Rank-adaptive time integration of tree tensor networks

Gianluca Ceruti ${ }^{2}$, Christian Lubich ${ }^{1}$, Dominik Sulz ${ }^{1}$
${ }^{1}$ Mathematisches Institut, Universität Tübingen
${ }^{2}$ Institute of Mathematics, EPF Lausanne

Problem of interest

Our interest is to use tree tensor networks (TTN's) to approximate solutions of evolutionary tensor differential equations

$$
\begin{equation*}
\dot{A}(t)=F(t, A(t)), \quad A\left(t_{0}\right)=A^{0} \in \mathbb{C}^{n_{1} \times \cdots \times n_{d}} . \tag{1}
\end{equation*}
$$

Such problems typically arise in quantum physics, where the high order d of the differential equation is a main challenge. Tree tensor networks are a hierarchical data sparse format to approximate tensors of high order. Our model problem will be the tensor Schrödinger equation

$$
\begin{equation*}
i \hbar \dot{A}(t)=H[A(t)] . \tag{2}
\end{equation*}
$$

Dynamical low-rank approximation

On a manifold \mathcal{M} we impose the time-dependent Dirac-Frenkel variational principle, see [1]: We determine $X=X(t)$ from the condition that at time t its derivative \dot{X}, which lies in $\mathcal{T}_{X} \mathcal{M}$, satisfies

$$
\dot{X} \in \mathcal{T}_{X} \mathcal{M} \text { such that }\left\langle\dot{X}-\frac{1}{i \hbar} H[X], Y\right\rangle=0 \forall Y \in \mathcal{T}_{X} \mathcal{M}
$$

This can be interpreted as an orthogonal projection of the right-hand side $\frac{1}{i \hbar} H[X]$ onto the tangent space $\mathcal{T}_{X} \mathcal{M}$.

Tree tensor networks

Let \mathcal{T} be the set of ordered trees with unequal leaves and $\mathcal{L}=\{1, \ldots, d\}$ the set of leaves. Further let $\bar{\tau} \in \mathcal{T}$ be a fixed tree with d leaves. To each leaf we associate a basis matrix $\mathbf{U}_{/}$and to each subtree $\tau \leq \bar{\tau}$ a connection tensor C_{τ}. We define a tensor $X_{\bar{T}}$ with a tree tensor network representation (or briefly a TTN) recursively as follows:
(i) For each leaf $\tau=I \in \mathcal{L}$, we set

$$
x_{l}:=\mathbf{U}_{l}^{\top} \in \mathbb{C}^{r_{1} \times n_{l}}
$$

(1) For each subtree $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$ (for some $m \geq 2$) of $\bar{\tau}$, we set
$n_{\tau}=\prod_{i=1}^{m} n_{\tau_{i}}$ and \mathbf{I}_{τ} the identity matrix of dimension r_{τ}, and

$$
\begin{aligned}
& X_{\tau}:=C_{\tau} \times{ }_{0} \mathbf{I}_{\tau} X_{i=1}^{m} \mathbf{U}_{\pi_{i}} \in \mathbb{C}^{r_{\tau} \times n_{r_{1}} \times \cdots \times n_{\tau m}}, \\
& \mathbf{U}_{\tau}:=\operatorname{Mat}_{0}\left(X_{\tau}\right)^{\top} \in \mathbb{C}^{n_{\tau} \times r_{\tau}} .
\end{aligned}
$$

The subscript 0 in \times_{0} and $\operatorname{Mat}_{0}\left(X_{\tau}\right)$ refers to the mode 0 of dimension r_{τ} in $\mathbb{C}^{r_{\tau} \times r_{\tau_{1}} \times \cdots \times r_{\tau_{m}}}$.

Figure: Different examples for TTN's (from left to right): matrix, Tucker tensor, general TTN, tensor train/matrix product state.

The red balls encode a connecting tensor of matching order, while the nodes n_{l} encode a basis matrix/leaf $\mathbf{U}_{/}$.

A rank-adaptive integrator for TTN's

We present a rank-adaptive integrator for tree tensor networks which extends the work of [3]. Suppose we have a TTN

$$
X_{\tau}^{0}=C_{\tau}^{0} \times_{0} \mathbf{I}_{\tau} x_{i=1}^{m} \mathbf{U}_{\tau_{i}}^{0}
$$

at time t_{0} and a given function F_{τ}, which maps a TTN to a TTN. The idea is to first update all the basis matrices $\mathbf{U}_{\tau_{i}}^{0}$ in parallel (via subflow $\Phi_{\tau}^{(i)}$) and then update the connecting tensor C_{τ}^{0} (via subflow Ψ_{τ}, i.e.

$$
\widehat{X}_{\tau}^{1}=\Psi_{\tau} \circ\left(\Phi_{\tau}^{(1)}, \ldots, \Phi_{\tau}^{(m)}\right)\left(X_{\tau}^{0}\right)
$$

All the ranks of \widehat{X}_{τ}^{1} are (usually) doubled. To get the approximation X_{τ}^{1} at time t_{1} we apply a truncation function θ with a given tolerance ϑ after updating the whole tree $\bar{\tau}$, i.e. $X_{\bar{\tau}}^{1}=\theta\left(\widehat{X}_{\bar{\tau}}^{1}\right)$. By augmentation and truncation of the TTN at each time step the algorithm is rank-adaptive.

The subflow $\Phi_{T}^{(i)}$ applied to a TTN solves a small matrix ODE if the i-th subtree is a leaf. If the i-th subtree is again a TTN then we apply the algorithm recursively to this smaller tree.

begin

$Y_{\tau_{i}}^{0}=X_{\tau_{i}}^{0} \times_{0} S_{\tau_{i}}^{0, T}$, with $\operatorname{Mat}_{i}\left(C_{\tau}^{0}\right)^{\top}=Q_{\tau_{i}}^{0} S_{\tau_{i}}^{0, T}$
if $\tau_{i}=l$ is a leaf then
solve $\dot{Y}_{l}=F_{l}\left(t, Y_{l}(t)\right), \quad Y_{l}\left(t_{0}\right)=Y_{l}^{0}$
set $\widehat{\mathbf{U}}_{l}$ as an ONB of the range of $\left(Y_{l}\left(t_{1}\right)^{\top}, \mathbf{U}_{l}^{0}\right) \in \mathbb{C}^{n_{l} \times \hat{r}_{l}}, \hat{r}_{l} \leq 2 r_{l}^{0}$ set $\widehat{M}_{l}=\widehat{\mathbf{U}}_{l}^{*} \mathbf{U}_{l}^{0}$
else
$\left[\widehat{Y}_{\tau_{i}}^{1}, \widehat{C}_{\tau_{i}}^{0}\right]=$ rank-adapt-TTN-integrator $\left(\tau_{i}, Y_{\tau_{i}}^{0}, F_{\tau_{i}}, t_{0}, t_{1}\right)$
set $\widehat{Q}_{\tau_{i}}$ as an ONB of the range of $\left(\operatorname{Mat}_{0}\left(\widehat{C}_{\tau_{i}}^{1}\right)^{\top}, \operatorname{Mat}_{0}\left(\widehat{\mathcal{C}}_{\tau_{i}}^{0}\right)^{\top}\right)$
set $\widehat{\mathbf{U}}_{\tau_{i}}=\operatorname{Mat}_{0}\left(\widehat{X}_{\tau_{i}}^{1}\right)^{\top}$, where $\widehat{X}_{\tau_{i}}^{1}$ is obtained from $\widehat{Y}_{\tau_{i}}^{1}$ by replacing
the connecting tensor with $\widehat{\mathcal{C}}_{\pi_{i}}=\operatorname{Ten}_{0}\left(\widehat{Q}_{\tau_{i}}^{\top}\right)$
set $\widehat{M}_{\tau_{i}}=\widehat{\mathbf{U}}_{\pi_{i}}^{*} \mathbf{U}_{\tau_{i}}^{0}$
The subflow Ψ_{τ} solves a small tensor ODE, which can be interpreted as a Galerkin method on the updated subspace.

begin

set $\widehat{C}_{\tau}^{0}=C_{\tau}^{0} X_{i=1}^{m} \widehat{M}_{\tau_{i}}$
solve the tensor ODE

$$
\dot{\overrightarrow{\boldsymbol{C}}}_{\tau}(t)=F_{\tau}\left(t, \widehat{\boldsymbol{C}}_{\tau}(t) \mathrm{x}_{i=1}^{m} \widehat{\mathbf{U}}_{\pi i}\right) \mathrm{x}_{i=1}^{m} \hat{\mathbf{U}}_{\pi}^{*}, \widehat{\boldsymbol{\mathcal { C }}}_{\tau}\left(t_{0}\right)=\hat{\boldsymbol{C}}_{\tau}^{0}
$$

set $\widehat{C}_{\tau}^{1}=\widehat{C}_{\tau}\left(t_{1}\right)$

Robust convergence and preserving properties

(1) Let $A(t)$ be the exact and $X_{\bar{\tau}}^{n}$ the numerical solution at time $t_{0}+n h$. Further let $F_{\bar{\tau}}$ be Lipschitz continuous and bounded. Suppose that $\left\|(I-P(Y)) F_{\bar{\tau}}(t, Y)\right\| \leq \epsilon \forall Y \in \mathcal{M}$ in a neighborhood of $A\left(t_{n}\right)$, where $P(Y)$ denotes the projection onto $\mathcal{T}_{\mathcal{Y}} \mathcal{M}$. Then it holds

$$
\left\|A\left(t_{n}\right)-X_{\bar{\tau}}^{n}\right\|=\mathcal{O}(h+\epsilon+\vartheta) .
$$

(2) Let $A(t)$ be a continuous and differentiable family of TTN's of full tree rank $\left(r_{\tau}\right)_{\tau \leq \bar{\tau}}$ for $t_{0} \leq t \leq t_{1}$. Further assume that at time t_{1} all restricted subtrees $\mathcal{A}_{\tau}\left(t_{1}\right)$ have full tree rank $\left(r_{\sigma}\right)_{\sigma \leq \tau}$ for all $\tau \leq \bar{\tau}$. Then for $F(t, Y)=A(t)$ with $A\left(t_{0}\right)=X_{\bar{\tau}}^{0}$ the rank-adaptive TTN integrator is exact, i.e.

$$
A\left(t_{1}\right)=\widehat{X}_{\bar{T}}^{1}
$$

(3) If F_{τ} satisfies $\operatorname{Re}\left\langle Y, F_{\bar{\tau}}(t, Y)\right\rangle=0 \forall Y$ and all t, then with $c_{\tau}=\left\|C_{\bar{\tau}}\right\|\left(d_{\bar{\tau}}-1\right)+1$ we have

$$
\left|\left\|X_{\bar{\tau}}^{1}\right\|-\left\|X_{\bar{\tau}}^{0}\right\|\right| \leq c_{\bar{\tau}} \vartheta
$$

(4) Consider the tensor Schrödinger equation (2) and let $E(Y)=\langle Y, H[Y]\rangle$. Then it holds for every step size h

$$
\left|E\left(X_{\bar{\tau}}^{1}\right)-E\left(X_{\bar{\tau}}^{0}\right)\right| \leq c_{\bar{\tau}} \vartheta \| H\left[X_{\bar{\tau}}^{1}+\widehat{X}_{\bar{T}}^{1}\right]| | .
$$

Numerical experiments

We apply the integrator to a problem from quantum physics - the Ising model in a transverse field with next neighbor interaction

$$
\mathrm{i} \partial_{t} \psi=H \psi \text { with } H=-\sum_{k=1}^{d} \sigma_{x}^{(k)}-\sum_{k=1}^{d-1} \sigma_{z}^{(k)} \sigma_{z}^{(k+1)}
$$

Left: Error of magnetization $\langle\psi| M_{z}|\psi\rangle=\frac{1}{d} \sum_{k=1}^{d}\langle\psi| \sigma_{z}^{(k)}|\psi\rangle$ for $\tau=0.01$, $d=10$ particles and different ϑ. Right: $d=16, \tau=0.01$ and $\vartheta=10^{-8}$. Blue line gives the max. rank of a binary tree while the red line is the max. rank of a tensor train/matrix product state.

References

[1] O. Koch, Ch. Lubich. Dynamical tensor approximation, SIAM J. Matrix Anal. 31 (2010), 2360-2375.
[2] G. Ceruti, Ch. Lubich, D. Sulz. Rank-adaptive time integration of tree tensor networks, (submitted) 2022.
[3] G. Ceruti, J. Kusch, Ch. Lubich. A rank-adaptive robust integrator for dynamical low-rank approximation, to appear in BIT.

