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Problem of interest
Consider the one-dimensional quantum systems consisting of D distin-
guishable d-level particles undergoing Markovian open quantum dynam-
ics. The density matrix evolves through the differential equation

ρ̇(t) = L[ρ(t)] := −i [H, ρ(t)] +D[ρ(t)] , (1)

where H is a long-range Hamilton operator and D a dissipator of the form
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with jump operators Jµ encoding how the environment affects the dynam-
ics.

Tree tensor networks
Let τ̄ ∈ T be a fixed tree with d leaves. To each leaf we associate a basis
matrix Ul and to each subtree τ ≤ τ̄ a connection tensor Cτ . We define a
tensor Xτ̄ with a tree tensor network (TTN) recursively as follows:

i For each leaf τ = l ∈ L, we set

Xl := U>l ∈ Crl×nl .

ii For each subtree τ = (τ1, . . . , τm) (for some m ≥ 2) of τ̄ , we set
nτ =

∏m
i=1 nτi and Iτ the identity matrix of dimension rτ , and

Xτ := Cτ ×0 Iτ Xm
i=1 Uτi ∈ Crτ×nτ1×···×nτm,

Uτ := Mat0(Xτ)> ∈ Cnτ×rτ .

The subscript 0 in ×0 and Mat0(Xτ) refers to the mode 0 of dimension
rτ in Crτ×rτ1×···×rτm.
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Figure: Different examples for TTN’s (from left to right): matrix, Tucker tensor, binary
TTN, matrix product state.

The red balls encode a connecting tensor of matching order, while the
nodes nl encode a basis matrix/leaf Ul.

An adaptive integrator for TTN’s
We present a integrator for TTNs which is adaptive in the bond dimension
and extends the work of [2]. Suppose we have a TTN

X 0
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τ ×0 Iτ Xm
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at time t0. The idea is to first update all the basis matrices U0
τi

in parallel
(subflow Φ

(i)
τ ) and then update the connecting tensor C0

τ (subflow Ψτ), i.e.

X̂ 1
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All the ranks of X̂ 1
τ are (usually) doubled. To get the approximation X 1

τ at
time t1 we apply a truncation θ with a given tolerance ϑ, i.e. X 1

τ̄ = θ(X̂ 1
τ̄ ).

The subflow Φ
(i)
τ applied to a TTN solves a small matrix ODE if the i-th

subtree is a leaf, otherwise it is applied recursively.
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if τi = l is a leaf then

solve Ẏl = Fl(t ,Yl(t)), Yl(t0) = Y 0
l

set Ûl as an ONB of the range of (Yl(t1)>,U0
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τi

by replacing
the connecting tensor with Ĉτi = Ten0(Q̂>τi
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set M̂τi = Û∗τi
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The subflow Ψτ solves a small tensor ODE, which can be interpreted as
a Galerkin method on the updated subspace.
begin

set Ĉ0
τ = C0

τ Xm
i=1 M̂τi

solve the tensor ODE
˙̂Cτ(t) = Fτ(t , Ĉτ(t) Xm

i=1 Ûτi) Xm
i=1 Û∗τi

, Ĉτ(t0) = Ĉ0
τ

set Ĉ1
τ = Ĉτ(t1)

Mathematical properties
i Let A(t) be the exact and X n

τ̄ the numerical solution at time t0 + nh
and ε be the projection error onto the manifold of TTNs. Then the
following error bound holds

||A(tn)− X n
τ̄ || = O(h + ε + ϑ).

ii For Schrödinger-type systems the integrator is energy and norm
preserving up to the truncation error ϑ.

Results
We apply the integrator to the open quantum system (1) and look at the
stationary behavior of the density 〈n〉 as a function of Ω/γ. In the follow-
ing figure we see convergence to the mean-field result for α = 0 and a
persistence of the phase transition for all α < 1.

Figure: Left: for α = 0 the integrator converges to the mean field limit. Right: the phase
transition in α persists for all α < 1.

Further we compare how the chosen tree structure affects the bond di-
mensions of the state over time and the TTN representation of the oper-
ator (1), i.e. the TTNO. Note that binary trees and MPS have the same
number of nodes. All simulation were done with α = γ = 1, ∆ = −2,
Ω = 0.4 and V = 2.

Figure: Simulation for d = 8. Left: Max. bond dimension of the state over time. Right:
Summed bond dimension of the state over time.

Figure: Left: Max. bond dimension needed for a TTNO representation of the operator.
Right: Summed bond dimension needed for a TTNO representation of the operator.
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