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Abstract

This thesis studies the numerical solution of high-dimensional tensor differential equa-

tions. The prohibitive computational cost and memory requirements of numerically

simulating such equations is often referred to as the curse of dimensionality. Such pro-

hibitively large differential equations arise in many fields of applications such as plasma

physics, machine learning, radiation transport or quantum physics. Dynamical low-rank

approximation offers a promising ansatz to overcome the curse by representing the high-

dimensional tensors in a low-rank format and solving a projected differential equation

on a low-rank manifold. The low-rank manifold considered in this thesis is the manifold

of tree tensor networks.

The time integration of tree tensor networks requires the update of each low-rank factor.

Several numerical schemes to compute this time integration are proposed in this thesis.

All of those methods fall into the class of Basis Update and Galerkin (BUG) integrators,

where all basis matrices are evolved through a small matrix differential equation and all

core tensors by a Galerkin step. We present a rigorous error analysis of all integration

schemes that show robustness with respect to small singular values. This is impor-

tant since small singular values can lead to numerical instabilities as they correspond

to high curvatures in the corresponding low-rank manifold. Remarkable properties like

rank-adaptivity, parallelism, norm and energy preservation and diminishing of energy in

gradient systems are discussed.

Further, the representation of the right-hand side of a differential equation in tree tensor

network format is discussed for a class of long-range interacting Hamiltonians. Efficient

constructions of these tree tensor network operators are given and bounds on the maxi-

mal tree rank for an exact and approximated representation of the operator are proven.

Numerical experiments for several problems from quantum physics verify theoretical

results and investigate the applicability of dynamical low-rank approximation to many-

body quantum systems in detail.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der numerischen Lösung von hochdimensionalen

Tensor-Differentialgleichungen. Die enormen Rechenkosten und Speicheranforderungen

bei der numerischen Simulation solcher Gleichungen werden oft als ”Fluch der Dimen-

sionalität” bezeichnet. Solche hochdimensionalen Differentialgleichungen treten in vie-

len Anwendungsgebieten wie Plasmaphysik, maschinelles Lernen, Strahlentransport oder

Quantenphysik auf. Ein vielversprechender Ansatz zur Überwindung dieses Fluchs ist

die dynamische Niedrigrangapproximation, bei der hochdimensionale Tensoren in einem

niedrigrangig Format dargestellt werden und dann eine projizierte Differentialgleichung

auf einer Niedrigrang-Mannigfaltigkeit gelöst wird. Die in dieser Arbeit betrachtete

Niedrigrang-Mannigfaltigkeit ist die Mannigfaltigkeit von Baum-Tensornetzwerken.

Die Zeitintegration von Baum-Tensornetzwerken erfordert die Zeitentwicklung jedes

niederrang Faktors. In dieser Arbeit werden mehrere numerische Verfahren zur Berech-

nung dieser Zeitintegration vorgeschlagen. Alle diese Verfahren gehören zur Klasse der

Basis-Update- und Galerkin-Integratoren (BUG), bei denen alle Basismatrizen durch

eine kleine Matrixdifferentialgleichung und alle Kerntensoren durch einen Galerkin-

Schritt entwickelt werden. Wir stellen eine rigorose Fehleranalyse aller Integrationsver-

fahren vor, die Robustheit gegenüber kleinen Singulärwerten aufweist. Dies ist wichtig,

da kleine Singulärwerte zu numerischen Instabilitäten führen können, da sie hohen

Krümmungen in der Niedrigrang-Mannigfaltigkeit entsprechen. Es werden bemerkenswerte

Eigenschaften wie Rangadaptivität, Parallelität, Norm- und Energieerhaltung und En-

ergieverringerung in Gradientensystemen diskutiert.

Des Weiteren wird die Darstellung der rechten Seite einer Differentialgleichung in Form

eines Baum-Tensornetzwerks für eine Klasse von Hamiltonoperatoren mit langreichweiti-

genWechselwirkungen diskutiert. Effiziente Konstruktionen dieser Baum-Tensornetzwerk

Operatoren werden gegeben und Schranken für die maximalen Ränge für eine exakte und

approximierte Darstellung des Operators werden bewiesen.

Numerische Experimente für mehrere Probleme aus der Quantenphysik verifizieren die

theoretischen Ergebnisse und untersuchen die Anwendbarkeit der dynamischen Niedri-

grangapproximation auf Vielteilchen-Quantensysteme im Detail.
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worten unzähliger Fragen, unsere spannende Diskussionen und all das was ich in der

Zeit von dir lernen durfte.

Inoltre, vorrei fare un ringraziamento speciale a Gianluca Ceruti. Non solo mi hai avvi-

cinato al tema, ma mi hai anche sostenuto e incoraggiato durante tutta la promozione.

Il tuo orecchio aperto e il tuo coinvolgimento hanno fatto la differenza nel successo di

questo lavoro. Ti sono inoltre molto riconoscente per il soggiorno di ricerca ad Innsbruck.

Jonas Kusch und nochmals Gianluca Ceruti möchte ich für das Korrekturlesen dieser
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Chapter 1

Introduction

Long-range interacting quantum systems are currently a major research topic, as they

govern the dynamics of future technologies [O’b07]. One highly relevant application is

quantum computers, which are a disruptive technology that has the potential to lead

to a significant change in industry, science and society. The advantage of quantum

computers over classical computers is the possibility of creating superpositions and en-

tanglement, offering the potential for significant computational speedups. Classical bits

are restricted to binary values (0 and 1), while quantum bits (qubits) can exist in su-

perpositions of these states, allowing for parallelism in computations. By this, problems

like the unstructured search in data (Groover algorithm [Gro96]) or the prime factor-

ization of large numbers (Shor’s algorithm [Sho99]) can be solved much faster on a

quantum computer. However, the quantum computers built so far are not large enough

for practical computations, as their number of qubits is still too small. Consequently,

simulating quantum circuits and their (long-range) interactions among qubits on classi-

cal computers remains a critical part of advancing quantum computing technology. The

simulation and implementation of quantum circuits involves finding a solution of the

high-dimensional Schrödinger equation

ψ̇(t) = −iHψ(t). (1.1)

Here, H denotes a self-adjoint operator, called the Hamiltonian and ψ(t) ∶ Rd → C
denotes the d-dimensional wave function at time t. In many cases, the dimension d is

large, which makes it costly or infeasible to solve the differential equation directly. The

inherent high dimension of the numerical solution is not a problem only encountered

in quantum physics. In fact, a vast number of problems in physics, engineering and

computer science suffer from large memory requirements of numerical solutions.

1
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In recent years, dynamical low-rank approximation (DLRA) has been successfully ap-

plied as an on-the-fly model order reduction technique to tackle the inherent curse of

dimensionality. First introduced by Koch and Lubich in [KL07] for matrix and in [KL10]

for tensor differential equations, the works laid the foundation for the development of

stable time integration methods for matrix and tensor differential equations as the one

in (1.1). The ansatz of DLRA applies to tensor differential equations of the form

Ȧ(t) = F (t,A(t)), A(t0) = A0, (1.2)

where A(t) ∈ Cn1×⋅⋅⋅×nd is a family of time-dependent tensors. Note that by setting

F = −iH, the Schrödinger equation (1.1) emerges as one possible application for DLRA.

The core idea of DLRA is to decompose the (possibly inaccessible) matrix or tensor

A(t) into a low-rank factorization and evolve all factors over time. The equations of

motion for the factors are derived based on the Dirac-Frenkel time-dependent variational

principle [Lub08], where the differential equation is projected onto a low-rank manifold.

By assuming a low-rank approximability of the problem, significantly faster integration

schemes can be derived. However, the equations of motion from [KL07, KL10] turn out

to be stiff, since its Lipschitz constant becomes large in the presence of small singular

values of A(t). To overcome this issue, new robust integration schemes needed to be

developed.

In 2014 Lubich and Oseledets presented the projector-splitting integrator for matrix dif-

ferential equations [LO14]. It was the first numerical scheme based on DLRA which is

robust in the presence of small singular values and therefore allows for numerical stable

time integration. In 2021, the fixed-rank basis update and Galerkin (BUG) integrator for

matrices was presented in [CL21] as another robust integrator. The fixed-rank BUG in-

tegrator enabled the derivation of several related integrators like the rank-adaptive BUG

[CKL22], the parallel BUG [CKL24], the mid-point BUG [CEKL24] and the second-order

parallel BUG [Kus24]. Other time integration schemes based on DLRA are based on a

parallel in time ansatz [CGV23], a projected exponential method [CV23] and low-rank

retractions [SCK24]. In [HNS23b, HNS23a] integration schemes for second-order matrix

differential equations have been derived and in [NAB24] an implicit scheme for random

partial differential equations is proposed.

The large variety of time integration schemes opened the possibility to influence many

different research fields. Robust integrators for dynamical low-rank approximation have

been successfully applied to (not exclusively) the following problems:

• In [PMF20, DEL19] the DLRA ansatz has been applied to radiation transport

equations as well as in [KS23] to problems from radiation therapy, where the
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radiation particles move through a background material. The latter can be used

in the future for fast computations in treatment planning of lung cancer patients.

• Another application to a kinetic equation is the Vlasov-Poisson equation. It mod-

els the evolution of electrons in a collisionless plasma with an up to six-dimensional

phase space. The above integrators have been successfully applied to these prob-

lems [EL18, EJ21, CE22, UZ24]. The stability of DLRA applications to hyperbolic

problems is analyzed in [KEC23].

• DLRA has further influenced the training of neural networks. Instead of using

a (stochastic) gradient descent method to update the parameters, one rewrites

the update as a gradient system and applies the DLRA techniques. It was first

done for neural networks in [SZK+22] and in [ZSC+23] for convolutional neural

networks. Further applications on neural networks using DLRA can be found in

e.g. [SZCT24, SHNT23].

• Further applications of DLRA have been the chemical master equation [EMP24b,

EMP24a], stochastic and random differential equations [KNZ24, NT24] and un-

certainty quantification [KCEF22].

In the wide range of applications for which DLRA holds results of interest, we focus

on the quantum mechanic setting in this work. The first related applications can be

found in [HLO+16, LOV15], where the authors applied a tensor version of the projector-

splitting integrator to the Schrödinger equation (1.1). In [SLC+24] the authors applied a

tensor version of the fixed-rank BUG integrator to an open quantum spin system. These

works require the time integration of high-order tensors in a low-rank format. To address

this inherent high dimensionality of the differential equation, different low-rank tensor

representations exist and we refer to the survey articles [KB09, GKT13, BSU16, Bac23]

for an in-depth discussion. The Tucker tensor format [Tuc66] is a widely used and

practical tool for moderate ordered tensors, say tensors of order d ≤ 6. Since in quantum

mechanics much higher dimensions are of interest, tree tensor networks (TTNs) [CLW21]

proved to be a promising ansatz to tackle this issue. TTNs are a data-sparse, hierarchical

format to represent and approximate tensors and were first introduced in quantum

chemistry, cf. [BJWM00, WT03] and the references therein. For the time integration

of TTNs, the stable integrators (projector-splitting, BUG) have to be generalized to

the TTN format. This has already been done for the projector-splitting integrator in

[CLW21]. Note that there exists already software, which provides an implementation of

the projector-splitting integrator for TTNs [MHM24a].

In the context of quantum mechanics, TTNs proved to be a promising ansatz, espe-

cially in the context of long-range interacting particles. General tree structures seem
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to encode long-range correlations and interactions better than the tensor train/matrix

products state format, the standard tool in computational quantum physics [SMC+23].

To bring all the advantages together, the main objectives of this thesis are to derive

and analyze the fixed-rank BUG, the rank-adaptive BUG and the parallel BUG for tree

tensor networks, represent long-range Hamiltonians in TTN format and apply all those

methods to several problems from many-body quantum physics. Detailed contributions

of this work are reported below.

1.1 Notation and conventions

Matrices

Throughout the thesis we write matrices in bold capitals. Since we are considering

matrices with complex entries, we denote by A⊺ the transpose of the matrix A and by

A∗ the transpose and complex conjugate of A, i.e. A∗ =A⊺
.

By ⊗d
i=1Ui we denote the short notation of taking the Kronecker product of all the

matrices Ui, i = 1, . . . , d. Since the Kronecker product is not commutative, the order of

the matrices in the product matters. We define it by

d

⊗
i=1

Ui ∶=Ud ⊗ ⋅ ⋅ ⋅ ⊗U1.

When using norms of matrices we write ∥⋅∥ throughout the thesis if we use the Frobenius
norm. The spectral norm will be denoted by ∥⋅∥2. Thus, for A = (ak,l)n,mk,l=1 ∈ C

n×m we

have

∥A∥ =
¿
ÁÁÀ

n

∑
k=1

m

∑
l=1
∣ak,l∣2, ∥A∥2 = max

∥x∥2=1
∥Ax∥2 ,

where ∥x∥2 denotes the Euclidean norm for a vector x.

Tensors

Throughout the thesis we write tensors in italic capitals. Let A ∈ Cn1×⋅⋅⋅×nd be a tensor.

Then we call the number of dimensions of A the order, i.e. A here is an order d tensor.

Analogously as for the matrix case, we denote by ∥A∥ the Frobenius norm of a tensor

A ∈ Cn1×⋅⋅⋅×nd , i.e.

∥A∥ =
¿
ÁÁÀ

n1

∑
k1=1
⋯

nd

∑
kd=1
∣A(k1, . . . , kd)∣2



Introduction 5

In this thesis, we will present methods which change the rank of a matrix or tensor in a

time step. To denote that a dimension of a tensor was augmented, we write r̂. I.e. for

an order 3 tensor A ∈ Cr̂1×r̂2×r3 , the notation means that the first two dimensions of A

have been augmented.

1.2 Contributions of this thesis

We give an overview of the results of this thesis and their origins. Based on existing

integration schemes for matrix and/or tensor differential equations, the thesis intends

to extend these methods to the general class of tree tensor networks. We focus on the

development and analysis of these time integration methods and further aim to provide

all mathematical tools to apply these methods to problems arising in quantum physics.

The analysis of these time-integration methods includes the proof of robust error bounds,

which are independent of small singular values. The presented integrators allow for rank-

adaptivity, such that optimal ranks regarding computational complexity and accuracy

are chosen automatically. Further, the compact representation of operators of long-range

interacting quantum systems in tree tensor network format is covered by the thesis.

Finally, the time integration methods and strategies to construct operators are applied

to several quantum systems. Especially long-range interacting quantum systems are

challenging due to complex Hamiltonians and fast-growing correlations/entanglement in

the system.

The main results were first published in the following four works of the same author,

listed in chronological order of their first submission. Apart from the work ”Numerical

simulations of long-range open quantum many-body dynamics with tree tensor net-

works”, the ordering of authorship is due to the mathematical tradition of alphabetical

order. The other work uses the traditional ordering in physics. The authors are listed

according to the degree of their contributions, with the last position reserved for the

supervisor.

• Rank-adaptive time integration of tree tensor networks, SIAM Journal of Numer-

ical Analysis 61 (2023), 194-222 [CLS23]. It is a joint work of Gianluca Ceruti,

Christian Lubich and Dominik Sulz. The theoretical results of this work are equally

distributed, while the numerical experiments are due to the author. Chapter 4 and

Subsection 2.4.4 are mainly based on this work.

• Numerical simulations of long-range open quantum many-body dynamics with tree

tensor networks, Physical Review A 109, 022420 [SLC+24]. It is a joint work of

Dominik Sulz, Christian Lubich, Gianluca Ceruti, Igor Lesanovsky and Federico
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Carollo. The theoretical results of this work are equally distributed, while the

numerical experiments are due to Federico Carollo and the author. The numerical

results from Section 6.3 are mainly based on this work.

• Low-Rank Tree Tensor Network Operators for Long-Range Pairwise Interactions,

submitted [CKS24]. It is a joint work of Gianluca Ceruti, Daniel Kressner and

Dominik Sulz. The theoretical results of this work are equally distributed, while

the numerical experiments are due to the author. Chapter 3 is based on this work.

• Parallel Basis Update and Galerkin Integrator for Tree Tensor Networks, submitted

[CKLS24]. It is a joint work of Gianluca Ceruti, Jonas Kusch, Christian Lubich and

Dominik Sulz. The theoretical results of this work are equally distributed, while

the numerical experiments are due to Jonas Kusch and the author. Chapter 5 is

mainly based on this work.

The presentation of the results comes with a unified notation, which was already used

in the [CLS23, CKLS24]. Moreover, much emphasis is put on the connection and in-

terplay between the results from the different chapters. For example, the comparison

of numerical results applying different time integration schemes to the same problem or

the influence of approximated Hamiltonians on the dynamics, cf. chapter 6.

1.3 Outline

The results of the thesis are divided into the following five chapters.

Chapter 2: Tree Tensor Networks

This chapter recaps the formalism of tree tensor networks and discusses basic properties

of those. To introduce the reader to this general class of tensors, we first introduce ma-

trices (section 2.1) and the conceptually simpler Tucker tensors (section 2.2) and state

some well-known results for those. In section 2.3 trees and tree tensor networks are

defined. Section 2.4 explains basic operations with tree tensor networks like addition,

orthogonalisation, contraction and truncation. For the latter, a rigorous error analysis is

given. Since the algorithms in this thesis rely on projections onto manifolds of tensors,

section 2.5 summarizes results about the differential geometry of several tensor mani-

folds. The last section 2.6 in this chapter introduces the Dirac-Frenkel time-dependent

variational principle and motivates the development of robust time integration methods

for tree tensor networks.
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Chapter 3: Tree Tensor Network Operators

A fundamental ingredient when solving tensor differential equations by using tree ten-

sor networks is to represent the operator of the right-hand side in the same format.

The third chapter is therefore devoted to the construction of such operators for Hamil-

tonians encoding long-range interactions, which we call tree tensor network operators.

Section 3.1 introduces the concept of tree tensor network operators and how one can

apply those efficiently to a tree tensor network. Section 3.2 gives an explicit construction

of a TTNO without further assumptions on the operator. Imposing some assumptions

on a hierarchical low-rank structure enables the construction and approximation of more

compact tree tensor network operators in section 3.3, including explicit bounds on the

tree ranks. This is done by using hierarchical semi-separable matrices. The chapter

closes with numerical examples of tree tensor network operator constructions of several

operators coming from closed and open quantum spin systems in section 3.4.

Chapter 4: Rank-adaptive BUG integrator for Tree Tensor Networks

This chapter investigates the time integration of tree tensor networks by extending

existing methods for matrices and Tucker tensors to the general class of tree tensor

networks. Therefore, section 4.1 recaps a rank-adaptive integrator for Tucker tensors

while in section 4.2 it is generalized first to extended Tucker tensors and in section 4.3

finally to tree tensor networks. In section 4.4 a fixed-rank variant of the tree tensor

network integrator is discussed. The evolution of all nodes in a tree tensor network is

done by solving small matrix/tensor differential equations. These differential equations

require the construction of a reduced right-hand side operator and reduced initial data,

which is presented in section 4.5. The remainder of the chapter is dedicated to proving

interesting properties of the algorithm. Section 4.6 proves a preparatory lemma, which

is needed to prove the other properties. Section 4.7 then states and proves an exactness

property and a robust error bound, as well as a norm- and energy conservation property

and the property of diminishing the energy for gradient systems.

Chapter 5: Parallel BUG integrator for Tucker Tensors and Tree Tensor

Networks

The algorithm for time integration from chapter 4 allows for rank-adaptivity, but does

not allow for a fully parallel structure. For large-scale computations, a fully parallel

structure might become relevant, which is why in this chapter we derive a fully par-

allel method. The chapter starts with a recap of a parallel integrator for matrices in
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seciton 5.1. In section 5.2 a parallel integrator for Tucker tensors is presented. Further,

a robust error bound for this fully parallel Tucker integrator is proven. In a similar way

as for the rank-adaptive method from the previous chapter, the fully parallel integrator

is then formulated for tree tensor networks in section 5.3, together with a generalized

robust error bound.

Chapter 6: Numerical experiments

The thesis closes with applications of the proposed methods to various differential equa-

tions. First, we verify theoretical predictions of the exactness property in section 6.1.

The remaining examples stem from quantum physics/chemistry applications. We start

by applying the integrators for tree tensor networks to quantum spin systems. Besides

their interest in physics, they are also an adequate numerical test case, as no space

discretization is needed. Hence, we can study the time and projection errors without

any influence of space discretization. Generally, we consider systems with long- and

short-range interacting particles. In section 6.2 we study closed quantum spin systems,

while in section 6.3 an open quantum spin system is considered. The last example in

section 6.4 stems from quantum molecular dynamics and investigates the Schrödinger

equation with a Henon-Heiles potential, which is of interest in quantum chemistry.



Chapter 2

Tree Tensor Networks

Consider an initial value problem for a tensor differential equation of the from

Ȧ(t) = F (t,A(t)), A(t0) = A0, (2.1)

where A(t) ∈ Cn1×⋅⋅⋅×nd for all t and F is a given right-hand side. For large systems

we need to find a good approximation Y (t) ≈ A(t). We aim to find the approximation

Y (t) in an approximation manifold M of smaller dimension. In the present thesis, we

consider the manifold of tree tensor networks. Tree tensor networks are a hierarchical

data-sparse format which allow to represent solutions to high-dimensional problems. A

direct time integration of such large systems is typically impossible due the computa-

tional cost and memory requirement.

In this section we summarize the ideas and the theoretical background needed to work

with tree tensor networks. In the following we will always consider a tensor A ∈ Cn1×⋅⋅⋅×nd .

2.1 Matrices

Consider a simple case of a tensor, a matrix A ∈ Cn1×n2 , with n1, n2 possibly very large.

In section 2.3 we will see that matrices are a special case of a tree tensor network.

The singular value decomposition decomposes A into orthogonal matrices U,V and a

diagonal matrix S with non-negative, real and decreasing entries, such that A =USV∗,

see for example [GVL13]. The diagonal elements of S are called singular values of A.

9
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Figure 2.1: Singular value decomposition of a rank r matrix A.

If A is of rank r it is known that only the first r singular values are non-zero [GVL13].

Hence A can be exactly decomposed by a reduced singular value decomposition

A =USV∗, U ∈ Cn1×r,V ∈ Cn2×r, S ∈ Cr×r,

where U,V are orthogonal and S contains only the first r singular vales on the diagonal.

If r ≪ n1, n2 the singular value decomposition is a data-sparse format to reduce the

memory footprint, cf. figure 2.1 for a graphical illustration.

The singular value decomposition can be used to find low-rank approximations to pos-

sibly high/full-rank matrices. If A =USV∗ is of rank k, we can easily find a rank r < k
approximation, which we denote by Ar, by setting all singular vales σr+1 = ⋅ ⋅ ⋅ = σk = 0
and keeping only the first r columns of U and V. Ar is then called the rank r approx-

imation to A. The error of this approximation is under control by the Eckart-Young

theorem. It states that the truncated singular value decomposition actually gives the

best approximation in the spectral norm, cf. [GVL13, Theorem 2.4.8].

Theorem 2.1: Eckart-Young

Let A be a matrix with rank(A) = k and Ar be its rank r approximation obtained

by the truncated singular value decomposition. Then

min
rank(B)=r

∥A −B∥2 = ∥A −Ar∥2 = σr+1,

where ∥⋅∥2 denotes the spectral norm for matrices.

Further, note that Ar is also the closest rank r matrix to A in the Forbenius norm.
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2.2 Tucker Tensors

Suppose a vector v. To label the entries of v one index is sufficient, i.e. vi denotes the

ith entry if v. For a matrix M, we need two indices Mij to denote the entry in the ith

row and jth column of M. A tensor is now an object, where an arbitrary finite number

of indices are allowed. Hence, a tensor is a multidimensional array of real or complex

numbers, i.e. A ∈ Rn1×⋅⋅⋅×nd or A ∈ Cn1×⋅⋅⋅×nd . By this definition, vectors and matrices are

included in the class of tensors. The number d is called the order of the tensor A. For

a detailed introduction to tensors we refer to [Hac12].

2.2.1 Matricization and tensorization

The ith matricization of a tensor A ∈ Cn1×⋅⋅⋅×nd is denoted by Mati(A) ∈ Cni×n¬i , where

n¬i = ∏d
j≠i nj , cf. [CLW21, CLS23, KT14]. For the matricization the kth row aligns all

entries of A that have k as the ith subscript. Usually, one orders reverse lexicographical.

The inverse operation is called the tensorization and is denoted by Teni. It is clear that

for a tensor A we have A = Teni(Ai) if and only ifAi =Mati(A). Note that any ordering

can be used for the matricization and tensorization, when it is done consistently.

For an illustration of the matricization suppose we have a tensor A ∈ C2×3×4, i.e. an

order three tensor. Hence, we can matricize A in all these three modes. In figure 2.2 we

illustrate all three matricizations of the tensor A graphically.

Mat1( ) =

Mat2( ) =

Mat3( ) =

Figure 2.2: All matricizations of an order three tensor.

Matriczations will play a crucial role in the formulation and analysis of algorithms with

tree tensor networks, as they allow to transform hard-to-handle objects like tensors into



Tree Tensor Networks 12

matrices that are much easier to deal with. The next definition is in this spirit and

defines the rank of a tensor by using the ranks of the matricized tensor.

Definition 2.1: Multilinear rank

Let A ∈ Cn1×⋅⋅⋅×nd . The multilinear rank of the tensor A is defined as the d-tupel

(r1, . . . , rd), where ri is the rank of the matrix Mati(A), for i = 1, ..., d.

2.2.2 Tucker tensor format

For a tensor C ∈ Cn1×⋅⋅⋅×nd and a matrix U ∈ Cni×ni we define the tensor-matrix multi-

plication in the ith mode C ×i U by (cf. [DDV00])

(C ×i U)k1,...,,ki,...,kd ∶=
d

∑
j=1

Ck1,...,ki−1,j,ki+1,...,kd(U
⊺)j,ki . (2.2)

We know from [DDV00] that A has multilinear rank (r1, . . . , rd) if and only if A allows a

so-called Tucker decomposition. A Tucker decomposition of a tensor A ∈ Cn1×⋅⋅⋅×nd reads

as

A = C
d

⨉
i=1

Ui, where ak1,...,kd =
r1

∑
l1=1
⋅ ⋅ ⋅

rd

∑
ld=1

cl1,...,ldu
(1)
k1,l1

. . . u
(d)
kd,ld

, (2.3)

where C ∈ Cr1×⋅⋅⋅×rd is a tensor of full multilinear rank (r1, . . . , rd) and Ul = (u(l)i,j )i,j ∈
Cni×ri are orthonormal matrices. It was originally developed by Ledyard R. Tucker in

[Tuc66]. In literature, the Tucker decomposition is sometimes also referred to as the

higher-order singular value decomposition (HOSVD). For tensors in Tucker format (or

short Tucker tensor) we recall the unfolding formula from [KB09, Section 4]

Mati
⎛
⎝
C

d

⨉
j=1

Uj
⎞
⎠
=UiMati(C)⊗

j≠i
U⊺

j . (2.4)

Note that even for complex tensors formula (2.4) still holds. The unfolding formula (2.4)

will be extremely useful in the analysis of tree tensor networks. Further, note that by

the unfolding formula, the tensor-matrix multiplication from (2.2) can be rewritten by

C ×i U = Teni (UMati(C)) . (2.5)

This statement is clear by setting the remaining matrices Uj to the identity and then

applying the unfolding formula (2.4) to equation (2.5).



Tree Tensor Networks 13

2.2.3 Quasi-best approximation for Tucker tensors

We again pose the question of whether it is possible to find the best approximation to a

tensor, similar to the Eckart-Young theorem 2.1. Unlike in the matrix case, we will see

that the best approximation property does not hold in the Tucker format. However, we

obtain a, slightly weaker, quasi-best approximation, where the truncated Tucker tensor

is the best-approximation up to a linear factor.

For that, following [DDV00] and [Gra10], we define the Tucker truncation by

Definition 2.2: Tucker truncation

Let A ∈ Cn1×⋅⋅⋅×nd and

Mati(A) = ÛiŜiV̂
∗
i , for i = 1, . . . , d,

a singular value decomposition with Ûi ∈ Cni×ni orthogonal and a diagonal matrix

Ŝi = diag(σi,1, . . . , σi,ni). Then the truncation of A to multilinear rank (r1, . . . , rd)
is defined by

θ(r1,...,rd)(A) ∶= A
d

⨉
i=1

UiU
∗
i ,

where Ui is the matrix of the first ri columns of Ûi.

Unlike the situation in the matrix case, where the svd-based truncation gave us the best

approximation of a fixed rank (cf. theorem 2.1), in the Tucker case we do not obtain a

best approximation statement. However, we obtain a quasi-optimality of the following

form:

Theorem 2.2: Tucker truncation error

Let A ∈ Rn1×⋅⋅⋅×nd and denote the best-approximation in Tucker format of multi-

dimensional rank (r1, . . . , rd) by Abest. Then the error of the Tucker truncation

is bounded by

∥A − θ(r1,...,rd)(A)∥ ≤
√
d∥A −Abest∥.

Hence, up to a constant factor of the square root of d we obtain the best approximation

with the Tucker truncation. This theorem and its proof can be found in [DDV00] while

we used here the notation from [Gra10].
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2.3 Tree Tensor Networks

Tucker tensors are a well-established tool for memory-efficient computations. For its

core tensor C ∈ Cr1×⋅⋅⋅×rd assume for simplicity that r1 = ⋅ ⋅ ⋅ = rd =∶ r The memory

footprint for C still scales like rd, which becomes prohibitive if the order d is getting too

large. Typically values such as d > 6 become problematic or inefficient. Nevertheless,

there exist many problems where high-order tensors have to be considered, such as in

quantum physics where the order d equals the number of particles/sites in the system.

Tree tensor networks turned out to be a promising ansatz to overcome the so-called curse

of dimensionality as they are an efficient hierarchical data sparse format to approximate

tensors. Due to their recursive structure, they allow us to consider tensors of very high

order while keeping the memory footprint at a reasonable size. Tree tensor networks

have been considered first in the quantum chemistry literature in the framework of

the multiconfiguration time-dependent Hartree (MCTDH) method and its multilayer

variant, cf.[BJWM00, WT03] and the references therein.

In this thesis, we use the tree tensor network formalism introduced in [CLW21, CLS23].

The structure of a tree tensor network is encoded through an order tree, which is defined

as follows [CLW21, Definition 2.1].

Definition 2.3: Ordered trees with unequal leaves

Let L be a finite set. The elements in L are referred to as leafs. We define T as

the set of trees τ with the corresponding set of leaves L(τ) ⊆ L recursively:

• Leafs are trees: L ⊂ T , and L(l) ∶= {l} for all l ∈ L.

• Ordered m-tupels of trees are again trees, i.e. if for some m ≥ 2,

τ1,⋯, τm ∈ T , with L(τi) ∩L(τj) = ∅ ∀i ≠ j,

then their ordered m-tupel is again in T :

τ ∶= (τ1,⋯, τm) ∈ T and L(τ) ∶= ⋃̇
m

i=1L(τi).

In a graphical representation, this definition means that given trees τ1, . . . , τm, one ob-

tains a new tree τ = (τ1, . . . , τm) by combining the subtrees τ1, . . . , τm by taking a new

node with m branches and connecting the ith branch with the subtree τi. This is graph-

ically illustrated in figure 2.3.

On the set of trees we can define a partial ordering by setting for τ, σ ∈ T

• σ ≤ τ if and only if σ is a subtree of τ ,
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τ1

1 3

τ1 = (1,3) τ2

2 4 5 6

τ2 = (2,4,5,6)

τ

τ1

1 3

τ2

2 4 5 6

τ = (τ1, τ2)

Figure 2.3: Graphical representation of a tree τ with two subtrees and the set of
leaves L = {1,2,3,4,5,6}.

• σ < τ if and only if σ is a subtree of τ and σ ≠ τ .

The height of a tree τ can be defined recursively:

• If τ = l is a leaf we set h(l) = 0.

• For a tree τ = (τ1, . . . , τm) we set h(τ) =max{h(τ1), . . . , h(τm)} + 1.

Therefore Tucker tensors are tree tensor networks of height 1, tensor trains/matrix

product states are tree tensor networks of maximal height. Now that we have encoded

the structure of a tree tensor network by a fixed tree τ̄ ∈ T , we can define what we

understand by a tree tensor network. On the tree τ̄ we associate

• for each leaf l ∈ L a dimension nl and a rank rl ≤ nl together with a so called basis

matrix Ul ∈ Cnl×rl of rank rl.

• for each subtree τ = (τ1, . . . , τm) a rank rτ and a core tensor Cτ ∈ Crτ×rτ1×⋅⋅⋅×rτm of

multilinear rank (rτ , rτ1 , . . . , rτm). Further we define rτ̄ = 1.

A necessary condition for Cτ , τ ≤ τ̄ , to have multilinear rank (rτ , rτ1 , . . . , rτm) is that

with rτ = rτ0 it holds

rτi ≤∏
j≠i
rτj , for i = 0,1, . . . ,m. (2.6)

This condition will be assumed throughout the whole thesis.
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Note that the tree tensor network representation depends on the chosen tree structure

τ̄ . A fixed tensor allows for different representations by tree tensor networks if different

trees are chosen. For example, an order three tensor can be equivalently represented by

a Tucker tensor or by a hierarchical tree. With the considerations from above we define

a tree tensor network as follows [CLW21, Definition 2.2].

Definition 2.4: Tree tensor network

For a given tree τ̄ ∈ T , basis matrices Ul and core tensors Cτ as described above,

we recursively define a tensor Xτ̄ with a tree tensor network representation (or

briefly a tree tensor network) as follows:

1. For each leaf τ = l ∈ L, we set

Xl ∶=U⊺
l ∈ C

rl×nl .

2. For each subtree τ = (τ1, . . . , τm) (for some m ≥ 2) of τ̄ , we set

nτ = ∏m
i=1 nτi and Iτ the identity matrix of dimension rτ , and

Xτ ∶= Cτ ×0 Iτ
m

⨉
i=1

Uτi ∈ Crτ×nτ1×⋅⋅⋅×nτm ,

Uτ ∶=Mat0(Xτ)⊺ ∈ Cnτ×rτ .

The subscript 0 in ×0 and Mat0(Xτ) refers to the mode 0 of dimension rτ

in Crτ×rτ1×⋅⋅⋅×rτm .

The tree tensor network Xτ̄ (more precisely, its representation in terms of the

matrices Uτ ) is called orthonormal if for each subtree τ < τ̄ , the matrix Uτ has

orthonormal columns.

The class of tree tensor networks includes matrices, Tucker tensors [Gra10, CL21, CKL22],

hierarchical Tucker tenors [Gra10, KT14, Hac12] and tensor trains [Ose11, LOV15],

which are also known as matrix product states (MPS) [CPGSV21, PGVWC07, VMC08]

in the physical literature. Further, note that tree tensor networks are loop-free. In quan-

tum physics tensor networks with loops, like projected entangled pair states (PEPS)

[VMC08], are also used for quantum dynamical simulations. These tensor formats in-

cluding loops are not covered by the class of tree tensor networks.

A graphical representation of a TTN has the same tree form as in figure 2.3. To dis-

tinguish between trees and tree tensor networks, we draw a TTN such that the core

tensors are coloured in red and the physical dimension ni is displayed at the ith leaf. In

figure 2.4 several tree tensor network formats are illustrated
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n1 n2 n1 n2 n3 n1 n2 n3 n4

n1 n2

. . .

nd−1 nd

Figure 2.4: Graphical representation of several tree tensor networks. Top from left
to right: Matrix, Tucker tensor, balanced binary TTN. Bottom: tensor train/matrix

product state.

Finally, we want to relate the ranks of a tree tensor network with the ranks of the

matricization of the corresponding full tensor. For this recall the following theorem

from e.g. [Hac12, Theorem 11.12 and Lemma 11.15]:

Theorem 2.3

For a given tree τ̄ , a tensor X ∈ Cn1×⋯×nd admits a tree tensor network represen-

tation with

rτ = rank(MatL(τ)(X)), ∀τ ≤ τ̄ ,

where the notation MatL(τ)(X) denotes the matricization of X such that all

indices of the modes in L(τ) are merged into row indices, while the remaining

ones are merged into column indices.

2.4 Operations with Tree Tensor Networks

This section summarizes the main operations like addition, inner products, truncation

and orthogonalization for tree tensor networks. These operations are needed in the

course of this thesis to compute the dynamics of tree tensor networks.

2.4.1 Addition TTNs

The addition of TTN’s follows the idea of the addition of hierarchical Tucker tensors

(HT), cf. [KT14] and [Tob12, subsection 3.3.2]. We extend this idea to general, non-

binary tree tensor networks.

To illustrate the idea, we start with two matrices in TTN form: A = U1S1V
∗
1 and
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C1

C2

Figure 2.5: Block diagonal wise tensor embedding for two 3 dimensional tensors
C1,C2.

B =U2S2V
∗
2 . Then the addition D can be implemented as an embedding by

D ∶=A +B =U1S1V
∗
1 +U2S2V

∗
2 = [U1,U2]

⎡⎢⎢⎢⎢⎣

S1 0

0 S2

⎤⎥⎥⎥⎥⎦
[V1,V2]∗.

Note that this strategy requires no arithmetic operations but an increase in storage cost.

This embedding idea can be generalized to tree tensor networks. Let A and B be two

TTNs defined on the same tree τ̄ and the same physical dimensions, i.e. nAl = nBl , ∀l ∈ L.
Note that the tree ranks (rAτ )τ≤τ̄ , (rBτ )τ≤τ̄ can be different. The addition D ∶= A+B can

be obtained as follows:

• Each leaf of the addition D = A +B equals [U1
l ,U

2
l ], where U1

l is the lth leaf of

the TTN A and U2
l is the lth leaf of the TTN B.

• The core tensor embedding is performed block diagonal wise. Suppose we have a

core tensors CA
τ ∈ CrA1 ×⋅⋅⋅×rAd of A and the corresponding core tensor CB

τ ∈ CrB1 ×⋅⋅⋅×rBd

of B. Then the core tensor of the addition D is a tensor Cτ ∈ CrA1 +rB1 ×⋅⋅⋅×rAd +rBd ,

where

Cτ(i1, . . . , id) = CA
τ (i1, . . . , id), if 1 ≤ ij ≤ rAj , ∀j = 1, . . . , d.

Cτ(i1, . . . , id) = CB
τ (i1 − rA1 , . . . , id − rAd ), if rAj < ij ≤ rAj + rBj , ∀j = 1, . . . , d.

Cτ(i1, . . . , id) = 0, else.

The embedding is graphically illustrated in figure 2.5. For the addition of TTN’s all the

core tensors of the addition are constructed by this embedding strategy. In the end, one

obtains a TTN of bigger tree ranks (rτ = rAτ +rBτ )τ≤τ̄ . Performing an orthonormalization

(see next subsection) to this increased TTN can reduce the tree ranks and therefore

decrease the memory requirement.
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2.4.2 Orthonormalization of TTNs

For applications it is favourable to work with orthonormal tree tensor networks. Each

TTN has an orthonormal representation. In the following lemma, we proof that the

orthonormality of a TTN localizes in the core tensors Cτ instead of the possibly huge

matrices Uτ . The following lemma can be found in [CLW21, Lemma 2.4].

Lemma 2.1: Orthonormality of tree tensor networks

For a tree τ = (τ1, . . . , τm) ∈ T , let the matrices Uτi have orthonormal columns.

Then the matrix Uτ has orthonormal columns if and only if Mati(Cτ)⊺ has

orthonormal columns.

Proof.

Recall that by definition 2.4, Uτ =Mat0(Xτ)⊺ and the unfolding formula (2.4). Using

this we obtain

U⊺
τ =Mat0(Xτ) = Iτ Mat0(Cτ)

m

⊗
i=1

U⊺
τi .

From this we compute

U∗
τUτ = IτMat0(Cτ)

m

⊗
i=1

U∗
τi

m

⊗
i=1

Uτi Mat0(Cτ)⊺Iτ

=Mat0(Cτ)(
m

⊗
i=1

U∗
τiUτi)Mat0(Cτ)⊺ = (Mat0(Cτ)⊺)∗Mat0(Cτ)⊺,

which proves the result.

This lemma and the recursive definition of TTN’s give us a strategy to orthogonalize

a given tree tensor network. We perform multiple QR decompositions recursively from

the leaves to the roots.

• If τi = l is a leaf with corresponding core tensor Cτ , we compute Ul = QlRl and

set Ul =Ql and Cτ = Cτ ×i Rl.

• At a core tensor Cτi we compute Mat0(Cτi)⊺ = QτiRτi and set Cτi = Ten0(Q⊺
τi)

and Cτ = Cτ ×i Rτi .

By this procedure the non-orthonormal components at each node are multiplied to the

level above until we arrive at the root tensor. Then all matrices Uτ for τ < τ̄ have

orthonormal columns.
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2.4.3 Contraction products of TTNs

We define the contraction product of two tree tensor networks Xτ , Yτ ∈ Crτ×nτ1×⋅⋅⋅×nτm

by

⟨Xτ , Yτ ⟩ ∶= (Mat0(Xτ)⊺)
∗
Mat0(Yτ)⊺ ∈ Crτ×rτ . (2.7)

In [CLW21, section 4.5] we see how this product can be computed in a recursive way,

without ever computing the full tensors. Further, as rτ̄ = 1 the product ⟨Xτ̄ , Yτ̄ ⟩ ∈ C and

thus
√
⟨Xτ̄ ,Xτ̄ ⟩ is the Euclidean norm of the orthonormal tree tensor network Xτ̄ . The

product can be computed efficiently by a recursion. Suppose we have two TTN’s

Xτ = Cτ ×0 Iτ
m

⨉
j=1

Uτj , Uτj =Mat0(Xτj)⊺,

Yτ =Dτ ×0 Iτ
m

⨉
j=1

Vτj , Vτj =Mat0(Yτj)⊺.

With the unfolding formula (2.4) we obtain

⟨Xτ , Yτ ⟩ = (Mat0(Xτ)⊺)
∗
Mat0(Yτ)⊺ =Mat0(Xτ)Mat0(Yτ)⊺

=Mat0(Cτ)
m

⊗
j=1

U∗
τj

m

⊗
j=1

Vτj Mat0(Dτ)⊺

=Mat0(Cτ)
m

⊗
j=1
(U∗

τjVτj)Mat0(Dτ)⊺.

To proceed, the smaller products U∗
τjVτj = ⟨Xτj , Yτj ⟩ can be computed via a recursion

process. If we are at a leaf, i.e. Uτj = Ul, we compute the matrix product U∗
l Vl,

otherwise we use the prescribed recursion. Hence we only compute small matrix products

and never an inaccessible tensor or basis matrix. The contraction procedure is illustrated

in figure 2.6. The dashed lines correspond to the contraction of the connected basis

matrices.

Using the addition and the contraction product, we can compute differences in norm

between two tree tensor networks X and Y of the same tree structure. We compute

∥X − Y ∥ by multiplying Y with a constant factor of −1 and then add D ∶= X − Y by

the addition from subsection 2.4.1. A multiplication of a scalar with a TTN is done by

multiplying the root tensor of the TTN with the scalar. We then compute the norm via

∥X − Y ∥ = ∥D∥ =
√
⟨D,D⟩, (2.8)

where the inner product is computed as described in this subsection.
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Figure 2.6: Graphical illustration of the contraction product.

2.4.4 Truncation of TTNs

The formulation and results of this subsection are published in [CLS23, appendix A] by

the author in collaboration with Gianluca Ceruti and Christian Lubich.

As we will see in the course of this thesis (chapters 4 and 5), the ranks of a TTN are

usually doubled after one time step. To keep the computation feasible while keeping a

certain accuracy one needs to apply a rank-truncation with a given tolerance ϑ to the

augmented tree tensor network. Nevertheless, the presented rank-truncation algorithm

can be generally used for tree tensor networks.

The rank-truncation algorithm performs a recursive root-to-leaves truncation based on

the singular value decomposition. In [Gra10] and [Hac12, Sec. 11.4.2] different rank

truncation algorithms for binary tree tensor networks are studied. The here presented

strategy and error analysis applies also to general (non-binary) tree tensor networks.
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Algorithm 1: Rank truncation Θτ

Data: tree τ = (τ1, . . . , τm), TTN in factorized form X̂τ = Ĉτ ×0 Iτ ⨉m
i=1 Ûτi

of tree rank (r̂σ)σ≤τ , with Ûτi =Mat0(X̂τi)⊺ for a sub-TTN X̂τi ,

tolerance parameter ϑ

Result: TTN in factorized form Xτ = Cτ ×0 Iτ ⨉m
i=1Uτi

of tree rank (rσ)σ≤τ with adaptively chosen rσ ≤ r̂σ
with Uτi =Mat0(Xτi)⊺ for a rank-truncated sub-TTN Xτi

begin

for i = 1 ∶m in parallel do

compute the reduced SVD Mati(Ĉτ) = P̂τiΣτiQ̂
∗
τi ;

set rτi to be the smallest integer such that

⎛
⎝

r̂τi

∑
k=rτi+1

σ2k
⎞
⎠

1/2

≤ ϑ,

where σk are the singular values in the diagonal matrix Στi ;

set Pτi ∈ Cr̂τi×rτi as the matrix of the first rτi columns of P̂τi ;

if τi = l is a leaf then

set Ul = ÛlPl ∈ Cnl×rl

else

set C̃τi = Ĉτi ×0 P⊺
τi , where Ĉτi is the connection tensor of X̂τi ;

set X̃τi to be the TTN in which the connection tensor in X̂τi is replaced

with C̃τi ;

compute Xτi = Θτi(X̃τi , ϑ) % recursive truncation

set Uτi =Mat0(Xτi)⊺

end

end

set Cτ = Ĉτ ⨉m
i=1P

∗
τi ∈ C

rτ×rτ1×⋅⋅⋅×rτm

end

Note that the resulting tree tensor network Xτ̄ is not orthonormal. If orthonormality is

required one must apply the orthonormalization strategy from subsection 2.4.2 to Xτ̄ .

To prove an error bound for the presented rank truncation algorithm we assume an

orthonormal tree tensor network X̂1
τ̄ , such that for each subtree τ = (τ1, . . . , τm) ≤ τ̄ the

corresponding augmented tree tensor network has the form

X̂1
τ = Ĉ1

τ ×0 I
m

⨉
i=1

Û1
τi , with Ûτi =Mat0(X̂1

τi)
⊺
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with ∥Û1
τ∥2 = 1 for all τ < τ̄ . In algorithm 1 we first perform a reduced singular value

decomposition of the ith matricization of Mati(Ĉ1
τ ). I.e. for i = 1, . . . ,m we compute

Mati(Ĉ1
τ ) = P̂τiŜτiQ̂

∗
τi , (2.9)

where P̂τi ∈ Cr̂τi×r̂τi and Q̂τi ∈ Cr̂τi×¬r̂τi are unitary matrices and Ŝτi ∈ Cr̂τi×r̂τi is a diag-

onal matrix with decreasing and non-negative singular values. We rewrite the algorithm

1 in a mathematically equivalent formulation, which is easier to handle in the proof

of the error bound. Therefore, we will define two tree tensor networks X̂rot
τ and X̂cut

τ

recursively from the root to the leaves. To start the recursion, we set P̂τ̄ = 1.

Rotation For a tree τ = (τ1, . . . , τm) we define

Ĉrot
τ ∶= Ĉτ ×0 P̂⊺

τ

m

⨉
i=1

P̂∗
τi and Urot

τi ∶=UτiP̂τi ,

for i = 1, . . . ,m. Using the unfolding formula (2.4) and equation (2.9) we obtain

Mati(Ĉrot
τ ) = P̂∗

τi Mati(Ĉτ)
⎛
⎝⊗j≠i
(P̂∗

τj)
⊺ ⊗ P̂τ

⎞
⎠
= ŜτiQ̂

∗
τi

⎛
⎝⊗j≠i
(P̂∗

τj)
⊺ ⊗ P̂τ

⎞
⎠
.

For the rotated basis matrix we get again by the unfolding formula (2.4)

Urot
τi =UτiP̂τi = (P̂⊺

τi Mat0(X̂τi))
⊺ =Mat0 (X̂τi ×0 P̂⊺

τi
)⊺ .

Using the derived equations form above we define

X̂rot
τ ∶= X̂τ ×0 P⊺

τ = Ĉτ ×0 P⊺
τ

m

⨉
i=1

UτiP̂τiP̂
∗
τi

= (Ĉτ ×0 P̂⊺
τ

m

⨉
i=1

P̂∗
τi) ×0 Ir̂τ

m

⨉
i=1

UτiP̂τi = Ĉrot
τ ×0 Ir̂τ

m

⨉
i=1

Ûrot
τi .

Thus, we have by the recursion that Ûrot
τi =Mat0(X̂rot

τi )
⊺. We see that for i = 1, . . . ,m

Mati(Ĉrot
τ ) = ŜτiV̂

∗
τi (2.10)

for a matrix V̂τi with orthogonal columns. Further, we have X̂rot
τ̄ = X̂τ̄ .
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Cutting As in algorithm 1 we define the reduced rank rτi as the smallest integer such

that

⎛
⎝

r̂τi

∑
k=rτi+1

σ2k
⎞
⎠

1/2

≤ ϑ, (2.11)

where σk are the singular values in Ŝτi and ϑ > 0 is a given tolerance. With Sτi we

denote the truncated diagonal matrix with the largest rτi singular values of Ŝτi . Then

we define the cut core tensor Ĉcut
τ of the same size as Ĉτ entry wise by

Ĉcut
τ (k0, k1, . . . , km) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ĉrot
τ (k0, k1, . . . , km) if k0 ≤ rτ , ki ≤ rτi for i = 1, . . . ,m,

0 else.

By this we see

Mati(Ĉcut
τ ) =

⎛
⎝
Sτi 0

0 0

⎞
⎠
V̂∗

τi , (2.12)

where Sτi contains the first rτi singular values of Ŝτi and the remaining ones are set to

zero. We then approximate the tree tensor network X̂rot
τ by the tree tensor network

X̂cut
τ ∶= Ĉcut

τ ×o Iτ
m

⨉
i=1

Ûrot
τ .

This expression can be further simplified by cutting all zero elements in the core tensor

Ĉcut
τ . Therefore, we define the core tensor Cτ ∈ Crτ×rτ1×⋅⋅⋅×rτm via

Cτ(k0, k1, . . . , km) ∶= Ĉcut
τ (k0, k1, . . . , km) for k0 ≤ rτ , ki ≤ rτi for i = 1, . . . ,m.

Define the reduced matrix Pτ as the first rτ columns of P̂τ and in the same spirit the

matrices Pτi , for i = 1, . . . ,m. By this we have

Cτ = Ĉτ ×0 P⊺
τ

m

⨉
i=1

P∗
τi .

Further, let Ũτi , i = 1, . . . ,m be the the matrix which contains only the first rτi columns

of Ûτi , or in other words Ũτi = ÛτiPτi . By this we obtain

X̂cut
τ ×0 (Irτ ,0) = Cτ ×0 Irτ

m

⨉
i=1

Ũτi .

If we set X̃τi ∶= X̂τi ×0 P⊺
τi = X̂

rot
τi ×0 (Irτ ,0), we note the following properties

1. Ũτi =Mat0(X̃τi)⊺.
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2. X̃τi only differs from X̂rot
τi only in that the core tensor Ĉrot

τi is replaced by the

reduced core tensor C̃τi = Ĉrot
τi ×0 (Iτi ,0).

Recursion

The rotate and cut strategy from above is now applied recursively from the root to the

leaves. At the leaves, we set Ul = Ũl = ÛlPl such that all core tensors and all leaves

have reduced ranks now. We set Xτ̄ , consisting of all reduced leaves and core tensors,

as the truncated tree tensor network. Hence, for each tree τ = (τ1, . . . , τm) ≤ τ̄ we have

Xτ = Cτ ×0 Iτ
m

⨉
i=1

Uτi with Uτi =Mat0(Xτi)⊺.

Since we can always find an orthonormal representation of a TTN, we can assume

∥Mat0(Ĉτ)⊺∥2 = 1, ∥Ûτ∥2 = 1 for all τ < τ̄ . (2.13)

With the considerations from above we arrive at the presented algorithm 1, but the

computations are arranged in a mathematically equivalent way. This allows us to prove

an error bound for the truncation algorithm depending on the tolerance parameter ϑ.

The following result and its proof can be found in [CLS23, Theorem A.1].

Theorem 2.4: Rank truncation error

The error of the tree tensor network Xτ̄ , which results from rank truncation of

X̂τ̄ with tolerance ϑ according to Algorithm 1, is bounded by

∥Xτ̄ − X̂τ̄∥ ≤ cτ̄ ϑ with cτ̄ = ∥Cτ̄∥(dτ̄ − 1) + 1,

where dτ is the number of vertices of τ .

Remark 2.1. If in algorithm 1 the tolerance at the root is chosen as ϑ/∥Ĉτ̄∥ and kept as

ϑ in the remaining truncation, the proof leads to an error bound

∥Xτ̄ − X̂τ̄∥ ≤ dτ̄ ϑ.

Remark 2.2. Note that the theorem 2.4 gives a linear dependence on the dimension d,

while the algorithm for binary trees in [Hac12, section 11.4.2] only has a square root

dependence on d.

Proof. From the sub-TTNs X̂τ with τ ≤ τ̄ we construct the rotated and cut TTNs X̂rot
τ ,

X̂cut
τ as described above. For a tree τ = (τ1, . . . , τm) ≤ τ̄ we then have the corresponding
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matrices

Ûrot
τ =Mat0(X̂rot

τ )⊺, X̂rot
τ = Ĉrot

τ ×0 Ir̂τ
m

⨉
i=1

Ûrot
τi ,

Uτ =Mat0(Xτ)⊺, Xτ = Cτ ×0 Irτ
m

⨉
i=1

Uτi .

With

Ũτ = Ûrot
τ

⎛
⎝
Irτ

0

⎞
⎠
=Mat0(X̃τ)⊺, X̃τ = X̂rot

τ ×0 (Irτ ,0),

we further have the intermediate tensor

X̃cut
τ = X̂cut

τ ×0 (Irτ ,0) = Ĉcut
τ ×0 (Irτ ,0)

m

⨉
i=1

Ûrot
τi = Cτ ×0 Irτ

m

⨉
i=1

Ũτi .

We prove the theorem by proving the error bound

∥Uτ − Ũτ∥2 ≤ dτ ϑ for τ < τ̄ (2.14)

by an induction over the height of the tree. At leaves l we have Ul = Ũl and ∥Ũl∥2 ≤ 1
by construction. As an induction hypothesis we use

∥Uτi∥2 ≤ 1 and ∥Uτi − Ũτi∥2 ≤ dτi ϑ.

Note that ∥Ũτi∥2 ≤ 1 by (2.13) and by the construction of Ũτi from Ûτi . We further

observe that

∥Mat0(Cτ)⊺∥2 = ∥Mat0(Ĉcut
τ )⊺∥2 ≤ ∥Mat0(Ĉrot

τ )⊺∥2 = ∥Mat0(Ĉτ)⊺∥2

and

∥Uτ∥2 = ∥Mat0(Xτ)⊺∥2 = ∥
m

⊗
i=1

Uτi Mat0(Cτ)⊺∥2 ≤ ∥Mat0(Cτ)⊺∥2
m

∏
i=1
∥Uτi∥2.

(2.13) and the induction hypothesis yields us

∥Mat0(Cτ)⊺∥2 ≤ 1 and ∥Uτ∥2 ≤ 1. (2.15)

Further, we have ∥Uτ − Ũτ∥2 = ∥Mat0(Xτ − X̃τ)⊺∥2 and write

Xτ − X̃τ = (Xτ − X̃cut
τ ) + (X̂cut

τ − X̂rot
τ ) ×0 (Irτ ,0).
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We have a closer look a the two terms. The first one on the right-hand side equals

Xτ − X̃cut
τ = Cτ ×0 Irτ

m

⨉
i=1

Uτi −Cτ ×0 Irτ
m

⨉
i=1

Ũτi

with the same connection tensor Cτ in both terms of the difference. We then have

Mat0(Xτ − X̃cut
τ ) =Mat0(Cτ)(

m

⊗
i=1

U⊺
τi −

m

⊗
i=1

Ũ⊺
τi).

Writing the difference of the Kronecker products as a telescoping sum, using that

Mat0(Cτ)⊺ and Uτi are bounded by 1 in the matrix 2-norm, and finally using the

induction hypothesis, we obtain

∥Mat0(Xτ − X̃cut
τ )

⊺∥2 ≤
m

∑
i=1
∥Uτi − Ũτi∥2 ≤

m

∑
i=1
dτi ϑ = (dτ − 1)ϑ.

On the other hand,

(X̂cut
τ − X̂rot

τ ) ×0 (Irτ ,0) = (Ĉcut
τ − Ĉrot

τ ) ×0 (Irτ ,0)
m

⨉
i=1

Ûrot
τi ,

where ∥Ûrot
τi ∥2 ≤ 1 by construction and (2.13). In total we have

∥Mat0((X̂cut
τ − X̂rot

τ ) ×0 (Irτ ,0))
⊺∥2 ≤ ∥Mat0(Ĉcut

τ − Ĉrot
τ )

⊺∥2
≤ ∥Mat0(Ĉcut

τ ) −Mat0(Ĉrot
τ )∥F = ∥Mat1(Ĉcut

τ ) −Mat1(Ĉrot
τ )∥F ≤ ϑ,

where we used (2.10)–(2.12) in the last inequality. Altogether we find

∥Uτ − Ũτ∥2 ≤ ∥Mat0(Xτ − X̃cut
τ )

⊺∥2 + ∥Mat0((X̂cut
τ − X̂rot

τ ) ×0 (Irτ ,0))
⊺∥2

≤ dτ ϑ,

which completes the proof of (2.14) by induction. Finally, for the full tree τ̄ = (τ1, . . . , τm),
where r̂τ̄ = rτ̄ = 1 but ∥Cτ̄∥ is arbitrary, we use the same argument as above in estimating

the norm of

Xτ̄ − X̂τ̄ =Xτ̄ − X̂rot
τ̄ = (Cτ̄

m

⨉
i=1

Uτi −Cτ̄

m

⨉
i=1

Ũτi) + (Ĉcut
τ̄ − Ĉrot

τ̄ )
m

⨉
i=1

Ûrot
τi .

This yields ∥Xτ̄ − X̂τ̄∥ ≤ (∥Cτ̄∥ (dτ̄ − 1) + 1)ϑ.
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2.5 Geometry of Tree Tensor Networks

In the course of the thesis, we will see that the framework of dynamical low-rank approx-

imation is based on the Dirac-Frenkel time-dependent variational principle, see section

2.6. This involves a projection onto the tangent space at the current approximation

point on a manifold. Hence, before going into the details of time integration, it is worth

having a closer look into the differential geometry needed to describe the set of tree

tensor networks. In the following, we recap differential geometric fundamentals based

on [Bou23].

To do so we first define smooth embedded submanifolds of a linear space. The definition

is taken from [Bou23, Definition 3.10].

Definition 2.5: Smooth embedded submanifold

Let E be a linear space of dimension d. A non-empty subsetM of E is a (smooth)

embedded submanifold of E of dimension n if either

1. n = d andM is open in E . We call this an open submanifold.

2. n = d − k for some k ≥ 1 and for each x ∈ M, there exists a neighborhood U

of x in E and a smooth function h ∶ U → Rk such that

(a) If y ∈ U , then h(y) = 0 if and only if y ∈ M .

(b) rank(Dh(x)) = k.

Here, Dh denotes the Jacobian of h. The function h is called a local defining

function forM at x.

The definition can be interpreted in the way that a smooth setM can be approximated

in some meaningful way around each point x ∈ M. This linearisation around a point

x ∈ M will be called the tangent space. The following definition can be found in [Bou23,

Definition 3.14 and 3.16].

Definition 2.6: Tangent space

LetM be a subset of E . For all x ∈ M, define

TxM= {c′(0) ∣ c ∶ I →M is smooth and c(0) = x} ,

where I is any open interval containing t = 0. That is, v is in TxM if and only

if there exists a smooth curve onM passing through x with velocity v. We call

TxM the tangent space toM at x.
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A different characterization of the tangent space is often useful. It can be described as

the kernel of the derivative of the corresponding local defining function at point x. More

precisely, we have the following theorem.

Theorem 2.5: Tangent space representation

LetM be a smooth embedded submanifold with dimension k < n and h ∶ U → Rk

the local defining function forM at x. Then the tangent space at x ∈ M can be

represented by

TxM= kerDh(x),

where Dh denotes the Jacobi matrix of h.

The theorem is taken from [Bou23, Theorem 3.15], where also a proof can be found.

2.5.1 Geometry of matrices

Orthonormal matrices

Fix a rank r and consider the complex inner product ⟨u, v⟩ = u∗v for u, v ∈ Cn. For n > r
we define set of matrices U ∈ Cn×r whose columns are orthonormal by

Vn,r ∶= {U ∈ Cn×r ∶U∗U = Ir},

where Ir is the identity matrix of size r × r. For real matrices and replacing the ∗
operation with the regular transpose, it is shown in [Bou23, Section 7.3] that Vn,r is an

embedded submanifold of Rn×r. This manifold is called Stiefel manifold. To prove that

it is an embedded submanifold, we follow the same strategy. The local defining function

for the Stiefel manifold equals

h ∶ Cn×r → Sym(r) with U↦U∗U − Ir,

where Sym(r) is the linear space of unitary matrices of size r, see the real case in [Bou23].

This allows us to characterize the tangent space in the following way. Deriving the local

defining function we obtain

Dh(X)[U] =X∗U +U∗X.
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Hence, the tangent space at X ∈ Vn,r equals

TXVn,r = {U ∈ Cn×r ∶X∗U +U∗X = 0}

= {U ∈ Cn×r ∶X∗U ∈ Skew(r)}, (2.16)

where Skew(r) denotes the space of skew-symmetric complex r × r matrices.

Matrices of fixed rank r

We now consider the set of matrices of size n ×m of a fixed rank r,

Mr = {A ∈ Cn×m ∶ rank(A) = r}. (2.17)

Typically we are interested in situations where r ≪ n,m. Again we want to show that

Mr indeed is an embedded submanifold, for which we follow the ideas of [Bou23, Section

7.5]. Let U be the subset of Cn×m, where the upper left block of size r × r is invertible.

Then consider the function

h ∶ U → C(n−r)×(m−r) ∶ Y =
⎛
⎝
Y11 Y12

Y21 Y22

⎞
⎠
↦ h(Y ) = Y22 −Y21Y

−1
11 Y12.

In [Bou23, Section 7.5] it is shown that h is indeed a local defining function forMr and

henceMr an embedded submanifold.

Remark 2.3. Note thatMr is an embedded submanifold only for fixed rank r. If we allow

for matrices of rank up to r, the obtained set is no longer an embedded submanifold.

However, it is an algebraic variety [Bou23, Section 7.5].

We remind that each element ofMr can be decomposed by a singular value decompo-

sition of the form

Y =USV∗, with U ∈ Cn×r,V ∈ Cm×r, unitary and S ∈ Cr×r,

see section 2.1. By this, it is shown in [Bou23] that the elements of the tangent space

TYMr have the form

TYMr = {UMV∗ + δUV∗ +UδV∗ ∶M ∈ Cr×r, δU ∈ Cn×r, δV ∈ Cm×r,

and U∗δU = 0 =V∗δV}. (2.18)

Although we now have a characterization of the tangent elements, it will be more con-

venient for us to use a different representation. As in [KL07], we consider the tangent



Tree Tensor Networks 31

map of (S,U,V) ↦ Y =USV∗,

Cr×r × TUVn,r × TVVm,r → TYMr × Skew(r) × Skew(r)

(δS, δU, δV) ↦ (δUSV∗ +UδSV∗ +USδV∗,U∗δU,V∗δV).

Clearly this is a linear map with trivial kernel. It further can be verified that the

dimensions of the vector spaces coincide. Thus, the map above is an isomorphism,

which implies that the tangent space ofMr can be also represented by

TYMr = {δUSV∗ +UδSV∗ +USδV∗ ∶ δS ∈ Cr×r, δU ∈ TUVn,r, δV ∈ TV Vm,r} . (2.19)

Further, the factors δU, δS, δV are uniquely determined if we impose the orthogonality

constraints

U∗δU = 0, V∗δV = 0.

It remains to study the orthogonal projection onto the tangent space at point Y denoted

by P (Y ). For this, we remark [KL07, Lemma 4.1]:

Lemma 2.2: Tangent space projection for matrices

The orthogonal projection onto the tangent space TYMr at the point Y =USV∗ ∈
Mr is given by

P (Y ) = I − P ⊥(Y ), with P ⊥(Y )Z = (I −UU∗)Z(I −VV∗).

Applying the projection to an element Z then yields

P (Y )Z = Z − (I −UU∗)Z(I −VV∗)

=UU∗ZVV∗ +UU∗Z(I −VV∗) + (I −UU∗)ZVV∗. (2.20)

2.5.2 Geometry of Tucker tensors

For a given multilinear rank r = (r1, . . . , rd), we consider the set of tensors

Mr = {Y ∈ Cn1×⋅⋅⋅×nd ∶ Y has multilinear rank r},

which is indeed a manifold [KL10]. It will serve as the approximation manifold, i.e.

general tensors A ∈ Cn1×⋅⋅⋅×nd will be approximated by an element inMr. As described
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in detail in section 2.2, each element ofMr can be decomposed into a Tucker decompo-

sition, such that we have a memory-efficient approximation of a tensor, i.e.

Y = C
d

⨉
i=1

Ui.

Similar to the matrix case and following [KL10], we consider the extended tangent map

(C,U1, . . . ,Ud) ↦ Y = C⨉d
i=1Ui

Cr1×⋅⋅⋅×rd ×
d

∏
i=1
TUiVni,ri → TYMr ×

d

∏
i=1

Skew(ri)

(δC, δU1, . . . , δUd) ↦
⎛
⎝
δC

d

⨉
i=1

Ui +
d

∑
i=1
C ×i δUi⨉

j≠i
Uj ,U

∗
1δU1, . . . ,U

∗
dδUd

⎞
⎠
.

With the same arguments as for the matrix case, we obtain that the tangent space at

Y = C⨉d
i=1Ui can be represented by

TYMr =
⎧⎪⎪⎨⎪⎪⎩
δC

d

⨉
i=1

Ui +
d

∑
i=1
C ×i δUi⨉

j≠i
Uj ∶ δC ∈ Cr1×⋅⋅⋅×rd , δUi ∈ TUiVni,ri

⎫⎪⎪⎬⎪⎪⎭
. (2.21)

The factors δC, δU1, . . . , δUd are uniquely determined if we impose an orthogonality

constraint

U∗
i δUi = 0 ∀i = 1, . . . , d. (2.22)

The tangent space projection from lemma 2.2 can be generalized to Tucker tensors, see

[KL10, Lemma 3.1].

Lemma 2.3: Tangent space projection Tucker tensors

The orthogonal projection onto the tangent space TYMr at the point Y =
C⨉d

i=1Ui ∈ Mr is given by

P (Y )Z = Z
d

⨉
i=1

UiU
∗
i +

d

∑
i=1
Z ×i (I −UiU

∗
i )⨉

j≠i
UjU

∗
j .

2.5.3 Geometry of hierarchical Tucker tensors

Fix a binary tree τ̄ with d leaves and also fix the tree ranks r = (rτ)τ≤τ̄ . Then consider

the set of hierarchical Tucker tensors with fixed tree ranks r

Mr = {Y ∈ Cn1×⋅⋅⋅×nd in HT representation ∶ Y has tree ranks r = (rτ)τ≤τ̄}.
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In [UV13] it is shown for real tensors thatMr is an embedded manifold of Rn1×⋅⋅⋅×nd . If

the tensor Y ∈ Cn1×⋅⋅⋅×nd is considered in the tensor train format, it was shown in [HRS12]

that the set of tensors in tensor train format with fixed tree ranks is also an embedded

manifold. To the author’s knowledge, there is no literature on the geometry of general

tree tensor networks so far. Since the geometry is analysed for the real hierarchical

Tucker and tensor train format, most likely similar results can be obtained in the tree

tensor network setting with complex numbers. However, this lies beyond the scope of

this thesis and could be investigated in the future.

In the course of this thesis, we will consider the manifold of tensors in tree tensor

network format for a given tree τ̄ , dimensions (nl)dl=1 and tree ranks r = (rτ)τ≤τ̄ . By

Mτ̄ =Mτ̄ ,r =M(τ̄ , (nl)dl=1, (rτ)τ≤τ̄) we denote the corresponding embedded manifold in

the tensor space Cn1×⋅⋅⋅×nd .

2.6 The Dirac-Frenkel time-dependent variational princi-

ple

Consider a abstract Hilbert space H together with an inner product ⟨⋅∣⋅⟩. On this Hilbert

space we consider a tensor differential equation of the same form as in equation (2.1)

∂tu(t) = F (t, u(t)), (2.23)

for a general right-hand side F . The following notation is taken from [Lub08]. To derive

the Dirac-Frenkel time-dependent variational principle we take a smooth submanifold

M of H. Further let TuM be the tangent space at the point u. The submanifoldM will

be the approximation space on which we want to find an approximation u(t) to actual

solution.

Following [Lub08], we determine the approximation u(t) from the condition that at time

t its derivative ∂tu(t), which lies in Tu(t)M, fulfills

∂tu(t) ∈ Tu(t)M such that ⟨v∣∂tu − F (t, u(t))⟩ = 0 ∀v ∈ Tu(t)M . (2.24)

Taking the real part of (2.24) we obtain a minimal condition of the form

∂tu is chosen as the w ∈ TuM for which ∣∣w − F (t, u(t))∣∣ is minimal,

see again [Lub08]. Hence, ∂tu can be interpreted as an orthogonal projection of F (t, u(t))
onto TuM. Graphically this is illustrated in figure 2.7.
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M

TuM

uu

F (t, u)

P (u)F (t, u)

Figure 2.7: Illustration of the Dirac-Frenkel time-dependent variational principle.

By denoting the orthogonal projection onto TuM, we can rewrite the Driac-Frenkel

time-dependent variational principle (2.24) as a projected differential equation on the

manifoldM, i.e.

∂tu(t) = P (u)F (t, u(t)). (2.25)

Already in 1930, Dirac used the variational formulation (2.24) with F being a Hamil-

tonian as a right-hand side to derive the equations of motion of the time-dependent

Hartree–Fock method [Dir30]. In 1934 Frenkel gave the interpretation as an orthogonal

projection, see [Fre34]. This is why the variational principle is called the Dirac-Frenkel

variational principle.

Application to matrix differential equations

For simplification reasons, we first stick to matrix differential equations, i.e. d = 2

in (2.23). We choose Mr to be the manifold of matrices of rank r. By a svd-like

decomposition, we can write the approximation u(t) in a time-dependent decomposition

as

u(t) =U(t)S(t)V(t)∗, with U(t) ∈ Cn×r, S(t) ∈ Cr×r, V(t) ∈ Cm×r,

where U(t) and V(t) are orthogonal matrices for all times t. Additionally, we require

that S(t) is invertible for all times t. To uniquely determine the elements ∂tu in the

tangent space TuM, we require U∗U̇ = 0 =V∗V̇ along the solution trajectory. By (2.19)
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we know now that we can write ∂tu as

∂tu = U̇SV∗ +UṠV∗ +USV̇∗,

where Ṡ ∈ Cr×r, U̇ ∈ TUVn,r and V̇ ∈ TV Vm,r. We obtain equations of motion for the

factors U(t),V(t) and S(t) by using the Dirac-Frenkel variational principle. First, we

derive the equation of motion for S(t). As an element of the tangent space TuM, we

choose v = uiv∗j , where ui and vj are the ith column of U and the jth column of V

respectively. Further, we make use of the identity

⟨vw∗∣B⟩ = v∗Bw,

for a matrix B ∈ Cn×m and vectors v ∈ Cn and w ∈ Cm. Inserting now v = uiv∗j , we
obtain

0 = ⟨uiv∗j ∣∂tu −F (t,u(t))⟩

= ⟨uiv∗j ∣U̇SV∗ +UṠV∗ +USV̇∗ −F (t,u(t))⟩

= u∗i U̇SV∗vj + u∗iUṠV∗vj + u∗iUSV̇∗vj − u∗i F (t,u(t))vj
= Ṡij − u∗i F (t,u(t))vj ,

where we used the Gauge conditions U∗U̇ = 0 =V∗V̇ and Ṡij denotes the (i, j) entry of

Ṡ. Thus, we have the equation of motion for S(t) by

Ṡ(t) =U∗F (t,u(t))V.

Analogously, one obtains the equations of motion for the factors U(t) and V(t) by

inserting v = δUSijv∗j and v = ujSjiδV respectively into (2.24), where δU ∈ Cn, δV ∈ Cm

and δU∗U = 0 = δV ∗V. Together, we arrive to the following equations of motion for the

low-rank factors, cf. [KL07],

Ṡ(t) =U(t)∗F (t,u(t))V(t)

U̇(t) = (I −U(t)U(t)∗)F (t,u(t))V(t)S(t)−1

V̇(t) = (I −V(t)V(t)∗)F (t,u(t))∗U(t)S(t)−∗.

The inverse of the S(t) matrix for the equation for U(t) and V(t) leads to numerical

instabilities, when singular values of S(t) become small. Note that the derivation of

the equations of motion has also been done for Tucker tensors in [KL10] and for the

hierarchical Tucker format and tensor train format in [LRSV13].
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Figure 2.8: Trajectory of U(t)S(t)V(t)∗ in the presence of high curvature of the
manifold.

The inverse of S(t) may cause problems in numerical computations if S(t) is not invert-
ible or close to singular. This is equivalent to the presence of small singular values. Let

σr be the smallest singular value of S(t) for a fixed time t. In [KL07, Lemma 4.1] it was

shown that for X,Y ∈ Mr with σr(X) ≥ ρ > 0 and ∥Y −X∥ ≤ 1
8ρ it holds

∥(P (Y ) − P (X))B∥ ≤ 8ρ−1∥Y −X∥∥B∥2,

for all B ∈ Rn×m. Thus, the projection onto the tangent space is a function with a high

Lipschitz constant if S(t) contains small singular values. Consequently stiffness in the

projected differential equation (2.25) goes with the small singular values in S(t). In this

situation, one needs very small time step sizes to solve the equations accurately. Further,

there is an interesting connection between small singular values and the curvature of the

manifold. In [FL18, Theorem 24] the authors show that the maximal curvature of the

manifold Mr is σ−1r , which diverges if σr goes to zero. Moreover, Mr can be viewed

as a collection of cones or as a multidimensional spiral. A possible trajectory for the

equations of motion in the situation of small singular values is illustrated in figure 2.8.

Stable time integration of factors

In consideration of small singular values one would like to derive equations of motion,

which are not affected by small singular values. In the following, we briefly discuss one

possible way how to derive a stable numerical scheme to solve the projected ODE (2.25).
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We start by multiplying the equations for U(t) and V(t) with S(t) and S(t)∗ respec-

tively, from the right, which leads to

Ṡ(t) =U(t)∗F (t,u(t))V(t) (2.26)

U̇(t)S(t) = (I −U(t)U(t)∗)F (t,u(t))V(t) (2.27)

V̇(t)S(t)⊺ = (I −V(t)V(t)∗)F (t,u(t))∗U(t). (2.28)

We introduce now the auxiliary variables K(t) = U(t)S(t) and L(t) = V(t)S(t)∗. By

the chain rule and inserting the equations of motion for U̇(t) and Ṡ(t) we obtain

K̇(t) = U̇(t)S(t) +U(t)Ṡ(t)

= (I −U(t)U(t)∗)F (t,u(t))V(t)S(t)−1S(t) +U(t)U(t)∗F (t,u(t))V(t)

= F (t,u(t))V(t) = F (t,U(t)S(t)V(t)∗)V(t). (2.29)

Analogously, we obtain for L̇

L̇(t) = F (t,u(t))∗U(t) = F (t,U(t)S(t)V(t)∗)∗U(t). (2.30)

Clearly, solving the K and L equations (2.29) and (2.30) is still equivalent to solving

the equations of motion from (2.27) and (2.28).

Finally, we want to decouple the system of ODEs. To do that in the K̇ equation, we

introduce the approximation that over one time step from t0 to t1, we keep the matrix

V fixed. In an abuse of notation, we reuse K (and later as well L) and solve the the

ODE

K̇(t) = F (t,U(t)S(t)V(t0)∗)V(t0)

= F (t,K(t)V(t0)∗)V(t0) with K(t0) =U(t0)S(t0)

from t0 to t1. Similarly, to approximate the solution of L̇, we keep U(t) fixed and solve

the ODE

L̇(t) = F (t,U(t0)S(t)V(t)∗)∗U(t0)

= F (t,U(t0)L(t)∗)∗U(t0), with L(t0) =V(t0)S(t0)∗

form t0 to t1. For the Ṡ equation we simply perform a Galerkin ansatz in the new basis

U(t1) and V(t1). Therefore we solve from t0 to t1

˙̃S(t) =U(t1)∗F (t,U(t1)S̃(t)V(t1)∗)V(t1),

S̃(t0) =U(t1)∗U(t0)S(t0)V(t0)∗V(t1).
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Note that if the time step size goes to zero, we are still solving the projected matrix

ODE (2.25) exactly.

The three differential equations are the ones of the fixed-rank BUG integrator for ma-

trices [CL21], which is also called the unconventional integrator. In the same work,

an error bound was proven where all appearing constants are completely independent

of the singular values. Thus, the presented approximation leads to a numerical stable

time integration scheme. Solving these different equations of motion can be geometri-

cally interpreted by moving along flat subspaces within the manifold. As derived by

[FL18], the manifold consists of cones and therefore the existence of straight lines in

Mr is guaranteed. The differential equation for K̇ follows a straight line, such that the

high curvature in the manifold is not seen. Analogous results hold for L̇ and Ṡ. The

movement along flat subspaces is illustrated for the K step in figure 2.9.

Figure 2.9: Trajectory of U(t)S(t)V(t0)∗ for the K-step. The high curvature is not
seen along this trajectory.

The remainder of this thesis is dedicated to the construction and analysis of such nu-

merical stable time integration methods for tree tensor networks. Further tools, which

are needed for efficient computations in quantum dynamics, are discussed to obtain fast

and robust time integration.



Chapter 3

Tree Tensor Network Operators

This chapter is mainly based on the work ”Low-Rank Tree Tensor Network Operators for

Long-Range Pairwise Interactions” by Gianluca Ceruti, Daniel Kressner and the author

[CKS24].

Tensor methods have demonstrated their efficacy in addressing high-dimensional prob-

lems and the appearing curse of dimensionality. The effectiveness of these methods rely

fundamentally on the representation of a suitable representation of the operator describ-

ing the system. In this chapter, we introduce Tree Tensor Network Operators (TTNOs).

We will describe how an operator in tree tensor network format can be applied efficiently

to a TTN. Further, we give an explicit construction of a TTNO for long-range pairwise

interacting quantum spin systems of the form

H ∶ Cn1×⋯×nd → Cn1×⋯×nd , H =
d

∑
k=1
D(k) + ∑

1≤i<j≤d
β(i, j)A(i)A(j). (3.1)

Here, D(i) and A(i) represent operators that act on the ith site. The matrix representa-

tion of a single-site operator like A(i) takes the form Ind
⊗⋅ ⋅ ⋅⊗Ini+1⊗Ai⊗Ini−1⊗⋅ ⋅ ⋅⊗In1

for some matrix Ai ∈ Cnk×nk , where I denotes an identity matrix of suitable size and

⊗ denotes the usual Kronecker product. For quantum spin systems, the matrices Ai

are usually the Pauli matrices. The coefficients β(i, j) characterize the strength of the

interaction between the ith and the jth particle. A sparse interaction matrix β, con-

taining the coefficients β(i, j), encodes that only a few sites interact with each other,

while a banded matrix β encodes short-range interactions. If β is not banded, also dis-

tant sites interact. This regime of long-range interactions significantly complicates the

use of tensor network methods, including the compact representation of the underlying

Hamiltonian.

39
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Considering an example from many-body quantum physics, the main computational

costly part often is the application of the corresponding Hamiltonian to the state as

well as the memory footprint to store the Hamiltonian. For a Hamiltonian describing a

quantum spin system of d two-level spin 1
2 particles, the full Hamiltonian is a matrix of

size 2d × 2d. Without using any structure or sparsity, the cost of saving the full matrix

scales exponentially with the system size. I.e. for d particles, we have the following

memory footprint in double precision for storing the full Hamiltonian:

Number of particles d = 8 d = 16 d = 32
Memory requirement 524KB 34.3GB 147EB (= exabytes)

Table 3.1: Memory footprint of full Hamiltonian

Thus, it is of interest to find compact representations of the corresponding Hamiltoni-

ans. There is a broad literature on how to efficiently represent an operator in tensor

train/matrix product state representation. These objects are usually referred to as

matrix product operators (MPOs). We refer to [Sch11] and [PMCV10] for their con-

struction and further details. It is well-known that ranks are constant for next-neighbor

and/or translation-invariant interactions. In the broader context of partial differential

equations, MPO representations for H have been derived in [DK13, KRS13], noting an

interesting connection between the MPO representation and the quasi-separability of β.

We refer to [EG99] for more details on quasi-separability.

The construction of the more general class of tree tensor network operators for nearest

neighbor interactions was discussed in [Tob12]. Recently, state diagrams have been used

to construct quantum Hamiltonians in tree tensor network representation in [MHM24b].

In [LRY+24] the authors construct TTNOs and in [RLJS20] MPOs by finding the mini-

mum vertex cover of a bipartite graph. However, in this chapter, we will extend the work

of Lin and Tong [LT21] from MPOs to general TTNOs. The authors use hierarchical

low-rank decompositions to find efficient constructions for MPOs based on the HODLR

format and the H-matrix format. In this work, we promote the usage of HSS matrices

whose structure is fundamentally close to the one of TTNs.

Remark 3.1. We note that an operator as in (3.1) might also arise from the discretiza-

tion of partial differential equations (PDEs) on d-dimensional hypercube. Thus, the

applicability of such techniques is not restricted to quantum many-body problems only

but can be incorporated in various applications
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3.1 Formalism of Tree Tensor Network Operators

Recall definition 2.3 of a tree with unequal leaves and fix a tree τ̄ together with a subtree

τ = (τ1, . . . , τm). In the following, we will additionally assume that

L(τi) < L(τj) ∀i < j. (3.2)

By assumption (3.2), we know that for any subtree τ = (τ1, . . . , τm) < τ̄ , there exist

integers l1 < l2 ⋅ ⋅ ⋅ < lm+1 such that

L(τ1) = {l1, l1 + 1, . . . , l2 − 1}, . . . , L(τm) = {lm, lm + 1, . . . , lm+1 − 1},

i.e. the sets L(τi) consist of consecutive integers. We now introduce the definition of a

tree tensor network operator as provided in [CKS24, Definition 2.4].

Definition 3.1: Tree Tensor Network Operator

Let H ∶ Cn1×⋯×nd → Cn1×⋯×nd be a linear operator, and Ĥ ∈ C(n1...nd)×(n1...nd)

its associated linear map, i.e., vec(H(X)) = Ĥ vec(X) for all X ∈ Cn1×⋅⋅⋅×nd . We

define H as a tree tensor network operator (TTNO) of maximal rank r on a given

tree τ̄ if the reshape H ∈ Cn2
1×⋯×n2

d of Ĥ forms a tree tensor network of rank at

most r on τ̄ . The tree tensor network H is the TTNO representation of H.

3.1.1 Example: Rank one TTNO

We wish to provide further intuition on how tree tensor network operators look like and

give an idea of how the application of a TTNO to a TTN is defined.

For that we consider a tree of height one which corresponds to Tucker tensors. Suppose

we have a linear operator of the form

H(X) =X
d

⨉
i=1

Ai with Ai ∈ Cni×ni .

Applying the unfolding formula (2.4) we arrive at the matrix representation Ĥ of the

operator H,

vec(H(X)) =Mat0 (H(X))⊺ = (Ad ⊗ ⋅ ⋅ ⋅ ⊗A1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Ĥ

vec(X).
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We obtain then a Tucker representation by reshaping vec(Ĥ) into a n21 × ⋅ ⋅ ⋅ ×n2d tensor,

resulting in the outer product representation

H = vec(A1) ○ ⋅ ⋅ ⋅ ○ vec(Ad) ∈ Cn2
1×⋅⋅⋅×n2

d , (3.3)

see for example [KT14, Sch11]. Equation (3.3) corresponds to a rank-1 Tucker tensor

H = C⨉d
i=1 vec(Ai) with C = 1. A summation of rank-1 operators allows for more

complex linear operators. The idea of how to construct such rank-1 linear operators in

TTNO format directly extends to general tree formats by setting the ith leaf to vec(Ai)
and all core tensors to 1.

Many linear operators can be written as a sum of rank one operators, i.e.

H(X) =
s

∑
k=1

X
d

⨉
i=1

A
(i)
k .

For example, the discretized Laplacian can be written in this shape. Let D be the

discretization of the derivative. Then the discretized Laplacian can be written as

D(d) ⊗ I⊗ ⋅ ⋅ ⋅ ⊗ I + I⊗D(d−1) ⊗ I⊗ ⋅ ⋅ ⋅ ⊗ I + I⊗ ⋅ ⋅ ⋅ ⊗ I⊗D(1).

A straightforward way to construct the full TTNO is to compute all rank one TTNOs

X ⨉d
i=1A

(i)
k for k = 1,⋯, s, by the strategy above. The resulting s TTNOs are then

summed, recall subsection 2.4.1. However, this representation of the Hamiltonian is

usually far from optimal in terms of the needed tree ranks and memory requirements.

By this straightforward strategy, we would find a rank d TTNO representation of the

discretized Laplacian, whereas it is known that it can be represented exactly by only

using a tree rank of 2, cf. [Tob12, Example 3.7]. The example makes it clear that there

is a lot of potential to find compact low-rank representations of such operators. Before

we start the discussion about the compression of TTNOs, we wish to provide how the

application of a TTNO to a TTN works.

3.1.2 Application of TTNOs

Suppose we want now to apply a tree tensor network operator to a tree tensor network.

For that, we recall [KT14, § 8] how to efficiently apply a linear operator H in TTNO

representation H to a tree tensor network X, both defined on the same tree τ̄ . The

evaluation of H(X) results again in a tree tensor network (of larger rank) and it can be

efficiently computed as follows:
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(i) For each leaf τ = l, we set

(H(X))l = [Al
1Ul, . . . ,A

l
sUl] ,

where Al
j ∈ Cnl×nl is the matrix obtained from reshaping the jth column of the

basis matrix at the lth leaf of the TTNO H.

(ii) For each subtree τ ∈ T (τ̄), we set

CH(X)τ = CH
τ ⊗CX

τ . (3.4)

where CH
τ denotes the core tensor of the TTNO representation H at τ , and CX

τ

denotes the core tensor of the TTN X at τ .

The operation (3.4) involves the Kronecker product of tensors. We recall that the tensor

Kronecker product C ∈ C(n1m1)×⋅⋅⋅×(ndmd) of tensors A ∈ Cn1×⋅⋅⋅×nd and B ∈ Cm1×⋅⋅⋅×md is

defined element-wise for 1 ≤ ik ≤ nk and 1 ≤ jk ≤mk via the relation

C(j1 + (i1 − 1)m1, . . . , jd + (id − 1)md) ∶= A(i1, . . . , id)B(j1, . . . , jd) .

Note that the above operations (i) and (ii) are independent and can be performed fully

in parallel. If H has tree ranks (sτ)τ≤τ̄ and X has tree ranks (rτ)τ≤τ̄ , then the resulting

tree tensor network H(X) has tree ranks (sτrτ)τ≤τ̄ . This means that operation (ii)

multiplies each rank of the original tensor network by the corresponding rank of the

TTNO. Hence, it is crucial to find a low-rank TTNO representation H.

3.2 Unstructured case

In this section we want to derive a construction of a TTNO for Hamiltonian systems

as in (3.1), where no assumptions on the interaction matrix β are made. The operator

consists of two sums - one Laplacian-like part which acts on individual sites and the

interaction term. It is well-known how to construct a TTNO for the Laplacian-like part,

see above or for example [KT14]. We briefly give the basis matrices and core tensors in

this case:

Ul = [vec(D(l)),vec(I)] ∀l ∈ L,

Cτ(i1, . . . , im) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if i1 = ⋅ ⋅ ⋅ = im = 1,

0 else,
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where Cτ ∈ C2×⋅⋅⋅×2. Note that the resulting TTNO is of rank two for every subtree τ ≤ τ̄ .
The construction of a TTNO for the interaction part of (3.1) is more complicated.

Thus, in the following, we will investigate the interaction part, which has a matrix

representation of the form

Ĥ = ∑
1≤i<j≤d

β(i, j) ⋅A(i)A(j) ∈ C(n1⋯nd)×(n1⋯nd), (3.5)

with A(k) = Ind
⊗ ⋅ ⋅ ⋅ ⊗ Ink+1 ⊗Ak ⊗ Ink−1 ⊗ ⋅ ⋅ ⋅ ⊗ In1 and Ak ∈ Cnk×nk for k = 1, . . . , d.

We recall that the interaction matrix β = (β(i, j))i<j is an upper triangular matrix

whose coefficients encode the strength of the interaction between the sites. For exam-

ple, β(i, j) = 1
∣i−j∣ encodes Coulomb interactions between particles while β(i, j) = 1

∣i−j∣3

encodes dipole-dipole interactions [SWM10].

3.2.1 Binary tree tensor network operators

To simplify the presentation, we first consider binary trees τ̄ for the construction. The

general case is discussed in the next subsection.

To obtain a TTNO representation H ∈ Cn2
1×⋯×n2

d we vectorize the summands in (3.5)

h ∶= vec(Ĥ) = ∑
1≤i<j≤d

β(i, j) ⋅ a(i,j) ∈ Cn2
1⋯n2

d .

where

a(i,j) ∶= ed ⊗⋯⊗ ej+1 ⊗ vec(Aj) ⊗ ej−1 ⊗⋯⊗ ei+1 ⊗ vec(Ai) ⊗ ei−1 ⊗⋯⊗ e1, (3.6)

and ek = vec(Ink
) denotes the vectorization of the identity matrix. For the recursive

structure of the TTNO is it convenient to define one- and two-site matrix representations.

I.e. for a tree τ with i, j ∈ L(τ) we set

a(i)τ = ⊗
l∈L(τ)

l>i

el ⊗ vec(Ai) ⊗
l∈L(τ)

l<i

el ∈ Cn2
τ , (3.7)

a(i,j)τ = ⊗
l∈L(τ)
l>j

el ⊗ vec(Aj)
i+1
⊗

l∈L(τ)
i<l<j

el ⊗ vec(Ai) ⊗
l∈L(τ)

l<i

el ∈ Cn2
τ . (3.8)

The Kronecker products are executed in decreasing order with respect to l. This will be

used to represent the operator which only acts on the subsystem, where only the sites

i, j ∈ L(τ) are interacting. Note that a
(i,j)
τ matches a(i,j) from (3.6) for τ = τ̄ .

Consider now a subtree τ ≤ τ̄ . Using the two-site matrix representation (3.8), the
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vectorized Hamiltonian for τ takes the form

hτ ∶= ∑
i<j

i,j∈L(τ)

β(i, j) ⋅ a(i,j)τ ∈ Cn2
τ , (3.9)

with nτ = ∏i∈L(τ) ni. By definition (3.8) it is ensured that Ai and Aj still act on the

ith and jth site, respectively. If we are at a leaf we set hl = 0, while at τ = τ̄ we obtain

hτ = h.
The following Lemma [CKS24, Lemma 3.1] allows us to construct the TTNO represen-

tation recursively. For readability, we introduce the short notation eτ ∶= ⊗l∈L(τ) el.

Lemma 3.1

For τ = (τ1, τ2) ≤ τ̄ , the vector hτ defined in (3.9) satisfies

hτ = eτ2 ⊗ hτ1 + hτ2 ⊗ eτ1 + ∑
i∈L(τ1)
j∈L(τ2)

β(i, j) ⋅ a(j)τ2 ⊗ a(i)τ1 , (3.10)

with a
(i)
τ1 ,a

(j)
τ2 defined as in (3.7).

Proof. The disjoint union L(τ) = L(τ1) ∪̇L(τ2) induces the partition

L(τ) ×L(τ) = L(τ1) ×L(τ1) ∪L(τ2) ×L(τ2) ∪L(τ1) ×L(τ2) ∪L(τ2) ×L(τ1). (3.11)

We now consider the corresponding division of the sum (3.9) defining hτ .

First and second subset: The first subset of (3.11) only considers terms in the sum

which come from the same subtree, i.e. for which (i, j) ∈ L(τ1) × L(τ1). By using

that (3.7) implies a
(i,j)
τ = eτ2 ⊗ a

(i,j)
τ1 for i, j ∈ L(τ1), we obtain

∑
i<j

i,j∈L(τ1)

β(i, j) ⋅ a(i,j)τ = eτ2 ⊗ ∑
i<j

i,j∈L(τ1)

β(i, j) ⋅ a(i,j)τ1 = eτ2 ⊗ hτ1 ,

which equals the first term in (3.10). Analogously, we obtain that the second subset

L(τ2) ×L(τ2) in (3.11) yields the second term hτ2 ⊗ eτ1 in (3.10).

Third and fourth subset: The third subset in (3.11) corresponds directly to the

third term in (3.10). The fourth subset does not contribute any terms as there exists no

index pair (i, j) ∈ L(τ2) ×L(τ1) such that the condition i < j is satisfied.

Before proving one of the main results from this chapter, we first prove a generalization

of lemma 3.1. It will be a purely theoretical result, which is not needed for the actual

construction of the TTNO, but will help prove the main theorem. We will split a tree
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into a subtree τ and its complement τ̄ ∖τ . This situation is more complicated compared

to the previous lemma, as the leaves of τ are not necessarily smaller than the leaves of τ̄ .

To formulate the generalization it is convenient to introduce the symmetrized interaction

matrix

βs ∶= β +β⊺. (3.12)

The coefficients of βs then fulfill

βs(i, j) = β(i, j) for i < j,

βs(i, j) = β(j, i) for i > j,

βs(i, i) = 0 ∀i.

With this we can formulate now the generalized lemma. The statement and its proof

can be found as lemma 3.2 in [CKS24].

Lemma 3.2

For τ ∈ T (τ̄) ∪L(τ̄), consider a permutation of the modes that puts the leaves of

τ first:

l1, l1 + 1, . . . , l2 − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L(τ)

,1,2, . . . , l1 − 1, l2, l2 + 1, . . . , d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L(τ̄∖τ)

.

Let Ĥτ,τ̄∖τ denote the corresponding permutation of the matrix representation Ĥ

from (3.5). Then the vectorization of Ĥτ,τ̄∖τ takes the form

hτ,τ̄∖τ = eτ̄∖τ ⊗ hτ + hτ̄∖τ ⊗ eτ + ∑
i∈L(τ)

j∈L(τ̄∖τ)

βs(i, j) ⋅ a(j)τ̄∖τ ⊗ a(i)τ ∈ Cn2
τ ⋅n2

τ̄∖τ , (3.13)

where hτ̄∖τ ∈ Cn2
τ̄∖τ is the vectorization of the Hamiltonian that only considers

interactions between sites contained in L(τ̄ ∖ τ) and nτ̄∖τ = ∏j∈L(τ̄∖τ) n
2
j . The

vectors a
(i)
τ , a

(j)
τ̄∖τ are defined as in (3.7).

Proof.

We will prove the statement with similar arguments as in the proof of Lemma 3.1.

Analogously to (3.11), the partition is induced by the disjoint union L(τ) = L(τ) ∪̇L(τ̄ ∖
τ):

{1, . . . , d}×{1, . . . , d} = L(τ)×L(τ)∪L(τ̄ ∖τ)×L(τ̄ ∖τ)∪L(τ)×L(τ̄ ∖τ)∪L(τ̄ ∖τ)×L(τ).

With the same explanation as in the proof of Lemma 3.1, the first two terms of this

partition match the first two terms of (3.13). As β(i, j) = 0 for i ≥ j and using the
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definition of the symmetrized interaction matrix βs, the last two terms give

∑
i∈L(τ),j∈L(τ̄∖τ),i<j

β(i, j) ⋅ a(j)τ̄∖τ ⊗ a(i)τ + ∑
i∈L(τ̄∖τ),j∈L(τ),i<j

β(i, j) ⋅ a(i)τ̄∖τ ⊗ a(j)τ

= ∑
i∈L(τ),j∈L(τ̄∖τ),i<j

β(i, j) ⋅ a(j)τ̄∖τ ⊗ a(i)τ + ∑
i∈L(τ),j∈L(τ̄∖τ),i>j

β(j, i) ⋅ a(j)τ̄∖τ ⊗ a(i)τ

= ∑
i∈L(τ),j∈L(τ̄∖τ)

βs(i, j) ⋅ a(j)τ̄∖τ ⊗ a(i)τ .

Finally, we are now able to prove a first bound on the ranks that are needed to represent

a Hamiltonian in a TTNO format. The following theorem and its proof can be found in

[CKS24, Theorem 3.3].

Theorem 3.1: TTNO unstructred

Let Ĥ be the linear operator defined by (3.5) and let τ̄ be a binary tree. Then Ĥ

admits a TTNO representation H such that the ranks rτ satisfy rl = 2 at every

leaf l ∈ L(τ̄) and

rτ = 2 + rank(βs(τ, τ̄ ∖ τ)) ≤ 2 + dτ , ∀τ ∈ T (τ̄) ∖ τ̄ , (3.14)

where dτ denotes the cardinality of L(τ) and βs(τ, τ̄ ∖ τ) is the dτ × (d − dτ)
submatrix obtained by selecting the rows in L(τ) and the columns in {1, . . . , d}∖
L(τ) of the symmetrized interaction matrix βs from (3.12).

Proof. By definition 3.1, theorem 2.3 and the notation introduced there for MatL(τ), we

know that for each τ ≤ τ̄ , H ∈ Cn2
1×⋯×n2

d admits a TTNO representation with the rank

rτ given by the rank of the matricization MatL(τ)(H). By lemma 3.2 we have that

MatL(τ)(H) = hτ e⊺τ̄∖τ + eτ h⊺τ̄∖τ + ∑
i∈L(τ)

j∈L(τ̄∖τ)

βs(i, j) ⋅ a(i)τ (a
(j)
τ̄∖τ)

⊺
. (3.15)

For a leaf τ = l, this simplifies to

al e
⊺
τ̄∖l + el h

⊺
τ̄∖τ +∑

j/=l
βs(l, j) ⋅ al (a(j)τ̄∖l)

⊺
,

which is of at most rank 2, i.e. rl = 2. Now consider a general subtree τ ≤ τ̄ . We rewrite

the third term in (3.15) as a matrix product of three matrices, the matrix containing

the columns a
(i)
τ , the matrix βs(τ, τ̄ ∖ τ) and the matrix containing the rows (a(j)τ̄∖τ)

⊺
.
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The rank of this matrix product is then bounded by the rank of βs(τ, τ̄ ∖ τ), which
establishes (3.14).

By theorem 3.1 we proved that we can construct a TTNO representation with ⌊d/2⌋ + 2
as an upper bound for the tree ranks, as dτ ≤ ⌊d/2⌋ for a balanced binary tree. It is

noteworthy that even without any assumptions on the interaction matrix β, we have

only a linear growth of the ranks compared to a quadratic growth attained by the naive

construction explained in subsection 3.1.1. The theory has been done for binary trees,

hence the class of matrix product state/tensor trains is also covered, cf. chapter 2.

3.2.1.1 Construction of binary TTNOs

By theorem 3.1 we know that there exists a TTNO representation of the operator (3.1)

of maximal rank ⌊d/2⌋ + 2. In the following, we provide an explicit construction of the

TTNO, which can be found in [CKS24, Section 3]. We start with a tree τ = (τ1, τ2),
where neithter τ1 nor τ2 is a leaf. By enumerating the set of leaves L(τ1) = {l1, . . . , l2−1}
and L(τ2) = {l2, . . . , l3 − 1}, we introduce the matrices

Uτ1 ∶= [eτ1 hτ1 a
(l1)
τ1 ⋯ a

(l2−1)
τ1 ] ∈ Cn2

τ1
×(2+dτ1),

Uτ2 ∶= [eτ2 hτ2 a
(l2)
τ2 ⋯ a

(l3−1)
τ2 ] ∈ Cn2

τ2
×(2+dτ2).

By formula (3.10) in lemma 3.1 we know that each column in the corresponding matrix

Uτ can be represented as a linear combination of Kronecker product between columns

in Uτ2 and Uτ1 . This implies the existence of a core tensor Cτ ∈ C(2+dτ1)×(2+dτ2)×(2+dτ )

such that the matrix Uτ has the form

Uτ = [eτ hτ a
(l1)
τ ⋯ a

(l3−1)
τ ] = (Uτ2 ⊗Uτ1)Mat0(Cτ)⊺ ∈ Cn2

τ×(2+dτ ),

where nτ = nτ1nτ2 . We determine the entries of the core tensor Cτ by giving all frontal

slices C(∶, ∶, k) of Cτ , for k = 1, . . . , (2+dτ). To do so it is helpful to reshape each column

of Uτ as a nτ1 ×nτ2 matrix. With U
(k)
τ , we denote the matrix corresponding to the kth

column. By basic properties of the Kronecker product we have

U(k)τ =Uτ1Cτ(∶, ∶, k)U⊺
τ2 .

With that we can start giving the slices of Cτ . As eτ , the first column of Uτ , corre-

sponds to the matrix U
(1)
τ = eτ1e⊺τ2 , we obtain that the first slice Cτ(∶, ∶,1) contains zero
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everywhere except for the entry 1 at position (1,1). I.e. we have

Cτ(∶, ∶,1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 0
0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (3.16)

where the bold zeros are vectors/matrices only containing zeros of matching size. The

second column of Uτ encodes the interaction between sites in L(τ). The interactions

between sites which are only contained in L(τ1) are already encoded in the second

column of Uτ1 . Hence, this column must be only multiplied with an identity from Uτ2 .

Therefore we have one at the (2,1) position of C(∶, ∶,2). Analogously, we get one at the

(1,2) position for the interactions between sites which are only contained in L(τ2). The
interactions among sites a

(i)
τ1 in L(τ1) and sites a

(j)
τ2 in L(τ2) are encoded in the matrix

β(τ1, τ2). To describe these interactions correctly we set the lower-left block of Cτ(∶, ∶,2)
as β(τ1, τ2). In total, we obtain

Cτ(∶, ∶,2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1

1 0
0

0 β(τ1, τ2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (3.17)

With the first two slices we have constructed the identity and the interaction among all

sites in L(τ) respectively. It remains to construct the single sites, which is needed to

enable interactions between sites on higher levels of the TTNO. Thus, all single sites

must be connected to an identity. We obtain the remaining dτ = dτ1 +dτ2 slices of Cτ by

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0
0

0 u3u
⊺
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, . . . ,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0
0

0 u2+dτ1u
⊺
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0
0

0 u1u
⊺
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, . . . ,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0
0

0 u1u
⊺
2+dτ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (3.18)

where ui is the vector (of appropriate length) with one at entry i and zeros everywhere

else. For a more detailed explanation, consider the first matrix of (3.18). This matrix

encodes the interaction between the l1 site in τ1 and the identity from τ2. Therefore

the slice produces the third column of Uτ , i.e. a
(l1)
τ . The other slices are constructed

following the same strategy.

We have constructed the full core tensor Cτ . It remains to construct the leaves Ul of

the TTNO, i.e. when τ1 and/or τ2 is a leaf. Clearly, the interaction terms hτi from

equation (3.10) vanish. Consequently, the basis matrices do not need to take these

terms into account and only the identity and the action on the lth side Al have to be
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considered. The basis matrices then take the form

Ul ∶= [el vec(Al)] ∈ Cn2
l ×2.

Note that the core tensors connected to a leaf have to be adjusted to the structure of

the basis matrices. It suffices to take into account the first slice of Cτ together with a

modified version of the second slice, where one or both of the ones in the upper-right

block are set to zero. At the root it is suffices to form hτ̄ , which is equal to h by

construction. Hence, the core tensor at the root only consists of the matrix which equals

(3.17).

The presented construction satisfies rl = 2 for all leaves l = 1, . . . , d and rτ = dτ + 2 for

all τ ≠ τ̄ . Hence, we found a construction of a TTNO which satisfies the bounds from

theorem 3.1. Thus, we also proved that for Hamiltonians of the form (3.1) there always

exists a matrix product operator (MPO) representation of maximal rank at most O(d).

3.2.2 Construction for general trees

We conclude this section by extending the previous results to general trees, cf. def-

inition 2.3. Note that the explicit construction was not given in [CKS24] but is an

additional contribution of this thesis.

The construction of the corresponding TTNO follows the same idea as for the binary

case. Whilst the basis matrices do not change, the construction of the core tensors be-

comes slightly more technical. Suppose a tree τ = (τ1, . . . , τm) ≤ τ̄ . Analogously to the

binary case, we partition the interaction matrix β into m2+m
2 blocks

β(τ, τ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β(τ1, τ1) ⋯ β(τ1, τm)
⋱ ⋮

β(τm, τm)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Similar to (3.10), this implies a partition for the vectorized Hamiltonian hτ of the form

hτ =
m

∑
i=1

eτm ⊗⋯⊗ eτi+1 ⊗ hτi ⊗ eτi−1 ⊗⋯⊗ eτ1 +
m

∑
i<j
∑

k∈L(τi)
l∈L(τj)

β(k, l) ⋅ a(l)τj ⊗ a(k)τi .

We enumerate the sites by L(τi) = {li, li + 1, . . . , li+1 − 1} and define as above

Uτi = [eτi hτi a(li) ⋯ a(li+1−1)] , i = 1, . . . ,m.
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In analogy to the binary tree, there exists a core tensor Cτ of order m + 1 such that

Uτ = [eτ hτ a(l1) ⋯ a(lm+1−1)] = (Uτm ⊗⋯⊗Uτ1)Mat0(Cτ)⊺.

It remains to determine the core tensor Cτ . As Cτ is an order m + 1 tensor, we do

not use slices of Cτ anymore. Instead, we determine the columns of its matricization

Mat0(Cτ)⊺.

Identity

The first column again encodes the identity and hence is just the first unit vector of

matching size, i.e.

Mat0(Cτ)⊺(∶,1) = e1 ∈ C(∏
m
i=1 dτi+2)+2.

Interactions

The second column of Mat0(Cτ)⊺ again only contains the interactions among sites. We

start by only considering interactions of sites which lie in the same subtree. Note that

this kind of interaction only exists if τi is not a leaf. Thus, for all τi which are not a

leaf, we set the jth entry of the second columns of Mat0(Cτ)⊺ to one if

Mat0(Cτ)⊺(j,2) = 1,

for j =
i

∏
k=1
(lk+1 − lk) −

i−1
∏
k=1
(lk+1 − lk) + 1 with i ∈ {1, . . . ,m},

where the empty product is defined as one. With this, we have encoded all interactions

coming from the same subtree. Now we need to take care of interactions of sites between

different subtrees.

Suppose two sites ik in the subtree τi and jk in the subtree τj , with i < j. Further, let ik
be the sith leaf in the subtree τi and jk be the sjth leaf in the subtree τj respectively.

Finally, define

p1 ∶= (
i

∏
k=1
(lk+1 − lk)) (si − 1) + 1

p2 ∶=
⎛
⎝

j−1
∏

k=i+1
(lk+1 − lk)

⎞
⎠
(sj − 1) + 1.
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We want to describe now the interaction between the two sites ik and jk. This interaction

is encoded by setting

Mat0(Cτ)⊺(j,2) = β(ik, jk)

for j = (
i

∏
k=1
(lk+1 − lk)) (p2 − 1) + p1.

This is done for all possible combinations of ik and jk which fulfill the assumptions from

above.

Single site actions

It remains to construct all single sites ik ∈ {l1, . . . , lm + 1} for encoding interactions on

higher levels of the TTNO. Assume the ikth leaf lies in the subtree τi and within τi it is

the sith leaf. To encode the single action we set

Mat0(Cτ)⊺(j, ik + 2) = 1

for j = (
i−1
∏
k=1
(lk+1 − lk)) (si − 1) + 1.

As for the binary trees, at the root, the core tensor consists only of the second column

of Mat0(Cτ)⊺.

3.3 Construction via Hierarchical Semi-Separable matri-

ces

In the previous section a tree tensor network operator representation was found, where

the ranks only scale linearly with the number of particles/sites. Along the construction,

we did not use any property or structure of the interaction matrix β. In this section, we

will show that under certain assumptions on β, it is possible to further reduce the ranks

of the TTNO. We achieve this by decomposing the interaction matrix by a hierarchical

semi-separable decomposition. This section generalizes the work of Lin and Tong on

matrix product operators (MPOs), who also made use of hierarchical matrices [LT21].

3.3.1 Recap: Hierarchical semi-separable matrices

The Hierarchical Semi-Separabel (HSS) decomposition for matrices, as defined in [XCGL10],

is an effective way to compactly store matrices with a hierarchical low-rank structure.
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Figure 3.1: Different recursive block-partitions of an 8×8 interaction matrix β. Left:
Recursive block-partition corresponding to a balanced binary tree. Right: Recursive

block-partition corresponding to a unbalanced binary tree.

Effective algorithms for large-scale problems have been derived for problems from nu-

merical linear algebra, see [MRK20] and the references therein. Although the d × d
interaction matrix β is of relatively small size, we will see in section 3.4 that many ma-

trices β stemming from quantum spin systems admit a hierarchical low-rank structure.

Exploiting this fact allows us to construct TTNOs with further reduced ranks.

The hierarchical structure of the decomposition is encoded through a binary tree τ̄ (cf.

definition 2.3) and used to recursively block-partition β. At the root τ̄ = (τ1, τ2), this
corresponds to the partitioning

β = β(τ̄ , τ̄) =
⎡⎢⎢⎢⎢⎣

β(τ1, τ1) β(τ1, τ2)
β(τ2, τ2)

⎤⎥⎥⎥⎥⎦
.

The partitioning is recursively repeated for the blocks β(τ1, τ1) and β(τ2, τ2) using the

subtrees τ1 and τ2 respectively. The size of each of the blocks can be chosen related to

the problem. In figure 3.1 a graphical representation of different tree structures and their

related block partition is provided. The figure is taken from [CKS24, Figure 2]. The first

tree on the left corresponds to the hierarchical Tucker format while the degenerated tree

on the right corresponds to a tensor train/matrix product state. The latter is closely

related to the notion of quasi-separable matrices, see [KMR19] for a discussion on this.
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While the diagonal blocks on each level of the tree are further decomposed, each off-

diagonal block β(τ1, τ2) is assumed to admit a low-rank factorization

β(τ1, τ2) =Vτ1Sτ1,τ2V
∗
τ2 , Vτ1 ∈ Cdτ1×kτ1 , Sτ1,τ2 ∈ Ckτ1×kτ2 , Vτ2 ∈ Cdτ2×kτ1 , (3.19)

for small integers kτ1 , kτ2 . The crucial assumption for HSS matrices is that the matrices

Vτi are nested across all levels. For each τ = (τ1, τ1), the nestedness is characterized by

the existence of a translation operator Rτ ∈ C(kτ1+kτ2)×kτ such that

Vτ =
⎛
⎝
Vτ1 0

0 Vτ2

⎞
⎠
Rτ ∈ Cdτ×kτ . (3.20)

Recall that dτ denotes the cardinality of L(τ). The maximal value of kτ across all levels

is defined as the so-called HSS rank. We will see later that the HSS rank, or generally all

the kτ on each level, encode the complexity of the corresponding TTNO. Thus, having

only a hierarchical low-rank structure is enough to find memory-efficient representations

of a Hamiltonian.

To fully reconstruct β from the factors of the HSS decomposition, it suffices to store

only the middle factors Sτ1,τ2 from (3.19) and the translation operators Rτ , if we assume

normalized basis matrices on the leaves, i.e. Vl = 1 for all l ∈ L.

Remark 3.2. The left and right factorsVτi from (3.19) are enforced to be identical, which

is not the case for the general notation for HSS matrices, cf. [XCGL10]. However, the

definition of a HSS matrix from (3.19) coincides with the usual HSS definition applied

to the symmetrized interaction matrix βs. The results from [XCGL10] imply that the

smallest rank kτ , for which an HSS decomposition of β is admittable, is given by

kτ = rank(βs(τ, τ̄ ∖ τ)), ∀τ ∈ T (τ̄), (3.21)

where βs(τ, τ̄ ∖ τ) denots an HSS block row of βs.

3.3.2 Construction of TTNO via HSS matrices

We use the HSS decomposition of β to construct the tree tensor network operator. We

are now able to proof one of the main results from this chapter, where we can find a

sharper bound for the maximal rank of a TTNO. The following theorem and its proof

can be found in [CKS24, Corollary 4.2].
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Theorem 3.2

Let Ĥ be the linear operator defined by (3.5), and let τ̄ be a binary dimension

tree. If β admits an HSS decomposition (3.19)–(3.20) then there exists a TTNO

representation H of Ĥ with tree ranks rτ = 2 + kτ for every subtree τ ∈ T (τ̄) and
rl = 2 for every leaf l ∈ L(τ̄).

Proof. By theorem 3.1 we know that the TTNO can be constructed with tree ranks

rτ = 2 + rank(βs(τ, τ̄ ∖ τ)). Hence, by remark 3.2 we obtain that rτ = 2 + kτ , which
concludes the proof.

Theorem 3.2 only states the existence of a TTNO with tree ranks kτ+2 for each subtree τ .

In the remainder of this subsection, we will explicitly construct the TTNO corresponding

to an operator of the form (3.5) established by theorem 3.2. The construction was

originally done in [CKS24, Section 4].

For τ = (τ1, τ2) ≠ τ̄ , where neither τ1 nor τ2 is a leaf, we recall that by lemma 3.1, the

vectorized Hamiltonian takes the form

hτ = eτ2 ⊗ hτ1 + hτ2 ⊗ eτ1 + ∑
i∈L(τ1)
j∈L(τ2)

β(i, j) ⋅ a(j)τ2 ⊗ a(i)τ1 .

We introduce the short-hand notation

aτ1 ∶= [a(l1)τ1 ,⋯,a(l2−1)τ1 ] ∈ Cn2
τ1
×dτ1 , aτ2 ∶= [a(l2)τ2 ,⋯,a(l3−1)τ2 ] ∈ Cn2

τ2
×dτ2 .

Using this short notation together with a basic property of the Kronecker product for

matrices, we can rewrite the last summand of hτ as

∑
i∈L(τ1)
j∈L(τ2)

β(i, j) ⋅ a(j)τ2 ⊗ a(i)τ1 = (aτ2 ⊗ aτ1)vec(β(τ1, τ2)). (3.22)

In the HSS setting, the off-diagonal block is decomposed by β(τ1, τ2) =Vτ1Sτ1,τ2V
∗
τ2 , see

(3.19). I.e. the HSS structure of the interaction matrix β induces a low-rank structure

of β(τ1, τ2). Inserting the decomposition in (3.22) we obtain

(aτ2 ⊗ aτ1)vec(β(τ1, τ2)) = (aτ2Vτ2 ⊗ aτ1Vτ1)vec(Sτ1,τ2). (3.23)

Therefore, it suffices to consider the compressed bases

ãτ1 ∶= aτ1Vτ1 ∈ Cn2
τ1
×kτ1 , ãτ2 ∶= aτ2Vτ2 ∈ Cn2

τ2
×kτ2 .
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The remaining construction proceeds as for the unstructured case from section 3.2 but

with the compressed bases. We introduce

Ũτ1 ∶= [eτ1 , hτ1 , ãτ1] ∈ Cn2
τ1
×(2+kτ1), Ũτ2 ∶= [eτ2 , hτ2 , ãτ2] ∈ Cn2

τ2
×(2+kτ2).

Analogously to the unstructured case, we aim now to construct the corresponding core

tensor C̃τ ∈ C(2+kτ1)×(2+kτ2)×(2+kτ ) which transfers these bases to the corresponding basis

at the parent node. There we want

Ũτ ∶= [eτ hτ ãτ ] ∈ Cn2
τ×(2+kτ ), ãτ ∶= aτVτ .

Using equation (3.23) and following the ideas from (3.16) and (3.17), the first two frontal

slices of C̃τ have the form

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 0
0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1

1 0
0

0 Sτ1,τ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

We now want to determine the remaining slices similar as in (3.18). For this, first, define

the matrix

M̃ = [vec(u3u
⊺
1), . . . ,vec(u2+kτ1u

⊺
1),vec(u1u

⊺
3), . . . ,vec(u1u

⊺
2+kτ2

)] ∈ Ckτ1kτ2×(kτ1+kτ2),

where ui again denotes the ith unit vector of appropriate length, with one at entry i

and zeros everywhere else. This definition guarantees that

[eτ2 ⊗ ãτ1 ∣ ãτ2 ⊗ eτ1] = (Ũτ2 ⊗ Ũτ1)M̃ ∈ Cn2
τ×(kτ1+kτ2). (3.24)

Thus, it encodes all single site interactions which need to be transferred to the level

above. Using then the nestedness property of the HSS basis matrices, we obtain for ãτ

ãτ = aτVτ = [eτ2 ⊗ aτ1 ∣ aτ2 ⊗ eτ1]
⎡⎢⎢⎢⎢⎣

Vτ1 0

0 Vτ2

⎤⎥⎥⎥⎥⎦
Rτ

= [eτ2 ⊗ ãτ1 ∣ ãτ2 ⊗ eτ1]Rτ

= (Ũτ2 ⊗ Ũτ1)M̃Rτ ∈ Cn2
τ×kτ .
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Denote by (M̃Rτ)i the matricization of the ith column of M̃Rτ . Then we set the

remaining kτ slices of C̃τ to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0
0

0 (M̃Rτ)i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

for i = 1, . . . , kτ .

Note that the slices with leaves as a subtree and at the root tensor have to be adjusted

in the same way as for the unstructured case, cf. section 3.2. This concludes the con-

struction of the TTNO from an HSS decomposition. The tree ranks of this construction

match those of Theroem 3.2.

If the HSS ranks kτ < dτ , we obtain a more compact representation of the Hamilto-

nian in tree tensor network format. This construction involves no approximations such

that the representation is still exact. Similar to the situation of TTNOs for arbitrary

trees from 3.2.2 the above construction extends to this setting, by employing a suitable

generalization of the HSS decomposition. However, it appears that no software for this

setting is readily available. In stark contrast, multiple packages exists for the HSS binary

decomposition, e.g. [MRK20].

3.3.3 Approximation by an HSS matrix

By the construction of a TTNO via the HSS decomposition from the previous section,

we obtain an exact representation of an operator in tree tensor network format. For

simple interaction matrices β, i.e. next-neighbor interactions, the only nonzero entries

are β(i, i + 1), for i = 1, . . . , d − 1. In this scenario, the HSS block row βs(τ, τ̄ ∖ τ) is
bounded by two, which by theorem 3.2 enables a TTNO of tree ranks at most 4. This

coincides with the literature, c.f. [Tob12, Example 3.8]. However, for complicated long-

range Hamiltonians, the HSS decomposition of β is not low-rank anymore, but often

can be well approximated by such a matrix. Fortunately, the HSS framework provides

a simple way to obtain an HSS decomposition with small ranks.

Fix a tolerance ϵ > 0. The approximation is closely related to the low-rank approximation

of the HSS block rows βs(τ, τ̄ ∖ τ). We choose k such that

σk+1(βs(τ, τ̄ ∖ τ)) ≤ ϵ ∥βs(τ, τ̄ ∖ τ)∥2 , (3.25)

where σk+1 denotes the (k+1)th singular value. The property above is known to hold for

k = O(log(d/ϵ)) for long-range interactions usually considered in the literature, including

Coulomb interactions, see [BH09, LT21].
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βk is then called an (ϵ, k)-HSS matrix if every HSS block row and column of β admits an

ϵ-approximation of at most rank k. The matrix βk can be constructed by applying the

SVD-based procedures from [XXCB14, MRK20] to the symmetrized interaction matrix

βs. Each off-diagonal block of βk can be written as

βk(τ1, τ2) =Vτ1,ϵSτ1,τ2,ϵV
∗
τ2,ϵ, Vτ1,ϵ ∈ Cdτ1×kτ1 , Sτ1,τ2,ϵ ∈ Ckτ1×kτ2 , Vτ2,ϵ ∈ Cdτ2×kτ1 ,

with reduced HSS ranks kτi for all τ ≤ τ̄ .

The error of this rank-k approximation to the full β is proportional to ϵ, which follows

by applying the next lemma to the symmetrized interaction matrix βs. The lemma and

its proof can be found in [XXCB14, Corollary 4.3], giving us the bound.

Lemma 3.3

Let β ∈ Cd×d be a strictly upper triangular interaction matrix such that (3.25)

is satisfied for a binary dimension tree τ̄ and some ϵ > 0. Then there exists a

strictly upper triangular matrix βk ∈ Cd×d in HSS decomposition (3.19)–(3.20) of

HSS rank k such that

∥β −βk∥F ≤ Ch(τ̄)
√
k∥β∥F ⋅ ϵ .

is satisfied for some constant C, where h(τ̄) denotes the height of τ̄ .

We can use the construction described in subsection 3.3.2 using the approximated HSS

matrix βk to obtain an approximated TTNO decomposition of the corresponding Hamil-

tonian Ĥk. The next theorem shows that Ĥk is ϵ-close to the exact Hamiltonian Ĥ in

spectral norm. It can be found in [CKS24, Theorem 4.5].

Theorem 3.3

Under the setting and assumptions of Lemma 3.3, let Ĥ be the linear operator

defined by (3.5). Then

Ĥk =
d

∑
i<j
βk(i, j) ⋅A(i)A(j) ∈ C(n1⋯nd)×(n1⋯nd),

has TTNO rank 2 + k and satisfies the error bound

∥Ĥ − Ĥk∥2 ≤ Ch(τ̄)
√
k∥β∥F(

d

∑
i<j
∥Ai∥22∥Aj∥22)

1/2
⋅ ϵ.
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Proof. Using the triangular inequality and the Cauchy-Schwartz inequality, we obtain

the bound

∥Ĥ − Ĥk∥2 = ∥
d

∑
i<j
(β(i, j) − βk(i, j))A(i)A(j)∥

2

≤
d

∑
i<j
∣β(i, j) − βk(i, j)∣ ⋅ ∥A(i)∥2∥A(j)∥2

=
d

∑
i<j
∣β(i, j) − βk(i, j)∣ ⋅ ∥Ai∥2∥Aj∥2

≤ ∥β −βk∥F (
d

∑
i<j
∥Ai∥22∥Aj∥22)

1/2
.

We apply lemma 3.3 to bound the frist term by

∥β −βk∥ ≤ Ch(τ̄)
√
k∥β∥F ⋅ ϵ,

which gives the stated error bound. Using theorem 3.2, we obtain that the maximal tree

rank equals k + 2, which concludes the proof.

Note that the double sum ∑d
i<j ∥Ai∥22∥Aj∥22 appearing on the right side of the error

bound can become large if the spectral norm of the matrices Ai is large. However, in

the regime of quantum spin systems, where Ai are usually Pauli matrices or identities,

we have ∥Ai∥2 = 1 and hence the double sum only contributes with a factor of the order

O(d).

3.4 Numerical examples

In this section we verify the theoretical results from above by applying both strategies

to construct tree tensor network operators to several quantum spin systems.

3.4.1 Closed quantum system operators

We consider a long-range Hamiltonian for unitary dynamics for d spin-12 particles

H = Ω
d

∑
k=1

σ(k)x +∆
d

∑
k=1

n(k) + ν ∑
k<h

1

∣h − k∣αn
(k)n(h), (3.26)
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where the appearing matrices are defined as

σx =
⎛
⎝
0 1

1 0

⎞
⎠
, n =

⎛
⎝
1 0

0 0

⎞
⎠
.

σx denotes the first Pauli matrix, while n denotes the projector onto the excited state.

The notation σ(k) = I⊗ ⋅ ⋅ ⋅ ⊗ I⊗σ ⊗ I⊗ ⋅ ⋅ ⋅ ⊗ I denotes the action of the matrix σ on the

kth site. Ω,∆, V are real numbers and α ≥ 0 - the parameters of the system. The first

two terms describe a driving term, e.g. an excitation by a laser with Rabi frequency Ω

and detuning ∆. The ν describes the strength of the interaction between the particles,

while α is an interaction exponent. For a more detailed model description, see [SWM10].

The parameter α allows to interpolate between different regimes:

• α = 0 encodes an all-to-all interaction;

• α = ∞ encodes nearest-neighbor interactions;

• 0 < α < ∞ encodes long-range interactions.

Some examples of the α parameter choice are given by α = 1 which encode Coulomb in-

teractions, α = 3 dipole-dipole interactions or α = 6 van der Waals interactions [SWM10].

The TTNO corresponding to the full Hamiltonian (3.26) is constructed by two TTNO’s

- one for the diagonal part and one for the interaction part respectively. Note that single

sums can be constructed as a rank 2 TTNO, where one rank encodes the identity. As

the identity is already encoded in the double sum part, we only get one additional rank

in the full TTNO, stemming form the diagonal part.

First, we want to verify that both above strategies are equivalent. We construct the

Hamiltonian (3.26) by the unstructured strategy from section 3.2 and the HSS strategy

from the previous section 3.3 for different number of sites d. We compute the difference

in Frobenius norm as explained in (2.8). To obtain comparable results for all d, we

scale the error with the norm of the TTNO resulting from the unstructured strategy,

i.e. we compute
∥Hunstruct−HHSS∥
∥Hunstruct∥ . In figure 3.2 we see that the difference is of the order

of 10−12, which is the default tolerance in the hm-toolbox used for computing the HSS

decomposition of the interaction matrix [MRK20]. Hence, both strategies are equivalent.

Further, the TTNO rank satisfies the theoretical bound, with an additional rank arising

from the Laplacian-like part of the operator, i.e. the single sums in (3.26).

ϵ-dependence

From figure 3.2 we observe that the error of the HSS construction of the TTNO is



Tree Tensor Network Operators 61

Figure 3.2: Long-range tree tensor network operator of a closed system with param-
eters Ω = 3, ∆ = −2, ν = 2 and α = 1. Left: Relative error of the TTNO vs the number
of particles. Right: Maximal tree rank (solid line) and expected tree rank (dashed line)

vs the number of particles.

Figure 3.3: Long-range tree tensor network operator of a closed system with param-
eters Ω = 3, ∆ = −2, ν = 2, α = 1 and d = 256. Left: Relative error of the TTNO vs HSS

tolerance. Right: Maximal tree rank vs HSS tolerance.

bounded by the HSS tolerance ϵ. Thus, we want to study the influence of the HSS

tolerance ϵ in more detail. We fix α = 1 and d = 256 and compute the error for different

HSS tolerances ϵ. In figure 3.3 we observe a linear dependence between the relative error

and the HSS tolerance. With increasing tolerance, we further observe a decreasing max-

imal tree rank. Analogous behaviour is obtained for different parameters and number

of particles. Hence, we can use this strategy to find approximations to a Hamiltonian.
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Figure 3.4: Long-range tree tensor network operator of a closed system with parame-
ters Ω = 3, ∆ = −2, ν = 2 and d = 256. Left: Tree ranks vs different α for HSS tolerance

ϵ = 10−6. Right: Tree ranks vs different α for HSS tolerance ϵ = 10−12.

Parameter study

Finally, we want to study in more detail the influence of the parameter α. We have

already discussed in subsection 3.3.3 that for α = ∞ there exists a TTNO representation

of maximal rank 4. We vary now α across different interaction regimes and check for

the complexity of the resulting TTNO. For α ≥ 1, an increase in α leads to a decrease

in the maximal tree ranks, see figure 3.4. By this result, Coulomb interactions, i.e.

values around α = 1, are computationally the most challenging regime for this system

for different approximation values ϵ.

3.4.2 Open quantum system operators

The interaction of a quantum system with its environment makes this an open quantum

system. The aim is now to find an approximation to a one-dimensional quantum system

of d distinguishable spin-12 particles. The (vectorized) quantum state density matrix

ρ(t) now evolves according to the quantum master equation

ρ̇(t) = L[ρ(t)] ∶= −i[H,ρ(t)] + D[ρ(t)] (3.27)

where H is a scaled version of the Hamiltonian (3.26) from above, [⋅, ⋅] the commutator

bracket and D the decay operator (3.29). The operator L is called the Lindblad operator,

see [BP02] for details and note the original work of Lindblad [Lin76]. For the simulations
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we use

H = Ω
d

∑
k=1

σ(k)x +∆
d

∑
k=1

n(k) + ν

cα

d

∑
k≠h

n(k)n(h)

∣k − h∣α , (3.28)

D =
d

∑
k=1
[J ⊗ (J∗)⊺ − 1

2
J∗J ⊗ I − 1

2
I⊗ (J∗J)⊺]

(k)
, (3.29)

where

• n =
⎛
⎝
1 0

0 0

⎞
⎠
= σz+I

2 is again the projector onto the excited state acting on the kth

particle,

• cα = ∑d
k=1

1
kα , allows to keep the interaction extensive.

• J = √γ
⎛
⎝
0 0

1 0

⎞
⎠
are the so-called jump-operators, which encode how the external

environment affects the dynamics. The J matrices describe a local transition from

an excited state to the ground state, with a local decay rate of γ.

For a detailed description of this model, we refer to [SLC+24] and the references therein.

Inserting now (3.28) and (3.29) into the Lindblad equation from (3.27) and inserting the

commutator bracket, we obtain

L = Ω
d

∑
k=1
[−iσx ⊗ I + iI⊗σ⊺

x]
(k) +∆

d

∑
k=1
[−in⊗ I + iI⊗n⊺](k)

+
d

∑
k=1
[J ⊗ (J∗)⊺ − 1

2
J∗J ⊗ I − 1

2
I⊗ (J∗J)⊺]

(k)

+ ∑
k≠h

−iν
cα∣k − h∣α

[n⊗ I](k) [n⊗ I](h) + ∑
k≠h

iν

cα∣k − h∣α
[I⊗n⊺](k) [I⊗n⊺](h)

As for the closed system, we first check the equivalence of both strategies to construct

the TTNO. Note that two double sums appear in the Lindblad operator because of the

commutator bracket. Hence, we use the unstructured and HSS construction twice, once

for each double sum. In figure 3.5 we again see that the model allows for a low-rank

TTNO representation. However, the maximal tree rank is larger than for the closed

system, due to the fact that we have two double sums instead of only one. The relative

error is again of the order of the chosen HSS tolerance.

ϵ-dependence

The linear behaviour of the relative error with respect to the HSS tolerance is also seen

for the open system, see figure 3.6. It is noteworthy that the relative error stays constant
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Figure 3.5: Long-range tree tensor network operator of an open system with param-
eters Ω = 3, ∆ = −2, ν = 2, γ = 1 and α = 1. Left: Relative error of the TTNO vs
the number of particles. Right: Maximal tree rank (solid line) and expected tree rank

(dashed line) vs the number of particles.

Figure 3.6: Long-range tree tensor network operator of an open system with param-
eters Ω = 3, ∆ = −2, ν = 2, γ = 1, α = 1 and d = 256. Left: Relative error of the TTNO

vs HSS tolerance. Right: Maximal tree rank vs HSS tolerance.

up to ϵ = 10−10, while the maximal tree rank already reduces from 58 (ϵ = 10−14) to 46

(ϵ = 10−10). This indicates that a mild truncation/approximation can lead to significantly

reduced ranks while only a very mild loss in accuracy is observed.

Parameter study

As in the last subsection, we perform a parameter study of α to check the complexity

of the corresponding TTNO. In figure 3.7 we see that in the open setting, Coulomb
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Figure 3.7: Long-range tree tensor network operator of an open system with param-
eters Ω = 3, ∆ = −2, ν = 2, γ = 1 and d = 256. Left: Tree ranks vs different α for HSS

tolerance ϵ = 10−6. Right: Tree ranks vs different α for HSS tolerance ϵ = 10−12.

interactions are again the computationally most challenging regime. However, choosing

larger HSS tolerances can be used to find approximations of lower rank.

3.4.3 Balanced binary tree vs. Tensor train

An HSS decomposition can be performed for any underlying binary tree. Hence, we

gain the flexibility to explore how different tree structures influence the tree ranks and

memory complexity of the corresponding TTNO. We will focus on balanced binary trees

and unbalanced binary trees, recall figure 3.1 for a graphical representation of those.

The latter represents the well-known tensor format of a tensor train/matrix product

state. For the closed and open system from above, we construct the corresponding

TTNOs in both tree formats. In figure 3.8 for the closed and figure 3.9 for the open

system, we see that the maximal tree rank is lower in the tensor train format. However,

this is only one measure of the overall complexity. If one considers the total memory

footprint of the TTNOs, we see that the balanced binary tree is memory-wise equal

or more compact than the tensor train format. The tree ranks in the balanced binary

tree decrease faster than in the tensor train format, which is most likely due to the

logarithmic scaling between the sites in the balanced binary tree. This indicates that

tree tensor networks based on balanced binary trees are suited better for simulations

with long-range interacting quantum spin systems. For the moment this holds only true

on the level of the tree tensor network operators. Later in chapter 6 we will see that

a similar result holds true for the time evolution of a quantum state with the same

operators.
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Figure 3.8: Long-range tree tensor network operator of a unitary system with pa-
rameters Ω = 3, ∆ = −2, ν = 2 and α = 1. Left: Maximal tree ranks of the TTNO
for a balanced binary tree (solid line) and an unbalanced binary tree vs the number of
particles. Right: Memory footprint in bytes of the TTNO for a balanced binary tree

(solid line) and an unbalanced binary tree vs number of particles

Figure 3.9: Long-range tree tensor network operator of an open system with param-
eters Ω = 3, ∆ = −2, ν = 2, γ = 1 and α = 1. Left: Maximal tree ranks of the TTNO
for a balanced binary tree (solid line) and an unbalanced binary tree vs the number of
particles. Right: Memory footprint in bytes of the TTNO for a balanced binary tree

(solid line) and an unbalanced binary tree vs number of particles



Chapter 4

Rank-adaptive BUG integrator

for Tree Tensor Networks

This chapter is mainly based on the work ”Rank-adaptive time integration of tree tensor

networks” by Gianluca Ceruti, Christian Lubich and the author [CLS23].

4.1 Recap: Rank-adaptive integrator for Tucker tensors

In this section we want to recap the rank-adaptive integrator for Tucker tensors of

[CKL22]. Let Y 0 ∈ Mr be an element from the manifold of order d tensors with multi-

linear rank r = (r01, . . . , r0d). By (2.3) we can decompose Y 0 through a Tucker decompo-

sition

Y 0 = C0
d

⨉
j=1

U0
j .

Following the approach suggested in [CLW21, CLS23], we introduce the subflows Φ(i)

and Ψ which correspond to the updates of the leaves and the core tensor respectively. As

we will see in the formulation of the algorithm, all subflows Φ(i) can be done in parallel,

i.e. we obtain

Ŷ 1 = Ψ ○ (Φ(1), . . . ,Φ(d))(Y 0).

Ŷ 1 is a Tucker tensor of multilinear rank r̂ = (r̂1, . . . , r̂d), where r̂j ≤ 2r0j . As the

multilinear ranks increased in this step, we apply a rank truncation algorithm Θ with a

given tolerance parameter ϑ, cf. algorithm 1. The approximation Y 1 at time t1 can be

67
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written schematically as

Y 1 = Θ(Ŷ 1) = Θ ○Ψ ○ (Φ(1), . . . ,Φ(d))(Y 0).

Algorithm 2: Rank-adaptive BUG integrator for Tucker tensors

Data: Tucker tensor Y 0 = C0⨉d
i=1U

0
i in factorized form of multilinear rank

(r01, . . . , r0d), function F (t, Y ), t0, t1, tolerance parameter ϑ

Result: Tucker tensor Y 1 = C1⨉d
i=1U

1
i in factorized form of multilinear rank

(r11, . . . , r1d), where r1i ≤ 2r0i
begin

for i = 1 ∶ d in parallel do

compute [Û1
i ,M̂i] = Φ(i)(Y 0, F, t0, t1)

% update and augment the ith basis matrix

end

compute Ĉ1 = Ψ(C0, (Û1
i )di=1, (M̂i)di=1, F, t0, t1)

% augment and update the core tensor

set Ŷ 1 = Ĉ1⨉d
i=1 Û

1
i

compute Y 1 = Θ(Ŷ 1, ϑ) % rank truncation

end

Algorithm 3: Subflow Φ(i) (update and augment the ith basis matrix))

Data: Tucker tensor Y 0 = C0⨉d
j=1U

0
j of multilinear rank (r1, . . . , rd) in factorized

form, function F (t, Y ), t0, t1
Result: Updated and augmented basis matrix Û1

i ∈ Cni×r̂i (typically r̂i = 2ri) with
orthonormal columns, auxiliary matrix M̂i

begin

compute the QR-decomposition Mati(C0)⊺ =Q0
iS

0,⊺
i ;

solve the ni × ri matrix differential equation from t0 to t1

K̇i(t) = Fi(t,Ki(t)V0,∗
i )V

0
i , Ki(t0) =U0

iS
0
i ,

with Fi(t, ⋅) ∶=Mati ○F (t, ⋅) ○Teni and V0,∗
i ∶=Q⊺

i ⊗d
j≠iU

0,⊺
j ;

compute Û1
i as an orthonormal basis of the range of the ni × 2ri matrix

(Ki(t1),U0
i );

set M̂i = Û1,∗
i U0

i .

end
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Algorithm 4: Subflow Ψ (augment and update the core tensor)

Data: core tensor C0 ∈ Cr1×⋅⋅⋅×rd , augmented basis matrices Û1
i ∈ Cni×r̂i with

orthonormal columns, auxiliary matrices M̂i ∈ Cr̂i×ri , function F (t, Y ), t0, t1
Result: core tensor Ĉ1 ∈ Cr̂1×⋅⋅⋅×r̂d

begin
solve the r̂1 × ⋅ ⋅ ⋅ × r̂d tensor differential equation from t0 to t1,

˙̂C(t) = F(t, Ĉ(t)
d

⨉
i=1

Û1
i )

d

⨉
i=1

Û1,∗
i , Ĉ(t0) = C0

d

⨉
i=1

M̂i;

set Ĉ1 = Ĉ(t1)
end

4.2 Extended rank-adaptive integrator for Tucker tensors

We extend the algorithm from above to r-tuples of Tucker tensors. This will be a crucial

ingredient for formulating the rank-adaptive BUG integrator for tree tensor networks.

Consider a tensor in Tucker format of multilinear rank r = (r0, r1,⋯, rd), where in the

0-dimension only a r0 × r0 identity matrix appears, i.e.

Y 0 = C0 ×0 I
d

⨉
j=1

U0
j .

As described in previous subsection, we obtain the approximation Y 1 by

Y 1 = Θ ○Ψ ○ (Φ(d), . . . ,Φ(1),Φ(0))(Y 0).

We will see in the following lemma that with an appropriate orthogonalization, the

subflow Φ(0) becomes trivial, i.e.

Y 1 = Θ ○Ψ ○ (Φ(d), . . . ,Φ(1))(Y 0).

Lemma 4.1

With the appropriate choice of orthogonalization, the action of the subflow Φ(0)

on Y 0 becomes trivial, i.e.

Φ(0)(Y 0) = [Û1
0,M̂0] = Y 0.
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Proof.

In the subflow Φ(0) we solve the r0 × r0 matrix differential equation

K̇0(t) = Fi (t,K0(t)V0,∗
0 )V

0
0, K0(t0) =U0

0S
0
0.

We define K1
0 =K0(t1) as the solution at time t1. Obviously the matrix

(K1
0,U

0
0) = (K1

0, I) ∈ Cr0×2r0

has exactly rank r0. Therefore, the columns of Û1
0 = I form an orthonormal basis of the

range of this matrix. Moreover, M̂0 = Û1,∗
0 U0

0 = I∗I = I.

4.3 Rank-adaptive BUG integrator for Tree Tensor Net-

works

At time t0, consider now a tree tensor network

Y 0
τ = C0

τ ×0 Iτ
m

⨉
i=1

U0
τi ,

with associated tree τ = (τ1, . . . , τm). Seeing this as an extended Tucker tensor we can

apply the extended rank-adaptive Tucker integrator with a given function Fτ . We then

obtain

Ŷ 1
τ = Ψτ ○ (Φ(m)τ , . . . ,Φ(1)τ )(Y 0

τ ).

The subscript τ indicates that the update was done with respect to the tree τ and the

associated function Fτ . However, for computational efficiency, one does not want to

compute the matrices U0
τi , unless they are basis matrices. To update now the (possi-

bly inaccessible) matrices U0
τi , which corresponds to the subflow Φ

(i)
τ , we differentiate

between two cases:

1. If τi = l is a leaf, we directly apply the subflow Φ
(i)
τ to update and augment the

basis matrix.

2. If τi is not a leaf, we apply the algorithm recursively. For that we use the reduced

initial data Y 0
τi = π

†
τ,i(Y 0

τ ) and the reduced function Fτi = π
†
τ,i ○Fτ ○πτ,i, which will

be discussed in section 4.5.

We can now formulate the rank-adaptive integrator for tree tensor networks. The algo-

rithm is applied recursively from the root to the leaves and consists of the update and
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augmenting steps (algorithm 5 with algorithm 6 and 7), followed by a final truncation

(algorithm 1). The difference to the extended Tucker integrator is that the subflow Φ
(i)
τ

is applied recursively from the leaves to the root. This is an approximative subflow as

the differential equation is only solved approximately by recurrence unless τi is a leaf

[CLW21].

The Û1
τi in algorithm 5 corresponds to the updated and augmented basis matrix. Typi-

cally, the rank is doubled, i.e. r̂τi = 2r0τi . Note that Û
1
τi is again only stored in factorized

form. The tensor Ĉ1
τ ∈ Crτ×r̂τ1×⋅⋅⋅×r̂τm is the updated and augmented core tensor, while

Ĉ0
τ ∈ Crτ×r̂τ1×⋅⋅⋅×r̂τm is the augmented initial data.

Algorithm 5: Rank-augmenting TTN integrator

Data: tree τ = (τ1, . . . , τm), TTN Y 0
τ = C0

τ ×0 Iτ ⨉m
i=1U

0
τi in factorized form of tree

rank (r0σ)σ≤τ , function Fτ(t, Yτ), t0, t1
Result: TTN Ŷ 1

τ = Ĉ1
τ ×0 Iτ ⨉d

i=1 Û
1
τi in factorized form of augmented tree rank

(r̂σ)σ≤τ with r̂σ ≤ 2r0σ, augmented connection tensor Ĉ0
τ

begin

for i = 1 ∶m in parallel do

compute [Û1
τi ,M̂τi] = Φ

(i)
τ (Y 0

τ , Fτ , t0, t1)
% update and augment the basis matrix for subtree τi, see

algorithm 6

end

compute [Ĉ1
τ , Ĉ

0
τ ] = Ψτ (C0

τ , (Û1
τi)

m
i=1, (M̂τi)mi=1, Fτ , t0, t1)

% augment and update the connection tensor, see algorithm 7

set Ŷ 1
τ = Ĉ1

τ ×0 Iτ ⨉m
i=1 Û

1
τi

end
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Algorithm 6: Subflow Φ
(i)
τ (update and augment a basis matrix)

Data: tree τ = (τ1, . . . , τm), TTN Y 0
τ = C0

τ ×0 Iτ ⨉m
i=1U

0
τi in factorized form of tree

rank (r0σ)σ≤τ , with U0
τi =Mat0(X0

τi)
⊺ ∈ Cnτi×r

0
τi , function Fτ(t, Yτ), t0, t1

Result: Û1
τi =Mat0(X̂1

τi)
⊺ ∈ Cnτi×r̂τi (typically r̂τi = 2r0τi) in factorized form,

auxiliary matrix M̂τi ∈ C
r̂τi×r

0
τi

begin

compute a QR-decomposition Mati(C0
τ )⊺ =Q0

τiS
0,⊺
τi ;

set Y 0
τi =X

0
τi ×0 S

0,⊺
τi

if τi = l is a leaf then
solve the nl × r0l matrix differential equation

Ẏl(t) = Fl(t, Yl(t)), Yl(t0) = Y 0
l ∈ Cr0l ×nl ;

compute Û1
l ∈ Cnl×r̂l with r̂l ≤ 2r0l as an orthonormal basis of the range of

the nl × 2r0l matrix (Yl(t1)⊺,U0
l );

set M̂l = Û1,∗
l U0

l ∈ Cr̂l×r0l

else

[Ŷ 1
τi , Ĉ

0
τi] = Rank-augmenting TTN integrator(τi, Y 0

τi , Fτi , t0, t1);
% recursive computation on subtrees

compute an orthonormal basis Q̂τi of rank r̂τi ≤ 2r0τi of the range of

(Mat0(Ĉ1
τi)

⊺,Mat0(Ĉ0
τi)

⊺), where Ĉ1
τi is the connection tensor of Ŷ 1

τi ;

set Û1
τi =Mat0(X̂1

τi)
⊺, where the orthonormal TTN X̂1

τi is obtained from Ŷ 1
τi

by replacing the connection tensor with Ĉτi = Ten0(Q̂⊺
τi);

set M̂τi = Û
1,∗
τi U0

τi ∈ C
r̂τi×r

0
τi (computed as ⟨X̂1

τi ,X
0
τi⟩)

end

end

Algorithm 7: Subflow Ψτ (augment and update the connection tensor)

Data: tree τ = (τ1, . . . , τm), connection tensor C0
τ ∈ Cr0τ×r0τ1×⋅⋅⋅×r

0
τm , augmented basis

matrices Û1
τi in factorized form, auxiliary matrices M̂τi ∈ C

r̂τi×r
0
τi , function

Fτ(t, Y ), t0, t1
Result: connection tensors Ĉ1

τ , Ĉ
0
τ ∈ Crτ×r̂τ1×⋅⋅⋅×r̂τm

begin

set Ĉ0
τ = C0

τ ⨉m
i=1 M̂τi ;

solve the rτ × r̂τ1 × ⋅ ⋅ ⋅ × r̂τm tensor differential equation from t0 to t1

˙̂Cτ(t) = Fτ(t, Ĉτ(t)
m

⨉
i=1

Û1
τi
)

m

⨉
i=1

Û1,∗
τi , Ĉτ(t0) = Ĉ0

τ ;

% Galerkin method on the subspace generated by all Û1
τi

set Ĉ1
τ = Ĉτ(t1)

end

We end this section by giving the computational complexity of the proposed algorithm.
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As in [CLW21], we count the required arithmetical operations and the memory require-

ments. We arrive at the following result, originally coming from [CLS23, Lemma 4.1].

Note that we make the following assumption on the function F : For every tree tensor

network Xτ̄ , the function value Zτ̄ = F (t,Xτ̄) is approximated by a tree tensor network

with ranks sτ ≤ cr with r =maxτ rτ for all subtrees τ ≤ τ̄ with a moderate constant c.

Lemma 4.2: Computational complexity

Let d be the order of the tensor A(t) (i.e., the number of leaves of the tree τ̄),

l < d the number of levels (i.e., the height of the tree τ̄), and let n =maxℓ nℓ be the

maximal dimension, r = maxτ rτ the maximal rank and m the maximal order of

the connection tensors. Under the above assumption on the approximation of F ,

one time step of the rank-adaptive tree tensor integrator given by algorithms 5–7

and algorithm 1 requires

• O(dr(n + rm)) storage,

• O(ld) tensorizations/matricizations of matrices/tensors with ≤ rm+1 entries,

• O(ld2r2(n + rm)) arithmetical operations and

• O(d) evaluations of the function F ,

provided the differential equations in algorithms 6 and 7 are solved approximately

using a fixed number of function evaluations per time step.

4.4 Fixed-rank BUG integrator for Tree Tensor Networks

The fixed-rank BUG (unconventional) integrator for matrices and Tucker tensors from

[CL21] can be extended to tree tensor networks in the same way as above. This yields

a fixed-rank TTN integrator which differs from the rank-adaptive algorithm only in

that the matrices of doubled dimension (Yl(t1)⊺,U0
l ) and (Mat0(Ĉ1

τi)
⊺,Mat0(Ĉ0

τi)
⊺) in

algorithm 6, which contain new and old basis, are replaced by taking only the new basis

Yl(t1)⊺ and Mat0(Ĉ1
τi)

⊺. The truncation function Θ is then not needed. The subflow

Ψτ is the same as in algorithm 7, while the subflow Φ
(i)
τ changes and has the form
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Algorithm 8: Subflow Φ
(i)
τ fixed-rank BUG integrator for tree tensor networks

Data: tree τ = (τ1,⋯, τm), TTN Y 0
τ = C0

τ ×0 I⨉d
i=1U

0
τi with U0

τi =Mat0(X0
τi)

⊺,

function Fτ(t, ⋅), t0, t1
Result: TTN Y 1

τ = C1
τ ×0 I⨉d

i=1U
1
τi with U1

τi =Mat0(X1
τi)

⊺, rτi × rτi matrix Mτi

begin

compute a QR-decomposition Mati(C0
τ )⊺ =Q0

τiS
0,⊺
τi

set Y 0
τi =X

0
τi ×0 S

0,⊺
τi

if τi = l is a leaf then
solve the nl × rl ODE

Ẏτi(t) = Fτi(t, Yτi(t)), Yτi(t0) = Y 0
τi

compute a QR-decomposition Yτi(t1) =Q1
τiR

1
τi

set U1
τi =Q

1
τi

set Mτi =U
1,∗
τi U0

τi

else

Y 1
τi = fixed-rank BUG integrator for TTN(τi, Y 0

τi , Fτi , t0, t1)
compute a QR-decomposition Mat0(C1

τi)
⊺ =Q1

τiR
1
τi , where C

1
τi is the root

tensor of Y 1
τi

set Ten0(Q1,⊺
τi ) as the root tensor of Y 1

τi

set U1
τi = Y

1
τi

set Mτi =U
1,∗
τi U0

τi

end

set C1
τ = C0

τ

end

Note that in algorithm 8, the basis matrices are denoted by U1
τ without a hat, since

they are not augmented. The core update in the corresponding subflow Ψτ is therefore

performed using the basis matrices U1
τi , whereas for the rank-adaptive BUG the basis

matrices Û1
τi are used. In contrast to the rank-adaptive integrator, the unconventional

integrator keeps the ranks fixed during the propagation.

4.5 Constructing Fτi and Y 0
τi

For each τ = (τ1, . . . , τm) ≤ τ̄ , where τ̄ denotes a tree with d leaves, we define the tensor

space

Vτ ∶= Crτ×nτ1×⋅⋅⋅×nτm ,
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where nτ = ∏m
j=1 nτj . Note that for rτ̄ = 1 the space Vτ̄ is isomorphic to Cn1×⋅⋅⋅×nd .

In the following we will assume that F = Fτ̄ ∶ [0, Tend] × Vτ → Vτ is given and maps a

TTN to another TTN of possibly larger rank. For a given subtree τ = (τ1, . . . , τm) we
further assume by induction that we already have constructed Fτ and the initial data

Y 0
τ . For i = 1, . . . ,m we want to construct functions Fτi and initial data Y 0

τi . Fτi can be

seen as a reduced operator acting only on the subtree τi, while Y
0
τi is the initial data on

the subtree τi.

This section relies mainly on [CLW21, section 4]. In [CLS23] the ideas on how to

construct the functions Fτi and the initial data Y 0
τi are summarized and used but not

proven. Therefore, we give a detailed insight based on [CLW21], with the difference that

we here consider tree tensor networks with complex entries.

4.5.1 Constructing initial data Y 0
τi

Suppose we have given the initial data Y 0
τ = C0

τ ×0 Iτ ⨉m
j=1U

0
τj in a tree tensor network

representation. First, we compute the QR-decomposition

Mati(C0
τ )⊺ =Q0

τiS
0,⊺
τi ,

where S0,⊺
τi ∈ Crτi×rτi and Q0

τi ∈ C
rτi×r¬τi with r¬τi = ∏j≠i rτj . Clearly, the matrix Q0

τi has

orthonormal columns. Now we compute

Y 0
τ = C0

τ ×0 Iτ
m

⨉
j=1

U0
τj = Teni (S0

τiQ
0,⊺
τi
) ×0 Iτ

m

⨉
j=1

U0
τj

= Teni (Q0,⊺
τi
) ×0 Iτ

m

⨉
j=1

U0
τj ×i S

0
τi = Teni (Q0,⊺

τi
) ×0 Iτ ⨉

j≠i
U0

τj ×i (U
0
τiS

0
τi).

Therefore we have the SVD-like decomposition

Mati(Y 0
τ ) =U0

τiS
0
τiV

0,∗
τi ,

where V0
τi is the matrix

V0
τi ∶=Mati

⎛
⎝
Teni(Q0,⊺

τi ) ×0 Iτ ⨉
j≠i

U0
τj

⎞
⎠

∗

∈ Crτn¬τi×rτi (4.1)

and n¬τi = ∏j≠i nτj .

Now recall the the differential equation for Kτi from the subflow Φ(i) of the Tucker
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integrator (algorithm 3). We have

K̇τi(t) = Fτi(t,Kτi(t)),

Kτi(t0) =U0
τiS

0
τi , (4.2)

where

Fτi(t,Kτi) =Mati (Fτ(t,Teni(KτiV
0,∗
τi )))V

0
τi . (4.3)

Using U0
τi =Mat0(X0

τi)
⊺ we obtain for the initial data

Kτi(t0) =U0
τiS

0
τi =Mat0(X0

τi)
⊺S0

τi =Mat0 (X0
τi ×0 S

0,⊺
τi
)⊺ ,

which is the same as the initial data chosen in the subflow Φ
(i)
τ in algorithm 6. Ten-

sorizing both equations in equation (4.2) and substituting Yτi(t) = Ten0(Kτi(t)⊺) into
the equation gives us the differential equation as in algorithm 6

Ẏτi(t) = Fτi(t, Yτi(t))

Yτi(t0) = Y 0
τi ∶=X

0
τi ×0 S

0,⊺
τi ,

where by (4.3) we have

Fτi(t, Yτi) = Ten0 (Fτi(t,Mat0(Yτi)⊺))

= Ten0 ((Mati (Fτ(t,Teni(Mat0(Yτi)⊺V0,∗
τi )))V

0
τi
)⊺) . (4.4)

The construction of the function Fτi becomes more clear when introducing a prolongation

and restriction function from the following subsection.

4.5.2 Prolongation and restriction

We define the prolongation πτ,i and restriction π†
τ,i by

πτ,i(Yτi) ∶= Teni(Mat0(Yτi)⊺V0,∗
τi ) ∈ Vτ , for Yτi ∈ Vτi

π†
τ,i(Zτ) ∶= Ten0((Mati(Zτ)V0

τi)
⊺) ∈ Vτi , for Zτ ∈ Vτ .

By the definition of the restriction, (4.2) and the substitution Yτi(t) = Ten0(Kτi(t)⊺)
from above, the initial value can be re-cast as follows

Y 0
τi = Ten0 (Kτi(t0)⊺) = Ten0 ((U0

τiS
0
τi)

⊺)

= Ten0 ((Mati(Y 0
τ )V0

τi)
⊺) = π†

τ,i(Y
0
τ ). (4.5)
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By the above definitions and the computation above, we arrive at the more compact

formulation for Fτi of (4.4) and Y
0
τi by

Definition 4.1: Fτi and Y 0
τi

Let τ = (τ1, . . . , τm) ≤ τ̄ be a tree and suppose the function Fτ and initial data Y 0
τ

is given. Further, let the prolongation and restriction be defined as above. Then

we define recursively

Fτi ∶= π
†
τ,i ○ Fτ ○ πτ,i, (4.6)

Y 0
τi ∶= π

†
τ,i(Y

0
τ ) (4.7)

for all i = 1, . . . ,m.

Further we will recall some interesting properties of the prolongation and restriction.

These can be found for the real case in [CLW21] as lemma 4.1, lemma 4.3 and lemma

4.4. Here, we consider the extension to the complex setting.

Lemma 4.3

If the initial tree tensor network Y 0
τ̄ has full tree rank (rσ)σ≤τ̄ , then Y 0

τ , as defined

in (4.7), has full tree rank (rσ)σ≤τ for every subtree τ ≤ τ̄ .

Proof.

Let τ = (τ1, . . . , τm) ≤ τ̄ and i = 1, . . . ,m. By the above derivation we have

Y 0
τi =X

0
τi ×0 S

0,⊺
τi ,

where Xτi = Ten0(U0,⊺
τi ) is of full tree rank. If Y 0

τ has full tree rank, then S0
τi is invertible

and therefore Y 0
τi has full tree rank. By induction over the height of the tree, we find

that for every subtree τ ≤ τ̄ , the restricted initial tensor Y 0
τ has full tree rank.

The latter lemma can be restated by saying that for a tree τ = (τ1, . . . , τm) and Y 0
τ ∈ Mτ ,

the restriction π†
τ,i(Y 0

τ ) is inMτi . Note that this is not generally true for arbitrary inputs,

see [CLW21, section 4] for details. However, for the prolongation, we have the following

property.

Lemma 4.4

Let τ = (τ1, . . . , τm). If Yτi ∈ Mτi , then the prolongation πτ,i(Yτi) is in Mτ , for

i = 1, . . . ,m.
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Proof. Using the fact that Mat0(Yτi)⊺ = Uτi , the definition of V0
τi and the unfolding

formula (2.4) we compute

πτi(Yτi) = Teni(UτiV
0,∗
τi )

= Teni
⎛
⎝
Uτi Mati

⎛
⎝
Teni(Q0,⊺

τi ) ×0 Iτ ⨉
j≠i

U0
τj

⎞
⎠
⎞
⎠

= Teni(Q0,⊺
τi ) ×0 Iτ ⨉

j≠i
U0

τj ×i Uτi .

As Teni(Q0,⊺
τi ) and all Uτj for j = 1, . . . ,m are by assumption of full tree rank, the full

object is of full tree rank. Thus, πτ,i(Yτi) lies inMτ .

Next, we report two further properties of the restriction and prolongation which are

essential tools for the analysis of the recursive algorithms.

Lemma 4.5

Let τ = (τ1, . . . , τm) and i = 1, . . . ,m. The restriction π†
τ,i ∶ Vτ → Vτi is both a left

inverse and the adjoint (with respect to the tensor Euclidean inner product) of

the prolongation πτ,i ∶ Vτi → Vτ , that is,

π†
τ,i(πτ,i(Yτi)) = Yτi for all Yτi ∈ Vτi (4.8)

⟨πτ,i(Yτi), Zτ ⟩Vτ = ⟨Yτi , π
†
τ,i(Zτ)⟩Vτi for all Yτi ∈ Vτi , Zτ ∈ Vτ . (4.9)

Moreover, ∣∣πτ,i(Yτi)∣∣Vτ = ∣∣Yτi ∣∣Vτi and ∣∣π†
τ,i(Zτ)∣∣Vτi ≤ ∣∣Zτ ∣∣Vτ , where the norms

are the tensor Euclidean norms.

Proof.

By equation (4.1) we readily obtain that V0,∗
τi V0

τi = I. Let Yτi ∈ Vτi , we obtain

π†
τ,i(πτ,i(Yτi)) = Ten0((Mati(Teni(Mat0(Yτi)⊺V0,∗

τi ))V
0
τi)

⊺)

= Ten0((Mat0(Yτi)⊺V0,∗
τi V0

τi
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=I

)⊺) = Yτi ,

which proofs (4.8). Using that Teni function is the adjoint of Mati function for the

Frobenius inner product and that taking transposes in both matrices does not change
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the Frobenius inner product we obtain

⟨πτ,i(Yτi), Zτ ⟩Vτ = ⟨Teni(Mat0(Yτi)⊺V0,∗
τi ), Zτ ⟩Vτ

= ⟨V0
τiMat0(Yτi),Mati(Zτ)⊺⟩Vτ

= ⟨Mat0(Yτi),V
0,∗
τi Mati(Zτ)⊺⟩Vτi

= ⟨Yτi ,Ten0((Mati(Zτ)V0
τi)

⊺)⟩Vτi = ⟨Yτi , π
†
τ,i(Zτ)⟩Vτi ,

which proofs (4.9).

With the same arguments as before and noting that V0
τi has orthonormal columns, we

compute

∣∣πτ,i(Yτi)∣∣Vτ = ∥Teni(Mat0(Yτi)⊺V0,∗
τi )∥Vτ

= ∥Mat0(Yτi)⊺V0,∗
τi
∥Vτ = ∥Mat0(Yτi)∥Vτi = ∥Yτi∥Vτi .

Last, we note that ∥V0,∗
τi ∥2 = 1 and that generally it holds ∥AB∥ ≤ ∥A∥2 ∥B∥ to obtain

∣∣π†
τ,i(Zτ)∣∣Vτi = ∥Ten0(Mat0(Yτi)⊺V0,∗

τi )∥Vτi

= ∥Mat0(Yτi)⊺V0,∗
τi
∥
Vτi

≤ ∥V0,∗
τi
∥
2
∥Mati(Zτ)⊺∥Vτ = ∥Zτ∥Vτ .

As π†
τ,i is the adjoint of πτ,i by lemma 4.5, we have that if Fτ is selfadjoint then Fτi

remains selfadjoint. Therefore if we consider a tensor Schrödinger equation, i.e. Fτ̄ =H
is a Hamiltonian, all Fτ for τ ≤ τ̄ are again a Hamiltonian of smaller size. The sub-

Hamiltonians Fτ only act on the particles associated with the subtree τ and keep the

remaining part of the tree τ̄ fixed.

4.5.3 Efficient computation of prolongation and restriction

Prolongation

Recall the definition for the matrix V0
τi from (4.1)

V0
τi =Mati

⎛
⎝
Teni(Q0,⊺

τi ) ×0 Iτ ⨉
j≠i

U0
τj

⎞
⎠

∗

∈ Crτn¬τi×rτi .
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Using the definition of the prolongation and the unfolding formula (2.4) we have

πτ,i(Y ) = Teni(Mat0(Y )⊺V0,∗
τi )

= Teni
⎛
⎝
Mat0(Y )⊺Mati

⎛
⎝
Teni(Q0,⊺

τi ) ×0 Iτ ⨉
j≠i

U0
τj

⎞
⎠
⎞
⎠

= Teni
⎛
⎝
Mati

⎛
⎝
Teni(Q0,⊺

τi ) ×i Mat0(Y )⊺⨉
j≠i

U0
τj

⎞
⎠
⎞
⎠

= Teni(Q0,⊺
τi ) ×i Mat0(Y )⊺⨉

j≠i
U0

τj .

This computation shows that the prolongation on the tree tensor network Y ∈ Vτi yields
a larger tree tensor network in Vτ with the core tensor Q0,⊺

τi . This allows computing the

prolongation without constructing the possibly inaccessible matrix V0,∗
τi .

Restriction

Suppose we have a tree tensor network Zτ =Dτ×0Iτ ⨉m
i=1Wτi . By inserting the definition

for V0
τi and using again the unfolding formula (2.4) we obtain

π†
τ,i(Zτ) = Ten0((Mati(Zτ)V0

τi)
⊺) = Ten0(V0,⊺

τi Mati(Zτ)⊺)

= Ten0
⎛
⎝
Mati(Teni(Q0,⊺

τi ) ×0 Iτ ⨉
j≠i

U0
τj)Mati(Zτ)⊺

⎞
⎠

= Ten0
⎛
⎝
Q0,∗

τi (⊗
j≠i

U0,∗
τi ⊗ Iτ)Mati(Zτ)⊺

⎞
⎠
.

Inserting now the Zτ and applying the unfolding formula (2.4) again we get

π†
τ,i(Zτ) = Ten0

⎛
⎝
Q0,∗

τi (⊗
j≠i

U0,∗
τj ⊗ Iτ)(⊗

j≠i
Wτj ⊗ Iτ)Mati(Dτ)⊺Wτi

⎞
⎠

= Ten0
⎛
⎝
Q0,∗

τi (⊗
j≠i

U0,∗
τj Wτj ⊗ Iτ)Mati(Dτ)⊺Wτi

⎞
⎠

= Ten
⎛
⎝
Q0,∗

τi Mati
⎛
⎝
Dτ ×0 Iτ ⨉

j≠i
(U0,∗

τj Wτj)⊺
⎞
⎠

⊺

W⊺
τi

⎞
⎠
.

We define the matrix

Rτi ∶=Q0,∗
τi Mati(Dτ ×0 Iτ ⨉

j≠i
(U0,∗

τj Wτj)⊺)⊺, (4.10)

where the matrix products U0,∗
τj Wτj can be computed as an inner product as described

in subsection 2.4.3. By definition of a tree tensor network, there exists a TTN Zτi such
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that Wτi =Mat0(Zτi)⊺. Inserting this we obtain for the restriction

π†
τ,i(Zτ) = Ten0(RτiW

⊺
τi) = Ten0(Rτi Mat0(Zτi))

= Ten0(Mat0(Zτi ×0 Rτi)) = Zτi ×0 Rτi .

By this we see that π†
τ,i(Zτ) can be efficiently computed by multiplying the TTN Zτi

in the 0-dimension with the matrix Rτi . If Dτi is the core tensor of Zτi , the result is

equivalent to replace the root tensor of Zτi by Dτi ×0 Rτi .

4.6 Preparatory lemma

For the analysis of the rank-adaptive tree tensor network integrator we give an essential

result about the original and the augmented initial tensors, which is actually used in the

algorithm. I.e. we will show that

Y 0
τ = C0

τ ×0 Iτ
m

⨉
i=1

U0
τi

equals the tree tensor network with augmented connecting tensor Ĉ0
τ = C0

τ ⨉m
i=1 Û

1,∗
τi U0

τi

from algorithm 7 and basis matrices Û1
τi from algorithm 6

Ŷ 0
τ = Ĉ0

τ ×0 Iτ
m

⨉
i=1

Û1
τi .

The following results and its proof can be found as lemma 6.1 in [CLS23].

Lemma 4.6

For the initial tree tensor network Y 0
τ it holds

Ŷ 0
τ = Y 0

τ .

Proof.

To prove the statement, we first show over an induction over the height of the tree that

Range(U0
τi) ⊆ Range(Û

1
τi). (4.11)

We start the induction with a tree of height zero, i.e. τ = l a leaf. By the definition of

Û1
l from algorithm 6 it is obvious that (4.11) holds true. Now, for τi = σ = (σ1, . . . , σk)

we use the induction hypothesis that Range(U0
σj
) ⊆ Range(Û1

σj
), for all j = 1, . . . , k.
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This can be written as

U0
σj
= Û1

σj
Û1,∗

σj
U0

σj
= Û1

σj
M̂σj .

By definition of a tree tensor network and applying (2.4), we have for Yσ = C0
σ ×0

Iσ⨉k
j=1U

0
σj

and U0
σ =Mat0(Y 0

σ )⊺ that

U0
σ =

k

⊗
j=1

U0
σj
Mat0(C0

σ)⊺ =
k

⊗
j=1

Û1
σj
M̂σk

Mat0(C0
σ)⊺

=
k

⊗
j=1

Û1
σj
Mat0(C0

σ

k

⨉
j=1

M̂σk
)⊺ =

k

⊗
j=1

Û1
σj
Mat0(Ĉ0

σ)⊺,

where Ĉ0
σ is the initial data in algorithm 7. On the other hand, in algorithm 6 we

construct

Û1
σ =

k

⊗
j=1

Û1
σj
Mat0(Ĉσ)⊺,

where the columns of Mat0(Ĉσ)⊺ form an orthogonal basis of the range of the matrix

(Mat0(Ĉ1
σ)⊺, (Mat0(Ĉ0

σ)⊺). Hence, we see that

Range(Mat0(Ĉ0
σ)⊺) ⊆ Range(Mat0(Ĉσ)⊺).

Having these representations for U0
σ and Û1

σ, this implies formula 4.11.

We conclude the proof by observing that

Ŷ 0
τ = (Cτ

m

⨉
i=1

Û1,∗
τi U0

τi) ×0 Iτ
m

⨉
i=1

Û1
τi

= Cτ ×0 Iτ
m

⨉
i=1

Û1
τiÛ

1,∗
τi U0

τi = Cτ ×0 Iτ
m

⨉
i=1

U0
τi = Y

0
τ ,

since Ĉ0
τ = C0

τ ⨉m
i=1 M̂τi and Mτi = Û

1,∗
τi U0

τi .

4.7 Properties of the rank-adaptive BUG integrator for

Tree Tensor Networks

In this section we will prove several properties of the rank-adaptive BUG integrator for

tree tensor networks. We will show that it fulfils an exactness property and a robust

error bound, which is independent of the singular values of matricizations of core tensors

of the TTN. Further, we will show remarkable conservation properties. It preserves norm
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and energy for Schrödinger equations up to the truncation tolerance and it diminishes

the energy for gradient systems.

4.7.1 Exactness property

We will prove that the rank-adaptive TTN integrator used with tree ranks (rτ)τ≤τ̄ from

above reproduces a time-dependent family of tree tensor networks (A(t))t≥t0 with same

tree ranks exactly, if applied to F (t, Y ) = Ȧ(t) with initial data Y 0 = A(t0). The proof

goes over an induction over the height of the tree. For matrices and Tucker tensors,

which are both trees of height one, such a result is already known for the rank-adaptive

integrator [CKL22].

To prove the statement we need to assume a non-degeneracy condition. For a family of

tree tensor networks (A(t))t≥t0 of full tree rank (rτ)τ≤τ̄ we set Y 0
τ̄ = A(t0). The restricted

tree tensor networks Aτ(t) ∶= (A(t))τ are defined via the restrictions from subsection

4.5.2 associated with Y 0
τ̄ for all subtrees τ ≤ τ̄ . By lemma 4.3 we then know that for

every subtree τ ≤ τ̄ it holds

Aτ(t0) has full tree rank (rσ)σ≤τ for every subtree τ ≤ τ̄ . (4.12)

As the non-degeneracy condition it is now assumed that this property at time t0 is also

fulfilled at time t1, i.e.

Aτ(t1) has full tree rank (rσ)σ≤τ for every subtree τ ≤ τ̄ . (4.13)

The following result for the rank-adaptive TTN integrator can be found in [CLS23,

Section 5.2] and follows the ideas from [CLW21, Theorem 5.1].

Theorem 4.1: Exactness property

Let A(t) be a continuously differentiable time-dependent family of tree tensor

networks of full tree rank (rτ)τ≤τ̄ for all t0 ≤ t ≤ t1 and suppose that the non-

degeneracy condition (4.13) is satisfied. Then the rank-adaptive TTN integrator

used with the same tree rank (rτ)τ≤τ̄ for F (t, Y ) = Ȧ(t) and without truncation

is exact: starting from Y 0 = A(t0) we obtain Y 1 = A(t1).

Proof. First, we note that as the restriction π†
τ does not depend on time, we get

Ȧτ(t) =
d

dt
Aτ(t) = (Ȧ(t))τ ,
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as the derivation commutes with the (linear) restrictions. The proof goes now over an

induction over the height of the tree. First, consider a tree τ = (τ1, . . . , τm) of height
one, hence the tree tensor network Aτ(t) is a Tucker tensor. By the non-degeneracy

conditions (4.12) and (4.13) we know that Aτ(t) is of full multilinear rank (r1, . . . , rm)
at t = t0 and t = t1. The rank-adaptive TTN integrator with Fτ(t, Yτ) = Ȧτ(t) applied to

a Tucker tensor is equivalent to the Tucker integrator in [CKL22] and hence reproduces

Aτ(t1) exactly by [CKL22, Section 5.2].

Now consider a tree of height k ≥ 2. We use as an induction hypothesis that the rank-

adaptive TTN integrator with Fτ(t, Yτ) = Ȧτ(t) is exact for all subtrees τ < τ̄ of height

strictly smaller than k. Hence, for a tree τ = (τ1, . . . , τm) of height k all subtrees τi

are solved exactly by the rank-adaptive TTN integrator. This reduces the integrator to

the Tucker case for Fτ(t, Yτ) = Ȧτ(t). By (4.12) and (4.13), the tensor Aτ(t) viewed
as a Tucker tensor Aτ(t) = Cτ(t)⨉m

i=1Uτi(t), is of full multilinear rank (rτ , rτ1 , . . . , rτm)
at times t = t0 and t = t1. Again by the exactness argument [CKL22, Section 5.2]

follows that the rank-adaptive TTN integrator reproduces Aτ(t1) exactly. This proves

the induction.

The argument is repeated until one arrives at the maximal tree τ̄ , which concludes the

proof.

For completeness, we note that such an exactness property is also known for the projector

spitting integrator for matrices [LO14], for Tucker tensors [LVW18], tree tensor networks

[CLW21] and tensor trains [LOV15]. The property also holds for the fixed-rank BUG

integrator (unconventional integrator) for matrices and Tucker tensors [CL21].

Remark 4.1. The same exactness property also holds for the tree tensor network version

of the fixed-rank BUG integrator (unconventional integrator) for tree tensor networks,

which was discussed in section 4.4. This is proven in the same way as for the rank-

adaptive BUG integrator and using the exactness property for the fixed-rank BUG

integrator for Tucker tensors proven in [CL21].

4.7.2 Robust error bound

In this subsection we will extend the proof for a robust error bound for the rank-adaptive

BUG integrator for Tucker tensors from [CKL22] to tree tensor networks.

For a tree τ = (τ1, . . . , τm) we set Vτ = Crτ×nτ1×⋅⋅⋅×nτm for the tensor space and Mk
τ =

M((nτ)τ≤τ̄ , (rkτ )τ≤τ̄) for the manifold of tree tensor networks at the kth time step. The

manifold Mk
τ has the additional index k due to the changing ranks in each time step.

Finally, we setMk =Mk
τ̄ and V = Vτ̄ for the full tree τ̄ . During the proof we make the

following three assumptions; cf. [CLW21, CLS23].



Rank-adaptive BUG integrator 85

1. F ∶ [0, t∗] × V → V is Lipschitz continuous and bounded, i.e.

∥F (t, Y ) − F (t, Ỹ )∥ ≤ L ∥Y − Ỹ ∥ ∀Y, Ỹ ∈ V

∥F (t, Y )∥ ≤ B ∀Y ∈ V.

2. For Y near the exact solution A(t) and PY being the orthogonal projection onto

the tangent space TYMk we assume for all t ∈ [tk, tk+1] the existence of a small

ϵ > 0 such that

∥F (t, Y ) − PY F (t, Y )∥ ≤ ϵ,

in some ball ∥Y ∥ ≤ ρ, where it is assumed that the exact solution A(t),0 ≤ t ≤ t∗,
has a bound that is strictly smaller than ρ.

3. The error at the initial condition is bounded by

∥Y 0 −A(0)∥ ≤ δ,

for Y 0 ∈ M0.

The norm ∥⋅∥ used is the tensor Euclidean norm. Note that condition 1. can be weakened

to a local Lipschitz condition and a local bound in a neighborhood of the exact solution

A(t) of the tensor differential equation (2.1) with initial data A(t0) = A0 ∈ V.

The following result for the rank-adaptive TTN integrator can be found in [CLS23,

Section 5.2] and follows the ideas from [CLW21, Theorem 6.1].

Theorem 4.2: Robust error bound for rank-adaptive BUG

Under the assumptions 1.-3., the error of the numerical approximation Y k ∈ Mk at

time tk = t0+kh, obtained with k time steps of the rank-adaptive BUG integrator

for tree tensor networks with step size h > 0 and rank-truncation tolerance ϑ, is

bounded by

∥Y k −A(tk)∥ ≤ c0δ + c1ϵ + c2h + c3ϑ/h, for tk ≤ t∗.

All constants depend only on L,B, t∗ and the tree τ̄ and are therefore independent

of the singular values of matricizations of core tensors. This holds true provided

that δ, ϵ, h and ϑ/h are so small that the above error bound guarantees that

∥Y k∥ ≤ ρ.
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Proof. To prove the statement, we need that the assumptions 1.-3. are also satisfied

for the reduced functions Fτ for all τ ≤ τ̄ . This is indeed true and proven in [CLW21,

Lemma 6.2].

We assume Y 0 = A(t0) ∈ M, since the difference of exact solutions of the differential

equation (2.1) with initial data varying at most by δ, is bounded by c0δ for all times

t0 ≤ t ≤ t∗, because we assumed a Lipschitz condition on F . I.e. for Y (t) and Ỹ (t) two
exact solutions to (2.1) with initial data Y 0 and Ỹ 0 such that ∥Y 0 − Ỹ 0∥ ≤ δ, we have

∥Y (t) − Ỹ (t)∥ = ∥Y 0 − Ỹ 0 + ∫
t

t0
F (s, Y (s)) − F (s, Ỹ (s)) ds∥

≤ ∥Y 0 − Ỹ 0∥ + ∫
t

t0
∥F (s, Y (s)) − F (s, Ỹ (s))∥ds

≤ δ +L∫
t

t0
∥Y (s) − Ỹ (s)∥ds

≤ δ +L(t − t0)eL(t−t0)∥Y (0) − Ỹ (0)∥

≤ (1 +L(t∗ − t0)eL(t
∗−t0))δ.

Further, it suffices to show that the local error after one time step is of the order

O(h(ϵ + h)). The final statement follows then by a standard Lady Windermere’s fan

argument, as in [HNW93, Section I.7 and II.3] or [KLW16].

Similar to the exactness property, the proof goes over an induction over the height of the

tree. For a tree of height one, which corresponds to a Tucker tensor, the rank-adaptive

BUG for tree tensor networks is equivalent to the rank-adaptive Tucker integrator from

[CKL22], where the error bound is already proven.

For a tree τ = (τ1, . . . , τm) of height k ≥ 2, we observe that the differential equations for

Yτi are solved approximately by intermediate tree tensor networks with lower height,

for which the O(h(ϵ+ h)) error bound holds by induction hypothesis. If the differential

equations for Yτi were solved exactly, the analysis reduces again to the Tucker integrator

and we again get the O(h(ϵ + h)) error bound. We now have to study the influence

of the inexact solution of the differential equations for Yτi . Here we follow the same

strategy as in [KLW16, Subsection 2.6.3], to see that the local error is still of magnitude

O(h(ϵ + h)). We omit a detailed calculation since the calculation is tedious and only

requires multiple applications of the triangle inequality.

Remark 4.2. The same robust error bound, just without the dependence on ϑ, also holds

for the tree tensor network version of the fixed-rank BUG integrator (unconventional

integrator) for tree tensor networks, which was discussed in section 4.4. This is proven

in the same way as for the rank-adaptive TTN integrator and using the robust error

bound for Tucker tensors proven in [CL21] and using the simplification that the manifold

stays fixed over the timesteps. We give the statement but omit the proof as it works

completely analogous to the previous one.
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Theorem 4.3: Robust error bound fixed rank BUG

Under the assumptions 1.-3., the error of the numerical approximation Y k ∈ M
at time tk = t0 + kh, obtained with k time steps of the fixed-rank BUG integrator

for tree tensor networks with step size h > 0 and rank-truncation tolerance ϑ, is

bounded by

∥Y k −A(tk)∥ ≤ c0δ + c1ϵ + c2h, for tk ≤ t∗.

All constants depend only on L,B, t∗ and the tree τ̄ and are therefore independent

of the singular values of matricizations of core tensors. This holds true provided

that δ, ϵ and h are so small that the above error bound guarantees that ∥Y k∥ ≤ ρ.

4.7.3 Norm preservation

If the function F on the right-hand side of the tensor differential equation (2.1) satisfies

Re⟨Y,F (t, Y )⟩ = 0 for all Y ∈ Cn1×⋅⋅⋅×nd and for all t, (4.14)

where ⟨⋅, ⋅⟩ denoting the Euclidean inner product of vectorizations, then the Euclidean

norm of every solution A(t) of (2.1) is conserved: ∥A(t)∥ = ∥A(t0)∥ for all t. Norm

conservation also holds for the rank-adaptive TTN integrator before truncation, as shown

in the following result. The result was originally proven in [CLS23, Theorem 6.2].

Theorem 4.4: Norm preservation

If F satisfies (4.14), then a step of the rank-augmented TTN integrator preserves

the norm: for every stepsize h and for every subtree τ of τ̄ ,

∥Ŷ 1
τ ∥ = ∥Y 0

τ ∥.

This implies the conservation of norm if no truncation was used in the time step of the

rank-adaptive BUG for TTNs. Including the truncation, by theorem 2.4, we obtain then

a near-conservation of the norm up to a multiple of the truncation tolerance ϑ, i.e.

∥Y 0
τ ∥ − cτϑ ≤ ∥Y 1

τ ∥ ≤ ∥Y 0
τ ∥,

with cτ = ∥Cτ∥(dτ − 1) + 1, as in theorem 2.4.

Proof. For every subtree τ = (τ1, . . . , τm) ≤ τ̄ , recall that the reduced nonlinear operator

Fτ (c.f. section 4.5) is defined by a recursion from the root to the leaves, starting from
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Fτ̄ = F . First, we note that

Re ⟨Yτ , Fτ(t, Yτ)⟩ = 0 for all Yτ ∈ Vτ and for all t, (4.15)

which follows by induction from the root to the leaves, noting

⟨Yτi , Fτi(t, Yτi)⟩ = ⟨Yτi , π
†
τ,iFτ(t, πτ,iYτi)⟩ = ⟨πτ,iYτi , Fτ(t, πτ,iYτi)⟩

and πτ,iYτi ∈ Vτ .

We now turn to the update of the core tensors, see algorithm 7. We have, for k = 0 and

k = 1,
Ŷ k
τ = Ĉk

τ

m

⨉
i=1

Û1
τi and hence ∥Ŷ k

τ ∥ = ∥Ĉk
τ ∥,

since Û1
τi have orthonormal columns for i = 1, . . . ,m. We recall that Ĉ1

τ is the solution

at t1 of the differential equation

˙̂Cτ(t) = Fτ (t, Ĉτ(t)
m

⨉
i=1

Û1
τi)

m

⨉
i=1

Û1,∗
τi

with initial value Ĉτ(t0) = Ĉ0
τ . By a standard argument and using (4.15) we get

1

2

d

dt
∥Ĉτ(t)∥2 = Re ⟨Ĉτ(t), ˙̂Cτ(t)⟩ = Re ⟨Ĉτ(t), Fτ(t, Ĉτ(t)

m

⨉
i=1

Û1
τi)

m

⨉
i=1

Û1,∗
τi ⟩

= Re ⟨Ĉτ(t)
m

⨉
i=1

Û1
τi , Fτ(t, Ĉτ(t)

m

⨉
i=1

Û1
τi)⟩ = 0.

This gives us

∥Ŷ 1
τ ∥ = ∥Ĉ1

τ ∥ = ∥Ĉτ(t1)∥ = ∥Ĉτ(t0)∥ = ∥Ĉ0
τ ∥ = ∥Ŷ 0

τ ∥ = ∥Y 0
τ ∥,

where the last equality comes from lemma 4.6.

4.7.4 Energy preservation

We will now proof that the rank-adaptive BUG integrator also preserves the energy for

Hamiltonian systems. For this consider the tensor Schrödinger equation

iȦ(t) =H[A(t)], (4.16)
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with a Hamiltonian H ∶ Cn1×⋯×nd → Cn1×⋯×nd that is linear and self-adjoint, i.e.,

⟨H[Y ], Z⟩ = ⟨Y,H[Z]⟩ for all Y,Z ∈ Cn1×⋯×nd . The energy, defined by

E(Y ) = ⟨Y,H[Y ]⟩,

is then preserved along solutions of (4.16), i.e. E(A(t)) = E(A(t0)) for all t. The proof

of the following theorem was originally presented in [CLS23, Theorem 6.3].

Theorem 4.5: Energy preservation

The rank-augmented TTN integrator preserves the energy: for every stepsize h,

E(Ŷ 1
τ̄ ) = E(Y 0

τ̄ ).

Using the Cauchy–Schwarz inequality and theorem 2.4, this implies for the rank-adaptive

TTN integrator

∣E(Y 1
τ̄ ) −E(Y 0

τ̄ )∣ = ∣E(Y 1
τ̄ ) −E(Ŷ 1

τ̄ )∣ = ∣Re⟨Y 1
τ̄ − Ŷ 1

τ̄ ,H[Y 1
τ̄ + Ŷ 1

τ̄ ]⟩∣

≤ cτ̄ϑ ∥H[Y 1
τ̄ + Ŷ 1

τ̄ ]∥,

which implies a energy preservation up to truncation tolerance.

Proof. Inserting the differential equation from algorithm 7 for τ̄ = (τ1, . . . , τm) and using

Ŷτ̄(t) = Ĉτ̄(t)⨉m
j=1 Ûτj , we obtain by deriving the energy of Ŷτ̄(t) in time

d

dt
E(Ŷτ̄(t)) = 2Re⟨H[Ŷτ̄(t)], ˙̂Cτ̄(t)

m

⨉
j=1

Û1
τj ⟩

= 2Re⟨H[Ŷτ(t)]
m

⨉
j=1

Û1,∗
τj ,

˙̂Cτ̄(t)⟩

= 2Re⟨H[Ŷτ(t)]
m

⨉
j=1

Û1,∗
τj ,−iH[Ŷτ̄(t)]

m

⨉
j=1

Û1,∗
τj ⟩

= −2Re i ∥H[Ŷτ(t)]
m

⨉
i=j

Û1,∗
τj ∥

2 = 0.

Using Ŷ 1
τ = Ŷτ(t1) and lemma 4.6, we obtain

E(Ŷ 1
τ ) = E(Ŷτ(t1)) = E(Ŷτ(t0)) = E(Ŷ 0

τ ) = E(Y 0
τ ),

which proves result.

For every subtree τ ≤ τ̄ , the reduced operator Fτ that corresponds to the full Fτ̄(Y ) =
−iH[Y ] is again a Schrödinger operator, i.e. Fτ(Yτ) = −iHτ [Yτ ]. Note that Hτ ∶ Vτ → Vτ
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is again a linear and self-adjoint operator since Hτi = π
†
τ,iHτπτ,i. Hence, the rank-

adaptive BUG integrator for TTNs preserves the energy on each subtree.

4.7.5 Energy diminishing for gradient systems

Consider the case of a tensor differential equation, where the right-hand side is a gradient

system, i.e.

Ȧ(t) = −∇E(A(t)) with a given function E ∶ Rn1×⋯×nd → R.

In this situation, along every solution we then have the energy decay

d

dt
E(A(t)) = ⟨∇E(A(t)), Ȧ(t)⟩ = −∥∇E(A(t))∥2.

We will prove that the rank-adaptive BUG integrator also diminishes the energy for

gradient systems. The following theorem and its proof can be found [CLS23, Theorem

6.4].

Theorem 4.6: Energy diminishing for gradient systems

The rank-augmented TTN integrator diminishes the energy: for every stepsize

h > 0,
E(Ŷ 1

τ̄ ) ≤ E(Y 0
τ̄ ) − α2h,

where α =min0≤µ≤1 ∥∇E(Ŷτ̄(t0 + µh))⨉m
i=1 Û

1,∗
τi ∥ = ∥∇E(Y 0

τ̄ )⨉m
i=1 Û

1,∗
τi ∥ +O(h).

By the mean value theorem and theorem 2.4, this implies for the rank-adaptive BUG

integrator for TTNs that

E(Y 1
τ̄ ) ≤ E(Ŷ 1

τ̄ ) + βcτ̄ϑ ≤ E(Y 0
τ̄ ) − α2h + βcτ̄ϑ

with β =max0≤µ≤1∥∇E(µY 1
τ̄ + (1 − µ)Ŷ 1

τ̄ )∥ = ∥∇E(Y 1
τ̄ )∥ +O(ϑ). Thus, the rank-adaptive

BUG reduces the energy if the truncation tolerance ϑ is chosen small enough.

Proof. We prove the result by a similar strategy as in the previous proof, by deriving

the energy E(Ŷτ̄(t)) with respect to time. In algorithm 7 we have for τ̄ = (τ1, . . . , τm)
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and Ŷτ̄(t) = Ĉτ̄(t)⨉m
i=1 Û

1
τi

d

dt
E(Ŷτ̄(t)) = ⟨∇E(Ŷτ̄(t)), ˙̂Cτ̄(t)

m

⨉
i=1

Û1
τi⟩

= ⟨∇E(Ŷτ̄(t))
m

⨉
i=1

Û1,∗
τi ,

˙̂Cτ̄(t)⟩

= ⟨∇E(Ŷτ̄(t))
m

⨉
i=1

Û1,∗
τi ,−∇E(Ŷτ̄(t))

m

⨉
i=1

Û1,∗
τi ⟩

= −∥∇E(Ŷτ̄(t))
m

⨉
i=1

Û1,∗
τi ∥

2 ≤ −α2,

with α =min0≤µ≤1∥∇E(Ŷτ̄(t0+µh))⨉m
i=1 Û

1,∗
τi ∥. By lemma 4.6 we have Ŷ 0

τ̄ = Y 0
τ̄ and with

Ŷ 1
τ̄ = Ŷτ̄(t1), we get

E(Ŷ 1
τ̄ ) = E(Ŷτ̄(t1)) ≤ E(Ŷτ̄(t0)) − α2h = E(Y 0

τ̄ ) − α2h,

which concludes the proof.

As before, we note that for each subtree τ ≤ τ̄ , the reduced operator Fτ that corresponds

to the full operator Fτ̄(Y ) = −∇E[Y ], is again a gradient Fτ(Yτ) = −∇Eτ [Yτ ] with an

energy function Eτ ∶ Vτ → R. As it is again defined recursively by Eτi = π
†
τ,i ○Eτ ○πτ,i for

the ith subtree τi of τ , the integrator dissipates the energy on the level of each subtree.





Chapter 5

Parallel BUG integrator for

Tucker Tensor and Tree Tensor

Networks

This chapter relies mainly on the work ”A parallel basis update and Galerkin integrator

for tree tensor networks” by Gianluca Ceruti, Jonas Kusch, Christian Lubich and the

author [CKLS24]. It extends the parallel BUG integrator for matrices from [CKL24] to

Tucker tensors and tree tensor networks.

We first recall that the rank-adaptive BUG integrator for tree tensor networks from

chapter 4 is defined recursively. On each level of the tree, the corresponding nodes can

be updated in parallel. Still, a fully parallel implementation can become complicated

due to the recursive definition of the integrator itself. This motivates to derive an

integrator where all nodes of the tree can be updated fully in parallel, i.e. all matrix and

tensor differential equations are solved in parallel. For large trees, as is, for example,

the case in many examples from quantum physics, this allows for much more efficient

computations. The novel parallel integrator is furthermore demanded to pertain the

desired rank-adaptivity property of the integrator of chapter 4. The remainder of this

chapter derives such a method for Tucker tensors and tree tensor networks. For the

Tucker tensor and the tree tensor network formats, we will further prove a robust error

bound.

93
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5.1 Recap: Parallel BUG integrator for matrices

In this section we introduce a variant of the parallel BUG integrator for matrices from

[CKL24]. Consider a matrix-valued ordinary differential equation

Ȧ(t) = F (t,A(t)), A(t0) =A0,

with A(t) ∈ Cn×m for all t and F ∶ Cn×m → Cn×m. Again we approximate the solution on

the low-rank manifold Mr, described in subsection 2.5.1, by projecting the right-hand

side onto the tangent space of the current approximation at time t inMr.

One time step from t0 to t1 = t0 +h of the modified parallel BUG integrator for matrices

reads now as follows. Suppose initial data Y 0 = U0S0V0,∗ of rank r, with U0 and V0

orthonormal matrices. We compute the approximation Y 1 = U1S1V1,∗ at time t1 by

the following three steps:

1. Construct the augmented basis matrices Û1 ∈ Cn×2r and V̂1 ∈ Cm×2r as well as the

coefficient matrix S̄(t1) ∈ Cr×r (in parallel):

K-step: From t = t0 to t1 integrate the n × r matrix differential equation

K̇(t) = F (t,K(t)V0,∗)V0, K(t0) =U0S0. (5.1)

Construct Û1 = (U0, Ũ1) ∈ Cn×2r as an orthonormal basis of the range of the n×2r
matrix (U0,K(t1)) (e.g. by QR decomposition).

Compute the matrix S̃1
K = hŨ1,∗F (Y 0)V0 ∈ Cr×r.

L-step: From t = t0 to t1 integrate the m × r matrix differential equation

L̇(t) = F (t,U0L(t)∗)∗U0, L(t0) =V0S0,∗. (5.2)

Construct V̂1 = (V0, Ṽ1) ∈ Cm×2r as an orthonormal basis of the range of the

m × 2r matrix (V0,L(t1)) (e.g. by QR decomposition)

Compute the matrix S̃1
L = hU0,∗F (Y 0)∗Ṽ1 ∈ Cr×r.

S-step: From t = t0 to t1 integrate the r × r matrix differential equation

˙̄S(t) =U0,∗F (t,U0S̄(t)V0,∗)V0, S̄(t0) = S0. (5.3)

2. Augment: Construct the augmented coefficient matrix Ŝ1 ∈ C2r×2r as

Ŝ1 =
⎛
⎝
S̄(t1) S̃1

L

S̃1
K 0

⎞
⎠
. (5.4)
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3. Truncate: Compute the singular value decomposition Ŝ1 = P̂Σ̂Q̂∗ where Σ̂ =
diag(σj). Truncate to the tolerance ϑ by choosing the new rank r1 ≤ 2r as the

minimal number r1 such that

(
2r

∑
j=r1+1

σ2j)
1/2
≤ ϑ. (5.5)

Compute the new factors for the approximation of A(t1) as follows: Let S1 be

the r1 × r1 diagonal matrix with the r1 largest singular values and let P1 ∈ C2r×r1

and Q1 ∈ C2r×r1 contain the first r1 columns of P̂ and Q̂, respectively. Finally, set

U1 = Û1P1 ∈ Cn×r1 and V1 = V̂1Q1 ∈ Cm×r1 . Note that this truncation strategy

equals the truncation algorithm for tree tensor networks applied to matrices, which

was discussed in subsection 2.4.4.

All differential equations are solvable in parallel, while the augmentation and truncation

step have to be performed sequentially. However, the main computational complexity

lies in the solution of the arising differential equations. Further, in the S-step only a

r × r matrix ODE has to be solved, while in the S-step for the rank-adaptive BUG a

2r × 2r matrix ODE must be solved, cf. [CKL22].

By the augmentation and truncation step 2. and 3., the integrator is rank-adaptive.

At each time step with initial rank r, the integrator chooses a new rank r1 ≤ 2r. If in

practice a higher rank increase per time step is needed, a step rejection strategy can be

added, which will be discussed later, see subsection 5.3.3.

In [CKL24] the authors proved a robust error bound for the parallel BUG integrator for

matrices, which is also shared by the rank-adaptive BUG, fixed-rank BUG and projector-

splitting integrator for matrices [CKL22, CL21, LO14]. Robust means that all appearing

constants do not depend on singular values of the matrix S, cf. [CKL24, Theorem 4.1].

The error bound is proven by interpreting the parallel BUG integrator for matrices as

a perturbed rank-adaptive BUG integrator for matrices. The proof of the robust error

bound for the Tucker version of the parallel BUG integrator will follow the same idea.

Remark 5.1. It is important to note that the orthogonalization of the matrices Û1 and

V̂1 must be done carefully. The orthogonalization must ensure that the first r columns

of Û1 equal U0. Analogously the first r columns of V̂1 must equal V0. This ordering

of the old and new basis is not needed in the rank-adaptive BUG integrator presented

in chapter 4.

Remark 5.2. The proposed version of the parallel BUG integrator for matrices differs

from the variant in [CKL24] only in the definition of the matrices S̃1
k and S̃1

L. Note

that in [CKL24] they were defined by S̃1
K = Ũ1,∗K(t1) and S̃1

L = L(t1)∗Ṽ1. Hence,

in the variant from above, the original S̃1
K and S̃1

L have been replaced by a first-order
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approximation:

S1
K = Ũ1,∗K(t1) = Ũ1,∗ (K0 + hF (Y0)V0 +O(h2)) = S̃1

K +O(h2),

and analogously for S̃1
L.

This minor modification enabled us to extend the integrator and its robust error bound

in a natural way to first Tucker tensors and later tree tensor networks.

5.2 Parallel BUG integrator for Tucker Tensors

In this section we present a parallel BUG integrator for Tucker tensors, which can be

applied to problems of the form

Ȧ(t) = F (t,A(t)), A(t0) = A0,

where A(t) ∈ Cn1×⋅⋅⋅×nd . For r = (r1, . . . , rd), we approximate the solution on the low-rank

manifold of tensors of multilinear rank r denoted byMr, as discussed in subsection 2.5.2.

At time t0 we suppose the initial data Y 0 in a Tucker decomposition

Y 0 = C0
d

⨉
i=1

U0
i ,

where C0 ∈ Cr1×⋅⋅⋅×rd and U0
i ∈ Cni×ri orthonormal for i = 1, . . . , d. As in section 4.1 we

define the matricization of F (t, ⋅) by Fi(t, Y ) ∶=Mati(F (t,Teni(Y )) and n¬i ∶= ∏j≠i nj .

In the following, we propose a parallel integrator for Tucker tensors, where the differential

equations for the core tensor C0 and all basis matricesU0
i can be evolved fully in parallel.

5.2.1 Formulation of the algorithm

Given the initial data Y 0 = C0⨉d
i=1U

0
i of multilinear rank r at time t0, we aim to find an

approximation Y 1 = C1⨉d
i=1U

1
i at time t1. Again, we make use of the subflow notation

Φ(i) and Ψ for the update of the ith basis matrix and core tensor, respectively. Note that

we use the same subflow notation as in section 4.1, even if the subflows for the parallel

BUG differ from the subflows of the rank-adaptive BUG. Additionally to the subflows,

we apply an augmentation step A and a rank truncation Θ. The approximation Y 1 is

then obtained by

Y 1 = Θ ○ A ○ (Ψ,Φ(1), . . . ,Φ(d))(Y 0). (5.6)
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The full algorithm for the parallel BUG integrator for Tucker tensor then reads as

Algorithm 9: Parallel BUG integrator for Tucker tensors

Data: Tucker tensor Y 0 = C0⨉d
i=1U

0
i in factorized form of multilinear rank

(r01, . . . , r0d), function F (t, Y ), t0, t1, tolerance parameter ϑ

Result: Tucker tensor Y 1 = C1⨉d
i=1U

1
i in factorized form of multilinear rank

(r11, . . . , r1d), where r1i ≤ 2r0i
begin

for i = 1 ∶ d in parallel do

compute [Û1
i , C̃

1
i ] = Φ(i)(Y 0, F, t0, t1)

% update and augment the ith basis matrix, see algorithm 10

end

compute C̄1 = Ψ(C0, (U0
i )di=1, F, t0, t1)

% update the core tensor, see algorithm 11

construct Ĉ1 = A(C̄1, (C̃1
i )di=1)

% augment the core tensor, see algorithm 12

set Ŷ 1 = Ĉ1⨉d
i=1 Û

1
i

compute Y 1 = Θ(Ŷ 1, ϑ) % rank truncation, see algorithm 1

end

Note that the subflows Φ(i), i = 1, . . . , d and Ψ can be done fully in parallel. After these

are solved, the augmentation of the core tensor and finally a rank truncation is performed

sequentially.
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Algorithm 10: Subflow Φ(i) (update and augment the ith basis matrix))

Data: Tucker tensor Y 0 = C0⨉d
j=1U

0
j of multilinear rank (r01, . . . , r0d) in factorized

form, function F (t, Y ), t0, t1
Result: Updated and augmented basis matrix Û1

i ∈ Cni×r̂i (typically r̂i = 2r0i ) with
orthonormal columns, tensor C̃1

i ∈ Cr01×⋅⋅⋅×r0i−1×(r̂i−r0i )×r0i+1×⋅⋅⋅×r0d

begin

compute the QR-decomposition Mati(C0)⊺ =Q0
iS

0,⊺
i ;

solve the ni × r0i matrix differential equation from t0 to t1

K̇i(t) = Fi(t,Ki(t)V0,∗
i )V

0
i , Ki(t0) =U0

iS
0
i ,

with Fi(t, ⋅) ∶=Mati ○F (t, ⋅) ○Teni and V0,∗
i ∶=Q⊺

i ⊗d
j≠iU

0,⊺
j ;

construct Û1
i = (U0

i , Ũ
1
i ) ∈ Cni×r̂i as an orthonormal basis of the range of the

ni × 2r0i matrix (U0
i ,Ki(t1)) (e.g. by QR decomposition) such that the first r0i

columns equal U0
i ;

set C̃1
i = hF (Y0)⨉j≠iU

0,∗
i ×i Ũ

1,∗
i ;

end

Algorithm 11: Subflow Ψ (update the core tensor)

Data: core tensor C0 ∈ Cr01×⋅⋅⋅×r0d , basis matrices U0
i ∈ Cni×r0i with orthonormal

columns, function F (t, Y ), t0, t1
Result: core tensor C̄1 ∈ Cr01×⋅⋅⋅×r0d

begin

solve the r01 × ⋅ ⋅ ⋅ × r0d tensor differential equation from t0 to t1,

˙̄C(t) = F (t, C̄(t)
d

⨉
ℓ=1

U0
ℓ)

d

⨉
j=1

U0,∗
j , C̄(t0) = C0.

set C̄1 = Ĉ(t1)
end
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Algorithm 12: Augmentation A
Data: core tensor C̄1 ∈ Cr01×⋅⋅⋅×r0d , tensors (C̃1

i )di=1
Result: core tensor Ĉ1 ∈ Cr̂1×⋅⋅⋅×r̂d

begin

set Ĉ1 = C̄1

for i = 1 ∶ d do

set Ĉ1 = Teni
⎛
⎝
Mati(Ĉ1)
Mati(C̃1

i )
⎞
⎠
;

end

end

Remark 5.3. The augmentation of the core tensor can be interpreted also in a different

way. We construct the augmented core tensor Ĉ1 ∈ Cr̂1×⋯×r̂d such that

Ĉ1
d

⨉
j=1

U0,∗
j Ûj = C̄(t1) , (5.7)

Ĉ1⨉
j≠i

U0,∗
j Û1

j ×i Ũ
1,∗
i Û1

i = C̃1
i for i = 1,⋯, d . (5.8)

All remaining blocks are set to zero. This is a mathematically equivalent formulation of

how the augmented core tensor is constructed in algorithm 12.

Comparison with rank-adaptive BUG

Since the presented parallel BUG and the rank-adaptive BUG from chapter 4 seem to

be very similar, we want to go into the subtle differences. The differential equation for

the Ki-step (subflow Φ(i)) is the same for both integrators. However, in the orthogo-

nalization of the matrix (U0
i ,Ki(t1)) there is a minor but important difference. For the

rank-adaptive BUG, any orthogonal basis of the range of this matrix is a possible choice,

while for the parallel BUG only the orthogonal bases, where the first r0i columns equal

U0
i , are admissible. For this recall remark 5.1 in the matrix case.

Further, the Ψ subflow, which is a Galerkin step, is performed in different bases. The

parallel BUG performs the Galerkin step in the old basis U0
i , while the rank-adaptive

BUG performs it in the old and new basis Û1
i . Hence, the tensor ODE is larger for the

rank-adaptive BUG, since the basis has a larger (typically doubled) rank. This makes it

computationally more costly. However, by this, all basis matrices and core tensors are

augmented on the fly in the rank-adaptive BUG. In contrast, the parallel BUG requires

an additional augmentation step. During this augmentation step, some blocks in the

augmented core tensor are set to zero. In the augmented core tensor of the rank-adaptive

BUG, all entries are typically non-zero. In total, this makes the parallel BUG integrator

a faster but rougher integration scheme.
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5.2.2 Robust error bound for Tucker tensors

The presented parallel Tucker integrator from algorithm 9 shares the robust error bound

of the rank-adaptive BUG integrator [CKL22] for Tucker tensors. Let V ∶= Cn1×⋅⋅⋅×nd . To

prove the robust error bound we make the following three assumptions:

1. F ∶ [0, t∗] × V → V is Lipschitz continuous and bounded, i.e.

∥F (t, Y ) − F (t, Ỹ )∥ ≤ L ∥Y − Ỹ ∥ ∀Y, Ỹ ∈ V

∥F (t, Y )∥ ≤ B ∀Y ∈ V.

2. Given the projector onto the tangent space at Y = C⨉d
j=1Uj as

P (Y )Z ∶= Z
d

⨉
j=1

UjU
∗
j +

d

∑
k=1

Z ⨉
j≠k

UjU
∗
j ×k (I −UkU

∗
k) , (5.9)

cf. lemma 2.3, the normal component of F (t, Yk) fulfills ∥P (Yk)F (t, Yk)∥ ≤ ε for

0 ≤ kh ≤ T .

3. The error at the initial condition is bounded by ∥Y0 −A(0)∥ ≤ δ.

Then, the following error bound holds. The result can be found in [CKLS24, Section

3.2].

Theorem 5.1: Robust error bound for parallel BUG for Tucker tensors

Under assumptions 1. to 3., the error of the parallel BUG integrator for Tucker

tensors is bounded by

∥Yk −A(tk)∥ ≤ c0δ + c1h + c2ε + c3kϑ,

where all arising constants only depend on the bound and Lipschitz constant of

F and on tk.

Proof.

With Ŷ 1
BUG we denote the approximation at time t1 obtained from the rank-adaptive

BUG integrator for Tucker tenors. By the triangle inequality, the local error of the

parallel BUG approximation can be bounded by

∥Ŷ1 −A(t1)∥ ≤ ∥Ŷ1 − Ŷ 1
BUG∥ + ∥Ŷ 1

BUG −A(t1)∥ .
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By [CKL22], we know that the rank-adaptive BUG integrator for Tucker tensors fulfils

∥Ŷ 1
BUG −A(t1)∥ ≤ c1h2 + c2hε. Thus, we only need to bound

∥Ŷ1 − Ŷ 1
BUG∥ = ∥Ĉ1 − Ĉ1

BUG∥ .

We now investigate the norms of individual blocks in Ĉ1 − Ĉ1
BUG. To investigate the

error between the core tensors Ĉ1 and ĈBUG, we investigate three parts: The block that

belongs to (5.7), blocks belonging to (5.8), and blocks that are set to zero.

1. First, we investigate the local error of the parallel integrator in the block that be-

longs to (5.7). Therefore, we define Ȳ (t) ∶= C̄(t)×di=1U0
i , ŶBUG(t) ∶= ĈBUG(t)⨉d

i=1 Ûi,

and F̂ (t) ∶= F (t, ŶBUG(t)). We note that

∥ŶBUG(t) − Ȳ (t)∥ = ∥∫
t

t0
F̂ (s)

d

⨉
i=1

Û1
i Û

1,∗
i ds − ∫

t

t0
F (s, Ȳ (s))

d

⨉
i=1

U0
iU

0,∗
i ds∥

≤ ∫
t

t0
∥F̂ (s)∥ + ∥F (s, Ȳ (s))∥ds

≤ 2B ∫
t

t0
1ds ≤ 2Bh.

Using this we can bound the first block by

∥(Ĉ1
BUG − Ĉ1)

d

⨉
i=1

U0,∗
i Û1

i ∥ ≤ ∫
t1

t0
∥F̂ (t)

d

⨉
i=1

U0,∗
i Û1

i Û
1,∗
i − F (t, Ȳ (t))

d

⨉
i=1

U0,∗
i ∥dt

= ∫
t1

t0
∥(F̂ (t) − F (t, Ȳ (t)))

d

⨉
i=1

U0,∗
i ∥dt

≤L∫
t1

t0
∥ŶBUG(t) − Ȳ (t)∥dt ≤ cLBh2 .

2. Second, we bound the local error of the integrator in the blocks that belong to

(5.8). Here we first note that

∥ ŶBUG(t) − Y0∥ = ∥Y0 + ∫
t

t0
F (s, ŶBUG(s))

d

⨉
i=1

Û1
i Û

1,∗
i ds − Y0∥

≤ ∫
t

t0
∥ F (s, ŶBUG(s))

d

⨉
i=1

Û1
i Û

1,∗
i ∥ds ≤ Bh, (5.10)

where the last bound follows by the assumptions. Using (5.10), we then obtain for

the corresponding block:

∥(Ĉ1
BUG − Ĉ1)⨉

j≠i
U0,∗

j Û1
j ×i Ũ

1,∗
i Û1

i ∥ ≤ ∫
t1

t0
∥(F̂ (t) − F (Y0))⨉

j≠i
U0,∗

i ×i Ũ
1,∗
i ∥dt

≤L∫
t1

t0
∥ŶBUG(t) − Y0∥dt ≤ LBh2 .
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3. All remaining terms in Ĉ1 are zero-valued. Hence, for any sets of indices I ⊂
{1,⋯, d} with ∣I∣ ≥ 2 and J ∶= {1,⋯, d}/I, we wish to bound the terms

⍟ ∶= ∥Ĉ1
BUG ⨉

j∈J
U0,∗

j Û1
j ⨉
i∈I

Ũ1,∗
i Û1

i ∥ ≤ ∫
t1

t0
∥F̂ (t) ⨉

j∈J
U0,∗

j ⨉
i∈I

Ũ1,∗
i ∥dt .

From the definition of the projector onto the tangent space (5.9) we know that

P (Y0)F̂ (t0)⨉i∈I Ũ
1,∗
i = 0 and therefore

⍟ ≤ ∫
t1

t0
∥(F̂ (t) − P (Y0)F̂ (t0)) ⨉

j∈J
U0,∗

j ⨉
i∈I

Ũ1,∗
i ∥dt

≤ ∫
t1

t0
∥(F̂ (t) − F̂ (t0)) ⨉

j∈J
U0,∗

j ⨉
i∈I

Ũ1,∗
i ∥dt + hε

≤ ∫
t1

t0
∥F̂ (t) − F̂ (t0)∥dt + hε ≤ L∫

t1

t0
∥ŶBUG(t) − Y0∥dt + hε ≤ LBh2 + hε ,

where the last inequality is again due to (5.10).

Since ∥Ŷ1 − Y1∥ ≤ ϑ, the local error becomes ∥Y1 −A(t1)∥ ≤ c1h2 + c2hε + c3ϑ. We then

pass to the global error through Lady Windermere’s fan [HNW93, Section I.7 and II.3],

which concludes the proof.

Remark 5.4. Note that many of the favourable properties of the rank-adaptive BUG

integrator from chapter 4 are not valid anymore for the parallel BUG integrator. Namely,

the exactness property, norm and energy preservation and the energy diminishing for

gradient systems. We refer to chapter 6 for further numerical examples testing the

integrators on these properties.

5.3 Parallel BUG integrator for Tree Tensor Networks

5.3.1 Formulation of the algorithm

Fix a tree τ̄ = (τ̄1, . . . , τ̄m) and consider a corresponding tree tensor network

Y 0
τ̄ = Cτ̄ ×0 I

m

⨉
i=1

U0
τ̄i .

To evolve Y 0
τ̄ in time, on must update all basis matrices and all core tensors. The

rank-adaptive BUG integrator for TTNs from chapter 4 allows the evolution of all basis

matrices/core tensors on the same level in parallel. The parallel BUG integrator for

TTNs (algorithm 13) allows the evolution of all basis matrices via the subflow Φl (algo-

rithm 14) and all core tensors via the subflow Ψτ (algorithm 15) fully in parallel. Hence,
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the computationally costly part of solving ordinary differential equations for each node

can now be executed in parallel. To enable rank-adaptivity, a sequential and recursive

augmentation step (algorithm 16), followed by a rank truncation (algorithm 1), is per-

formed after solving all differential equations. Algorithm 16 is the natural extension of

the augmentation step from algorithm 12 from Tucker tensors to tree tensor networks.

When working with large tree tensor networks, the parallel BUG integrator enables

high-performance computations through its fully parallel structure. For example, each

differential equation in a time step of the algorithm can be solved on a different node

on a cluster.

Algorithm 13: Parallel TTN BUG

Data: tree τ̄ = (τ̄1, . . . , τ̄m), TTN Y 0
τ̄ = C0

τ̄ ×0 I⨉m
i=1U

0
τ̄i in factorized form with tree

ranks (r0τ)τ≤τ̄ , functions (Fτ(t, ⋅))τ≤τ̄ , t0, t1, truncation tolerance ϑ

Result: TTN Y 1
τ̄ = C1

τ̄ ×0 I⨉m
i=1U

1
τ̄i in factorized form with tree ranks (r1τ)τ≤τ̄

begin

for τ ≤ τ̄ in parallel do

if τ = l is a leaf then
Set σ = (σ1, . . . , σm) such that σi = l for an i ∈ {1, . . . ,m}
% Find the parent node in the tree

Set Û1
τ = Φl(σ, l,C0

σ,U
0
l , Fl, t0, t1)

% Update the basis matrices, see algorithm 14

else

Set C̄1
τ = Ψτ(τ, Y 0

τ , Fτ , t0, t1)
% Update the core tensors, see algorithm 15

end

end

Set Ŷ 1
τ = Aτ̄(τ̄ , (C̄1

τ )τ≤τ̄ , Y 0
τ , (Û1

l )l∈L, (Fτ(t, ⋅))τ≤τ̄ , h)
% Augment the updated TTN, see algorithm 16

Set Y 1
τ = Θ(Ŷ 1

τ , ϑ)
% Truncation with tolerance ϑ, see algorithm 1.

end
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5.3.1.1 Update of basis matrices and core tensors

Algorithm 14: Subflow Φl (update a basis matrix)

Data: tree τ = (τ1, . . . , τm) with τi = l, C0
τ core tensor directly connected to U0

l ,

function Fl(t, ⋅), t0, t1
Result: Û1

l = [U0
l , Ũ

1
l ]

begin

compute a QR-decomposition Mati(C0
τ )⊺ =Q0

l S
0,⊺
l ;

set Y0
l =U

0,⊺
l ×0 S

0,⊺
l

solve the nl × r0l matrix differential equation

Ẏl(t) = Fl(t,Yl(t)), Yl(t0) =Y0
l ∈ Cr0l ×nl ;

compute Û1
l ∈ Cnl×r̂l with r̂l ≤ 2r0l as an orthonormal basis of the range of the

nl × 2r0l matrix (U0
l ,Yl(t1)⊺) such that the first r0l columns of Û1

l equal U0
l ;

end

Algorithm 15: Subflow Ψτ (update the core tensor)

Data: tree τ = (τ1, . . . , τm), core tensor C0
τ ∈ Cr0τ×r0τ1×⋅⋅⋅×r

0
τm , basis matrices U0

τi in

factorized form such that Y 0
τ = C0

τ ×0 I⨉m
i=1U

0
τi , function Fτ(t, ⋅), t0, t1

Result: core tensors C̄1
τ ∈ Cr0τ×r0τ1×⋅⋅⋅×r

0
τm

begin

solve the r0τ × r0τ1 × ⋅ ⋅ ⋅ × r
0
τm tensor differential equation from t0 to t1

˙̄Cτ(t) = Fτ(t, C̄τ(t)
m

⨉
i=1

U0
τi
)

m

⨉
i=1

U0,∗
τi , C̄τ(t0) = C0

τ ;

set C̄1
τ = C̄τ(t1)

end



Parallel BUG integrator 105

5.3.1.2 Augmentation

Algorithm 16: Augmentation Aτ

Data: tree τ = (τ1, . . . , τm), core tensor C̄1
τ ∈ Cr0τ×r0τ1×⋅⋅⋅×r

0
τm , core tensors (C̄1

ς )ς<τ ,
tree tensor network Y 0

τ , basis matrices Û1
l for l ∈ L, functions (Fς(t, ⋅))ς≤τ ,

time step size h

Result: augmented TTN Ŷ 1
τ = Ĉ1

τ ×0 I⨉m
i=1 Û

1
τi in factorized form of tree rank

(r̂1ς )ς≤τ with r̂1ς ≤ 2r0ς
begin

% Augmentation of subtrees

for i = 1 ∶m do

if τi ∉ L, i.e. τi = (σ1, . . . , σk) then
Ŷ 1
τi = Augmentation(τi, (C̄1

ς )ς≤τi , Y 0
τi , (Û

1
l )l∈L, (Fς(t, ⋅))ς≤τi , h)

set Ĉ0
τi = C

0
τi ⨉

k
j=1 Û

1,∗
σj U

0
σj

compute an orthonormal basis Q̂τi of the range of

(Mat0(Ĉ0
τi)

⊺,Mat0(Ĉ1
τi)

⊺) such that the first r0τi columns of Q̂τi equal

Mat0(Ĉ0
τi)

⊺;

set Û1
τi =Mat0(X̂1

τi)
⊺, where the orthonormal TTN X̂1

τi is obtained from

Ŷ 1
τi by replacing the core tensor with Ĉ1

τi = Ten0(Q̂⊺
τi);

% Construction of Ũ1
τi

set r̂1τi as the number of columns of Q̂τi

set Mτi as the last r̂1τi − r
0
τi columns of Q̂τi

set Ũ1
τi =Mat0(X̃1

τi)
⊺, where the TTN X̃1

τi consists of the core tensor

Ten0(M⊺
τi) and Ũ1

σj
= Û1

σj
, for j = 1, . . . , k;

end

% Augmentation of core tensor

Set Ĉ1
τ = C̄1

τ

for i = 1 ∶m do

if Ũ1
τi is non-empty then

compute the tensor C̃1
i = hF (Y 0

τ )⨉j≠iU
0,∗
τj ×i Ũ

1,∗
τi

set Ĉ1
τ = Teni

⎛
⎝
Mati(Ĉ1

τ )
Mati(C̃1

i )
⎞
⎠

end

end

To give more intuition about the augmentation step, we provide a graphical illustration.

In the subflow Aτ , each core tensor C̄1
τ is sequentially augmented in the ith mode by

a block C̃1
i . This procedure is illustrated for a core tensor of a binary tree, i.e. an

order three tensor, in the left part of figure 5.1. The augmentation in the 0-dimension

(except for the root tensor) is performed after all subtrees have been augmented, due to



Parallel BUG integrator 106

Figure 5.1: Augmentation of an order three tensor. Left: Illustration of the augmen-
tation of a core tensor C̄1

τ (light grey left top) with C̃1 in the first dimension (light grey
left down) and with C̃2 in the second dimension (light grey right top). Right: Illustra-
tion of the augmentation of the core tensor from the left in the 0-dimension (dark grey

block). All remaining blocks are set to zero.

the recursive structure. The 0-dimension augmentation is illustrated in the right part

of figure 5.1. All the remaining blocks are set to zero, which is why the parallel BUG

integrator gives a rougher approximation than the rank-adaptive BUG integrator, where

all entries of the augmented core tensor are (usually) non-zero. We refer to the numerical

example section for a more detailed comparison. Further, we want to emphasize that

the augmentation step from algorithm 16 is a recursive process going from the bottom

to the root of the tree.

5.3.2 Robust error bound for tree tensor networks

The robust error bound for the parallel BUG integrator for Tucker tensors from theo-

rem 5.1 extends to the parallel BUG integrator for tree tensors networks. For a tree

τ = (τ1, . . . , τm), recall from subsection 4.7.2 the tensor space Vτ = Crτ×nτ1×⋅⋅⋅×nτm and

the manifold of tree tensor networks at the kth time step Mk
τ = M((nτ)τ≤τ̄ , (rkτ )τ≤τ̄).

The manifold Mk
τ has the additional index k due to the changing ranks in each time

step. As before we setMk =Mk
τ̄ and V = Vτ̄ for the full tree τ̄ .

Following [CLS23, CLW21] and chapter 4, we make the following three assumptions

1. F ∶ [0, t∗] × Vτ̄ → Vτ̄ is Lipschitz continuous and bounded, i.e.

∥F (t, Y ) − F (t, Ỹ )∥ ≤ L ∥Y − Ỹ ∥ ∀ Y, Ỹ ∈ Vτ̄
∥F (t, Y )∥ ≤ B ∀ Y ∈ Vτ̄ .

2. For Y near the exact solution A(t) and PY being the orthogonal projection onto

the tangent space TYMk
τ̄ we assume for all t ∈ [tk, tk+1] the existence of a small

ϵ > 0 such that

∥F (t, Y ) − PY F (t, Y )∥ ≤ ϵ.
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3. The error at the initial condition is bounded by ∥Y0 −A(0)∥ ≤ δ.

This gives us the following error bound which can be found in [CKLS24, Section 4.7].

Theorem 5.2: Robust error bound for parallel BUG

Under the assumptions (1.-3.) from above, the error of the numerical solution

after k time steps with the parallel BUG integrator for tree tensor networks can

be bounded by

∥Y k −A(tk)∥ ≤ c0δ + c1ϵ + c2h + c3kϑ, (5.11)

where all constants ci are independent of the singular values of matricizations of

core tensors.

We omit a detailed proof of theorem 5.2 as it goes exactly in the same way as the proof

of theorem 4.2. By induction over the height of the tree, one uses the robust error bound

for Tucker tensors from theorem 5.1 to prove the error bound for tree tensor networks.

5.3.3 A fully parallel step rejection strategy for binary trees

For some problems in applications, the solution to an ODE requires a sharp increase

of the ranks at one time step [HS23]. In this situation, both the parallel BUG and the

rank-adaptive BUG, fail to accurately capture the dynamic, as they only allow for a

doubling of the tree ranks in each time step. To overcome this issue, the introduction

of a step rejection strategy, which allows for an arbitrary increase of the ranks at each

time step, is favourable. In this subsection we will extend the step-rejection strategy

for matrices from [CKL24, Section 3.3] to binary tree tensor networks, see originally in

[CKLS24, Section 4.6].

Suppose we have a TTN Y 0
τ̄ with ranks (r0τ)τ≤τ̄ at time t0 and the TTN Ŷ 1

τ̄ with ranks

(r̂1τ)τ≤τ̄ at time t1. For each subtree τ ≤ τ̄ check the following two conditions:

1) If r̂1τ = 2r0τ for some τ < τ̄ , then the step is rejected.

2) If for some τ ≤ τ̄ the condition hητ > cϑ is satisfied (e.g. c = 10), where ητ =
∣∣Fτ(Y 0

τ ) ×1 Ũ
1,∗
τ1 ×2 Ũ

1,∗
τ2 ∣∣ and Ũ1

τi for i = 1,2 is defined as in algorithm 16, then

the step is rejected. Note that all ητ can be computed fully in parallel.

If a step is rejected, repeat the step with the augmented basis Û1
i for i = 1, . . . , d and

augmented core tensors Caug
τ , for τ ≤ τ̄ , where Caug

τ equals C0
τ augmented with zeros

such that its dimensions equal (r̂τ , r̂τ1 , . . . , r̂τm).
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The same strategy can be extended to non-binary trees. However, the number of step

rejection constraints per node, i.e., the number of possible combinations of products

with two or more Ũ1
τi factors and U0

τi as the remaining factors, scales geometrically as

2m−1. Thus, if the order of the core tensors becomes larger, the step rejection strategy

can become computationally expensive.

Remark 5.5. The step rejection strategy can be equally applied to the rank-adaptive

BUG integrator for tree tensor networks from chapter 4.



Chapter 6

Numerical experiments

In this chapter we will apply the derived integrators for tree tensor networks from chap-

ter 4 and 5 to various problems. Most of the examples are related to quantum physics.

The first example is a synthetic one to verify the exactness property of the rank-adaptive

and the fixed-rank BUG integrator. The remaining examples consider unitary and open

quantum spin systems and the Schrödinger equation with a Henon-Heiles potential, a

challenging problem from quantum molecular dynamics.

All experiments where done in Matlab using the Tensor Toolbox [BK+15], Tensorlab

3.0 [VDS+16] and the hm-toolbox [MRK20]. All simulations used a balanced binary

tree unless explicitly stated otherwise. All code is provided online on GitHub [Sul24].

6.1 Exactness property

In this section we numerically verify the exactness property from theorem 4.1 for the

fixed-rank BUG integrator and the rank-adaptive BUG integrator for tree tensor net-

works. Further, we will see that the parallel integrator for tree tensor networks from

chapter 5 does not share the exactness property. The following example was taken from

[CLW21], where the exactness property was verified for the projector-splitting integrator

for tree tensor networks.

We fix a tree τ̄ with six leaves and the tree structure as in figure 6.1. For τ̄ consider

a tree tensor network X0
τ̄ ∈ Mτ̄ , with nl = 1000 for all l ∈ L(τ̄), rτ = 10 for all τ ≤ τ̄

and randomly generated complex basis matrices and core tensors. Further, consider the

time-dependent tree tensor network X(t) =Xτ̄(t) ∈ Mτ̄ which is defined as follows. Let

Wτ ∈ Rrτ×rτ be a skew-symmetric matrix with ∣∣Wτ ∣∣F = 1, for all τ ≤ τ̄ . Then X(t) is

109
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τ̄

τ1

1 2 3

τ2

4 5

6

τ̄ = (τ1, τ2,6)

Figure 6.1: Tree structure for verifying the exactness property.

defined by

Ul(t) ∶=U0
l e

tWl , for all l ∈ L(τ̄),

Cτ(t) ∶= C0
τ ×0 etWτ , for all τ ≤ τ̄ with τ ∉ L(τ̄),

where U0
l with l ∈ L(τ̄) and C0

τ with τ ≠ l are the leaves and core tensors of X0
τ̄ ,

respectively. Hence, X(t) is of rank rτ = 10 for all τ ≤ τ̄ and all times t ∈ [0,1], i.e.
X(t) ∈ Mτ̄ . From this follows that the rank-adaptive BUG integrator and the fixed-

rank BUG integrator for tree tensor networks can reproduceX(t) exactly up to round-off

errors.

We formulate the problem as an ordinary differential equation. The continuous problem

reads

Ȧ(t) = Ẋ(t), with A(0) =X(0).

We can reformulate this problem in an other way. Suppose we already have the approx-

imation Yn at time tn to X(tn). Set ∆Xn =X(tn+1)−X(tn). Then we can compute the

approximation Xn+1 at time tn+1 = tn+h by performing one time step with an integrator

with step size h̃ = 1 of the ordinary differential equation

Ẋ(t) =∆Xn, with X(0) = Yn.

At each time step tn we compute the error ∥Yn−X(tn)∥ between the exact and numerical

solution and plot these errors over time.

The predicted property for the rank-adaptive and the fixed-rank BUG integrator from

theorem 4.1 is verified numerically in figure 6.2. Both integration schemes can reproduce

the family of tree tensor networks X(t) exactly up to round-off errors. Choosing a

smaller time step size h increases the error in the propagation as the round-off errors

can accumulate more during longer computations.

On the contrary, the parallel integrator for tree tensor networks does not share the
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Figure 6.2: Left: Error propagation of the rank-adaptive BUG integrator. Right:
Error propagation of the fixed-rank BUG integrator.

Figure 6.3: Error propagation of the parallel BUG integrator.

exactness property. In figure 6.3 we see that the errors in the propagation are of the

order of the chosen time step size.

6.2 Closed quantum spin systems

In this section we want to consider the time integration of closed quantum spin systems.

The evolution of such systems is described by the Schrödinger equation

i∂tu =Hu, u(t0) = u0, (6.1)

where H is a selfadjoint operator. For d distinguishable spin 1
2 -particles, the full state

u(t) is an element of the Hilbert space C2d . This exponential scaling in the Hilbert

space size makes direct computations with the full state impossible for a large number
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of particles. Therefore, we will represent the state u(t) and also the Hamiltonian H in

a tree tensor network format and apply the integrators from chapter 4 and 5.

6.2.1 Ising model in a transverse field

We consider the Ising model in a transverse field with next neighbor interaction, see

[Sti73] for more details. The Hamiltonian has the form

H = −Ω
d

∑
k=1

σ(k)x −
d−1
∑
k=1

σ(k)z σ(k+1)z , (6.2)

where Ω ≥ 0, σx and σz are the first and third Pauli matrices, respectively, and σ(k) =
(I⊗ ⋅ ⋅ ⋅⊗ I⊗σ⊗ I⊗ ⋅ ⋅ ⋅⊗ I) denotes the action of σ on the kth particle. This Hamiltonian

encodes an Ising model with next-neighbor interactions, i.e. only neighboring particles

interact with each other.

For the following simulations we use as an initial state

u0 =
d

⊗
k=1

⎛
⎝
1

0

⎞
⎠
∈ C2d , (6.3)

i.e. the state where all particles are spin up. Note that this initial state can be repre-

sented by a tree tensor network of rank rτ = 1 for all τ ≤ τ̄ . The basis matrices equal

Ui = (1,0)⊺ for all i = 1, . . . , d and Cτ = 1 for all core tensors. Although this is theoreti-

cally true, it is recommendable to artificially use an initial state of higher rank by using

the 2× 2 identity matrix as leaves and filling up the core tensors with zeros accordingly.

In numerical experiments, it proved to give more accurate solutions.

Error bound

We first want to verify the theoretical error bounds for the rank-adaptive BUG (theo-

rem 4.2), fixed-rank BUG (theorem 4.3) and the parallel BUG (theorem 5.2) by applying

these integrators to the Schrödinger equation (6.1) with the Hamiltonian from (6.2). We

compare the numerical solution to an exact reference solution obtained from an exact

diagonalization. Clearly the solution of (6.1) equals u(t) = e−itHu0. For a system size of

d ≤ 8, it is still feasible to compute the matrix exponential of the Hamiltonian. We then

compute the difference in Frobenius norm of the state at time T = 1, i.e.

errorBUG = ∥e−iHu0 − uBUG∥ ,

where uBUG is the numerical solution obtained by the rank-adaptive, fixed-rank or par-

allel BUG integrator for tree tensor networks at time T = 1.
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Figure 6.4: Error in Frobenius norm at time T = 1 for d = 8 particles over different
time step sizes h for rank-adaptive BUG, fixed-rank BUG and parallel BUG for TTNs.

Unspecified parameters are Ω = 1 and ϑ = 10−14.

In figure 6.4 we observe that all three integrators fulfil the theoretical error bound of

O(h). It was already numerically observed in [CEKL24] that the rank-adaptive BUG

has a higher order when applied to a non-stiff Schrödinger equation, as is the case here.

We further note that the example has rather small size since for d = 8 the integrators

can use the full Hilbert space to approximate the solution if needed, i.e. no projection

error is made.

Norm and energy preservation

By theorem 4.4 and theorem 4.5 we know that the rank-adaptive BUG for TTNs pre-

serves the norm and energy for Schrödinger systems. On the other hand, the fixed-rank

BUG and the parallel BUG do not share this property. In figure 6.5 and figure 6.6 we

verify these properties. The fixed-rank BUG and the parallel BUG can preserve norm

and energy for shorter times but struggle with the preservation for longer times. The

rank-adaptive BUG fulfils the theoretical expectations and preserves norm and energy

up to the truncation tolerance. Note that by setting the maximal rank rmax = 30 for this

simulation, the actual truncation tolerance might become larger (and unknown) than

the predefined ϑ = 10−8.

Ranks over time

By construction the rank-adaptive BUG and the parallel BUG are rank-adaptive in-

tegrators. Given a fixed tolerance ϑ, it is of interest how the ranks evolve for both

methods. In figure 6.7 we observe that the the rank-adaptive BUG integrator chooses

smaller maximal tree ranks than the the parallel BUG integrator. A similar behaviour

is also observed for different parameter choices.
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Figure 6.5: Norm (left) and error of the norm (right) over time for the rank-adaptive
BUG, fixed-rank BUG and parallel BUG for TTNs. Unspecified parameters are d = 16,

Ω = 1, ϑ = 10−8, h = 0.01 and rmax = 30.

Figure 6.6: Energy (left) and error of the energy (right) over time for the rank-
adaptive BUG, fixed-rank BUG and parallel BUG for TTNs. Unspecified parameters

are d = 16, Ω = 1, ϑ = 10−8, h = 0.01 and rmax = 30.

Figure 6.7: Maximal tree rank over time for the rank-adaptive BUG, fixed-rank BUG
and the parallel BUG for TTNs. Unspecified parameters are d = 16, Ω = 1, ϑ = 10−8,

h = 0.01 and rmax = 30.



Numerical Experiments 115

. . .

Figure 6.8: Left: Balanced binary tree. Right: Tensor train/matrix product state.

Figure 6.9: Maximal tree rank over time for the rank-adaptive BUG (left) and the
parallel BUG (right) for a balanced binary tree and a tensor train. Unspecified param-

eters are d = 16, Ω = 1, ϑ = 10−8, h = 0.01 and rmax = 150.

Comparison of different tree structures

Since each tensor can be approximated in different tree formats, it is interesting to

investigate the tree structure’s influence on the simulation. For comparison, we choose

balanced binary trees and the tensor train format. Both are standard ansatz for quantum

simulations. Graphically the tree structures are illustrated in figure 6.8 for d = 16

particles, which was taken from [CLS23, Figure 7.3]. In figure 6.9 the maximal tree rank

after each time step with the rank-adaptive and the parallel BUG is plotted for both tree

formats, allowing for a maximal rank of rmax = 150. We see that for both integrators

the tensor train format requires much higher ranks compared to the balanced binary

tree. Even though the Hamiltonian only encodes next-neighbor interactions, the tensor

train format struggles to capture long-range effects. However, the maximal rank is only

one measure of efficiency. The total memory requirement to store the state at each time

step is of interest for two reasons. First, when dealing with high-dimensional tensor

differential equations, memory can become scarce. Second, the memory requirement is

correlated with the overall computational complexity of the simulation. In figure 6.10

we observe that the memory requirements behave similarly to the maximal ranks. The

balanced binary tree can capture the dynamics for longer times with very little memory,

independent of the chosen integrator. Note that the parallel BUG chooses again mildly

higher ranks than the rank-adaptive BUG, which was already observed in figure 6.7.
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Figure 6.10: Memory requirements in bytes to store the approximation at each time
step for the rank-adaptive BUG (left) and the parallel BUG (right) for a balanced
binary tree and a tensor train. Unspecified parameters are d = 16, Ω = 1, ϑ = 10−8,

h = 0.01 and rmax = 150.

6.2.2 Ising model with long-range interactions

Recall the long-range Hamiltonian for unitary dynamics from chapter 3, with which we

want so solve the Schrödinger equation, i.e.

i∂tψ =Hψ, with H = Ω
d

∑
k=1

σ(k)x +∆
d

∑
k=1

n(k) + ν
d

∑
k≠h

1

∣k − h∣αn
(k)n(h). (6.4)

The long-range interactions make the corresponding TTNO and the time integration far

more complicated in terms of memory requirement and computational time. Neverthe-

less, the class of BUG integrators is a suitable method for computing the dynamics of

the state. Again, for all following simulations, we use the state where all particles are

spin up as an initial state, c.f. (6.3).

Error bound

As for the previous model, we want to verify the error bounds for the rank-adaptive,

fixed-rank and parallel BUG integrator. We compare the approximated solutions of

those to the numerically exact solution again obtained by an exact diagonalization, see

subsection 6.2.1 for details. Similar to the next neighbor example from subsection 6.2.1,

we see that the parallel BUG gives a coarser approximation than the rank-adaptive BUG

and the fixed-rank BUG. Again, the latter two integrators give better approximations

than the error bounds of O(h) from theorem 4.2 and theorem 4.3.

Time integration using approximated Hamiltonians

In subsection 3.3.3 of chapter 3 we presented a way to construct ϵ-approximations of
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Figure 6.11: Error in Frobenius norm at time T = 1 for d = 8 particles over different
time step sizes h for rank-adaptive BUG, fixed-rank BUG and parallel BUG for TTNs.

Unspecified parameters are Ω = 1, ∆ = 1, ν = 2 and ϑ = 10−8.

Hamiltonian using the HSS decomposition. We already verified the error bounds of the

approximated TTNO. We now want to investigate how an approximated Hamiltonian

influences the time integration.

For this we compute the dynamics of the Schrödinger equation (6.4) using the rank-

adaptive, fixed-rank and parallel BUG together with approximated Hamiltonians for

different HSS tolerances ϵ. At each time step, we compute the distance between the

BUG solution using the approximated and the exact TTNO representation, i.e.

∥XBUG(t) −Xϵ
BUG(t)∥ ,

where XBUG(t) is the BUG solution using the exact TTNO representation and Xϵ
BUG(t)

the BUG solution using the ϵ-approximated TTNO representation. The exact TTNO

representation of the Hamiltonian is obtained by applying the HSS construction with

tolerance ϵ = 10−16.

In figure 6.12 we plot the difference ∥XBUG(t) −Xϵ
BUG(t)∥ over time. We observe that

the fixed-rank and parallel BUG are more sensitive when using an approximated TTNO

for computing the dynamics. Even for a small HSS tolerance of ϵ = 10−10 the difference is
only mildly reduced to 10−5 for the fixed-rank and 10−2 for the parallel BUG. In contrast,

the difference of the solutions using the rank-adaptive BUG is of the same order as the

chosen tolerance ϵ. Thus, the rank-adaptive BUG appears to be a suitable method

when working with approximated Hamiltonians. The same behaviour is observed when

computing the difference in the magnetization in z-direction, see figure 6.13. Note that

the curves for ϵ = 10−12 are not visible as they are numerically already zero.
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Figure 6.12: Difference in Frobenius norm between the BUG solutions using the exact
and the ϵ-approximated TTNO representation of the Hamiltonian for the rank-adaptive
BUG, fixed-rank BUG and the parallel BUG. Unspecified parameters are d = 16, Ω = 1,

∆ = 1, ν = 2, ϑ = 10−8, h = 0.01 and rmax = 30.

Figure 6.13: Difference between the magnetization in z-direction of the BUG solutions
using the exact and the ϵ-approximated TTNO representation of the Hamiltonian for
the rank-adaptive BUG, fixed-rank BUG and the parallel BUG. Unspecified parameters

are d = 16, Ω = 1, ∆ = 1, ν = 2, ϑ = 10−8, h = 0.01 and rmax = 30.

Comparison of different tree structures

As in the previous subsection, we compare the influence of different tree structures. We

do this for the long-range Hamiltonian (6.4) and check how introducing long-range inter-

actions in the Hamiltonian influences the maximal tree ranks and memory requirements.

We choose the balanced binary tree and the tensor train format, illustrated already in

figure 6.8.

Figure 6.14 investigates the maximal ranks, while figure 6.15 investigates the memory

footprint. Similar to the next-neighbor example from the previous subsection, the TTN

based on a balanced binary tree can capture the dynamics with less rank and a strongly

reduced memory footprint than the tensor train format. Interestingly, the parallel BUG
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Figure 6.14: Maximal tree rank over time for the rank-adaptive BUG (left) and
the parallel BUG (right) for a balanced binary tree and a tensor train. Unspecified
parameters are d = 16, Ω = 1, ∆ = 1, ν = 2, α = 1, ϑ = 10−8, h = 0.005 and rmax = 150.

Figure 6.15: Memory requirements in bytes to store the approximation at each time
step for the rank-adaptive BUG (left) and the parallel BUG (right) for a balanced
binary tree and a tensor train. Unspecified parameters are d = 16, Ω = 1, ∆ = 1, ν = 2,

α = 1, ϑ = 10−8, h = 0.005 and rmax = 150.

integrator chooses smaller ranks compared to the rank-adaptive BUG, which was differ-

ent for the example with only next-neighbor interactions. We conclude that the maximal

ranks over time are strongly influenced by the chosen time-integration method and the

underlying model.

We know from chapter 3 that the TTNO representation in the balanced binary tree

format is more compact than the tensor train format (cf. figure 3.8). Since by figure 6.14

and figure 6.15 we observe that the balanced binary tree can capture the dynamics with

smaller ranks and less complexity, the balanced binary tree format seems to be better

suited for simulations with quantum spin systems. The balanced binary tree appears

to encode the long-range correlations in a more compact low-rank structure than the

tensor train format.
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6.3 Open quantum spin systems

In this chapter we will discuss the application of the presented integrators to a one-

dimensional long-range dissipative Ising model. The results of this section are based

on the work ”Numerical simulations of long-range open quantum many-body dynamics

with tree tensor networks” by Christian Lubich, Gianluca Ceruti, Igor Lesanovsky, Fed-

erico Carollo and the author [SLC+24].

Recall the quantum master equation (3.27) from chapter 3, where the (vectorized) den-

sity matrix ρ(t) evolves through

ρ̇(t) = L[ρ(t)] ∶= −i[H,ρ(t)] + D[ρ(t)],

and the Hamiltonian H and the decay operator D are defined as

H = Ω
D

∑
k=1

σ(k)x +∆
D

∑
k=1

n(k) + ν

2cα

D

∑
k≠h

n(k)n(h)

∣k − h∣α

D =
D

∑
k=1
[J ⊗ (J∗)⊺ − 1

2
J∗J ⊗ I − 1

2
I⊗ (J∗J)⊺]

(k)
,

see chapter 3 for details. Note that the decay rate γ is hidden in the matrix J =
√
γ
⎛
⎝
0 0

1 0

⎞
⎠
. Due to the decay operator, we have a dissipative and thus time-irreversible

system. For this reason one should not apply the projector-splitting integrator [CLW21],

as the S-step/core update is solved backwards in time. The proposed BUG integrators

in the present thesis do not have this backward step in time and are therefore better

suited for numerical simulations of this dissipative model.

In [SLC+24], the author, together with Christian Lubich, Gianluca Ceruti, Igor Lesanovsky

and Federico Carollo, investigated the model for phase transitions concerning the ratio
Ω
γ against the stationary state density < n >. Ω

γ encodes the ratio between the strength of

driving particles into an excited state and the dissipation of the system. The observable

⟨n⟩ is defined by

⟨n⟩ = 1

D
⟨ψflat∣

D

∑
k=1
(n⊗ I2)(k)∣ρ(t)⟩,

where ρ(t) denotes the solution of (3.27), I2 the 2 × 2 identity matrix and ψflat =
⊗D

k=1 (1 0 0 1)
⊺
the vector representation of the identity. For all simulations, the

fixed-rank BUG integrator for TTNs was used, since this showed the most reduced com-

putational cost. The stationary state density is obtained by computing the dynamics of

the model for long times (here T = 15) and then applying the observable to the stationary

state.
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Figure 6.16: Left: Density ⟨n⟩ over time computed with the fixed-rank BUG inte-
grator (solid lines) and other approaches for different regimes of α. Right: Numerical
convergence to the mean-field limit for α = 0. The unspecified parameters for both plots

are ∆ = −2 and ν = 5.

First, we check if the integrator can capture the physics of this model. Therefore,

we compute reference solutions for all interesting regimes, i.e. all-to-all interactions

(α = 0) for D = 32 , long-range interactions (α = 1) for D = 8 and next-neighbor

interactions (α = ∞) for D = 16. The reference solutions for the first two cases are

obtained by an exact diagonalization of the Lindblad generator. The reference solution

for the next-neighbor case is obtained by a matrix product state simulation with a time-

evolving- block-decimation (TEBD) algorithm, see [PKS+19] for a detailed description

of the TEBD method. In figure 6.16 (a) we see that the fixed-rank BUG integrator for

TTNs agrees with the reference solution in all interaction regimes. Hence, the integrator

allows us now to interpolate between the different regimes. With this knowledge, we aim

now to investigate the phase transitions. Note that figure 6.16 was taken from [SLC+24,

Figure 3].

In the case of all-to-all interactions of the sites, i.e. α = 0, it is known that the mean-field

limit (i.e. D → ∞) indeed shows a phase transition [BCFN18]. In figure 6.16 (b) we

show the density ⟨n⟩ at a stationary point for different ratios of Ω
γ , for D = 8,16,32

and maximal ranks rmax = 10,20,30 respectively. The dashed line shows the mean-field

prediction, which is exact in the limit D →∞ [BCFN18]. We observe that the fixed-rank

BUG integrator shows a numerical convergence of the stationary state density to the

mean-field limit with respect to the number of particles, which shows a phase transition.

On the other hand, it is known that for α = ∞ the phase transition is not present

anymore [JBV+18]. Hence, the question arises for which values 0 < α < ∞ the phase

transition persists.

For each value of α, we compute the stationary density for different ratios Ω
γ . Thus, for

each value of α, we obtain a curve of Ω
γ vs. ⟨n⟩ at final time T . In figure 6.17 we see
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Figure 6.17: Stationary behaviour of the density ⟨n⟩ for D = 16 particles as a function
of Ω

γ
for α = 0,0.25,0.50,0.75,1,2,5 and α = ∞. The unspecified parameters are ∆ = −2,
ν = 5, γT = 15 and rmax = 30 (note for α = 0, rmax = 20 was already enough).

that for α > 1 the density ⟨n⟩ behaves similarly to the curve of α = ∞, where ⟨n⟩ seems

to be smooth as a function of Ω
γ (solid lines). For α ≤ 1 (dashed lines), there seems to be

an emergence of a sharp crossover which looks very similar to the α = 0 case. We note

that figure 6.17 was taken from [SLC+24, Figure 4]. Hence, the numerical simulations

indicate a persistence of the phase transition for all values α ≤ 1.
These numerical findings have been confirmed by a novel work which theoretically inves-

tigates a class of models, including the one used in our simulations here. Interestingly,

the authors proved in [MLC24] that the presented numerical indications were indeed

right and the phase transition persists for this model for all values α ≤ 1.

6.4 Henon-Heiles

The time-dependent Schrödinger equation with a Henon-Heiles potential, modelling a

coupled oscillator, is a challenging problem from quantum molecular dynamics. The

problem writes as

i∂tψ =Hψ, with

H(x1, . . . , xd) = −
1

2
∆ + 1

2

d

∑
k=1

x2k + λ
d−1
∑
k=1
(x2kxk+1 −

1

2
x3k+1) , (6.5)

where ∆ denotes the Laplace operator and λ = 0.11180. The first two sums in (6.5) en-

code the harmonic part, the other terms encode the anharmonic part of the Hamiltonian.

We refer to [NM02] for a detailed description of the model.
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This problem is fundamentally different from the quantum spin systems we considered

before. The Schrödinger equation here is continuous in time and space, while the systems

before were only continuous in time. Thus, we first need to discretize in space to represent

the state ψ and the Hamiltonian H in tree tensor network format.

We follow [LOV15] for the discretization of the problem. The main difference with

[LOV15] lies in the fact that the authors used a tensor train ansatz together with the

projector-splitting integrator to approximate the solution. We consider this problem

on the d-dimensional cube [−10,10]d. As (6.5) is defined on the full space Rd, we

need appropriate boundary conditions. To deal with that we choose the same complex

absorbing potential (CAP) as in [LOV15], which is defined as

W (x1, ..., xd) = −i
d

∑
k=1
((xk − 6)3+ + (xk + 6)3−) . (6.6)

Here z+ and z− are defined as

z+ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

z, if z ≥ 0

0, else
and z− =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

z, if z ≤ 0

0, else
.

For the discretization of the problem we are taking a discrete variable representation

(DVR) basis with 31 basis functions in each dimension over the interval (−10,10). For

details on DVR basis representation we refer to the next paragraph. The initial wave

function ψ0 is represented as a binary TTN with 31 basis functions in each degree of

freedom, i.e. nl = 31 for all l ∈ L(τ̄).

As an initial function ψ0 at time t = 0, we choose a product of shifted, one-dimensional

Gaussians

ψ0(x) =
d

∏
k=1

exp(−(xk − 2)
2

2
) .

In the following, we present how the problem can be discretized and how one can apply

dynamical low-rank robust numerical integrators to the problem.

Discrete Variable Representation and Precomputations

The discrete variable representation is a method to represent a wave function in a primi-

tive basis. Here, we follow the ideas in [BJWM00, Appendix B]. There are many possible

choices for the basis, e.g. Legendre polynomials. We consider the basis functions

ϕn(x) = (
1

b − a)
1/2

exp(2πin(x − a)
b − a ) for ∀n ∈ N.
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The family (ϕn)n∈N defines an orthonormal L2-basis and is equivalent to a Fourier basis.

With this definition, we easily obtain

d2

dx2
ϕn(x) = (

2iπn

b − a )
2

ϕn(x).

We follow the MCTDH ansatz. For each single particle function, consider a truncated

basis set with Ki primitive basis functions (ϕ(i)n )Ki
n=1 and with x = (x1, . . . , xd) represent

the ψ in the truncated basis by

ψ(x, t) =
K1

∑
j1=1
⋯

Kd

∑
jd=1

Aj1,...,jd(t)
d

∏
n=1

ϕ
(n)
jn
(xn). (6.7)

The tensor A(t) = (Aj1,...,jd(t)) ∈ CK1×⋅⋅⋅×Kd does now only depend on time, while the

primitive basis is time-independent. To evolve the coefficients over time we rewrite (6.5)

via the Bra-Ket notation and by testing the equation in the primitive basis we obtain

⟨
d

∏
k=1

ϕ
(n)
jk
∣ψ̇(x, t)⟩ = ⟨

d

∏
k=1

ϕ
(n)
jk
∣ − iH ∣ψ(x, t)⟩, (6.8)

for all possible combinations of basis functions ϕ
(n)
jk

. Inserting (6.7) for ψ and using the

orthonormality of the primitive DVR basis we obtain the ODE

∑
j1,...,jd=1

Ȧj1,...,jd(t) = ∑
j1,...,jd=1

Aj1,...,jd(t) ⟨
d

∏
n=1

ϕ
(n)
jn
∣ − iH ∣

d

∏
n=1

ϕ
(n)
jn
⟩. (6.9)

The remaining inner products in (6.9) can be all precomputed since they do not depend

on time. Due to that all ϕ
(n)
i are one-dimensional functions, the large inner product

⟨∏d
n=1 ϕ

(n)
jn
∣−iH ∣∏d

n=1 ϕ
(n)
jn
⟩ on Rd boils down to compute d inner products in one dimen-

sion. Those one-dimensional integrals are approximated with a high-order quadrature

formula.

For the Laplace part for example, the integral is of the form

−i
2
⟨ϕ(n)ji

∣ d
2

dx2
∣ϕ(n)jk

⟩.

For i = 1, . . . , d define the matrix Di = (−i2 ⟨ϕ
(i)
j ∣

d2

dx2 ∣ϕ(i)k ⟩)
Ki

j,k=1. Analogously, one can

precompute all integrals for the potential. Denote by M i
1 the matrix for the inner

products corresponding to x2i , by M i
2 the one for xi, by M i

3 the one for x3i and by W i

the one for the CAP potential. Altogether, this gives us a tensor ODE of the form

Ȧ(t) = A(t)(
d

⨉
i=1
(D(i) +M (i)

1 +M
(i)
3 +W

(i)) +
d−1
⨉
i=1

M
(i)
1 M

(i+1)
2 ) , (6.10)
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where D(i) denotes the action of the matrix Di on the ith site and analogously for the

other matrices. Further, we introduce the notation

TA(t) ∶= A(t)
d

⨉
i=1

D(i) (6.11)

V A(t) ∶= A(t)(
d

⨉
i=1
(M (i)

1 +M
(i)
3 +W

(i)) +
d−1
⨉
i=1

M
(i)
1 M

(i+1)
2 ) . (6.12)

Finally, we represent A(t) in a tree tensor network format, which encodes now all co-

efficients of the DVR basis representation, and apply the BUG integrators to solve the

tensor ODE (6.10). Note that the TTNO corresponding to the operator in (6.10) can

be represented as a rank four TTNO, as only next-neighbor coupling is enabled, cf. the

discussion in chapter 3.

Splitting

Due to the Laplacian part in (6.5) and (6.10) the problem is stiff. If an explicit time

integration is performed in the proposed BUG integrators, this will require very small

time-step sizes. Indeed, if the BUG integrators are applied with a moderate time step

size (say h = 0.01) the numerical solution is observed to become often unstable.

To overcome this issue, we apply a standard Strang splitting for the discretized Schrödinger

equation (6.10).

e−ihH ≈ e−i
h
2
V e−ihT e−i

h
2
V , (6.13)

i.e. we perform a half-step only with the potential followed by a full step with the kinetic

part and the second half-step with the potential. The Strang splitting is a second-order

approximation in time and one of the most used splitting schemes in computations

[Lub08]. By the splitting, the stiff part T and the non-stiff part V can be treated

separately. The free Schrödinger equation with only the discretized Laplace operator

can be written (cf. subsection 3.1.1) as

u̇(t) = Tu(t) = u(t)
d

⨉
j=1

Dj , u(0) = u0,

where Dj is a discretization of the second derivative in jth direction. Notably, this part

can be treated exactly. The exact solution for the discretized free Schrödinger equation

can be written as

u(t) = u0
d

⨉
j=1

e−itD
j

,
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which is clear by taking the time derivative of u(t). To approximate the Schrödinger

equation having only the potential V , we apply the BUG integrators from chapter 4 and

chapter 5.

Numerical results

In quantum chemistry, the vibrational spectrum of a molecule is of interest and is ob-

tained as follows. Denote by X(t) the numerical solution at time t. At each time step,

we compute the autocorrelation function defined by a(t) = ⟨X(t),X(0)⟩, i.e. the over-

lap of X(t) with the initial data. As in [NM02], the spectrum is now calculated via the

Fourier transform of the autocorrelation function a(t) by

S(ω) = 1

π
Re∫

∞

0
e−iωta(t) dt.

If the dynamic is approximated accurately, S(ω) will be a sum of delta functions, where

each peak is located at an eigenvalue of the operator H. For a sufficiently accurate

solution one must compute the dynamics for long times.

In numerical simulations for the Henon-Heiles potential, the parallel BUG Integrator

for tree tensor networks appeared to be numerically more unstable. Already for the

matrix case (i.e. d = 2), norm and energy behave very nonphysical and the vibrational

spectrum does not show the expected behaviour, whereas the rank-adaptive and fixed-

rank BUG produce the expected solutions, see figure 6.18 for the vibrational spectrum

and figure 6.19 for norm and energy conservation. The rank-adaptive BUG preserves

the norm and the energy better than the fixed-rank BUG, which verifies our theoretical

results from chapter 4 again. Note that decreasing the time step size improves the

results of the parallel BUG integrator but one needs significantly smaller time step sizes

to obtain similar results to the rank-adaptive or fixed-rank BUG. Increasing the rank

did not affect the simulation. Therefore, we only consider the rank-adaptive and the

fixed-rank BUG in the following simulations.

We now turn to simulations with a larger number of particles. In figure 6.20 we observe

that the fixed-rank BUG produces the expected results (cf. [NM02]), i.e. peaks at the

eigenvalues of the Hamiltonian on top of a Gaussian function. Surprisingly, the rank-

adaptive BUG does not produce these results but performs similarly to the parallel

BUG in figure 6.18. Increasing the ranks did not improve the vibrational spectrum. We

investigate this in more detail. In figure 6.21 we plot the autcorrelation function over

time, computed with both integrators. We observe that the rank-adaptive BUG fails to

capture the dynamics. After short times, the autocorrelation behaves as for the fixed-

rank BUG but for longer times the rank-adaptive BUG fails to produce the smaller peaks

in the autocorrelation. Therefore, the rank-adaptive BUG is only capable of producing a
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Figure 6.18: Vibrational spectrum for d = 2 particles computed with the rank-
adaptive BUG (left), fixed-rank BUG (middle) and parallel BUG (right). Unspecified

parameters are T = 60, h = 0.01, rmax = 4.

Figure 6.19: Norm (top) and energy (bottom) over time for d = 2 particles computed
with the rank-adaptive BUG (left), fixed-rank BUG (middle) and parallel BUG (right).

Unspecified parameters are T = 60, h = 0.01, rmax = 4.
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Figure 6.20: Vibrational spectrum for d = 8 particles computed with the rank-
adaptive BUG (left) and fixed-rank BUG (right). Unspecified parameters are T = 30,

h = 0.005, rmax = 4.

Figure 6.21: Autocorrelation function a(t) for d = 8 particles computed with the
rank-adaptive BUG (top) and fixed-rank BUG (bottom). Unspecified parameters are

T = 30, h = 0.005, rmax = 4.

Gaussian function without the peaks. Similar results are obtained for higher-dimensional

simulations, see figure 6.22. Only the fixed-rank BUG produced the expected vibrational

spectra. This should be investigated in more detail in the future. One potential issue

might arise from the truncation procedure where only high-energy basis functions are

preserved along the time integration. Finally, note that all simulations in figure 6.22

showed good approximations when using a maximal rank of four and six, respectively.

Thus, the problem appears to be very much of a low-rank structure.
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Figure 6.22: Vibrational spectrum for d = 8 (left), d = 10 (middle) and d = 16 (right)
particles computed with the fixed-rank BUG (right). Unspecified parameters are: for
all simulations h = 0.005. Further, left T = 30 and rmax = 4, middle T = 60 and rmax = 4,

right T = 50 and rmax = 6.





Chapter 7

Conclusion

To summarise the results from chapter 6, we see that the choice of an integrator is very

much problem-dependent. There is no clear superior method, but each integrator has ad-

vantages in different regimes. For the quantum spin systems, the rank-adaptive and the

fixed-rank BUG integrator performed well. Although the parallel BUG gives a rougher

approximation of the solution, its potential lies in the context of high-performance com-

puting. Its fully parallel structure combined with a large cluster allows for much more

efficient simulations of quantum systems with many (say d > 30) particles. In the con-

text of the Henon-Heiles potential, only the fixed-rank BUG appeared to produce stable

and correct approximations. Since the rank-adaptive and the parallel BUG appeared

to perform poorly, a further investigation of how the augmentation in those integrators

influences the stability of the simulation would be of interest.

All presented quantum spin systems were one-dimensional systems. For many appli-

cations, like the presented quantum computers from the introduction, two- and three-

dimensional lattices of particles are of interest. The tree tensor network format directly

allows for simulations of such quantum systems and could be a subject of future research.

In section 6.2 we studied the influence of the tree structure on the tree ranks and

the memory footprint and in chapter 3 on the operator representation. In both cases,

we studied balanced binary trees and the tensor train format, which are a standard

tool in computing quantum dynamics. However, there are many more possible tree

structures, which could perform better in certain situations. To our knowledge, there is

no rigorous mathematical analysis for this, nor clear heuristics for a large class of tree

structures. Direct comparisons with the two-dimensional PEPS format, could lead to

similar results as the comparison of the balanced binary tree and the tensor train format

in one dimension.

131
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All presented time integration schemes are first-order methods in time, cf. theorem 4.2,

theorem 4.3 and theorem 5.2. The generalization of higher-order methods for matrices

to tree tensor networks and generally the derivation of higher-order methods for tree

tensor networks could be of interest to further research. Since the rank-adaptive BUG

integrator often shows a second-order error behaviour when applied to non-stiff problems

like the quantum spin systems, it would be interesting to see if one could prove a robust

second-order error bound in this setting.
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