Simulation of long-range quantum spin systems using tree tensor networks

Dominik Sulz¹

¹ Institute of Mathematics, University of Tübingen

Problem of interest

Consider the one-dimensional quantum systems consisting of D distinguishable d-level particles undergoing Markovian open quantum dynamics. The density matrix evolves through the differential equation

$$\dot{\rho}(t) = \mathcal{L}[\rho(t)] := -i[H, \rho(t)] + \mathcal{D}[\rho(t)], \qquad (1)$$

where H is a long-range Hamilton operator and D a dissipator of the form

$$H = \Omega \sum_{k=1}^{D} \sigma_{x}^{(k)} + \Delta \sum_{k=1}^{D} n^{(k)} + \frac{V}{2c_{\alpha}} \sum_{k\neq h=1}^{D} \frac{n^{(k)}n^{(h)}}{|k-h|^{\alpha}}, \qquad (2)$$
$$\mathcal{D}[\rho] = \sum_{\mu} \left(J_{\mu}\rho J_{\mu}^{\dagger} - \frac{1}{2} \left\{ \rho, J_{\mu}^{\dagger} J_{\mu} \right\} \right), \qquad (3)$$

with jump operators $\textbf{\textit{J}}_{\mu}$ encoding how the environment affects the dynamics.

Mathematical properties

• Let A(t) be the exact and $X_{\overline{\tau}}^n$ the numerical solution at time $t_0 + nh$ and ϵ be the projection error onto the manifold of TTNs. Then the following error bound holds

 $||\mathbf{A}(t_n) - \mathbf{X}_{\overline{\tau}}^n|| = \mathcal{O}(h + \epsilon + \vartheta).$

f For Schrödinger-type systems the integrator is energy and norm preserving up to the truncation error ϑ .

Results

We apply the integrator to the open quantum system (1) and look at the stationary behavior of the density $\langle n \rangle$ as a function of Ω/γ . In the following figure we see convergence to the mean-field result for $\alpha = 0$ and a persistence of the phase transition for all $\alpha < 1$.

Tree tensor networks

Let $\bar{\tau} \in \mathcal{T}$ be a fixed tree with *d* leaves. To each leaf we associate a basis matrix \mathbf{U}_{l} and to each subtree $\tau \leq \bar{\tau}$ a connection tensor C_{τ} . We define a tensor $X_{\bar{\tau}}$ with a tree tensor network (TTN) recursively as follows: **①** For each leaf $\tau = l \in \mathcal{L}$, we set

 $X_I := \mathbf{U}_I^{ op} \in \mathbb{C}^{r_I imes n_I}$.

() For each subtree $\tau = (\tau_1, \ldots, \tau_m)$ (for some $m \ge 2$) of $\overline{\tau}$, we set $n_{\tau} = \prod_{i=1}^{m} n_{\tau_i}$ and \mathbf{I}_{τ} the identity matrix of dimension r_{τ} , and

 $X_{ au} := C_{ au} imes_0 \mathbf{I}_{ au} imes_{i=1}^m \mathbf{U}_{ au_i} \in \mathbb{C}^{r_{ au} imes n_{ au_1} imes \cdots imes n_{ au_m}}, \ \mathbf{U}_{ au} := \mathbf{Mat}_0 (X_{ au})^{ op} \in \mathbb{C}^{n_{ au} imes r_{ au}}.$

The subscript 0 in \times_0 and $Mat_0(X_{\tau})$ refers to the mode 0 of dimension r_{τ} in $\mathbb{C}^{r_{\tau} \times r_{\tau_1} \times \cdots \times r_{\tau_m}}$.

Figure: Different examples for TTN's (from left to right): matrix, Tucker tensor, binary TTN, matrix product state.

The red balls encode a connecting tensor of matching order, while the nodes n_l encode a basis matrix/leaf **U**_l.

Figure: Left: for $\alpha = 0$ the integrator converges to the mean field limit. Right: the phase transition in α persists for all $\alpha < 1$.

Further we compare how the chosen tree structure affects the bond dimensions of the state over time and the TTN representation of the operator (1), i.e. the TTNO. Note that binary trees and MPS have the same number of nodes. All simulation were done with $\alpha = \gamma = 1$, $\Delta = -2$, $\Omega = 0.4$ and V = 2.

An adaptive integrator for TTN's

We present a integrator for TTNs which is adaptive in the bond dimension and extends the work of [2]. Suppose we have a TTN

 $X^0_{ au} = C^0_{ au} imes_0 \mathbf{I}_{ au} imes^m_{i=1} \mathbf{U}^0_{ au_i}$

at time t_0 . The idea is to first update all the basis matrices $\mathbf{U}_{\tau_i}^0$ in parallel (subflow $\Phi_{\tau}^{(i)}$) and then update the connecting tensor C_{τ}^0 (subflow Ψ_{τ}), i.e.

 $\widehat{X}_{\tau}^{1} = \Psi_{\tau} \circ (\Phi_{\tau}^{(1)}, \ldots, \Phi_{\tau}^{(m)})(X_{\tau}^{0}).$

All the ranks of \widehat{X}_{τ}^{1} are (usually) doubled. To get the approximation X_{τ}^{1} at time t_{1} we apply a truncation θ with a given tolerance ϑ , i.e. $X_{\overline{\tau}}^{1} = \theta(\widehat{X}_{\overline{\tau}}^{1})$. The subflow $\Phi_{\tau}^{(i)}$ applied to a TTN solves a small matrix ODE if the *i*-th subtree is a leaf, otherwise it is applied recursively.

begin

 $\begin{aligned} \widehat{Y}_{\tau_{i}}^{0} &= X_{\tau_{i}}^{0} \times_{0} S_{\tau_{i}}^{0,\top}, \text{ with } \mathbf{Mat}_{i}(C_{\tau}^{0})^{\top} = Q_{\tau_{i}}^{0} S_{\tau_{i}}^{0,\top} \\ \text{if } \tau_{i} &= l \text{ is a leaf then} \\ | \text{ solve } \widehat{Y}_{l} &= F_{l}(t, Y_{l}(t)), Y_{l}(t_{0}) = Y_{l}^{0} \\ \text{ set } \widehat{\mathbf{U}}_{l} \text{ as an ONB of the range of } (Y_{l}(t_{1})^{\top}, \mathbf{U}_{l}^{0}) \in \mathbb{C}^{n_{l} \times \hat{r}_{l}}, \ \hat{r}_{l} \leq 2r_{l}^{0} \\ \text{ set } \widehat{M}_{l} &= \widehat{\mathbf{U}}_{l}^{*} \mathbf{U}_{l}^{0} \end{aligned}$

else

 $[\widehat{Y}_{\tau_i}^1, \widehat{C}_{\tau_i}^0] = \text{rank-adapt-TTN-integrator} (\tau_i, Y_{\tau_i}^0, F_{\tau_i}, t_0, t_1)$ set \widehat{Q}_{τ_i} as an ONB of the range of $(\text{Mat}_0(\widehat{C}_{\tau_i}^1)^{\top}, \text{Mat}_0(\widehat{C}_{\tau_i}^0)^{\top})$ set $\widehat{U}_{\tau_i} = \text{Mat}_0(\widehat{X}_{\tau_i}^1)^{\top}$, where $\widehat{X}_{\tau_i}^1$ is obtained from $\widehat{Y}_{\tau_i}^1$ by replacing the connecting tensor with $\widehat{C}_{\tau_i} = Ten_0(\widehat{Q}_{\tau_i}^{\top})$ **Figure:** Simulation for d = 8. Left: Max. bond dimension of the state over time. Right: Summed bond dimension of the state over time.

Figure: Left: Max. bond dimension needed for a TTNO representation of the operator. Right: Summed bond dimension needed for a TTNO representation of the operator.

set $\widehat{M}_{\tau_i} = \widehat{\mathbf{U}}_{\tau_i}^* \mathbf{U}_{\tau_i}^0$

The subflow Ψ_{τ} solves a small tensor ODE, which can be interpreted as a Galerkin method on the updated subspace.

begin

set $\widehat{C}_{ au}^{0} = C_{ au}^{0} X_{i=1}^{m} \widehat{M}_{ au_{i}}$ solve the tensor ODE

 $\hat{\widehat{C}}_{\tau}(t) = F_{\tau}(t, \widehat{C}_{\tau}(t) \, \mathsf{X}_{i=1}^{m} \, \widehat{\mathsf{U}}_{\tau_{i}}) \, \mathsf{X}_{i=1}^{m} \, \widehat{\mathsf{U}}_{\tau_{i}}^{*}, \quad \widehat{C}_{\tau}(t_{0}) = \widehat{C}_{\tau}^{0}$ set $\widehat{C}_{\tau}^{1} = \widehat{C}_{\tau}(t_{1})$

References

- G. Ceruti, Ch. Lubich, D. Sulz. Rank-adaptive time integration of tree tensor networks, SIAM J. Numer. Anal. 61 (2023), 194-222.
- [2] G. Ceruti, J. Kusch, Ch. Lubich. A rank-adaptive robust integrator for dynamical low-rank approximation, BIT Numer. Math. 62 (2022), 1149-1174.
- [3] G. Ceruti, D. Kressner, D. Sulz. Low-rank tree tensor network representation of Hamiltonians with long-range pairwise interaction, (work in progress).
- [4] D. Sulz, Ch. Lubich, G. Ceruti, I. Lesanovsky, F. Carollo. Numerical simulation of long-range open quantum many-body dynamics with tree tensor networks, (submitted).

