
.

Then, by differentiation with respect to τ ,

K̇±
i (τ) = − lim

θ→0

1

θ

(
G±

i (τ,ΦG±

i

(t1, τ, Y + θP±
i (Y )Z))−G±

i (τ,ΦG±

i

(t1, τ, Y ))
)

= ∓ lim
θ→0

1

θ

(
P±
i (ΦG±

i

(t1, τ, Y + θP±
i (Y )Z))Ẋ(τ)

− P±
i (ΦG±

i

(t1, τ, Y ))Ẋ(τ)
)

= ∓ lim
θ→0

1

θ

(
P±
i (Y )Ẋ(τ)− P±

i (Y )Ẋ(τ)
)
= 0.

Hence we have

K±
i (τ) = P±

i (Y )Z, t0 ≤ τ ≤ t1.

We can thus determine the perturbation in (2.9) as

Y ±
i (t1) = ΦF±

i

(t1, t0, Y
±
i (t0)) = ΦG±

i

(t1, t0, Y
±
i (t0)) + hE±

i ,

with

hE±
i = ±

∫ t1

t0

P±
i (Y ±

i (t))∆(t, Y ±
i (t)) dt = ±P±

i (Y ±
i (t0))

∫ t1

t0

∆(t, Y ±
i (t)) dt.

We obtain the result Y1 of one step of the splitting method as

Y1 = ΦF+

2

(t1, t0,ΦF−

1

(t1, t0,ΦF+

1

(t1, t0, Y0)))

= ΦG+

2

(t1, t0,ΦG−

1

(t1, t0,ΦG+

1

(t1, t0, Y0) + hE+
1 ) + hE−

1 ) + hE+
2 .
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The error term E+
2 is directly of the form required by (2.7), next we move also E+

1

and E−
1 out of the splitting scheme. In the following we use for the splitting scheme

the notation

Y +
1 = ΦF+

1

(t1, t0, Y0) = ΦG+

1

(t1, t0, Y0) + hE+
1 ,

Y −
1 = ΦF−

1

(t1, t0, Y
+
1 ) = ΦG−

1

(t1, t0, Y
+
1 ) + hE−

1 ,

Y1 = ΦF+

2

(t1, t0, Y
−
1 ) = ΦG+

2

(t1, t0, Y
−
1 ) + hE+

2 .

Since the solution operator ΦF−

1

(t, t0, Y
+
1 ) preserves both the range and co-range of

Y +
1 , and since P+

2 (Y ) is the projection onto the range of Y , we have

P+
2 (Y −

1 ) = P+
2 (Y +

1 ).

Since also the solution operator ΦG+

2

preserves the range, this yields

d

dt

(
ΦG+

2

(t, t0, Y
−
1 )− ΦG+

2

(t, t0,ΦG−

1

(t1, t0, Y
+
1 ))

)

= G+
2 (t,ΦG+

2

(t, t0, Y
−
1 ))−G+

2 (t,ΦG+

2

(t, t0,ΦG−

1

(t1, t0, Y
+
1 )))

= P+
2 (ΦG+

2

(t, t0, Y
−
1 ))Ẋ(t)− P+

2 (ΦG+

2

(t, t0,ΦG−

1

(t1, t0, Y
+
1 )))Ẋ(t)

= P+
2 (Y −

1 )Ẋ(t)− P+
2 (ΦG−

1

(t1, t0, Y
+
1 ))Ẋ(t)

= P+
2 (Y +

1 )Ẋ(t)− P+
2 (Y +

1 )Ẋ(t)

= 0.

It follows that

ΦG+

2

(t1, t0, Y
−
1 )− ΦG+

2

(t1, t0,ΦG−

1

(t1, t0, Y
+
1 )) = Y −

1 − ΦG−

1

(t1, t0, Y
+
1 ) = hE−

1 ,

and hence

Y1 = ΦG+

2

(t1, t0, Y
−
1 ) + hE+

2

= ΦG+

2

(t1, t0,ΦG−

1

(t1, t0, Y
+
1 )) + hE−

1 + hE+
2

= ΦG+

2

(t1, t0,ΦG−

1

(t1, t0,ΦG+

1

(t1, t0, Y0) + hE+
1 )) + hE−

1 + hE+
2 .

To expel the final error term hE+
1 from the arguments on the right-hand side, we note

that since P+
1 (Y0)E

+
1 = E+

1 we get as above, this time using the conservation of the
co-range,

d

dt

(
ΦG+

1

(t, t0, Y0 + hE+
1 )− ΦG+

1

(t, t0, Y0)
)
= 0

and hence

(2.10) ΦG+

1

(t1, t0, Y0 + hE+
1 )− ΦG+

1

(t1, t0, Y0) = (Y0 + hE+
1 )− Y0 = hE+

1 ,

so that

Y1 = ΦG+

2

(t1, t0,ΦG−

1

(t1, t0,ΦG+

1

(t1, t0, Y0 + hE+
1 ))) + hE−

1 + hE+
2 .
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By the exactness result of [16, Theorem 4.1] we obtain on choosing X0 = Y0 + hE+
1

ΦG+

2

(t1, t0,ΦG−

1

(t1, t0,ΦG+

1

(t1, t0, Y0 + hE+
1 ))) = X(t1)

so that

Y1 = X(t1) + hE−
1 + hE+

2 .

Finally, we bound E±
i using (2.8). With X0 = Y0 + hE+

1 , (2.10) gives

Y +
1 (t1) = ΦG+

1

(t1, t0, Y0) + hE+
1 = ΦG+

1

(t1, t0, X0).

Then, by the bound B of F and M , we have

‖Y +
1 (t1)−X(t1)‖ ≤ ‖ΦG+

1

(t1, t0, X0)−X0‖+ ‖X(t1)−X0‖ ≤ 2Bh,

and for t0 ≤ t ≤ t1 = t0 + h

‖Y +
1 (t)−X(t)‖ ≤ ‖Y +

1 (t)− Y +
1 (t1)‖+ ‖Y +

1 (t1)−X(t1)‖+ ‖X(t1)−X(t)‖ ≤ 4Bh.

Since Y −
1 (t0) = Y +

1 (t1), we have further

‖Y −
1 (t)−X(t)‖ ≤ ‖Y −

1 (t)− Y −
1 (t0)‖+ ‖Y +

1 (t1)−X(t1)‖+ ‖X(t1)−X(t)‖ ≤ 4Bh,

and similarly

‖Y +
2 (t)−X(t)‖ ≤ 5Bh.

Hence we obtain from (2.8)

‖E+
1 ‖ ≤ 4BLh+ 2ε, ‖E−

1 ‖ ≤ 4BLh+ 2ε, ‖E+
2 ‖ ≤ 5BLh+ 2ε.

This concludes the proof for the Lie–Trotter scheme. The same result holds for
the adjoint scheme, and hence also for the Strang splitting scheme.

Proof. (of Theorem 2.1). Using the bound of R and the Lipschitz continuity of F ,
we obtain by Grönwall’s inequality for X(t) = ΦF−R(t, t0, X0) at t1 = t0 + h

‖ΦF (t1, t0, Y0)−X(t1)‖ ≤ eLh(h(4BLh+ 2ε) + hε),

which together with Lemma 2.2 yields an estimate of the local error Y1−ΦF (t1, t0, Y0).
Since the solution operator ΦF (t, s, ·) satisfies, by the Lipschitz continuity of F and
the Grönwall inequality,

(2.11) ‖ΦF (t, s, A)− ΦF (t, s, Ã)‖ ≤ eL(t−s)‖A− Ã‖ for all A, Ã ∈ C
m×n, t > s,

the result of Theorem 2.1 is obtained from Lemma 2.2 with the standard argument of
Lady Windermere’s fan [8, II.3] with error propagation by ΦF . We obtain the stated
bound with c0 = eL(T−t0), with c1 = (4 + 3eLh0)(eL(T−t0) − 1)/L, where h0 is an
upper bound of the stepsize h, and with c2 = (9 + 4eLh0)B(eL(T−t0) − 1).

2.6. Remarks and extensions. We discuss a special case and two modifica-
tions of Theorem 2.1.



12 E. KIERI, CH. LUBICH AND H. WALACH

2.6.1. Low-rank approximation of given time-dependent matrices. Con-
sider the case where A(t) are given time-dependent matrices to which approximations
of rank r are sought. In this case the integrator of Section 2.2, with F (t, Y ) = Ȧ(t),
just uses the increments A(tn+1)−A(tn). If

A(t) = X(t) +R(t) with X(t) of rank r and ‖R(t0)‖ ≤ δ, ‖Ṙ(t)‖ ≤ ε,

then we are in the situation of Theorem 2.1, where F (t, Y ) = Ȧ(t) is independent of
Y , so that the Lipschitz constant is L = 0. As a consequence, we get c2 = 0 and
hence the error bound becomes independent of the stepsize h,

‖Yn −A(tn)‖ ≤ δ + 7(tn − t0)ε, t0 ≤ tn ≤ T.

2.6.2. Functions with a one-sided Lipschitz condition. Suppose that with
respect to the Frobenius inner product 〈·, ·〉 we have the one-sided Lipschitz bound

〈F (t, Y )− F (t, Ỹ ), Y − Ỹ 〉 ≤ ℓ‖Y − Ỹ ‖2 for all Y, Ỹ ∈ C
m×n,

with ℓ ≤ L and possibly ℓ ≪ L. In this case the error propagation improves to

‖ΦF (t, s, A)− ΦF (t, s, Ã)‖ ≤ eℓ(t−s)‖A− Ã‖ for all A, Ã ∈ C
m×n, t > s,

where the factor eL(t−s) from (2.11) is replaced by the smaller factor eℓ(t−s). The
above proof then yields an error bound as in Theorem 2.1 with improved constants

c0 = eℓ(T−t0), c1 = (4+3eℓh0)(eℓ(T−t0)−1)/ℓ, c2 = (9+4eℓh0)BL(eℓ(T−t0)−1)/ℓ.

However, we are not able to avoid the linear dependence on the Lipschitz constant L
in c2, which stems from (2.8).

2.6.3. Inexact solution of the differential equations in the substeps of

the splitting scheme. Suppose that instead of the exact value Y ±
i (t1) only an

approximate value

Ỹ ±
i (t1) = ΦF±

i

(t1, t0, Ỹ
±
i (t0)) + hẼ±

i

is computed, so that in one full step of the method, instead of Y1 one actually computes

Ỹ1 = ΦF+

2

(t1, t0,ΦF−

1

(t1, t0,ΦF+

1

(t1, t0, Y0) + hẼ+
1 ) + hẼ−

1 ) + hẼ+
2 .

Suppose now that the errors satisfy

‖Ẽ±
i ‖ ≤ η, P±

i (Ỹ ±
i (t0))Ẽ

±
i = Ẽ±

i .

The latter equation is a natural condition from the way the differential equations for
the factors U, S, V of Y = USV ∗ are actually solved in the algorithm of Section 2.2.
In fact, if some numerical integrator is applied in the first substep of the algorithm,
then instead of K(t1) a perturbed value K(t1)+hEK(t1) is computed. We then have

Ẽ+
1 = EK(t1)V

∗
0 = EK(t1)V

∗
0 V0V

∗
0 = P (Y +

1 (t0))Ẽ
+
1 , and similarly for the second and

third substeps.
In this situation the error bound of Theorem 2.1 changes, with the same proof,

to

‖Ỹn −A(tn)‖ ≤ c0ε+ c1δ + c2h+ c3η,

where c0, c1, c2 are as before, and c3 = (2 + eℓh0)(eℓ(T−t0) − 1)/ℓ.
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3. Time integration of tensor trains. We next extend the results to tensor
differential equations and their low-rank approximation in tensor train format. After
introducing the necessary notation below, we prove a tensor analog to Theorem 2.1
in Section 3.2.

3.1. The splitting scheme for TT-tensors. A tensor Y ∈ C
n1×···×nd is in

TT-format if there exist core tensors Ci ∈ C
ri−1×ni×ri of full multilinear rank, such

that every element of Y can be written as

Y (l1, ..., ld) =

r1∑

j1=1

· · ·

rd−1∑

jd−1=1

C1(1, l1, j1) · · ·Ci(ji−1, li, ji) · · ·Cd(jd−1, ld, 1),

where li = 1, . . . , ni, i = 1, . . . , d. The TT-rank of Y is defined as the vector r =
(r0, r1, . . . , rd) ∈ N

d+1, with r0 = rd = 1. The set of all n1 × · · · × nd-tensors of a
given TT-rank r is a manifold [10, 24], which we denote by Nr.

As a direct generalization of the matrix case, consider the dth order tensor A(t) ∈
C

n1×···×nd which solves the tensor differential equation

Ȧ(t) = F (t, A(t)), A(t0) = A0 ∈ C
n1×···×nd .

We seek to approximate A(t) by a tensor Y (t) in the manifold Nr of n1 × · · · × nd-
tensors of TT-rank r. To find the approximate solution Y (t) ∈ Nr we consider—in
the same manner as for the matrix differential equation—the evolution equation

(3.1) Ẏ (t) = P (Y (t))F (t, Y (t)), Y (t0) = Y0 ∈ Nr,

where P (Y (t)) is the orthogonal projection onto the tangent space TY (t)Nr of Nr at
Y (t). P (Y ) can be decomposed as [17]

P (Y ) =

d−1∑

i=1

(
P≤i−1P≥i+1 − P≤iP≥i+1

)
+ P≤d−1P≥d+1.

Also P≤i and P≥i are projections. Note that P≤i = P≤i(Y ) and P≥i = P≥i(Y ) depend
on Y . To simplify the notation, we will not denote their Y -dependence explicitly when
this is possible without causing confusion. P≤i and P≥i are constructed using a gen-
eralization of singular vectors to higher-dimensional tensors. For a more detailed def-
inition, we refer to [17]. P≤i operates on the core tensors Ck with k = 1, . . . , i, and for
i ≤ j, P≤i is a “subprojection” of P≤j , i.e., P≤iP≤jZ = P≤jZ for all Z ∈ C

n1×···×nd .
The situation for P≥i, which operates on Ck with k = i, . . . , d, is analogous. P≤0

and P≥d+1 are both the identity operator. When i < j, P≤i and P≥j commute.
These properties will be important in our proof of the error estimate below. We also
introduce the abbreviated notation

P+
i Z = P≤i−1P≥i+1Z, P−

i Z = P≤iP≥i+1Z.

Hence we can write the projection onto the tangent space as

(3.2) P (Y ) =

d−1∑

i=1

(
P+
i − P−

i

)
+ P+

d .

Note the similarity with the projection decomposition (2.1) from the matrix case.
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The Lie–Trotter splitting scheme amounts to splitting the right-hand side in (3.1)
according to the decomposition (3.2) of the projection, and solving the resulting 2d−1
subproblems sequentially. The subproblems to be solved read

Ẏ +
1 (t) = P+

1 (Y +
1 (t))F (t, Y +

1 (t)), Y +
1 (t0) = Y0,

Ẏ −
i (t) = −P−

i (Y −
i (t))F (t, Y −

i (t)), Y −
i (t0) = Y +

i (t0 + h) for i = 1, . . . , d− 1,

Ẏ +
i (t) = P+

i (Y +
i (t))F (t, Y +

i (t)), Y +
i (t0) = Y −

i−1(t0 + h) for i = 2, . . . , d.

We refer to [17] for the practical algorithm, which for each i works with small 3-
tensors and combines them in a forward sweep from 1 to d. The adjoint method
makes a backward sweep from d down to 1.

As in the matrix case, the projections P±
i are constant during the solution of

the corresponding subproblems. The proof of this is a simple adaptation of [17,
Theorem 4.1]. Using a similar argument one can show that along the solution of

Ẏ (t) = P≤i(Y (t))P≥j(Y (t))F (t, Y (t)), Y (t0) = Y0 ∈ Nr,

the projections P≤i and P≥j are preserved when i < j,

P≤i(Y (t)) = P≤i(Y0), P≥j(Y (t)) = P≥j(Y0) for all t ≥ t0.

This property will be used in the proof of Theorem 3.1, which is the generalization of
Theorem 2.1 to tensor trains.

With F±
i (t, Y ) = ±P±

i (Y )F (t, Y ), we denote a step with the splitting scheme as

Y1 = S(t1, t0, Y0) = ΦF+

d

(t1, t0,ΦF−

d−1

(t1, t0,ΦF+

d−1

(· · ·ΦF+

1

(t1, t0, Y0) · · · ))).

The Strang splitting scheme is, as previously, formed by concatenating the Lie–Trotter
scheme with its adjoint.

3.2. Error bounds. We can prove an error estimate similar to Theorem 2.1 also
for the tensor case, under similar assumptions. We assume that F (Y ) is Lipschitz
continuous and bounded,

‖F (t, Y )− F (t, Ỹ )‖ ≤ L‖Y − Ỹ ‖ for all Y, Ỹ ∈ C
n1×···×nd ,

‖F (t, Y )‖ ≤ B for all Y ∈ C
n1×···×nd ,

and that it can be subdivided as F (t, Y ) = M(t, Y ) +R(t, Y ) with

M(t, Y ) ∈ TY Nr and ‖R(t, Y )‖ ≤ ε for all Y ∈ Nr and all t.

We assume for convenience that also M is bounded by B. We also assume that the
perturbation in the initial value is bounded by

‖Y0 −A0‖ ≤ δ.

We can then prove the following error estimate.
Theorem 3.1. Under the above assumptions, the Lie–Trotter and Strang splitting

schemes satisfy the error estimate

(3.3) ‖Yn −A(tn)‖ ≤ c0δ + c1ε+ c2h for tn ≤ T,

where ci only depend on L, B, T , and the dimension d.
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The same remarks and extensions as for Theorem 2.1 (see Section 2.6) apply also
to Theorem 3.1.

Proof. The result is obtained by induction on the dimension d and using the result
for the matrix case, which corresponds to d = 2. For a d-dimensional tensor train
Y ∈ C

n1×···×nd with ranks r1, . . . , rd, the mode-1 matricization Y 〈1〉 ∈ C
n1×(n2...nd)

has a factorization

Y 〈1〉 = USV ∗,

where U ∈ C
n1×r1 and V ∈ C

(n2...nd)×r1 have orthogonal columns, and S ∈ C
r1×r1 .

The projection onto the tangent space of the manifold of (re-tensorized) rank-r1 ma-
trices at Y 〈1〉 is then

P+
1 (Y )− P−

1 (Y ) + P+
≥2(Y ),

where P±
1 (Y ) are the projections appearing in (3.2), and P+

≥2(Y ) is the orthogonal

projection onto the range of Y 〈1〉: for Z ∈ C
n1×···×nd ,

(
P+
1 (Y )Z

)〈1〉

= Z〈1〉V V ∗,
(
P−
1 (Y )Z

)〈1〉

= UU∗Z〈1〉V V ∗,

(
P+
≥2(Y )Z

)〈1〉

= UU∗Z〈1〉.

The first two substeps of the tensor-train projector-splitting integrator for the ap-
proximation of Ẏ = F (t, Y ) are the same as in the above matrix projector-splitting
algorithm. The third substep of the matrix projector-splitting integrator solves the
differential equation

(3.4) Ẏ≥2 = P+
≥2(Y≥2)F (t, Y≥2),

where P+
≥2(Y≥2(t)) is the orthogonal projection onto a fixed subspace independent of

t, since U is not changed any more.
In the further substeps of the tensor-train projector-splitting integrator, the dif-

ferential equation (3.4) is solved inexactly by the (d − 1)-dimensional tensor-train
projector-splitting integrator, splitting the projection

d−1∑

i=2

(
P+
i (Y )− P−

i (Y )
)
+ P+

d (Y ).

This sum is the (d− 1)-dimensional tensor-train tangent space projection at Y in the
fixed subspace defined by the range of Y 〈1〉. We note that P±

i (Y )P+
≥2(Y ) = P±

i (Y ) for
i ≥ 2. This yields that the substeps of the (d− 1)-dimensional tensor-train projector-
splitting integrator for (3.4) are identical to those of the d-dimensional projector-
splitting integrator applied to Ẏ = F (t, Y ) from the third substep onwards.

By the induction hypothesis, the error of the result (Y≥2)1 obtained after one time
step of the (d− 1)-dimensional tensor-train projector-splitting integrator is bounded
by

‖(Y≥2)1 − Y≥2(h)‖ ≤ Chη with η = ε+ h.

We are thus in the situation of the matrix projector-splitting integrator with inexact
solution of the substeps up to a local error O(hη). By the result in Section 2.6.3, we
obtain for the local error of the integrator

Y1 − Y (h) = O(h(δ + ε+ h+ η)) = O(h(δ + ε+ h))
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and for the global error

Yn − Y (tn) = O(δ + ε+ h) for tn ≤ T,

where the constants symbolized by the O-notation depend only on L, B, T , and d.

4. Numerical experiments. We present three numerical examples which cor-
roborate the theoretical results. The final experiment additionally indicates that the
method is robust to stiff problems.

4.1. A discrete nonlinear Schrödinger equation. We consider a discrete
nonlinear Schrödinger equation, modeling a Bose–Einstein condensate in an optical
lattice [23]. The problem reads

(4.1)

iȦ(t) = −
1

2
TA(t)−

1

2
A(t)T − ε|A(t)|2 •A(t),

Ajk(0) = exp(−(j − j1)
2/σ2 − (k − k1)

2/σ2)+

− exp(−(j − j2)
2/σ2 − (k − k2)

2/σ2), j, k = 1, . . . , n,

where T = tridiag (1, 0, 1), the squared modulus is taken element-wise, and • denotes
the element-wise product. We use n = 100, σ = 10, (j1, k1) = (60, 50), and (j2, k2) =
(50, 40). Note that T is not a discretized derivative, but a bounded operator modeling
the coupling between nodes in the lattice. Since the Frobenius norm of the exact
solution is conserved, the right-hand side of (4.1) is bounded and Lipschitz continuous
in a neighborhood around the exact solution.

We let Y (t) denote an approximation to A(t) on the low-rank manifold Mr, with
rank r = 10. The linear terms in (4.1) map onto the tangent space TY (t)Mr, while
the nonlinear term does not. This makes the dependence of the error on ε explicit.
In Table 1 we study the effect of varying ε and the time step h. We show the error
in Frobenius norm after solving the problem up to t = 5 with different ε and h, using
the Lie–Trotter projector-splitting scheme. Each subproblem is solved using the 4th
order Runge–Kutta method with time step h = 0.001. The approximate solution is
compared to a full rank reference solution, computed with 4th order Runge–Kutta
using the time step h = 0.0005. We see how the error decays with ε as predicted. We
also see convergence with respect to h in the bottom rows of table, albeit not of a clear
order. The unclear convergence rate with respect to h may be an indication that the
error estimate is not quite sharp. The results in Section 4.3 for a discretized partial
differential equation, which look good despite violating the assumption of F being
Lipschitz continuous, also indicates that there is more to learn about the projector-
splitting integrator.

Table 1

Error in Frobenius norm after solving (4.1) using the Lie–Trotter splitting scheme with different
ε and h.

ε \ h 1 10−1 10−2 10−3

1 9.83e-2 9.73e-2 9.73e-2 9.73e-2
10−1 1.32e-4 8.63e-5 8.63e-5 8.63e-5
10−2 3.13e-6 3.51e-7 3.44e-7 3.44e-7
10−3 2.47e-7 3.44e-9 1.26e-9 1.26e-9
10−4 2.19e-8 2.58e-10 4.09e-11 4.00e-11
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The results for the Strang splitting scheme look similar. If we use the double
time-step for Strang, such that the same total number of stages is used, only a few of
the numbers in Table 1 change in the third digit. When there are no small non-zero
singular values, the standard error estimates for splitting methods are valid and the
Strang splitting scheme converge towards Y (kh) at second order in h. In the presence
of small singular values, however, this does not seem to be the case, and due to the
h-dependence in the bounds of the remainder term ‖∆(t, Y )‖ this is also not promised
by our analysis.

4.2. Addition of matrices and tensors. We consider the addition of two
tensors, C = N + A, where N ∈ Nr is an n1 × · · · × nd-tensor of TT-rank r, and
A ∈ C

n1×···×nd is an increment. The sum is to be computed approximately with a
result in Nr. Such truncated (or retracted) additions are required in iterative methods
on low-rank tensor manifolds, in particular in optimization problems; see, e.g., [1].

A standard approach is to first compute N + A, which is in N2r in case that
A ∈ TNNr, and then to project the result to Nr using a TT-SVD [20]. Note that the
TT-SVD gives a quasi-optimal approximation [20, Corrollary 2.4] on the manifold,
but not the best approximation as is the case for the SVD of matrices.

Alternatively, as proposed in [1, 17], we can perform approximate addition on the
low-rank manifold using the projector-splitting integrator. We then solve

(4.2) Ẏ (t) = P (Y )A, Y (0) = N

up to t = 1 using one step of the Lie–Trotter projector-splitting scheme. As before,
P (Y ) denotes the orthogonal projection onto the tangent space TY Nr at Y ∈ Nr. We
then get an approximation Y1 ∈ Nr for C = N + A. Note that we never leave the
low-rank manifold Nr when using the splitting method.

In our numerical example we illustrate this procedure for an example with small
singular values. We construct N ∈ C

100×100×100×100 of TT-rank r = (1, 10, 10, 10, 1)
with orthogonalized cores, and with the singular values of its matricizations decreasing
exponentially as σj = e−j , j = 1, . . . , 10. We let A be a random tensor in TNNr.
We also consider the similar matrix addition D = M + B, where M ∈ C

100×100 is
of rank s = 10, and has decreasing singular values as in the tensor case. B is a
random tensor in TMMs. We add C = N + A and D = M + B directly to get the
full-rank solutions, and compare this with solving (4.2) using the Lie–Trotter splitting
integrator, which gives us the low-rank solutions Y1 and Z1, respectively. We compare
with the projections Ỹ1 and Z̃1 obtained with TT-SVD and SVD, respectively. These
comparisons are illustrated in Figure 2. We see how the error of the splitting method
decays as the norm of the increments A and B is reduced. Note also how close the
solution given by the splitting method is to the (TT-)SVD approximation, at reduced
computational cost.
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Fig. 2. Error for tensor (left) and matrix (right) addition using the projector-splitting method
for tangential increments A and B of decreasing norms.

4.3. The time-dependent Schrödinger equation. Since the results in this
paper rely on boundedness and Lipschitz continuity of F , they do not transfer directly
to stiff problems such as spatially discretized partial differential equations. Numerical
evidence however suggests that the projector-splitting scheme is robust and accurate
also in this case. We conclude the paper with such an example. We consider the
time-dependent Schrödinger equation in two dimensions with a harmonic potential,

iut(x, t) = −
1

2
∆u(x, t) +

1

2
xTAxu(x, t), x ∈ R

2, t > 0,

u(x, 0) = π−1/2 exp
(1
2
x2
1 +

1

2
(x2 − 1)2

)
,

with A =

(
2 −1
−1 3

)
.

As the right-hand side contains a second order differential operator, its Lipschitz con-
stant scales as ∆x−2, where ∆x is the spatial stepsize. While the initial data is of rank
1, the non-diagonal potential will increase the effective rank of the solution during time
evolution. We discretize the problem using Fourier collocation with n× n grid points
on Ω = [−7.5, 7.5]2. The spatially localized solution is essentially supported within Ω.
The approximate solution at the respective grid points is arranged in an n×n matrix.
We solve low-rank approximations to the problem with ranks r = 1, 2, . . . , 20 using
the Lie–Trotter splitting scheme, integrating up to the time t = 5. We use n = 64
and n = 128, and time steps of length h = 0.02 and h = 0.01. The subproblems are
solved to high accuracy by approximating the action of the matrix exponential in a
Krylov subspace generated by the Arnoldi process. We compare the low-rank approx-
imation to a full-rank reference solution computed by standard Fourier collocation
and Arnoldi time stepping with n = 128, h = 0.01. The error, depicted in Figure 3,
is measured in the Frobenius norm, scaled such that it approximates the continuous
L2(Ω)-norm. The error decreases exponentially with the rank, which indicates that
the method is robust with respect to small singular values also for stiff problems. For
the time step h = 0.02 we see how the error at high approximation ranks is slightly
larger for the finer spatial grid, suggesting a dependence on the Lipschitz constant.
The dependence is however mild, and the method much more robust with respect to
stiffness than explained by the theory presented in this paper.
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