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1 Abstract

The aim of this work is to develop an algorithm that is able to detect areas of fragmented mass, i.
e. the existence of dense clumps of mass, within an accretion disk. The algorithm presented here,
will take as input the surface density distribution of an accretion disk and then decide whether the
distribution is such that mass must have been fragmented or not. Furthermore, it will identify all Hill
spheres belonging to the fragmented masses.

2 Introduction

One of the most important recent questions in astrophysics concerns the formation of exosolar planets.
When a star emerges through the collapse of a rotating molecular cloud, a fraction of roughly 0.1% to
10% the original mass composes a so called accretion disk or protoplanetary disk that rotates around
the star to guarantee conservation of angular momentum. After about 106 y, most of this mass will be
absorbed by the central star. Figure 1 shows observed images of such accretion disks.

Figure 1: Hubble Space Telescope images of four protoplanetary disks around young stars in the
Orion nebula, located 1.500 light-years away. Credit by Mark McCaughrean (Max-Planck-Institute for
Astronomy), C. Robert O'Dell (Rice University), and NASA

Today, there exist two competing theories that try to explain the formation of planets out of such
disks:

In the Core Accretion Model, small dust grains in the otherwise gaseous disk are the origin of the
formation of planetesimals. If these grains with an initial extent of no more than 1 µm collide, they
can accumulate more mass until they reach a size of up to 1m. This theory leads to a problem still
not solved so far: The grains are particles orbiting the central star at Keplerian velocities. The decay
in the gas pressure with increasing distance to the central star represents a pressure gradient with
outward direction so that, in contrast to the grains, the gas is rotating with sub-Keplerian velocities.
This results in a drag on the solid particles which will, in consequence, spiral inwards as is shown in
(Weidenschilling 1977). Weidenschilling (1977) demonstrate that this can happen within a time-scale
much to small for the grains to aggregate enough mass to form planet-size objects.

The Disk Instability Model or Gravitational Instability Model states that planet formation is a direct
consequence of a graviational instability caused by overdense regions within the disk. Assuming that
the disk's mass is centered in a plane, some linear perturbation equations can be derived. Taking into
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account a potential describing the self-gravitation of the disk's mass, leads to a dispersion relation that
links rotation, pressure and self-gravitation, with the self-gravitation acting as a destabilizing element.
For further explanation see Toomre (1964). This theory can be applied to describe the formation of
gas giants but were it to describe the formation of very small planets, the disk would have to cool down
rapidly. There are legitimate doubts that disks can cool down fast enough to enable the formation for
very small planets.

In this work, we limit ourselves to the gravitational instability model relating to which a whole bunch
of numerical studies have been realized recently (for an example, see the diploma thesis of (Müller
2010)). As the examined disks are very �at, many of these use a simulation on a polar two-dimensional
grid to propagate an initial (often axissymetric) distribution over time, e.g. with the FARGO-algorithm
presented by (Masset 2000). Regardless of which time-integration algorithm is applied, all these sim-
ulations are stopped after given time and the density distribution is scanned for areas of fragmented
mass. As, so far, there does not exist any satisfying algorithm or simple criterion, these scans generally
have to be done by eye. If the density distribution resembles the examples shown in Fig. 2 on the
left and in the middle, it is not di�cult to check them for the presence of fragments. But if we have
to examine the sort of distribution shown on the right of Fig. 2, it is almost impossible to draw a
conclusion by eye.

Therefore, in order to cope with this problem, we want to develop an algorithm that is able to deliver
reliable judgements over whether there are fragments or not. This algorithm should do so without the
need of any further input than the distribution of the density over the grid.

Figure 2: Three exemplary surface density distributions as they occur in our standard simulations.
Obviously the example on the left is fragmented, whereas the one in the middle is not and the right
one is not easy to decide!

2.1 Outline

In section 3 we will specify our problem. In section 4, we then will �rst turn the �eld of Edge-Detection
in Image-Processing and analyse, in which way it resembles our problem. We will see that the questions
handled in this �eld do not match our problem exactly.

In section 6, we will consider the simple idea of dividing the intervalls appearing on the grid in a
given number of bins and than trying to draw conclusions on the state of the grid by analysing the
distribution of density into the bins. It will become clear that such an approach does not lead to
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reasonable results.

Thereafter we will present the actual algorithm and expose step by step how it has been constructed.
Not only will this algorithm show convincing hit rates in �nding fragments but also it will o�er the
possibility to calculate the Hill spheres of all planetesimals as well as the possibility to �t a Gaussian
function to the density distribution of the planetesimals.

3 Speci�cation of our problem

If there are any fragments in a disk rotating a massive central star, some conditions must be satis�ed:

As a fragment grows by accretion of mass, the density at the centre of the fragment increases. Con-
sequently, the density inside the fragment exceeds the density of the neighborhood by far. Therefore,
fragments can only be detected around grid points that have a local maximum in density. Further,
as the density decreases sharply between the centre of a fragment and its surface, we can assume the
density distribution to roughly resemble a Gaussian distribution of the form shown in Fig. 3. So, there
have to be some grid points in the neighborhood of a local maxima where the gradient operator has a
local maximum pointing towards the local maximum.

Figure 3: 2-dimensional Gaussian function.

In order to aggregate more mass, a small fragment has to attract this mass in any manner. For this,
the attraction exerted on a mass by the fragment must be greater than the attraction exerted by the
gravitation of the central star, i.e. we can assume the mass to be within the Hill sphere of the fragment.
The Hill sphere will be introduced in section 7.2.

4 Parallels to Image-Processing

As a �rst step, we consider the analogies between the detection of high-density areas within a proto-
planetary disk and the detection of edges in a grey-level image.

3
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4.1 Edge Detection

The aim of edge detection is to spot discotinuities in the brightness of an images. More precisely, one
wants to identify points at which the brightness changes drastically. Given an ideal (i.e. non-blurred)
image, the whole information of the image is represented by the edges of sharply changing brightness.
There are two common types of edge detectors:

Search-based methods calculate a measure of edge strength for every pixel, which usually is the mag-
nitude of the gradient, and then are scanning the image for local maxima of this measure. As the
calculation of the gradient can be distorted by outliers in the image-representation, this approach re-
quieres a preprocessing step that smoothes the data. This is normally done by convolving the data
with a gaussian kernel.

Depending on which smoothing operator is applied an as a function of the numerical approximations of
the gradient operator, many di�erent implementations of the search-based method can by constructed.
One simple and long standing possibility is to approximate the gradient operator by the Sobel operator.
In this case, with B denoting the brightness an ∇ = ( ∂

∂x ,
∂
∂y )T denoting the gradient operator, the

partial derivatives are given as the result of 2-dimensional convulsions:

∂B

∂x
=

−1 0 1
−2 0 2
−1 0 1

 ∗B, ∂B

∂x
=

 1 2 1
0 0 0
−1 −2 −1

 ∗B
A still commonly used method is the Canny edge detector. Here, the direction of the gradient
Φ = arctan ∂xB

∂yB
is computed along with the magnitude. Then, the direction is rounded to Φ =

{0◦, 45◦, 90◦, 135◦} and the magnitude M =

√(
∂B
∂x

)2
+
(
∂B
∂y

)2
, in order to be identi�ed as a local

maximum, has to be the maximum of all magnitudes in direction Φ. For a detailed explanation of the
Canny edge detector see Canny (1986).

In zero-crossing-based methods, after smoothing the image to remove outliers, a second-order derivative,
e.g. the Laplace-operator, is calculated. Then, the zero-crossings of this expression are located and
identi�ed as edges. The Marr-Hildreth-algortithm for example convolves the image with the Laplacian
of a Gaussian kernel, for the result of which zero-crossings are determined.

Some more recent approaches proceed as follows: First, a local coordinate-system (u, v) is attached to
every grid point, with u pointing in the direction of the gradient. Then, with B again denoting the
brightness, the directional derivative

∂uB,

which by design is the magnitude of the gradient, is calculated. Requiring the directional derivative of
the magnitude to vanish for all points representing an edge, the edges are identi�ed to be the points
with

∂u(∂uB)
!

= 0

and

∂2u(∂uB)
!
≤ 0
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In both cases, the set of edges returned by the respective algorithm contains edges representing stark
contrasts as well as more subtle ones. Consequently, at the next stage, all important edges have to be
singled out of the complete set.

A prevalent question in image-detecion is the problem of scale. As a picture usually displays many
planes, objects that are more distant to the camera appear much smaller than objects of similar
physical size at the front. So, depending on which object on an image is of most interest, di�erent
scales are important. On way to single out objects of the desired scale is to conduct the smoothing
step using Gaussian kernels with corresponding variance σ. Given a situation where many di�erent
scales are of interest, this will take many successive calculations. What is more, this approach is not
feasible in fully automated pocessings for the lack of computers with intuition for which object is most
relevant. (Lindeberg 2008) tried to do away with this problem introducing scale-space theory. Here,
the brightness B = B(x, y, σ) is considered to be a function of space and scale. The scale of most
interest can then be singled out by nomalizing the deployed derivatives and maximizing them over
scale.

An examplary application of edge detectors is shown in Fig. 4, and a survey of commonly used edge
detectors is given by Ziou & Tabbone (1998).

Figure 4: Left: a grey-level image of a house. Middle: the negative value of the gradient magnitude
M with σ = 1. Right: Di�erential geometric edges as described in the text, with σ = 1. Credit by
Tony Lindeberg (Royal Institute of Technology)

4.2 Comparisons

At �rst glance, our problem resembles that of �nding edges of an image. In either case, areas of interest,
i.e. areas which represent a local maximum of a quantity (magnitude of gradient in one case, density
in the other), have to be singled out. Then a threshold is applied to make sure, that only the most
interesting grid points remain. But taking a closer look, signi�cant di�erences can be noticed:

At �rst, we observe that, unlike in edge detection, we do not have the problem of di�erent scales,
because we look at a 2-dimensional representation of a 2-dimensional grid whereas an image is a 2-
dimensional representation of a 3-dimensional system. Further, it wouldn't be e�ective to apply an
initial smoothing step, as in our case we consider the interesting grid points to be precisely the outliers
in density. Another advantageous result of the speci�cations exposed in ?? is the requirement for the
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fragments to have a Hill sphere containing the aggregated mass. This yields a reliable threshold for
the local density maxima as we will see in section 7.2.

5 Overview of considered simulations

Throughout this work we have considered various simulations, which for one reason or another (as
will become clear in the process) are interesting examples to proof the e�ectiveness of our algorithm.
These simulations are listed in Table 1. Plots with the corresponding surface density are presented in
the following sections. The denotations used in this work are summarized in Table 2.

Name Σ pro�le M0 [M�] rmin � rmax [AU] Nrad ×Naz t [a] Credit See

SimA15 ∝ r−2 1.0 10 � 120 1024× 2560 15 Mueller, T. Fig. 9
SimA20 ∝ r−2 1.0 10 � 120 1024× 2560 20 Mueller, T. Fig. 9
SimA25 ∝ r−2 1.0 10 � 120 1024× 2560 25 Mueller, T. Fig. 7
SimB ∝ r−2 1.0 10 � 120 512× 1280 100 Mueller, T. Fig. 8
SimC ∝ r−2 1.0 1.0 � 2.5 512× 1536 13 Meru, F. Fig. 11
SimD ∝ r−2 1.0 1.0 � 2.5 512× 1536 40 Meru, F. Fig. 12
SimE ∝ r−2 1.0 10 � 120 512× 1280 5 Mueller, T. Fig. 10

Table 1: List of the simulations considered in this work

denotation quantity

Σ surface density
M0 mass of the central star
Mtot total mass of the disk
rmin inner radius of the disk
rmax outer radius of the disk
Nr number of grid points in radial direction
Nϕ number of grid points in azimuthal direction
Ngrid total number of grid points
ρmin minimum of surface density
ρmax maximum of surface density
nϕ azimuthal index (nϕ = 1..Nϕ)
nr radial index (nr = 1..Nrad)

r(nr, nϕ) distance of grid point with index (nr, nϕ) to central star
φ(nr, nϕ) angle of grid point with index (nr, nϕ)

Table 2: List of the denotations used in this work

In the next section we will present a �rst simple idea to determine whether an accretion disk is
fragmented or not and which, for the lack of better term, shall be called Bin-Accumulation here.
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6 Bin-Accumulation

Given a density distribution as in Fig. 5 we can draw the assumption that at most grid points, the
density is very low and only some grid points have medium or high density.
Therefore, if we divide the intervall [ρmin, ρmax] into a given number N of bins and assign each grid
point to a bin according to its density and plot the mass mbin represented by the grid points of a bin
against the bin number nbin, we should get a plot, that resembles the right panel of Fig. 5. Most of the
mass is concentrated on grid points with low density, as these grid points constitute the large majority
of grid points. Some of the mass is ditributed over grid points with medium density and a bit more of
the mass should be represented by the grid points with high density.

Figure 5: Left: Examplary density distribution of a fragmented disk. Right: Strongly Simpli�ed
supposition of a plot of mbin

Mdisk
against nbin for N = 100.

In contrast, given the sort of distribution shown in Fig. 6, there are no grid points with high density
but many grid points with medium density. Thus, much of the mass will be representated by grid
points with low density, but an evenly fair share of it will be concentrated on grid points with medium
density. Plotting the same quantities as for the fragmented example, we should obtain a diagram
similar to Fig. 6 on the right.

7
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Figure 6: Left: Examplary density distribution of a non-fragmented disk. Right: Strongly simpli�ed
supposition of a plot of mbin

Mdisk
against nbin for N = 100.

Out of these observations we can now construct a simple algorithm that (using the same variable names
as in the text above) would be as follows:

1 function Bin_Accumulation ( g r id )
2 array mbin[N ] ;
3 ρmin=calculate_rho_min ( g r id ) ;
4 ρmax=calculate_rho_max ( g r id ) ;
5 d iv ide_inte rva l l_ in_bins (ρmin ,ρmax ) ;
6 for a l l g r i dpo i n t s do

7 nbin=ass ign_correct_bin ( g r i dpo in t ) ;
8 mbin[nbin] = mbin[nbin]+g r i dpo in t . mass ;
9 od

10 end

At �rst, ρmin and ρmax are calculated. To allow for a better representation of the data (as most of
the grid points only have a low density), we choose a logarithmic division of the intervall [ρmin, ρmax].
With ρnbin

denoting the lower density limit in bin nbin we choose

ρnbin
= ρmin

(
ρmax

ρmin

)nbin
N

.

To facilitate the analysis of the plots, we substitute the relative mass for the accumulated relative
mass, i.e.

mbin[nbin]

Mdisk
→

nbin∑
i=1

mbin[i]

Mdisk

Such an algorithm is easy to implement and surely is not too expansive, as it only calculates ρmin and
ρmax, going over each of the grid points once and than runs through the grid one more time to calculate
the masses of the bins, it solely conducts O(Ngrid) operations for a disk with Ngrid cells.
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It now remains to be seen if this algorithm can help to detect fragments with much more accuracy
than the analysis by eye. We have applied the algorithm to several distributions with N = 100. All of
them represent snapshots of real simulations of accretion disks. At �rst, in Fig. 7 and Fig. 8 we once
again consider the examples from the beginning of this section:

Figure 7: Surface density distribution (left) and accumulated mass (right) of SimA25.

Figure 8: Surface density distribution (left) and accumulated mass (right) of SimB.

As we see, the plots obtained by the algorithm con�rm our expectations stated above. We could easily
identify the �rst example to be fragmented and the second not to be without having a look at the
2-dimensional plots. Another example out of the same simulation as the one of Fig. 7 is shown in
Fig. 9 together with the according plot. Here too, the plot shows the characteristic sharp increase in
accumulated mass for large nbin and we would consider the disk to have fragments without regarding
the 2-dimensional density distribution.

9
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Figure 9: Surface density distribution (left) and accumulated mass (right) of SimA20.

But this so far does not bring ous any further as it would be no more di�cult to �gure out the nature
of these two examples by looking at the 2-dim. plot (as we have already mentioned in Section 2) To
be a real help, the programm would have to deliver reliable results for distributions as at the right of
Fig. 2 and the like. Even regarding the very �rst example at the left of Fig. 2, we obtain Fig. 10 and
comparing this with the 2-dim representation, it would be more easy to judge by the left plot.

Figure 10: Surface density distribution (left) and accumulated mass (right) of SimE.

Up to this point we could expand our algorithm to include a function to process the masses in the
respective bins automatically further and so even Fig. 10 could be fully analyzed by a fast algorithm.
However, if we now �nally remember Fig. 2 (shown again in Fig. 11) and consider Fig. 12 simultaneously,
the algorithm returns very similar plots. Already at �rst glance, we can detect di�erences between
Fig. 11 and Fig. 12. Nevertheless, Bin-Accumulation leads to almost identical results.

10
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Figure 11: Surface density distribution (left) and accumulated mass (right) of SimC.

Figure 12: Surface density distribution (left) and accumulated mass (right) of SimC.

This could have two reasons: Either, the di�erences between the distributions in Fig. 11 and Fig. 12 ob-
served by eye are just marginal and the two disks really have the same properties, or Bin-Accumulation
does not cope with disks which resemble these two elements. This would be a fatal blow to Bin-
Accumulation, because the latter are exactly the sort of disks that do not allow for analysis by eye.
But Bin-Accumulation returning the same output for di�erent disks is no surprise as we can easily
demonstrate:

Let D(r, φ) be a polar grid with coordinates r, φ, radius R and exactly one fragment around a local
maximum at r = 0.9R,φ = π(without loss of generality) that satis�es the conditions, stated in sec-
tion 3 just by a whisker. Now, consider a path ~r(t) : [0, 1]→ R2, t 7→ (αt, π) with ~r(0) = (rmin, π) and
~r(1) = (rmax, π). Along this path, the density distribution d(r, φ) shall be given as illustrated in the
�rst plot of Fig. 13. Then, consider a disk D̃(r, φ) that is exactly the same as D(r, φ) except for the
points along the path ~r(t), where the distribution d̃(~r(t)) shall be given as illustrated on the right hand
side of Fig. 13. As D satis�es the conditions to be fragmented extremely close, its mass is just big
enough to attract the surrounding particles. Because the attraction of the central star increases with
decreasing radius, the mass of the local maximum in D̃ is too small to attract any mass and so D̃ does
not satisfy the conditions to be able to contain dense clumps. But nevertheless, Bin-Accumulation
would return exactly the same output.

11
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Figure 13: Left: Qualitative density distribution d of disk D along path ~r(t). Right: Qualitative
density distribution d̃ of disk D̃ along path ~r(t).

After we made sure that Bin-Accumulation is no useful tool to check for fragmented disks, as it just
takes account of the densities regardless of their positions, we now want to describe the implementation
of a suitable algorithm in detail.

7 Implementation of the algorithm

To design an algorithm for the detection of dense clumps, we have to bear in mind the speci�cations
of a fragmented disk, stated in section 3. By applying these conditions to the grid points, we will
successively �lter out all the grid points that do not present fragmented areas until only the actually
fragmented areas are left behind.

7.1 Local maxima

As outlined in section 3, dense clumps can only be found around grid points with a local maximum of
surface density. Therefore, it would be reasonable to have a list of all local maxima, as these represent
the interesting areas of the disk. The �rst task of the algorithm should be to calculate the local
maxima. Understandably, we consider a grid point P to be a lokal maximum, if non of its surrounding
grid points Pj has a greater density ρ. The �rst step ouf our algorithm then is as follows:

1 l i s t localmax
2 function ca lcu late_loca lmax ( gr id , localmax)
3 for a l l g r i dpo i n t s P do

4 i f no_neighbor_has_greater_density (P ) then

5 localmax . add (P ) ;
6 f i

7 od

8 end

Clearly, the list localmax now contains way too much grid points, as for example even the highlighted
grid points in Fig. 14 would be part of the list but, if anything, the mass represented by these points
could perhaps be attracted by the much denser grid points in their approximity.

12
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Figure 14: Two schematical examples of grid points (highlighted) that are lokal maxima but clearly
would not be at the centre of fragments.

As a realistic example, we can again consider SimA25 and calculate the local maxima. Fig. 15 shows
all maxima found by the algorithm.

Figure 15: SimA25 with all local maxima (number of local maxima > 17000). Every cross corresponds
to one maximum.

To get rid of the redundant maxima, we now utilize the further conditions stated in section 3.

7.2 Hill sphere

As mentioned brie�y in section 3, we can assume a local max to be part of a fragment if it is heavy
enough to attract surrounding particles stronger than the central star. Before we think about how to
apply this condition in the algorithm, we want to give some short theoretical background on the Hill
sphere.

13
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Given a astonomical body P that orbits a massive central body, the Hill sphere or Roche lobe of the
astronomical body is the area within which objects O are more attracted by the P than by the central
body M0. The potential Φ of the O within the gravitational �eld of M0 and P , denoted as Roche

potential, is composed of three terms: The potentials of the gravitational forces of M0 and P and a
zentrifugal term caused by the movement relative to the centre of mass C of M0 and P . With rM0

denoting the distance between O and M0, rP denoting the distance between O and P , rC for the
distance between O and C and the masses M0 and mP , the potential can be written as

Φ(O) = −GM0

rM0

− GmP

rP
−
ω2r2C

2
,

where G is the gravitational constant and ω is the azimuthal velocity. Given a coordinate system with
M0 at the origin and P on the x-axis at distance r(P ) to M0 (see Fig. 16), we can transform the
general expression for Φ.

Figure 16: Object O in the gravivational �eld of M0 and P

The orbits of objects in a protoplanetary disk are Keplerian, i.e. with M = M0 +mP , it is

ω2 =
GM

r(P )3
.

Using this relation and q := mP
M0

, the potential as a function of the coordiantes (x, y) of the illustrated
coordinate system is

Φ(x, y) =
GM

r(P )

[
1

1 + q
(x2 + y2)−

1/2 +
q

1 + q

(
(x− 1)2 + y2

)−1/2
+

1

2

((
x− 1

1 + q

)2

+ y2

)]

The two points, where the boundary of the Hill sphere crosses the line connecting M0 and P are
denoted as L1 (between M0 and P ) and as L2 (on the connecting line but with greater distance to M0

than P ). L1 is the point where the distance between P and the boundary of its Hill sphere is maximal.
At L2, the distance is minimal. L1 is the point where the attraction by M0 is exactly compensated
by the sum of the attraction by P and the zentrifugal force which at the point L1 both point into the
direction of M0. The boundary of the Hill sphere is an equipotential line, i.e. all points on that line
have the same potential as L1.

14
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How can we use this information to construct a �lter for the local maxima? As a suitable simulation
of a protoplanetary disk uses a high-resolution grid, there will be many grid points within the Roche
lobe of a fragment. W we can assume a local maximum at the centre of a dense clump to be dense
enough for its Roche lobe to contain the nearest grid points. More precisely, with initial_roche_range
denoting a integer factor, we can assume that starting at a local max P at the centre of a fragment,
the grid points initial_roche_range steps in left, right, outer and inner direction still are completely
within the Roche lobe of P . In section 8, we will test which initial_roche_range would be most
e�ective but alternatively it could be a parameter for the algorithm depending on how strict a search
for fragments should be conducted. As an illustration, see Fig. 17 where initial_roche_range = 3 .

Figure 17: Starting at the grid point F, the grid points 3 steps to the right/left/out/in are checked
for if they are within the Roche radius of F.

As we have seen above, the point on the Roche radius L2 with minimal distance to P lies in outer
direction on the line connection the central star and P . It therefore is su�cient, to just check the grid
point initial_roche_range steps in outer direction. To do so, the algorithm at �rst has to calculate
the point L1, i.e. we have to search the roots of the directional derivative of the gravitational potential
Φ in direction of the line M0P . With u denoting the direction of the line M0P we seek L1 with

∂uΦ(L1)
!

= 0.

As L1 is the only zero-crossing of ∂uΦ between M0 and P , we can use a bisection algorithm. With the
knowledge of L1, we now can calculate the Roche radius for every given angle φ relative to M0P : We
start at a point ~r1 which has an angle φ relative to M0P an distance ‖L1−P‖ to P . Then, again with
the use of a bisection algorithm, we scan the line ~r1P for the point ~r2 where

Φ(~r2)− Φ(L1)
!

= 0

We can do so, because L1 is the point on the Roche radius with maximal distance to P . For illustration
see Fig. 18.
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Figure 18: Illustration of L1, ~r1 and φ as mentioned in the text, with F hightlighting the position
of P . The Roche lobe is represented by the blue curve.

With denotations as in the text, the function that controls if the Hill sphere of a local maximum is too
small, reads as follows:

1 i n t initial_roche_range ;
2 function hi l l sphere_too_smal l ( localmax)
3 for a l l P ∈ localmax do

4 ca l cu la te_L1 (P ) ;
5 ca lcu late_roche_rad ius (P ,φ = π ) ;
6 i f i s_not_in_hi l l sphere (P , initial_roche_range) then

7 localmax . remove (P ) ;
8 f i

9 od

10 end

First, L1 is computed for all points P in the list localmax. Then, the Roche radius at relative angle
φ = π is identi�ed and �nally, the algorithm checks if the point initial_roche_range steps in outer
direction is part of the Hill sphere.

If we test the function on SimA20, we obtain the local maxima marked by crosses in the left plot of
Fig. 19. As we can observe, there are only local max within areas of relativly great density. But, as
the density around the localmax denoted in the plot as P3 is indeed much greater as the density of
most other grid points but still so low as it should not be identi�ed as a fragment, discarding all local
maxima with too small a Hill sphere still is not enough. Further, if we not only want to check a disk
whether it is fragmented but also want the algorithm to return the exact number of fragments, there
cannot be two local max like P1 and P2 of Fig. 19. To illustrate this, the left panel of Fig. 19 shows
the qualitative 1-dim. shape of the density ditribution around P1 and P2. Even if both grid points
have a su�ciently large Hill sphere, they surly would be part of the same fragment. Another example
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is shown in the right panel of Fig. 19. The encircled localmax have enough density for their attraction
to be greater as the attraction of the central star. But clearly being part of a so called spiral arm, they
are not part of a fragment.

Figure 19: Surface density and local max that with initial_roche_range = 3 have a large enough
Hill sphere for SimA20 (left) and SimA15 (right). The middle plane shows a 1-dim. qualitative shape
of the surface density around the two local max P1 and P2 of the left plot.

Another problem arising by applying the function hillsphere_too_small() to the list of all local
maxima lies in the runtime: For every local maxima P that is tested for a large enough Roche lobe,
there �rst has to be calculated the point L1 and then the Roche radius for relative angle φ = π. Both
this operations requiere an iterative numerical algorithm to �nd zero-crossings. Having to apply such
an algorithm to more than 17000 local maxima as would be the case in SimA25 (see Fig. 15) therefore
leads to an excessive runtime.

As we have just seen, it would be appropriate to let hillsphere_too_small() be preceded by other
functions. On the one hand, these functions should �lter out most of the local maxima so that the
numerically expansive function hillsphere_too_small() just has to check a small rest of candidates.
On the other hand, these functions should also discard all local maxima that resemble the left maximum
of the middle-plane plot of Fig. 19 (i.e. P1 in the corresponding left density distribution) or maxima
similar to the ones qualitatively plottet in Fig. 20, which (strongly simpli�ed) represent maxima within
a spiral arm.

Figure 20: 1-dim. qualitative shape of the surface density within a spiral arm.
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To �nd adequate functions, we remember another speci�cation of our problem mentioned in section 3.
There, we have discussed that the surface density around a fragment resembles a Gaussian function
shown in Fig. 3, i.e. within a small range around a local maximum P the density is extremly high but
than decreases sharply with increasing distance to P and stays �at within a larger range around P .

Out of this observation, two usefull criterions can be derived. These, together with a function that
uses the respective criterion, shall be presented in the following to subsections.

7.3 Slope criterion

Given the qualitative shape of the density within and around a fragment, we can derive that there
exists a grid point in the approximity of the corresponding local max P where the magnitude of the
gradient M := ‖(∂x, ∂y)T ‖ is much greater as the average of M over all grid points within a wider
range around P . Further, it is clear that for all grid points around P the gradient must point to P .
Therefore, with slope_multiplyer denoting an integer factor, there has to be a grid point P1 around
P where

M(P1) ≥ slope_multiplyer · 〈M〉

with 〈M〉 denoting the azimuthally averaged gradient magnitude. We can implement this criterion as
follows:

As we are working with a polar grid, the gradient is given as

∇ = êr∂r + êφ
1

r
∂φ

which we calculate via the familiar central di�erences approzimation

(∇ρ(nr, nϕ), êr) =
ρ(nr + 1, nϕ)− ρ(nr − 1, nϕ)

r(nr + 1, nϕ)− r(nr − 1, nϕ)

(∇ρ(nr, nϕ), êφ) =
ρ(nr, nϕ + 1)− ρ(nr, nϕ − 1)

2π
Nϕ
r(nr, nϕ)

.

Because M decreases with increasing radial distance r, grid points with small radial index can have a
greaterM than grid points with greater distance to the central star. Keeping this in mind, we calculate
an average expression 〈M〉 for all nr

〈M〉(nr) =
1

Nϕ

Nϕ∑
i=1

M(nr, i)

and implement the following function that tests if the slope around a local max is too small:

1 i n t slope_multiplyer ;
2 bool too_small = true ;
3 f un t i on slope_too_small ( localmax)
4 for a l l r a d i a l i n d i z e s nr do
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5 ca l cu la te_ 〈M〉(nr) ;
6 od

7 for a l l P ∈ localmax do

8 repeat

9 go_to_next_point_(nr, nϕ) ( ) ;
10 i f M(nr, nϕ) ≥ slope_multiplyer · 〈M〉(nr) then

11 too_small=f a l s e ;
12 f i

13 until does_not_point_to_P (∇(nr, nϕ))
14 i f too_small then

15 localmax . remove (P )
16 f i

17 od

18 end

Here, the function go_to_next_point_(nr, nϕ)() is constructed that, given a grid as in Fig. 21 where
F shall denote P and the circle shall mark the points where the gradient changes direction, all points
within the circle are returned onces.

Figure 21: Illustration of the functionality of go_to_next_point_(nr, nϕ)(). Every point within the
circle is returned onces.

To �nd a suitable value for slope_multiplyer, we proceeded as follows:

Regarding SimE, we see that this simulation obviously has one concise fragment (see Fig. 10). There-
fore, we �tted a Gaussian function to the density distribution around the local maximum P at the
center of the fragment. This yielded a Gaussian with σ = 0.167. We then plottet a 1-dim. Gaussian
function with σ = 0.167, centred in an intervall [−πr(P ),+πr(P )] which we divided in Naz,SimE bins.
Averaging the according Gaussian over the bins, we got Fig. 22 and found out, that there is a bin
whose gradient magnitude M exceeds the average of all bins by a factor 400. Therefore, taking the
fragment of SimE as a benchmark fragment, and leaving space for less sharp fragments, we concluded
that slope_multiplyer = 100 is an adequate value.
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Figure 22: A Gaussian function with σ = 0.167 on an intervall [−125, 125] divided in 1280 bins,
plotted for the subinterval [−5.5, 5.5].

As an example of the functionality of slope_too_small(), choosing slope_multiplyer = 100 we have
applied the function to SimA15. In Fig. 23, we see that the number of local max is not extremely high.
Further, the encircled areas, which out of experience are no fragments, are discarded. Nevertheless
there are still many points within the highlighted spiral arm because in this arm, density changes
sharply whereas for the other grid points with identical nrad the density hardly changes at all.

Figure 23: Local maxima of SimA15 after the function slope_too_small() has been applied.

7.4 Density criterion

As we could see, applying slope_to_small() and hillsphere_too_small() to all local maxima P
of SimA15 still would return some P within the spiral arm. So, we now interpret the according
speci�cation in another way. As the density of P at the centre of a fragment exceeds the density of
all grid points within a wider range around P by far, we compare ρ(P ) with the average of ρ over
all grid points within that range. As adjacent max with extremely high density appear mostly within
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spiral arms that extend in azimuthal direction, we take the average only in azimuthal direction� i.e.
considering the wider range to consist of all (nr, nϕ) with |φ(nr, nϕ)− φ(P )| ≤ π

8 we calculate:

〈ρ〉(P ) =
8

Nϕ

i=+
Nϕ
16∑

i=−Nϕ
16

ρ(nrad,P , naz,P + i)

With a integer multiplyer multiplyer we consider a localmax to satisfy criterion (∗) if

ρ(P ) ≥ multiplyer · 〈ρ〉(P ).

With that, we can implement a function density_too_small() that sorts out all local maxima whose
density is too small for them to satisfy the according condition:

1 i n t multiplyer ;
2 function density_too_small ( localmax)
3 for a l l P ∈ localmax do

4 ca l cu la te_ 〈ρ〉(P ) ;
5 i f ρ(P ) ≤ multiplyer · 〈ρ〉(P ) then

6 localmax . remove (P ) ;
7 f i

8 od

9 end

To �nd a suitable value for the factor multiplyer we proceeded in an analoguous way to �nding the
factor slope_multiplyer:

Again, we assumed that every fragment on a protoplanetary disk has to resemble the benchmark frag-
ment of SimE to which we had already �tted a Gaussian function with σ = 0.167 for the determination
of slope_multiplyer. As, in order to calculate 〈ρ〉(P ), we this time only consider the azimuthal in-
tervall φP ± π

8 , we consider the Gaussian function with σ = 0.167 on the intervall [−π
8 r(P ),+π

8 r(P )]

which we divide into
Naz,SimE

8 bins. In the grids used to simulate accretion disks, the density value at
every grid point represents the average of the density within the area of that grid point. Therefore, we
assign to each bin the average of the Gaussian within the subinterval represented by the bin. That is,
if a bin b represents the subintervall [c, d] its density value is given as

ρ(b) =
1

d− c

d∫
c

e−
x2

2σ2 dx.

With b0 denoting the bin containing the maximum of the Gaussian, we now can calculate the quotient
q of the density in b0 and the average of all bins bi:

q =
ρ(b0)

8
Naz,SimE

Naz,SimE∑
i=1

ρ(bi)
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We now assume that every fragments resembles SimE and that the variance σ of the corresponding
�tted Gaussian only depends on the radial distance r(P ) between the maximum at the centre of the
fragment P and the central star (we can assume this because fragments in simulations tend to have a
larger extend the further away they are from the central star), i.e. with a constant factor a we have

σ = a · r(P ). Given that this assumption has to be valid for SimE, too, a has to be a = r(PSimE)
σSimE

.
With this two assumptions we can now show, that the quotient q is a function of only the azimuthal
resolution of a simulation:

With x0,i and x1,i denoting the lower and the upper limit of the subintervalls bi plus L denoting the
length of a subinterval, we have

q =
ρ(b0)

8
Nϕ

Nϕ∑
i=1

ρ(bi)

=

1
L

x1,0∫
x0,0

e−
x2

2σ2 dx

8
Nϕ

Nϕ∑
i=1

1
L

x1,i∫
x0,i

e−
x2

2σ2 dx

=

1
L

L/2∫
L/2

e−
x2

2σ2 dx

8
Nϕ

1
L

+π
8
r(P )∫

−π
8
r(P )

e−
x2

2σ2 dx

As π
8 r(P )� σ, we get

+π
8
r(P )∫

−π
8
r(P )

e−
x2

2σ2 dx =

+∞∫
−∞

e−
x2

2σ2 dx =
√

2πσ

and with the errorfunction

erf(x) =
2

π

x∫
0

e−t
2
dt

we can write (based on the symmetry of the Gaussian and the errorfunction)

q =

1
L

√
2πσ erf( L

2
√
2σ

)

1
L

8
Nϕ

√
2πσ

Substituting

σ = a · r(P ); L =
π
4 r(P )
Nϕ
8

,

after some transformations, we arrive at

q =
a
√

2πNϕ erf( 1
2a
√
2Nϕ

)

8a
√

2π

and as we see, q only depends on Nϕ.
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To allow for a more realistic estimate, we add a constant c to the Gaussian �t that represents the
average density within the Roche lobe around P . The quotient then changes to

q → q̃ =
ρ(b0) + c

8
Nϕ

Nϕ∑
i=1

ρ(bi) + ρ(b0) + c

where, for the ease of implementation in the algorithm, we have added another term ρ(b0) in the
denominator. Assuming every fragment to have a qualitative shape similar to SimE, we can now set

multiplyer = 0.2 · q̃ = 0.2
a
√

2πNϕ erf( 1
2a
√
2Nϕ

) + c

8a
√

2π + 8a
√

2π erf( 1
2a
√
2Nϕ

) + c
,

where we inserted a factor of 0.2 to comprise fragments that are not as sharp as SimE.

Having found a way to choose the right factor multiplyer for the function density_too_small(), we
can now, as an example, apply this function to all maxima of SimA15 whereupon only the maxima in
Fig. 24 are left behind. In opposition to slope_too_small() and hillsphere_too_small(), the function
density_too_small() discarded all local maxima within the encircled spiral arm. In exchange, the
points marked by arrows, correctly discarded by density_too_small(), are not sorted out by the
density criterion.

Figure 24: Local maxima of SimA15 after the function density_too_small() has been applied.

7.5 Composition of criterions

As we have seen in the preceeding subsections, although non of the functions slope_too_small(),
hillsphere_too_small() and density_too_small() can discard all redundant maxima by itself, each
function can sort out some type of bad candidates. Therefore, it only would be rational to use a
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composition of all three of them. With regard to the sequence, one clearly should apply the functions
in ascending order of their runtime. As hillsphere_too_small() uses two bisectional algorithms over
the runtime of which we have no control, we should �rst execute the other two functions. Given that
in slope_too_small() we calculate averages of Nϕ grid points whereas in density_too_small() the

averaging is over just
Nϕ
8 grid points, the latter function shall be executed �rst. Having stipulated

the right sequence we can now apply all functions to SimA15 (choosing initial_roche_range = 3)
whereafter only the maxima in Fig. 25 remain. Now, all undesired candidates have been discarded and
we can assume the disk to contain 8 fragments.

Figure 25: Local maxima of SimA15 after slope_too_small(), hillsphere_too_small() and
density_too_small() have been applied.

As all remaining maxima are part of a actual fragment, we now can calculate the Hill sphere for this
points. This could be of great use for simulations because, having a list of all grid points that belong to
a Hill sphere, its mass can be determined and the corresponding density distribution can be replaced
by a point mass at the position of the fragment's center of mass.

7.6 Calculating the Hill sphere

We �rst explain how to calculate the Hill sphere for one fragment. Afterwards we will discuss what
has to be changed if there are more fragments that could possibly interfere with one another.

7.6.1 Hill sphere for one fragment

As exposed in Fig. 7.2, the Hill sphere denotes the area around a fragment within which particles are
more attracted by the fragment than by the central star. If we consider the fragment to have been
developed by gradually aggregating more mass, we can emulate this process to calculate the Hill sphere
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H.

We �rst start with the initial fragment F 0 = P , i.e. the corresponding local maximum. Then we
calculate the Roche radius of H0 (which has already be done in hillsphere_too_small()) and consider
all grid points that are completely inside the Roche radius to be part of the fragment F 1. We then
calculate the centre of the mass CM1 of the fragment. With this, we can calculate the Roche radius H1

and consider all grid points inside H1 to be part of the fragment F 2. As the density of the grid points
decreases rapidly with increasing distance to P , the mass aggregated in the n-th step will decrease with
increasing n so that the process will terminate quickly because the mass aggregated in the preceding
step was not great enough to expand the Roche radius by one whole more grid point. As an illustration
of the described process see Fig. 26.

→

→ →

Figure 26: Illustration of the process of a fragment evolving by gradually aggregating more mass.
The black grid points are part of F i the green circle represents the Roche lobe H i(which is not a circle
as exposed in Fig 7.2). After step 4, no uncolored grid point is fully inside H4.

7.6.2 Hill sphere for more fragments

If there is more than one fragment we have to be careful. If two fragments are close together, we cannot
just calculate the Hill spheres one after another. A problem that could arise in this case is illustrated
in Fig. 27: If we �rst calculate the Hill sphere of P1 it can happen that grid points that are inside H0

of P2 are aggregated by the Hill sphere around P1 and so, when the Hill sphere of P2 is calculated,
could not be aggregated by P2 as a particle cannot be part of two fragments.
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→

Figure 27: Illustration of the problem arising if the Hill spheres are calculated one after another.

To avoid such possible problems, we have to calculate all Hill spheres at once, i.e. for every local max
Pi we calculate H0

i , than F 0
i and so forth. This is illustrated in Fig. 28. If at one point some grid

points are inside two Roche radii (as illustrated in the right panel of Fig. 28) they are added to the
fragment which exerts a stronger attraction on them. The process now is iterated until non of the
fragments can aggregate more mass. Then, if n is the index of the last step, Fni contains all grid points
that are completely inside the Hill sphere of fragment i.

→ ...→

Figure 28: Illustration of the process of the fragments aggregating mass simultaneously.

Emulating this process of simultaneous aggregation of mass by the fragments leads to the following
algorithm:

1 function ca l cu l a t e_Hi l l_spher e s ( localmax)
2 i n t j =0;
3 repeat

4 for a l l P ∈ localmax do

5 calculate_new_roche_radius_Hj (P ) ;
6 calculate_new_fragment_F j (P ) ;
7 calculate_new_CM_CM j (P ) ;
8 od

9 j++;
10 until no_P_can_aggregate_more_mass ( ) ;
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11 end

As a �rst test, after having executed slope_too_small(), hillsphere_too_small() and density_too_small(),
we apply this algorithm to SimA15. The result can be seen in Fig. 29. Here, the crosses highlight the
centers of mass of the respective fragments.

Figure 29: Hill spheres of SimA15 after slope_too_small(), hillsphere_too_small() and
density_too_small() have been applied.

Obviously the Hill spheres of the local maxima P1 and P2 are overlapping. We can interpret this
situation in such a way that in fact, these two very dense areas are one fragment that is evolving out
of two overdense clumpse. If we do so, we can write another function that checks if some fragments
are overlapping and, this being the case, merges the involved candidates:

1 function merge_fragments ( localmax)
2 for a l l P ∈ localmax do

3 for a l l Pj 6= P ∈ localmax do

4 i f over lapp ing (Pj . h i l l s p h e r e ,P . h i l l s p h e r e )
5 P . h i l l s p h e r e . add (Pj . h i l l s p h e r e ) ;
6 localmax . remove (Pj ) ;
7 f i

8 od

9 od

10 end

Applying merge_fragments(localmax) to SimA15, we observe, that the fragments around P1 and P2

have indeed been merged (see Fig. 30).
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Figure 30: Hill spheres of SimA15 after overlapping fragments have been merged.

7.7 Fitting a Gaussian function

After we have calculated all Hill spheres and merged all overlapping candidates, we could, as another
feature, �t a 2 dimensional Gaussian function to the density ditribution of a sphere.

g(~r) ≈ ρ0e

(
− ‖~r−~r0‖

2

2σ2

)

We choose r0 to be the local max P corresponding to the sphere -r0 = P and ρ0 = ρ(P ). We than
choose σ such that the mass represented by the Gaussian equals the mass of the Hill sphere mhs, i.e.

mhs
!

= ρ0

∞∫
∞

e

(
− ‖~r−~r0‖

2

2σ2

)
dx =

√
2πσ

With that, we have σ = mhs√
2π
.

Instead of cutting out all the mass represented by the Hill sphere and replacing it by a point mass as
mentioned at the end of section 7.5, we can cut out the mass represented by the value of the Gaussian
g(~r), i.e. at every grid point (nr, nϕ) that is part of the Hill sphere, we set

mhs = mhs −min (mhs, g(nr, nϕ)).

Doing so would avoid perturbations of the simulation which would occur if suddenly the density of all
grid points of a Hill sphere was set to zero.

7.8 Kepler orbits

In the last subsection we regarded the fragments as points of mass orbiting the central star, we can
extend our algorithm to one last feature: Given the azimuthal and the radial velocities of the mass
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in all gridpoints and assuming the fragments to orbit the central star on Keplerian orbits, we �rst
calculate the azimuthal an radial velocity of the corresponding centre of mass. Wee can now infer the
fragments' orbital parameters ε and P. With this, we can compute the orbits

r(φ) =
P

1 + ε cosφ
.

Plotting this along with the surface density ditribution (as we have examplarily done for SimE in
Fig. 31) one can forecast the position of a fragment at a given later time of the simulation and compare
this to the actual result of the simulation at this timestep.

Figure 31: The Hillsphere around the only fragment (red) forecast Kepler orbit of the fragment
(blue) of SimE.

Having presented the whole algorithm, in the next section we want to apply it to all the simulations
considered in this work.

8 Application of the algorithm

We now apply the complete algorithm, i.e. we include all functions exposed in the last section, and
test di�erent factors initial_roche_range. To do so, we �rst apply the algorithm to the presented
simulations with density distributions that can by judged by eye as well. In doing so, we can determine
the best value for initial_roche_range and then apply the algorithm with this initial_roche_range
to the distributions that cannot be checked for fragments without automatic help. We start with
initial_roche_range = 1 and get the plots in Fig. 32. Then we choose initial_roche_range = 3
(see Fig. 33), initial_roche_range = 5 (see Fig. 34) and �nally initial_roche_range = 7 (shown in
Fig. 35).
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Figure 32: Plots for initial_roche_range = 1. Top left: SimA25. Top center: SimA20. Top right:
SimA15. Bottom: SimE.

Figure 33: Plots for initial_roche_range = 3. Top left: SimA25. Top center: SimA20. Top right:
SimA15. Bottom: SimE.
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Figure 34: Plots for initial_roche_range = 5. Top left: SimA25. Top center: SimA20. Top right:
SimA15. Bottom: SimE.

Figure 35: Plots for initial_roche_range = 7. Top left: SimA25. Top center: SimA20. Top right:
SimA15. Bottom: SimE.
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As we see, the plots with initial_roche_range = 1 contain too much maxima. choosing initial_roche_range =
3, SimA20 still contains one fragment that out of experience should not be there. initial_roche_range =
7 discards too much maxima but with initial_roche_range = 5, every signi�cant dense clump is re-
turn as a fragment. Applying this value to SimC and SimD we can see that SimC indeed is fragmented
whereas SimD is not (Fig. 36).

Figure 36: SimC (left) and SimD (right) for initial_roche_range = 5.

9 Summary

In this work we considered the problem of detecting areas of dense clumps within simulations of
accretion disks. As we have demonstrated, neither edge detection algorithms of image processing
nor simple algorithm which disregard the spacial distribution of surface density could satisfatorily be
applied to this problem. But we were able to construct an algorithm that not only can assess with
high accuracy whether a disk is fragmented or not, but that also can calculate the Hill spheres of the
respective fragments. With this, simulations can cut out part of the mass of a fragment and replace it
by a point mass that can easily be progagated in time. Likewise, a forecast of the fragment's Kepler
orbit can be calculated.

We hope that the algorithm exposed in this work will held to ease the work of all the scientists that
conduct simulations in the �eld of accretion disks.
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