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Abstract

We propose a numerical integrator for determining low-rank approxi-
mations to solutions of large-scale matrix differential equations. The con-
sidered differential equations are semilinear and stiff. Our method consists
of first splitting the differential equation into a stiff and a non-stiff part,
respectively, and then following a dynamical low-rank approach. We con-
duct an error analysis of the proposed procedure, which is independent
of the stiffness and robust with respect to possibly small singular values
in the approximation matrix. Following the proposed method, we show
how to obtain low-rank approximations for differential Lyapunov and for
differential Riccati equations. Our theory is illustrated by numerical ex-
periments.
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1 Introduction

Dynamical low-rank approximations of matrices are widely used for reducing
models of large size. Such an approach has a broad variety of application areas,
such as control theory, computer algebra, signal processing, machine learning,
image compression, and quantum molecular systems. We are interested here
in particular in computing low-rank approximations to solutions of large-scale
matrix differential equations.

In this paper we consider a class of semilinear stiff matrix differential equa-
tions of the form

Ẋ(t) = AX(t) +X(t)A∗ +G(t,X(t)), X(t0) = X0,
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where X(t) ∈ Cm×m, G : [t0,∞)×Cm×m → Cm×m is nonlinear and A ∈ Cm×m
is time invariant. In many applications, the matrix A arises from the spatial
discretization of a differential operator. Therefore, it gives rise to a stiff term.
The nonlinearity G, however, is assumed to be non-stiff. The objective of this
paper is to determine a low-rank approximation to the solution of the given
matrix differential equation.

A possible method for obtaining low-rank approximations to solutions of ma-
trix differential equations is the dynamical low-rank approximation proposed in
[17]. This approach yields a differential equation for the approximation ma-
trix on the low-rank manifold. Recently, an efficient integrator, the so-called
projector-splitting integrator, was proposed in [20] for computing the solution
numerically. A comprehensive error analysis for this integration method is given
in [16]. Note, that the error bounds in this analysis depend on the Lipschitz
constant of the right-hand side of the considered matrix differential equation,
amongst others. Therefore, this proof does not extend to the present situation
in an obvious way.

In this work we propose a novel approach, which yields low-rank approxima-
tions for stiff matrix differential equations. Our method is derived in two steps.
To handle the difficulty with the stiff part, we first split the matrix differential
equation into its stiff part AX +XA∗ and the non-stiff nonlinearity G. Second,
we follow the concept of the dynamical low-rank approximation for both arising
subproblems. The linear subproblem can be solved exactly by means of expo-
nential integrators and thus the solution preserves the rank. The nonlinearity
G is integrated with the projector-splitting integrator [20]. This beneficial way
of splitting is reflected in the convergence analysis of our proposed method,
where we manage to give error bounds, which are independent of the norm of
A. Moreover, our integration method is independent of small singular values,
which might appear in the approximation matrix. This favourable property is
inherited from the projector-splitting integrator, see [16]. Our integrator has
further the computational advantage that the linear stiff subproblem is solved
exactly and efficiently by an exponential integrator.

It is possible to extend our approach to tensor differential equations. There,
the dynamical low-rank approximation to tensors of different formats, such as
tensor trains [21], Tucker tensors [23] or hierarchical Tucker tensors [22] can be
applied.

The paper is structured as follows. In Section 2 we illustrate the quality of
the novel approach with the help of a numerical example. In Section 3, we derive
our method in detail. In Sections 4 and 5 we conduct a comprehensive error
analysis and give error bounds, which are independent of the norm of A, and of
small singular values which might appear in the approximation matrix. Some
extensions and further convegence results are given in Section 6. After having
presented our approach and its convergence analysis, we show how to apply the
method to two essential representatives of this class of matrix differential equa-
tions: differential Lyapunov (DLEs) and differential Riccati equations (DREs).
Finally, we illustrate our theoretical result by a numerical experiment. Some
complementary numerical experiments can be found in [25].
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2 A motivating example

In this work we are interested in low-rank approximations to solutions of semi-
linear stiff differential equations. The integrator we propose here is a first-order
method based on a splitting, which separates the stiff linear part from the
non-stiff nonlinear one. The solutions of the two arising subproblems are ap-
proximated by low-rank matrices. The linear subproblem can be integrated
efficiently by an exponential integrator, whereas the solution of the nonlinear
differential equation is approximated by the dynamical low-rank method [17].
The arising differential equation for the nonlinearity on the low-rank manifold
is finally integrated by the projector-splitting integrator [20].

The main advantage of the integration method we propose is its insensitivity
against stiffness. We illustrate this favourable behaviour with the help of an
example.

Consider the following two-dimensional partial differential equation

∂tv = α∆v + v3, v(0, x, y) = 16x(1− x)y(1− y),

where α = 1/50. We solve this problem on the spatial domain Ω = [0, 1]2,
subject to homogeneous Dirichlet boundary conditions, for times 0 ≤ t ≤ T .
We discretize this partial differential equation in space with m inner points in
each direction and denote the grid size by h, which is h = 1

m+1 . The inner grid
points in x and y direction are denoted by

xi = ih and yj = jh for 1 ≤ i, j ≤ m,

respectively. The differential operator is discretized by means of second order
standard finite differences. Denoting the one-dimensional stencil matrix in x and
y directions by Ax and Ay, respectively, this results in the matrix differential
equation

U̇(t) = αA[U(t)] + U(t)3, U(0) = U0,

where A[U(t)] = AxU(t) + U(t)Ay and U(t) ∈ Rm×m. The matrix Uij(t) is
the sought after approximation of v(t, xi, yj), 1 ≤ i, j ≤ m. The nonlinearity is
realised by an entrywise product.

In our numerical experiment we choose m = 500. The reference solution
is computed with DOPRI5, a Runge–Kutta method of order 5 with adaptive
step size strategy [11] with high precision. In Figure 1 left, we plot the first 30
singular values of the reference solution at T = 0.5.

We observe that the singular values decay quite fast. Figure 1 right shows
the errors of our proposed method for different approximation ranks. The error
is measured in the Frobenius norm. The figure suggests an explicit dependence
of the error on the rank and on the step size. If the approximation rank is chosen
sufficiently large (rank 4 and 5) we solely observe the first-order error due to
the splitting into the linear and the nonlinear subproblems. On the other hand,
a bad choice of the approximation rank (rank 1, 2 and 3) leads to a stagnation
of the error, independently on the refinement of the time step size. Further, the
Lipschitz constant L of the right-hand side of the matrix differential equation
for U(t) is proportional to αh−2. For our choice of the parameters we have
L ≈ 5 · 10+3. We observe that contrary to standard explicit integrators, which
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Figure 1: Results for the solution of the considered partial differential equation
at T = 0.5. Left: First 30 singular values of the reference solution computed
with DOPRI5. Right: Error of our proposed first-order splitting as a function
of the step size and the approximation rank.

require very small time step sizes in order to solve the stiff evolution equation
for U(t) given above, our integrator gives good results for large time step sizes
as well.

3 A low-rank approximation of stiff matrix dif-
ferential equations

We consider the following matrix differential equation

Ẋ(t) = AX(t) +X(t)A∗ +G(t,X(t)), X(t0) = X0, (1)

where X(t) ∈ Cm×m and G : [t0,∞)×Cm×m → Cm×m. The matrix A ∈ Cm×m
and its conjugate transpose, denoted by A∗, are time-independent. We restrict
our attention here to parabolic partial differential equations; other settings are
described in Section 6. For the moment, the matrix A turns out to be the spatial
discretization of an elliptic differential operator. Therefore, the stiffness of (1)
is induced by the matrix A. The nonlinearity G, however, is assumed to be
non-stiff. The exact full-rank solution of the above differential equation can be
represented by the variation-of-constants formula as

X(t) = e(t−t0)AX(t0)e(t−t0)A
∗

+

∫ t

t0

e(t−s)AG(s,X(s))e(t−s)A
∗

ds.

The aim of this work is to compute approximate solutions to X(t), which are of
low rank r with r � m. We propose an integrator based on splitting methods.
The key idea is to separate the matrix differential equation (1) into a stiff
and a non-stiff subproblem. For both arising subproblems we compute a low-
rank solution. The linear stiff subproblem can be integrated explicitly and its
solution is computed efficiently by the use of exponential integrators. For the
nonlinear non-stiff subproblem we follow the approach of the dynamical low-
rank approximation [17], and, in particular, we employ the projector-splitting
integrator [20].

The construction of our integrator is described in the following sections. The
properties of the scheme are also illustrated. The method is efficient, simple and
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robust with respect to small singular values, which might appear in case of over-
approximation, i.e., when choosing the rank too large.

3.1 Splitting into two subproblems

As already explained above, the structure of the matrix differential equation (1)
motivates us to use splitting methods. For an introduction to this class of
numerical integrators, we refer to [10] and [24]. The idea behind the proposed
splitting method is to benefit from the independent integration of the two arising
subproblems.

Now, splitting (1) into a stiff and a non-stiff part yields the following two
subproblems:

Ẋ1(t) = AX1(t) +X1(t)A∗, X1(t0) = X0
1 (2)

and
Ẋ2(t) = G(t,X2(t)), X2(t0) = X0

2 . (3)

We denote the solutions to the subproblems (2) and (3) at t0 + τ with initial
values X0

1 and X0
2 by ΦAτ (X0

1 ) and ΦGτ (X0
2 ), respectively. Our strategy is to

solve the differential equations for X2(t) and X1(t) subsequently by applying
the Lie–Trotter splitting scheme with step size τ :

Lτ := ΦAτ ◦ ΦGτ . (4)

Note, that we will refer to this scheme as full-rank Lie–Trotter splitting.
It results in an approximation X1 of the solution X(t) of (1) at t = t0 + τ .

Starting with X0 = X0
2 , we obtain

X1 = LτX0 = ΦAτ ◦ ΦGτ (X0).

The exact solution of the homogeneous problem (2) is given by

X1(t0 + τ) = eτAX0
1eτA

∗
.

Hence, X1 is the result of the action of a matrix exponential. Therefore, it can
be efficiently computed also for large step sizes τ . Methods of choice are Taylor
interpolation [2], interpolation at Leja points [5] and Krylov subspace methods
[28]. Moreover, efficient implementations on GPUs are possible, see, e.g., [7].

The approximate solution X1 is a full-rank matrix approximation to X(t1)
after one time step. Since we aim to compute rank-r approximations to X(t)
at the time grid points, we next determine low-rank solutions of (2) and (3).

3.2 The low-rank integrator

Denoting the manifold of rank-r matrices by

M :=
{
Y (t) ∈ Cm×m : rank Y (t) = r

}
,

we seek a low-rank approximation Y ∈M to the solution of (1). In Section 3.1,
we have already shown how to split the differential equation into (2) and (3).
Now, it is the objective to determine low-rank approximations Y1 ∈ M and
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Y2 ∈ M to X1 and X2, respectively. To this end, we denote by TYM the
tangent space of the low-rank manifold M at a rank-r matrix Y .

We first consider the stiff subproblem (2). We observe that for any Y ∈M,
AY +Y A∗ ∈ TYM and thus, (2) defines a vector field on the low-rank manifold
M. Hence for an initial value on the low-rank manifold M, the solution of (2)
stays inM, see [13]. This means that subproblem (2) is rank-preserving and so
starting with a rank-r initial value Y 0

1 , the solution of

Ẏ1(t) = AY1(t) + Y1(t)A∗, Y1(t0) = Y 0
1 (5)

stays of rank-r for all times.
For the second subproblem (3) we employ the dynamical low-rank approach

[17]. There, a rank-r solution Y2(t) is determined by requiring

Ẏ2(t) ∈ TY2(t)M, ‖Ẏ2(t)− Ẋ2(t)‖ = min,

where TY2(t)M is the tangent space of the low-rank manifold M at the current
approximation Y2(t). The above condition is equivalent to orthogonally project-
ing the right-hand side of (3) onto the tangent space TY2(t)M. This results in
an evolution equation for Y2(t), which is of the form

Ẏ2(t) = P (Y2(t))G(t, Y2(t)), Y2(t0) = Y 0
2 , (6)

where the initial value Y 0
2 is in the low-rank manifold M. The orthogonal

projection is denoted by P . This differential equation needs to be solved nu-
merically. Standard integrators show difficulties due to the presence of small
singular values. The authors of [16] have proven that the projector-splitting
integrator [20] is robust with respect to this matter and so this integrator is
our method of choice. The integration scheme will be described in detail in
Subsection 3.3. After having applied the projector-splitting integrator to (6),
the resulting low-rank approximation of X2(t) at t0 + τ is

Y 1
2 = Φ̃Gτ (Y 0

2 ).

In a nutshell, the integration method we propose consists of first splitting
the matrix differential equation (1) and then approximating the subproblems

(2) and (3) with respect to low-rank. Hence combining the flow Φ̃Gτ of the low-
rank solution of (3) with the exact flow ΦAτ of (2), which is of low rank when
starting with a low-rank initial data, yields the desired approximation matrix
Y (t). We call this procedure low-rank Lie–Trotter splitting and denote it by

Iτ := ΦAτ ◦ Φ̃Gτ . (7)

Therefore, starting with Y 0 = Y 0
2 , we obtain the rank-r approximation of the

solution of (1) at t0 + τ , viz.,

Y 1 = Iτ (Y 0) = ΦAτ ◦ Φ̃Gτ (Y 0), (8)

where we assume Y 0 to be a rank-r approximation to X0.
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3.3 The projector-splitting integrator

The low-rank approximation Y2 is not computed directly from (6) by applying
a standard integration method, but by an efficient integrator, which benefits
from the underlying low-rank format for matrices. In the following, we drop the
subscript in Y2 and describe the integrator for any Y ∈M and any problem of
the form

Ẏ (t) = P (Y (t))G(t, Y (t)), Y (t0) = Y 0 ∈M.

The projector-splitting integrator introduced in [20] is based on the obser-
vation that every rank-r matrix Y (t) ∈ Cm×m can be represented as

Y (t) = U(t)S(t)V (t)∗,

where U(t), V (t) ∈ Cm×r have orthonormal columns. The square matrix S(t) ∈
Cr×r is invertible and has the same singular values as Y (t). In contrast to
the singular value decomposition (SVD), this non-unique factorization does not
require S(t) to be diagonal. From the computational perspective, this represen-
tation has the advantage of a significant reduction in memory requirements and
computational cost if r � m.

The projector-splitting integrator makes use of this SVD-like factorization,
in the sense that the time integration is performed only on the low-rank factors.
It is based on splitting the projection P (Y ) onto the tangent space TYM of the
low-rank manifold M. Following [17, Lemma 4.1], the orthogonal projection
P (Y ) at the current approximation matrix Y = USV ∗ ∈M can be written as

P (Y )G(t, Y ) = UU∗G(t, Y )− UU∗G(t, Y )V V ∗ +G(t, Y )V V ∗

:= P a(Y )G(t, Y )− P b(Y )G(t, Y ) + P c(Y )G(t, Y ).
(9)

Further, UU∗ and V V ∗ are orthogonal projections onto the spaces spanned by
the range and co-range of Y , respectively. One time step from t0 → t1 = t0 + τ
of the first-order integrator consists of solving the evolution equations

Ẏ a(t) = P a(Y )G(t, Y ), Y a(t0) = Y 0,

Ẏ b(t) = −P b(Y )G(t, Y ), Y b(t0) = Y a(t1),

Ẏ c(t) = P c(Y )G(t, Y ), Y c(t0) = Y b(t1)

consecutively, where Y c(t1) is the approximate solution to Y (t1). In practice,
those differential equations have to be solved approximately using a numerical
method, e.g., a Runge–Kutta method.

4 The main convergence result

In this section we describe the framework in which the convergence proof can be
carried out and formulate the main convergence result. Further, we give an out-
line of the proof. The technical details are postponed to Section 5. Remarkably,
the convergence analysis of the low-rank Lie–Trotter splitting (7) is performed
without introducing Lipschitz conditions of the full right-hand side of (1) nor
of the stiff subproblem (2).
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Let us consider the Hilbert space Cm×m, endowed with the Frobenius norm
‖·‖. Let A ∈ Cm×m and G : [t0, T ] × Cm×m → Cm×m. In the following, we
are given an initial data X0 and a final integration time T such that the matrix
differential equation (1) has a solution X(t) for t0 ≤ t ≤ T . We assume that,
given a rank-r approximation Y 0 of the initial value X0 such that

‖X0 − Y 0‖ ≤ δ

for some δ ≥ 0, the exact rank-r solution

Y (t) = e(t−t0)AY 0e(t−t0)A
∗

+

∫ t

t0

e(t−s)AP (Y (s))G(s, Y (s))e(t−s)A
∗

ds

of the matrix differential equation (1) exists for t0 ≤ t ≤ T .
For proving convergence, we further need the following assumption:

Assumption 1. We assume that the following properties hold.

(a) There exists ω ∈ R and C > 0, such that the matrix A satisfies

‖etAZetA
∗‖ ≤ etω‖Z‖, (10)

‖etA(AZ + ZA∗)etA
∗‖ ≤ 1

t
Cetω‖Z‖ (11)

for all t > 0 and all Z ∈ Cm×m.

(b) G is continuously differentiable in a neighbourhood of the exact solution.

(c) There exists ε > 0 such that for all t0 ≤ t ≤ T

G(t, Y (t)) = M(t, Y (t)) +R(t, Y (t)),

where M(t, Y (t)) ∈ TY (t)M and ‖R(t, Y (t))‖ ≤ ε.
The above assumptions require some explanations and discussion. Moreover,

we need to specify some crucial properties for the proof of the error bounds given
in Theorem 1.

(a) Matrix differential equations of the form (1) are typically stemming from
parabolic partial differential equations. We refer to, e.g., the example in
Section 2 and to the discussion about differential Lyapunov and differential
Riccati equations in Sections 7 and 8, respectively. The matrix operator
F , given by

F (X) = AX +XA∗, X ∈ Cm×m

is equivalent to the operator F

F(x) = Ax = (I ⊗A+A⊗ I)x, x = vec(X) ∈ Cm
2

,

where we denote by ⊗ the Kronecker product and by vec(·) the columnwise
vectorization of a matrix into a column vector. Then, the bounds (10) and
(11) can be translated using the vector 2-norm ‖·‖2 as

‖etAz‖2 ≤ etω‖z‖2,

‖etAAz‖2 ≤
1

t
Cetω‖z‖2,

8



for all t > 0 and all z = vec(Z) ∈ Cm2

. These properties are well known
in the context of semigroup theory for strongly elliptic operators, see, e.g.,
[9], [26].

(b) As a consequence of Assumption 1(b), the function G is locally Lipschitz
continuous with constant L, and G is bounded by B in a neighbourhood
of the solution X(t), i.e.,

‖G(t, X̂)−G(t, X̃)‖ ≤ L‖X̂ − X̃‖,
‖G(t, X̄)‖ ≤ B,

(12)

as long as ‖X̂ − X(t)‖ ≤ γ, ‖X̃ − X(t)‖ ≤ γ, and ‖X̄ − X(t)‖ ≤ γ for
t0 ≤ t ≤ T for given γ > 0. The constants L and B depend on γ.

(c) We assume that G(t, Y ) consists of a tangential part M(t, Y ) and a small
perturbation term R(t, Y ). This means that G, when evaluated along
the low-rank solution, is in the tangent space up to a small remainder
of size ε. This assumption is crucial in order to have a good low-rank
approximation, since if the remainder is large, low-rank approximation is
inappropriate.

Having clarified the assumption, we are now in the situation to state the
main result of this paper.

Theorem 1 (Global error of the low-rank Lie–Trotter splitting integrator).
Under Assumption 1, there exists τ0 such that for all step sizes 0 < τ ≤ τ0 the
error of the low-rank Lie–Trotter splitting integrator (7) is uniformly bounded
on t0 ≤ t0 + nτ ≤ T by

‖X(t0 + nτ)− Inτ (Y 0)‖ ≤ c0τ(1 + |log τ |) + c1δ + c2ε,

where c0, c1 and c2 depend on ω, L, B and T , but are independent of τ and n.

Note that τ0 depends only on the size of the Lipschitz constant of G.
In order to facilitate the analysis of (7), we study the global error by intro-

ducing auxiliary quantities. The construction of the method already suggests
that the global error is composed by the following terms:

(i) The global error of the full-rank Lie–Trotter splitting (4), applied to (2)
and (3):

Ensp = X(t0 + nτ)− (ΦAτ ◦ ΦGτ )n(X0).

(ii) The propagation of the difference between the full-rank initial data X0

and its low-rank approximation Y0 by the full-rank Lie–Trotter splitting
(4):

Enδ = (ΦAτ ◦ ΦGτ )n(X0)− (ΦAτ ◦ ΦGτ )n(Y 0).

(iii) The difference between the full-rank Lie–Trotter splitting (4) and the low-
rank Lie–Trotter splitting (7) applied to Y0:

Enlr = (ΦAτ ◦ ΦGτ )n(Y 0)− (ΦAτ ◦ Φ̃Gτ )n(Y 0).

Hence, the global error in Theorem 1 is obtained as the sum of Ensp, E
n
δ and Enlr

as illustrated in Figure 2. Those three contributions are studied in detail in the
following section.
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Figure 2: Schematic illustration of the convergence analysis. The uppermost
curve (in red) depicts the exact solution X(t) of (1), whereas the lowermost
(in black) shows the solution obtained by the low-rank Lie–Trotter splitting
(7). All other lines (in blue) represent the auxiliary values obtained by the
application of the full-rank Lie–Trotter splitting (4) either to a full-rank initial
data (continuous lines) or to a low-rank initial data (dashed-dotted lines).

5 Detailed convergence analysis

The aim of this section is to provide a convergence analysis of the low-rank Lie–
Trotter splitting (7). We give a detailed proof of Theorem 1 and in particular
we state and prove error bounds for the three contributions listed above. First,
we prove the error bound of the full-rank Lie–Trotter splitting in Subsection
5.1, followed by the error estimate for the low-rank Lie–Trotter splitting in
Subsection 5.2. The propagation of the difference between the full and low-rank
initial data requires just the stability of the full-rank Lie–Trotter splitting. This
is shown in Subsection 5.3.

5.1 The error of the full-rank Lie–Trotter splitting

The convergence of the full-rank splitting scheme (4) is stated in the following
theorem. The ideas in the proof can be traced back to, e.g., [8] and [15].

Proposition 1 (Global error of the full-rank Lie–Trotter splitting). Under
Assumption 1, the full-rank Lie–Trotter splitting (4) is first-order convergent,
i.e., the error bound

‖X(t0 + nτ)− (ΦAτ ◦ ΦGτ )n(X0)‖ ≤ Cτ(1 + |log τ |)

holds uniformly on t0 ≤ t0 + nτ ≤ T . The constant C depends on ω, L, B and
T , but is independent of τ and n.

Proof. The solution of the matrix differential equation (1) can be expressed by
means of the variation-of-constants formula. Given the initial value X(tk−1) =
Z, the solution at time tk = tk−1 + τ with step size τ > 0 is

X(tk) = eτAZeτA
∗

+

∫ τ

0

e(τ−s)AG(tk−1 + s,X(tk−1 + s))e(τ−s)A
∗

ds.
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The exact solution of the first full-rank subproblem (2) at tk with initial value
X1(tk−1) = X2 is given by

ΦAτ (X2) = X1(tk) = eτAX2eτA
∗
, (13)

whereas the exact solution of the second full-rank subproblem (3) with initial
value X2(tk−1) = Z can be expressed as

ΦGτ (Z) = X2(tk) = Z + τG(tk−1, Z) +

∫ τ

0

(τ − s)Ẍ2(tk−1 + s) ds. (14)

Composing (13) with (14) gives the full-rank Lie–Trotter splitting solution

LτZ = eτAZeτA
∗

+ τeτAG(tk−1, Z)eτA
∗

+

∫ τ

0

(τ − s)eτAẌ2(tk−1 + s)eτA
∗

ds.

The local error of the method at tk is

eksp = X(tk)− LτX(tk−1)

=

∫ τ

0

e(τ−s)AG(tk−1 + s,X(tk−1 + s))e(τ−s)A
∗

ds

− τeτAG(tk−1, X(tk−1))eτA
∗ −

∫ τ

0

(τ − s)eτAẌ2(tk−1 + s)eτA
∗

ds.

Let f(s) = e(τ−s)AG(tk−1 + s,X(tk−1 + s))e(τ−s)A
∗
. Then the first integral

above can be rewritten as∫ τ

0

[
f(0) +

∫ s

0

ḟ(r) dr

]
ds.

Using the fact that a matrix commutes with its exponential, the derivative of f
is

ḟ(s) = −e(τ−s)A
(
AG+GA∗ − dG

ds

)
e(τ−s)A

∗
.

Employing the boundedness of Ẍ2, we are left with a simpler form of the local
error:

eksp = −
∫ τ

0

∫ s

0

e(τ−r)A (AG+GA∗) e(τ−r)A
∗

dr ds+O(τ2). (15)

Due to the presence of the matrix A, we do not bound the local error (15) di-
rectly. Instead, we solve the error recursion first. Recalling thatXn−1 = Ln−1τ X0,
we write the global error of the Lie–Trotter splitting as

Ensp = LτX(tn−1)− LτXn−1 + ensp,

where the first two terms represent the propagation of En−1sp by the numerical
method Lτ , which is nonlinear. Making use of the exact solution (14) of the
nonlinear subproblem, we write

LτX(tn−1)− LτXn−1 = eτA
(
ΦGτ (X(tn−1))− ΦGτ (Xn−1)

)
eτA

∗

= eτAEn−1sp eτA
∗

+ eτAH(X(tn−1), Xn−1)eτA
∗
,

(16)
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where

H(X(tn−1), Xn−1) = τ
[
G(tn−1, X(tn−1))−G(tn−1, X

n−1)
]

+

∫ τ

0

(τ − s)
[
Ẍ2(tn−1 + s)− ¨̃

X2(tn−1 + s)
]

ds.

The functions X2 and X̃2 are the solutions of the second subproblem (3) with
initial values X(tn−1) and Xn−1, respectively. Starting from X(t0) and X0 and
using expression (16) for their propagation by the Lie–Trotter splitting method,
we rewrite the global error as

Ensp = enτAE0
spe

nτA∗
+

n−1∑
k=0

e(n−k)τAH(X(tk), Xk)e(n−k)τA
∗

︸ ︷︷ ︸
=:D1

+

n∑
k=1

e(n−k)τAekspe
(n−k)τA∗

︸ ︷︷ ︸
=:D2

.

(17)

By the choice of the initial value X(t0) = X0 we have ‖E0
sp‖ = 0. Since the

expression H mainly consists of the nonlinear function G, which by Assump-
tion 1(b) is Lipschitz continuous, and of its derivative Ẍ2, which is continuous,
we have the bound

‖H(X(tk), Xk)‖ ≤ C(τ‖Eksp‖+ τ2).

Hence, property (10) yields the following bound for the second term in the
representation of the global error (17):

‖D1‖ ≤ C
n−1∑
k=0

e(n−k)τω
(
τ‖Eksp‖+ τ2

)
≤ Cτ

(
n−1∑
k=0

‖Eksp‖+ 1

)
. (18)

Now, in order to bound D2, we have to consider the form of the local error in
(15). First, we employ assumption (11) as follows:∥∥∥∥ n∑

k=1

e(n−k)τA
(∫ τ

0

∫ s

0

e(τ−r)A (AG+GA∗) e(τ−r)A
∗

dr ds

)
e(n−k)τA

∗
∥∥∥∥

≤
n∑
k=1

∥∥∥∥∫ τ

0

∫ s

0

e(τ−r)A
(

e(n−k)τA(AG+GA∗)e(n−k)τA
∗
)

e(τ−r)A
∗

dr ds

∥∥∥∥
≤ C

n−1∑
k=1

1

kτ

∫ τ

0

∫ s

0

e(τ−r)ω dr ds+ Cτ

≤ Cτ2
n−1∑
k=1

1

kτ
+ Cτ.

So we achieve the following bound for D2:

‖D2‖ ≤ Cτ2
n−1∑
k=1

1

kτ
+ Cτ. (19)
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Now, collecting (17), (18) and (19) yields the error bound:

‖Eksp‖ ≤ Cτ
n−1∑
k=0

‖Eksp‖+ Cτ log n+ Cτ.

The global error bound follows now from a discrete Gronwall inequality.

5.2 The low-rank Lie–Trotter splitting

In this section we compare the full-rank Lie–Trotter splitting (4) and the low-
rank Lie–Trotter splitting (7). To this end, we analyze

Enlr = (ΦAτ ◦ ΦGτ )n(Y 0)− (ΦAτ ◦ Φ̃Gτ )n(Y 0).

The following proposition states the error bound. Its proof is given at the end
of this section.

Proposition 2. Under Assumption 1, the difference Enlr is uniformly bounded
on t0 ≤ t0 + nτ ≤ T as

‖(ΦAτ ◦ ΦGτ )n(Y 0)− (ΦAτ ◦ Φ̃Gτ )n(Y 0)‖ ≤ c2ε+ c3τ,

where the constants c2 and c3 depend on ω, L, B and T , but are independent of
τ and n.

The low-rank Lie–Trotter splitting defined in (7) with initial value Y 0 results,

after one time step, in Y 1 = ΦAτ ◦ Φ̃Gτ (Y 0). It consists of first applying the
projector-splitting integrator to the evolution equation (6) for the nonlinearity
on the tangent space TY2M and then solving exactly the first subproblem (5)

with initial value Φ̃Gτ (Y 0). We start with the following preliminary result.

Lemma 1. Under Assumption 1, the following bound holds uniformly for each
n ≥ 1 satisfying t0 ≤ t0 + nτ ≤ T

‖(ΦAτ ◦ ΦGτ )(Y n−1)− (ΦAτ ◦ Φ̃Gτ )(Y n−1)‖ ≤ b1ετ + b2τ
2,

as long as ‖Y n−1 − Y (tn−1)‖ ≤ γ for given γ > 0, see (12). The constants b1
and b2 depend on ω, L, B and T , but are independent of τ and n.

Proof. We observe that

‖(ΦAτ ◦ ΦGτ )(Y n−1)− (ΦAτ ◦ Φ̃Gτ )(Y n−1)‖ = ‖ΦAτ ◦ (ΦGτ − Φ̃Gτ )(Y n−1)‖
≤ eτω‖(ΦGτ − Φ̃Gτ )(Y n−1)‖,

where in the last step we employ bound (10) for the matrix exponential operator.

For estimating the remaining local error (ΦGτ − Φ̃Gτ )(Y n−1) of the projector-
splitting integrator, we mainly refer to the error analysis in [16]. Let us consider
the nonlinear subproblem (6), which by Assumption 1(c) can be written as

Ẏ2(t) = M(t, Y2(t)) + P (Y2(t))R(t, Y2(t)), Y2(tn−1) = Y n−1,

13



for all n ≥ 1 satisfying t0 ≤ t0 + nτ ≤ T . Now, dropping the perturbation term
yields the auxiliary problem

Ẇ (t) = M(t,W (t)), W (tn−1) = Wn−1.

Following [16, Lemma 2.2], there exists Wn−1 such that ‖Y n−1 − Wn−1‖ ≤
τ(4BLτ + 2ε) and the following bound holds

‖Φ̃Gτ (Y n−1)−W (tn)‖ ≤ τ(9BLτ + 4ε).

Moreover, by the bound of the perturbation term R and the Lipschitz constant
of G, we obtain by a Gronwall inequality

‖ΦGτ (Y n−1)−W (tn)‖ ≤ eLτ (τ(4BLτ + 2ε) + τε).

Collecting those two error estimates results in the local error

‖(ΦGτ − Φ̃Gτ )(Y n−1)‖ ≤ (4BLeLτ + 9BL)τ2 + (3eLτ + 4)ετ,

which proves the stated local error bound for b1 = eτω(3eLτ + 4) and b2 =
eτω(4BLeLτ + 9BL).

With this local error estimate at hand, we are now in the situation to prove
the bound for Enlr.

Proof of Proposition 2. Let Ŷ , Ỹ ∈ M. Employing bound (10) and the Lips-
chitz continuity (12) of the nonlinearity G, we obtain

‖
(
ΦAτ ◦ ΦGτ

)
(Ŷ )−

(
ΦAτ ◦ ΦGτ

)
(Ỹ )‖ ≤ ‖ΦAτ ‖ · ‖ΦGτ (Ŷ )− ΦGτ (Ỹ )‖

≤ e(L+ω)τ‖Ŷ − Ỹ ‖,

which shows stability of the splitting method Lτ = ΦAτ ◦ ΦGτ . Combining the
stability with the result of Lemma 1, we obtain the stated bound for Enlr.

5.3 Proof of Theorem 1

Finally, we are in the situation to combine the results of the previous sections
and prove the main result of this paper.

Proof of Theorem 1. The global error of the proposed low-rank Lie–Trotter split-
ting method consists of the global error Ensp of the full-rank Lie–Trotter split-
ting Lτ , the difference Enlr between the full-rank Lie–Trotter splitting solution
Lnτ (Y 0) and the low-rank Lie–Trotter splitting solution Inτ (Y 0), and the prop-
agation Enδ of the initial error ‖X0 − Y 0‖ by Lτ .

Due to stability of Lτ , we have the following bound for the propagated initial
value

‖(ΦAτ ◦ ΦGτ
)n

(X0)−
(
ΦAτ ◦ ΦGτ

)n
(Y 0)‖ ≤ e(L+ω)(T−t0)‖X0 − Y 0‖.

Combining the three components of the global error results in the stated bound
with c0 containing C and c3, which come from Proposition 1 and from Propo-
sition 2, respectively, with c1, which is the constant of the bound for the prop-
agated initial value, and with c2, which appears in Proposition 2.
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As a remark, we point out that in contrast to standard numerical integrators,
the low-rank Lie–Trotter splitting integrator is not sensitive to the presence of
small singular values. The low-rank solution of the linear problem is computed
directly by exponential integrators, where possibly appearing small singular val-
ues do not cause difficulties. Further, they can also occur in the approximation
matrix of the nonlinear subproblem. But since we are applying the projector-
splitting integrator, which is robust with respect to small singular values, our
integration method inherits this favourable property.

6 Extensions and further convergence results

In this section, we comment on the possible extension of the low-rank Lie–
Trotter splitting (7) to a low-rank Strang splitting, and we sketch some other
situations in which the convergence proof of Section 5 also holds.

6.1 The low-rank Strang splitting

The main drawback of the Lie–Trotter splitting scheme in application is its
low order. Composing the scheme with its adjoint method, which is again a
Lie–Trotter splitting with the order of flows reversed, one obtains the formally
second-order Strang splitting. In the low-rank situation, the resulting scheme
is given by

ΦAτ/2 ◦ Φ̃Gτ ◦ ΦAτ/2.

This scheme is numerically performing very well in the absence of small nonzero
singular values, see [25]. The extension of our convergence proof to this situa-
tion, however, is not straightforward. First of all, a second-order scheme needs
more regularity of the exact solution, in particular between the (split) vector
fields and the boundary conditions. This was worked out for the full-rank Strang
splitting in [8, 15]. The same regularity assumptions and/or modifications are
also required here. The numerical example, given in [25, Figure 2] clearly shows
that whenever the needed regularity is missing the order is restricted to 1.25 for
a formally second-order splitting. The bottleneck, however, is the fact that the
projector-splitting Strang scheme is not proven to be second-order convergent
in the case of small nonzero singular values, see [16].

6.2 Further convergence results

For the purpose of simplicity and clarity, we have restricted our convergence
analysis up to now to parabolic problems and a nonlinearity G that does not
necessarily satisfy the boundary conditions of the involved elliptic differential
operator. In this case, the quantity AG + GA∗ (see (15)) cannot be bounded
independently of the spatial grid size. This is the place where the parabolic
smoothing property (11) enters the game. A typical instance for such a situation
is the following. The matrix A stems from the spatial discretization of an
elliptic differential operator subject to homogeneous boundary conditions and
G(t,X(t)) is a (spatially) smooth function that does not vanish at the boundary.

However, there are interesting situations in which our proof still holds even
if (11) does not hold. A typical possibility is the following one. Let the dif-
ferential operator be of the form v · ∇, where v is a given velocity vector. We
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thus consider a transport semigroup in a Hilbert space. This is a semigroup of
contractions and satisfies (10) with ω = 0.

If this problem is now considered with periodic boundary conditions, the
quantity AG+GA∗ can be uniformly bounded if G(t,X(t)) is smooth in space.
In this case, the parabolic smoothing property in not required and low-rank
Lie–Trotter splitting is first-order convergent on compact time intervals. As
this proof follows from a straightforward modification of the given proof, we do
not work out the details.

7 Differential Lyapunov equations

As a special case of the stiff matrix differential equation (1), we consider dif-
ferential Lyapunov equations (DLEs), which are of crucial importance in many
applications, e.g., Kalman filtering, model reduction of linear time-varying sys-
tems, optimal filtering or numerical simulation of systems governed by stochastic
partial differential equations [18].

For DLEs, the term G(t,X) in (1) is solution independent. We denote the
resulting time-dependent matrix as Q(t). This gives us the DLE

Ẋ(t) = AX(t) +X(t)A∗ +Q(t), X(t0) = X0,

where A,Q(t), X(t) ∈ Cm×m. The matrix Q and the initial data X0 are sym-
metric and positive semidefinite. Since the DLE is linear, its exact solution
exists for all times and is also symmetric and positive semidefinite.

In order to find a low-rank approximation Y (t) ∈ M for the solution X(t)
of the DLE, we follow the procedure described in Section 3. First, we split the
DLE into the following two subproblems:

Ẋ1(t) = AX1(t) +X1(t)A∗, X1(t0) = X0
1 ,

Ẋ2(t) = Q(t), X2(t0) = X0
2 .

Then, the low-rank solution is computed by the low-rank Lie–Trotter splitting
integrator Iτ = ΦAτ ◦ Φ̃Qτ defined in (7). By Φ̃Qτ we denote the flow of the second
subproblem approximated by means of the projector-splitting integrator.

The analysis of the global error of this scheme goes along the proofs in
Section 5, if the DLE satisfies Assumption 1 in Section 4. Since DLEs are
typically stemming from parabolic partial differential equations, we assume that
the matrix A satisfies the properties in Assumption 1(a). The inhomogeneity
Q(t) is not solution dependent. Thus, we have L = 0, and Assumption 1(b)
is satisfied. To fulfill Assumption 1(c), we have to assume that Q(t) is in the
tangent space TYM up to a small perturbation. Let us write

Q(t) = Q(t)− P (Y )Q(t) + P (Y )Q(t),

where we identify

P (Y )Q(t) =: M(t, Y ) ∈ TYM and Q(t)− P (Y )Q(t) =: R(t, Y ).

Moreover, we assume ‖R(t, Y )‖ ≤ ε. Hence, we conclude that the general
framework proposed in Section 4 is suitable for the analysis of the corresponding
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integrator for DLEs. Thus, we can simply adapt the error analysis given in
Section 5. The bound of the global error of the full-rank Lie–Trotter splitting
integrator stays the same, i.e., ‖Ensp‖ ≤ Cτ(1 + |log τ |) with the only difference
that here the constant C does not depend on L. Furthermore, the result given in
Proposition 2 becomes ‖Enlr‖ ≤ c2ε. We observe that, compared to the general
case, the constant c3 drops here. Also the constant c1 appearing in the error
bound for the propagated difference between the full-rank and the low-rank
initial values does not depend on L.

Finally, we remark that the low-rank Lie–Trotter splitting (7) can be tailored
to preserve symmetry and positive semidefiniteness of the solution. Further, a
symmetric variant of the SVD-like decomposition in Subsection 3.3 is employed.
An algorithm for our proposed method in the case of DLEs can be found in [25].
The symmetric representation does not introduce any further difficulties in the
convergence analysis, since it is only based on a different representation of the
solution.

8 Differential Riccati equations

The class of matrix differential equations of the form (1) also includes differential
Riccati equations (DREs). They play a crucial role in many applications, such
as optimal and robust control problems, optimal filtering, H∞ control of linear
time varying systems, and differential games, see [1, 14, 27]. Further, several
integrators based on low-rank approximations have been proposed in the past
years. In particular, we mention methods based on backward differentiation
formulas and Rosenbrock methods [3, 4].

For DREs the nonlinearity G in (1) is quadratic and of the form

G(t,X) = Q(t)−X(t)KX(t).

Thus, we consider here the following initial value problem

Ẋ(t) = AX(t) +X(t)A∗ +Q(t)−X(t)KX(t), X(t0) = X0, (20)

where A,Q(t),K,X(t) ∈ Cm×m. The matrices Q and K, and the initial value
X0 are symmetric and positive semidefinite. The global existence and positive
semidefiniteness of the solution is guaranteed under these conditions, see [6].

As for the case of DLEs, the rather general framework given in Assumption 1
fits to DREs. Condition (a) is fulfilled by assuming that the matrix A is the
discretization of a strongly elliptic differential operator. Therefore we restrict
ourselves to parabolic problems. Property (b) is a usual requirement in the field
of differential equations. On the other hand, condition (c) requires more care.
Let Y 0 be a rank-r approximation of X0. Then the rank-r solution of (20) is
given by

Y (t) = e(t−t0)AY 0e(t−t0)A
∗
+

∫ t

t0

e(t−s)AP (Y (s)) (Q(s)− Y (s)KY (s)) e(t−s)A
∗

ds

for t0 ≤ t ≤ T . Assumption 1(c) requires that the nonlinearity G has a partic-
ular form when computed along a low-rank solution Y . It is needed that

G(t, Y ) = M(t, Y ) +R(t, Y ),
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where M(t, Y ) is an element of the tangent space TYM and a residual R(t, Y )
which is in the complement of TYM. We can take the tangential part as

M(t, Y ) = P (Y )Q(t)− Y KY,

whereas the residual is

R(t, Y ) = Q(t)− P (Y )Q(t).

To verify this, note, that the term M(t, Y ) is the sum of two elements of the
tangent space. Indeed, P (Y )Q(t) is trivially an element of the tangent space.For
Y KY we proceed as follows. Making use of the explicit form of the projection
recalled in (9), we observe that

P (Y )(Y KY ) = UU∗(USV ∗KY )− UU∗(USV ∗KUSV ∗)V V ∗ + (Y KUSV ∗)V V ∗

= USV ∗KY − USV ∗KUSV ∗ + Y KUSV ∗

= Y KY,

where we have used the fact that U and V have orthonormal columns. Since
TYM is a vector space we conclude that M(t, Y ) ∈ TYM.

Although we carried out the proof in the matrix setting, DREs can be also
studied from an abstract different point of view, see, e.g., [19]. A convergence
analysis for a splitting method in the setting of Hilbert–Schmidt operators was
proposed in [12]. Moreover, different types of splitting for DREs were proposed
in [29, 30].

As for DLEs, the low-rank Lie–Trotter splitting can be tailored to preserve
symmetry and positive semidefiniteness of the solution. For an algorithm of our
proposed method in the case of DREs, see [25].

9 Numerical results

The aim of this section is to illustrate the numerical behaviour of the low-rank
Lie–Trotter splitting (7). In particular, we present a numerical example to
illustrate the convergence result of Theorem 1.

We study a DRE arising in optimal control for linear quadratic regulator
problems. Thus we consider the linear control system

ẋ = Ax+ u, x(0) = x0,

where A ∈ Rm×m is the system matrix, x ∈ Rm the state variable and u ∈ Rm
the control. The functional J , that has to be minimized is given by

J (u, x) =
1

2

∫ T

0

(
x(t)TCTCx(t) + u(t)Tu(t)

)
dt,

where C ∈ Rq×m and (·)T denotes the transpose. Further, the optimal control
is given in feedback form by uopt(t) = −X(t)x(t), where X(t) is the solution of
the following DRE

Ẋ(t) = ATX(t) +X(t)A+ CTC −X(t)2,
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which is in the form of (20) with Q = CTC and K = Im being the identity
matrix.

In order to consider an interesting application, we mainly follow the numeri-
cal example presented in [12]. The matrix A arises from the spatial discretization
of the diffusion operator

D = ∂x (α(x)∂x(·))− λI,

defined on the spatial domain Ω = (0, 1) subject to homogeneous Dirichlet
boundary conditions. We choose α(x) = 2 + cos(2πx) and λ = 1. The finite
difference discretization of the operator D satisfies Assumption 1(a). Let q
be odd. The matrix C ∈ Rq×m is defined by taking q independent vectors
{1, e1, . . . , e(q−1)/2, f1, . . . , f(q−1)/2}, where

ek(x) =
√

2 cos(2πkx) and fk(x) =
√

2 sin(2πkx), k = 1, . . . , (q − 1)/2.

The following results are obtained by choosing the initial value X0 = 0, final
time T = 0.1, m = 200 and q = 9.

Time
0 0.02 0.04 0.06 0.08 0.1

R
an

k

0

5

10

15

20

25

30

35

0 10 20 30 40 50

S
in

gu
la

r 
va

lu
es

10-20

10-15

10-10

10-5

100

105

Figure 3: Results for the considered DRE for m = 200. Left: Rank of the
reference solution as a function of time. Right: First 50 singular values of the
reference solution at T = 0.1.
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Figure 4: Errors of the low-rank Lie–Trotter splitting in the Frobenius norm as
function of step size and rank at T = 0.1 for the considered DRE for m = 200.

In Figure 3 left, we show the rank of the reference solution, which is com-
puted by DOPRI5 [11]. We observe that the effective rank of the solution stays

19



low during the evolution in time. In Figure 3 right, we plot the first 50 singu-
lar values of the solution at the final integration time. In Figure 4, the error
behaviour of the low-rank Lie–Trotter splitting (7) is illustrated. We observe
that the error is composed by two different contributions. The choice of a small
approximation rank results in stagnation of the error. On the other hand, if
the low-rank error becomes small enough, one observes the usual order of con-
vergence one for the outer Lie–Trotter splitting. This is consistent with the
convergence result given in Theorem 1.
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