
Numerical Long-Time Analysis of
Compact Binary Systems

Diplomarbeit von Jonathan Seyrich

Jonathan Seyrich
Numerical Analysis Group

Eberhard-Karls-Universität Tübingen
Mathematisches Institut

Auf der Morgenstelle 10, 72076 Tübingen

supervised by
Prof. Dr. Wilhelm Kley and Prof. Dr. Christian Lubich

December 13, 2012



Erklärung gemäß § 18 (7) der Diplomprüfungsordnung

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Tübingen, den 03. Dezember 2012

Jonathan Seyrich

2



Zusammenfassung

Seit Albert Einstein 1915 mit seinen Bewegungsgleichungen für Gravitationsfelder die physika-
lische Beschreibung der Masse revolutionierte, zählen die mit dieser Theorie verbundenen
und durch sie vorhergesagten Phänomene zu den aufregendsten Forschungsgebieten der Wis-
senschaft.

Eines dieser Phänomene, die Gravitationswellen, waren dabei in den letzten Jahren Objekt
besonders großen Interesses. Die sie erzeugenden Bewegungen kompakter Binärsysteme,
wie Paare von Schwarzen Löchern oder Neutronensternen, sind deshalb Ziel zahlreicher
Langzeitsimulationen und Untersuchungen hinsichtlich chaotischen Verhaltens.

All diese Simulationen setzen zuverlässige Werkzeuge voraus. Numerische Methoden zur
Lösung der Bewegungsgleichungen sollten schnell und genau sein, Chaosindikatoren auch in
Zusammenarbeit mit den numerischen Integratoren verlässliche Ergebnisse liefern.

Ziel dieser Arbeit ist die Entwicklung und Bereitstellung eben solcher Werkzeuge. Aus diesem
Grunde werden zunächst die gängigsten Chaosindikatoren aus dem Bereich der Allgemeinen Rel-
ativität zusammengestellt und anhand erster einfacher Testbeispiele der klassischen Mechanik
illustriert.

Im Anschluss hieran werden dann neue strukturerhaltende Integrationsmethoden für die bei-
den Formalismen der Binärsysteme, die geodätischen Gleichungen und die post-Newton’sche
Beschreibung, vorgestellt. Wir werden sehen, dass der geodätische Ansatz zu Bewegungs-
gleichungen führt, deren numerische Lösung spezieller Schrittweitensteuerungen bedarf. Da
die bisher bekannten Steuerungen an diesen Gleichungen scheitern, entwickeln wir einen
neuen Algorithmus. Numerische Tests verdeutlichen den dadurch erzielten großen Gewinn an
Genauigkeit und Effizienz.

Im Bereich der post-Newton’schen Bewegungsgleichungen werden wir zeigen, dass das entspre-
chende Hamiltonsystem einem gestörten Keplerproblem entspricht. Dies würde den Einsatz von
Splitting-Verfahren motivieren. Wir werden allerdings sehen, dass es andere, weitaus schnellere
Möglichkeiten der strukturerhaltenden Integration gibt. In umfangreichen numerischen Experi-
menten entpuppen sich diese als große Verbesserung im Vergleich zu den bisher bekannten
Algorithmen.

Mithilfe der hier präsentierten Werkzeuge lassen sich zuverlässige Simulationen in effizienter
Weise durchführen, wobei die Erhaltungsgrößen der Bewegung keiner numerischen Korrektur
unterliegen. Damit hoffen wir, einen Beitrag zur weiteren Untersuchung der Gravitationswellen
geleistet zu haben.
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1. Introduction

1. Introduction
Supposedly motivated by an apple hitting his head, Newton (1687) contrived a theory of
gravitation by which the gravitational force is inversely proportional to the square of the
distance. This predicted the existence of Neptune but could not correctly describe the motion
of the sun’s nearest planet Mercury. Nevertheless, Newton’s law hold on to its position as
state-of-the-art theory until Einstein (1915) presented his field equations, thus giving life to
general relativity. Not only was the new theory able to describe Mercury’s motion but also
predicted it new phenomena such as black holes and gravitational waves. These two are still,
and presumably more than ever, subject to profound research.

1.1. The search for gravitational waves

Due to their non-linearity, the Einstein field equations are in no way easy to solve. Nevertheless,
one particular solution was soon found by Schwarzschild (1916) which was the gateway to the
description of black holes. These, in turn, are assumed to be the source of gravitational waves.
With the aim to finally receive signals of such waves, much experimental effort has been put
upon mounting land-based detectors. Virgo in France and Italy, GEO 600 in Germany and
the UK, and LIGO in the USA are only to name a few. They are soon to be joined by the
space-based eLISA. In order to track any signal of gravitational waves, templates are required
that give a hint on which needle to look for in the haystack of data delivered by all the working
detectors.

To obtain such templates, one has to single out promising potential sources of gravitational
waves and to calculate their motion in phase space. The main source of waves have been
identified to be binary systems consisting of inspiraling compact objects, see (Blanchet, 2002)
for details. Their mass proportions can be anything between equal masses and extreme ratios.
Binaries with very unequal masses are called Extreme Mass Ratio Inspirals (EMRIs). One
common example of an EMRI is a neutron star that orbits a super massive black hole (SMBH).
EMRIs allow for a simple description as a free particle (the lighter one) moving in a curved
spacetime given by the metric corresponding to the mass of the heavier particle. This approach
is commonly known as the geodesic motion. Out of this, different templates for gravitational
wave signals are obtained by applying various possible shapes of spacetime backgrounds and
then calculating the emitted waves. By examining which template fits best to the measured
data, one can determine the model that delivers the most reliable description of the spacetime
around a SMBH. One famous model is the uncharged axisymmetric Kerr metric (Kerr and
Schild, 1963). Another model, proposed by Manko et al. (2000), is presented as a numerical
test case in 3.9.

Binaries with a not so extreme mass ratio are suitably described by the post-Newtonian
formalism. This approach was possible after Arnowitt et al. (1962) discovered that Einstein’s
theory can be formulated as a Hamiltonian System. The idea is then to expand the elements of
the metric tensor and the equations of motion of the matter in powers of the small parameter
1/c2. This gives the Hamiltonian as a power series in the small parameter, the first term
of the series being the Hamiltonian for Newton’s law of gravitation. The determination of
the individual terms in this expansion is subject to current research in theoretical physics.
Jaranowski and Schäfer (2001) have been able to determine the Hamiltonian up to third order
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in 1/c2. The post-Newtonian approach has even been extended to a binary which is perturbed
by a much lighter third body (Galaviz and Brügmann, 2011).

A property of relativistic test-particles which is not known from classical mechanics is their spin.
After the foundation for the treatment of this spin had been laid down by Papapetrou (1951),
the post-Newtonian formalism could be expanded to include the corresponding contributions,
e.g., (Damour and Schafer, 1988). With this extension, the Hamiltonian system becomes a so
called Poisson system. How to add spin contributions to the geodesic motion is not quite clear
so far but will surely be resolved in the future.

This told, both approximations of a compact binary can be represented by a Hamiltonian. But
each can give rise to non-integrable systems. As a consequence, the motion described by them
can exhibit chaotic properties. If the motion of a particular binary is chaotic, the gravitational
waves emitted during its inspiral will be unpredictable, thus leaving the researchers at the
various wave detectors without any useful template. Hence, the investigation for chaos of
a given binary system is a very important task. To conduct this search, one needs reliable
indicators and numerical simulations over very long time spans. Numerical long-term analysis
requires efficient and highly accurate integration schemes which behave well even during
long-time simulations. To this aim one can take use of the special structure of the two
approximations.

Over the last decades, many numerical analysts have been busy with developing tools for the
long-term integration of equations of motion. As a result, the numerical analysis community
came up with structure preserving algorithms such as symplectic schemes for Hamiltonian
systems or symmetric integrators for time-reversible systems. Regarding long-time behaviour
and conservation properties, these schemes are superiour to ordinary numerical integrators in
many applications of classical mechanics and astronomy. Whereas for standard integration
schemes the overall error is normally proportional to the square of the length of the integration
interval ti, it only increases linearly with ti for structure preserving integrators. And whereas
there is a drift in constants of motions for standard methods, these constants are conserved up
to a vanishingly small error for symplectic algorithms. These algorithms have been successfully
applied even in quantum mechanics. A comprehensive presentation of such methods is given
by Hairer et al. (2006). Recently, structure preserving algorithms for the post-Newtonian
equations of motion have been introduced. Lubich et al. (2010) found a non-canonically
symplectic integrator that preserves the Poisson structure of the system. Wu and Xie (2010)
carried out a transformation of the system to symplectic form (which is always possible as is
shown by the Darboux-Lie theorem) to which a symplectic algorithm can then be applied.

In view of these developments, this work is meant to provide numerical tools for the gravitational
wave community in their simulations of binary systems. Therefore, we invent a structure
preserving algorithm for EMRIs and dig deeper into the field of structure preserving algorithms
for post-Newtonian equations of motion. In particular, we want to find out what impact a
given numerical integrator has on the common indicators of chaos. In order to make this work
readable for both physicists and numerical analysts, it is written in a self-contained way. The
basic concepts and inputs of either field are explained in detail.
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1.2. Outline

1.2. Outline

We start with introducing in chapter 2 the indicators of chaos which are used hereinafter. We
explain how the respective indicators can be calculated numerically. Then, we carry out a
first analysis of the different effects on the indicators by different integration schemes. We
illustrate this with the help of a simple example.

In the following part 3, we first analyse some special aspects of the geodesic equations of
motion. We will see that these aspects put some obstacles in the way of standard algorithms.
Therefore, we develop an efficient structure preserving algorithm for geodesic equations of
motion and test it against standard explicit Runge-Kutta schemes and standard structure
preserving algorithms of classical celestial mechanics. We will observe that the new integrator
beats its competitors in categories such as speed and accuracy. Besides, the new scheme is
more suitable to calculate chaos indicators such as Poincaré sections.

Chapter 4 deals with the post-Newtonian approximation. Based on the transformation of
the Hamiltonian to canonical form, various integration schemes are constructed. We analyse
in detail which possibilities exist to enhance the performance of the integration. We then
test structure preserving algorithms based on the transformation to canonical form and the
Poisson-integrators according to Lubich et al. (2010) for efficiency and accuracy against
standard explicit integration schemes. We will observe that, though the structure preserving
algorithms fare better than the explicit integrators, there are significant differences between
the individual schemes. The better ones will turn out to outperform the explicit competitors
even in simulations with non-conservative radiation effects.

Finally, we can summarize our results in section 5.

All simulations for this work were run on a Core 2 Duo E6600 machine with 2.4GHz and 4GB
RAM. The codes for the simulations have been written in fortran (simulations for chapter 3)
and c++ (simulations for chapters 2, 4).
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2. Analysing common chaos indicators

2. Analysing common chaos indicators
If a Hamiltonian system in a 2N -dimensional phase space possesses N integrals of motion
whose gradients are independent at every point of the phase space, its motion is regular. More
specifically, under mild additional assumptions one can transform the system to action-angle
variables such that the angle variables evolve on an invariant N -dimensional torus. Many
systems, among them most examples of binary systems of compact objects, lack this nice
property. As a consequence, these systems’ motion can be chaotic. We have already discussed
above that it is very important for the gravitational wave community to know whether a
given system exhibits chaotic traits or not. For this, tools are necessary which allow for the
distinction between regular and chaotic motions. Thus, in the present chapter, we examine the
most frequently used chaos indicators and analyse which effects different kinds of numerical
integrators can have on these. Plainly spoken, we want to get used to the peculiarities of the
chaos indicators before applying them to relativistic binary systems in the following parts of
this work. In particular, small numerical experiments by Hairer et al. (2006) suggest that
standard integration schemes can lead to wrong conclusions with regard to the chaoticity of a
dynamical system. We will check this for an easy classical example of a non-integrable system.
This also gives us the opportunity to demonstrate the properties of the respective indicators
of chaos. Let us now introduce our small classical example.

2.1. The Hénon-Heiles model

With the aim to model stellar motion, Henon and Heiles (1964) came up with the two-
dimensional Hamiltonian

H(p,x) =
1

2

(
‖p‖2 + ‖x‖2

)
+ x2y − 1

3
y3, (2.1)

where, for convenience, we assume the mass to be m = 1. Countless numerical investigations
such as the one by Benettin et al. (1976) have shown that the motion in the ‘funnel-shaped‘
potential is regular for energies E < 0.11. For energies 0.11 < E < 1/6 however, the motion can
be either regular or chaotic, depending on the region of the phase space the initial conditions
are chosen from. To visualize the different kinds of motion, we plot the trajectory of a regular
orbit along with a chaotic one in Fig. 2.1. We will use exactly these two orbits to illustrate the
behaviour of the chaos indicators below. For the regular orbit we choose the initial conditions

xreg = yreg = pyreg = 0, pxreg =
1

2
, (2.2)

whereas the chaotic example is given by the initial values

xchaos = pychaos = 0, ychaos = −0.1, pxchaos =

√
359

1500
. (2.3)

Both orbits have the same energy H = 1/8. In order to obtain the plots in figure 2.1, an
s = 4 -stage Gauss Runge-Kutta scheme with a step size h = 0.001 was used. Throughout the
rest of this chapter, this integration scheme is considered to be the ‘exact‘ solution. Detailed
information on Gauss-Runge-Kutta schemes is given in section 3.4 below. We now turn our
attention towards the indicators of chaos.
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Figure 2.1: Motion in the Hénon-Heiles potential: For the energy H = 1/8, the trajectory in
the configuration space of a regular orbit with initial conditions x = y = py = 0,
px = 1

2 is plotted in the left panel. The right panel shows a chaotic orbit with

initial conditions x = py = 0, x = −0.1, px =
√

359
1500 .

2.2. Poincaré sections

For a Hamiltonian with two degrees of freedom, the motion is restricted to a three-dimensional
submanifold due to the energy conservation. One can then fix a given surface in the phase
space and for every time the trajectory intersects with this surface, plot two of the remaining
three coordinates against each other. This gives an unambiguous representation of the orbit
as the third variable is uniquely determined by the constraint H = const. A discussion of
the properties of these so called Poincaré sections is not the purpose of this work. We refer
the interested reader to a detailed introduction by Meiss (1992). But we note that Poincaré
sections are the most reliable tool to distinguish different kinds of orbits in a four-dimensional
phase space. We illustrate this by plotting in Fig. 2.2 the Poincaré sections for the two different
orbits in the Hénon-Heiles potential of section 2.1. As in the rest of this section, we plot y
against py for every intersection at x = 0 in the time interval t ∈ [0, 106]. For the chaotic
motion the points seem to be randomly scattered over the subspace whereas they lie on a
curve for the other orbit with initial conditions (2.2). Because of this property, the orbit
is classified as quasiperiodic. We see that the Poincaré sections are an efficient tool for the
geodesic trajectory in an EMRI when the spacetime is axisymmteric, for in this case the phase
space consists of four dimensions. But how to best compute the sections?

2.2.1. Calculation of Poincaré sections

Without loss of generality, we consider sections of the x = 0 -plane. Once having passed this
plane during a step yn → yn+1, then, no matter what the order of the numerical scheme, the
section is located with an accuracy of h as this is the difference in time between the consecutive
steps. There are various possibilities to improve the accuracy with which the sections are
determined:

• One can drastically reduce the length of the steps. If the section is to be located up to an
error proportional to the numerical integration error O(hp), the step size can be reduced
by p orders of size. Such an algorithm is described by the following lines of pseudo code:

14



2.2. Poincaré sections
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Figure 2.2: Poincaré sections at x = 0 for the orbits of Fig. 2.1 calculated with the ‘exact‘
solution. The left panel shows the regular case (2.2) and the right panel depicts
sections of the chaotic orbit (2.3).

1 ca l cu la te_yn+1 = Φhstep(yn) ;
2 i f xn+1 · xn < 0 then
3 i f hstep ≤ hp then
4 s e t ysect = 1

2(yn+1 + yn) ;
5 hstep = h ;
6 else
7 hstep =

hstep
2 ;

8 go back to l i n e 1 ;
9 f i

10 f i

As the numerical solution stays O(hp) close to the analytical one and the location of the
section is encircled up to a distance of hstep, the error between the analytical and the
numerical value of the section is

‖ysect,an − ysect,num‖ = O(hp) +O(hstep). (2.4)

From this we see that hstep < hp does not make sense. But we notice, that this procedure
can be expensive. Even more so when the equations of motion are very costly to calculate
as will be the case for the binary systems we consider in the following chapters. Therefore,
another method to calculate the sections is necessary.

• If the desired accuracy for the sections is O(hp̃), one can calculate an interpolation
polynomial U(t) through the points (yn+p̃/2, . . . ,yn+1,yn, . . . ,yn−p̃/2) via

U(t) =

p̃/2∑
i=−p̃/2

yn+i · li(t), (2.5)

where li(t) is the Lagrange polynomial, cf. section 3.4. Here, we assumed p̃ to be even,
but we can proceed in a similar way for odd p̃. One can then search for the root of the
polynomial’s x-component with the help of a fast bisection method. If we replaced the
interpolation points with the exact solution at the same time, yan(t), we would have

max
t∈I
‖yan(t)−U(t)‖ = O(hp̃) (2.6)
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all over the interpolation interval I. As the interpolation points are an approximation to
the exact solution with an error O(hp), we have instead

max
t∈I
‖yan(t)−U(t)‖ = O(hp̃) +O(hp). (2.7)

Keeping this in mind, if we locate the root of the polynomial up to a very small error ε,
the error in the numerical calculation of the Poincaré section will be

‖ysect,an − ysect,num‖ = O(hp) +O(hp̃) +O(ε). (2.8)

• If the underlying integrator is a Gauss collocation scheme, the messy book-keeping for the
interpolation in the algorithm above can be circumvented. One can conveniently use the
collocation property, i.e., the fact that an s-stage Gauss-Runge-Kutta scheme is equivalent
to a interpolation polynomial through the points (0,yn) and (c1,Y1), ..., (cs,Ys), see
also 3.4. Numerical analysis shows, e.g., (Hairer et al., 1993), that the interpolation
polynomial stays O(hs) close to the analytical solution within the whole interval between
yn and yn+1. Thus, proceeding as in the algorithm before, we efficiently find an
approximation O(hs) close to the real section. The Poincaré sections of Fig. 2.2 were
calculated in this very way.

For efficiency’s sake, we always use the interpolation method in the rest of this work. When the
underlying integrator is a Gauss collocation scheme, we use the more convenient interpolation
via the collocation polynomial.

2.2.2. Impact on the sections by numerical schemes

Hairer et al. (2006) employed an explicit Euler scheme

yn+1 = yn + hf(yn) (2.9)

with the very small step size h = 10−5 to propagate a regular orbit in the Hénon-Heiles
potential and found out that the corresponding Poincaré sections looked rather chaotic. This
led to the assumption that ‘explicit schemes turn order into chaos‘. When we repeat the
experiment for our regular initial data (2.2) and track the relative error in the energy

∆H =
H(yn)−H(y0)

H(y0)
, (2.10)

we observe that it increases to ∆H = 0.27 at t = 25000. It is well known that for higher
energies a previously regular part of the phase space can become chaotic. The question is
thus if the ‘chaoticity-enhancing‘ property of explicit schemes is purely a consequence of them
increasing the energy or if there is something more behind it. In order to tackle this question,
we again consider the system with initial conditions (2.2) for the time interval t ∈ [0, 106]. We
apply the classical 4th order Runge-Kutta scheme (RK4)

yn+1 = yn +
s∑
i=1

bif(Yi), (2.11)

Yi = yn +
i−1∑
j=1

aijf(Yj), (2.12)
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2.2. Poincaré sections

given by

b1 = b4 =
1

6
, b2 = b3 =

1

3
,

a21 = a32 =
1

2
, a43 = 1, (2.13)

a20 = a30 = a31 = 0,

with a step size h = 0.01 and compare the results with the ones obtained by the symplectic
2nd order Stoermer-Verlet scheme

p̃ = pn −
h

2
∇xH(xn,pn) (2.14)

xn+1 = xn + h∇pH(xn, p̃) (2.15)

pn+1 = p̃− h

2
∇xH(xn+1, p̃). (2.16)

In Fig. 2.3 we observe that the RK4 scheme yields a smaller energy error ∆H than the structure
preserving algorithm. Under these circumstances, there is no difference in the Poincaré sections
between the explicit scheme and the structure preserving method or the ‘exact‘ solution,
respectively, as we can see in Fig. 2.4. The number of sections (157220) is the same, too.
Hence, there seems to be no hidden ‘chaoticity-enhancing‘ property in explicit schemes.

 1e-008
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 0  200000  400000  600000  800000  1e+006

∆
H

(t
)

t

RK4, h=0.01
SV, h=0.01

Figure 2.3: Relative error of the Hamiltonian ∆H as a function of time t ∈ [0, 106] for a
structure preserving algorithm and the explicit RK4 scheme for the Hénon-Heiles
potential with regular initial values.

Katsanikas and Patsis (2011) expanded the Poincaré sections to three-dimensional potentials.
At every intersection they plot four remaining coordinates using a three-dimensional plot plus
color. Although doing so would exceed all means of illustration, one can in theory expand
this tool further to arbitrary dimension, for example by two-dimensional plots for every tuple
of coordinates. With this technique, even in the 3D potential case, one cannot satisfactorily
distinguish between different kinds of regular motion, (Katsanikas and Patsis, 2011). But one
can still separate regular motion and chaos. Yet, this will result ever more cumbersome with
each additional dimension. As we will see below, the interesting system of a binary with spins
yields a 10-dimensional phase space. This is why other chaos indicators have been proposed.
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Figure 2.4: Poincaré sections at x = 0 for the regular orbit (2.2) calculated with the classical
Runge-Kutta scheme, h = 0.01 (left panel) and with the Störmer-Verlet method,
h = 0.01 (right panel).

2.3. Power spectra

Faced with the problem of a high-dimensional phase space as he wanted to examine the solar
system, Laskar (1990) focused on the system’s frequencies and gave rise to a new method: One
can track an arbitrary component of the solution, yj , over a given time span I and calculate
the spectrum of frequencies

∣∣f(ω)j
∣∣ =

∣∣∣∣∣∣
∫
I

eiωtyj(t)dt

∣∣∣∣∣∣ . (2.17)

The implementation of the Fourier transform depends on the integrator. If a constant step
size scheme is used, one can divide I into 2k, k ∈ N parts. Then a fast Fourier transform
(FFT) can be applied to the resulting values (y1, ...,y2k). If the equations of motion are solved
by a variable step size algorithm instead, one can use a suitable interpolation in order to
obtain values yn, n = 1, ..., 2k which all have the same distance in time. To circumvent the
book-keeping which is coming along with the interpolation, one can also use any convenient
quadrature such as the trapezoidal rule on the non-constant time intervals. This, of course,
needs more operations than the FFT does.

For a regular motion, the system can be expressed by action-angle variables. The action
variables are first integrals and the angle variables change periodically with time. As a
consequence, the coordinates yj , which can be regarded as functions of the action-angle
variables, are also (quasi)periodic. Therefore, their frequency spectrum will either consist of
one frequency or be the superposition of a few frequencies. In the case of a chaotic system,
the motion is irregular and the spectrum is continuous. We demonstrate the difference in
the spectra by plotting the frequency spectrum of x in the time intervals t ∈ [0, 15000] and
t ∈ [106 − 15000, 106] for the regular and the chaotic orbit of section 2.1. The result is shown
in Fig. 2.5. We see that the regular orbit is a superposition of few frequencies whereas the
spectrum for the chaotic orbit is showing noise. Furthermore, a regular orbit’s frequencies do
not change during the integration but a chaotic one’s can.

We now consider an integration interval t ∈ [0, 30000] and apply the explicit Euler scheme (2.9)
with h = 10−5 to the regular test orbit. We calculate the frequency once in the interval
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2.4. Lyapunov exponents
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Figure 2.5: For the time intervals I1 = [0, 15000] and I2 = [106 − 15000, 106], the Fourier
spectrum of x, |f(ω)x| =

∣∣∫
I e

iωtx(t)dt
∣∣ is plotted. The left panel corresponds to

the regular orbit (2.2), the right panel shows the spectrum of the chaotic orbit (2.3).

I1 = [0, 1500] and once for I2 = [28500, 30000], s. the left panel of Fig. 2.6. This again
illustrates how an inexact integrator can turn regular motion into chaos. Calculating the
regular orbit’s frequency spectrum for I1 = [0, 15000] and I2 = [106− 15000, 106] with the RK4
scheme of the previous section 2.2.2, we can demonstrate once more that the ‘chaos-enhancing‘
is only due to the Euler method’s bad performance and not a consequence of explicitness by
itself.
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Figure 2.6: For our regular test orbit in the Hénon-Heiles potential, the left panel shows
the frequency spectrum of the x component in the intervals I1 = [0, 1500] and
I2 = [28500, 30000] obtained with an explicit Euler scheme. In the right panel,
an RK4 scheme was applied to calculate the frequency spectrum in the intervals
I1 = [0, 15000] and I2 = [106 − 15000, 106].

2.4. Lyapunov exponents

Let us ask the following question: What will happen to the solution y(t) of the differential
equation

dy

dt
= f(y), (2.18)
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y(0) = y0 (2.19)

if we change the initial value y0, i.e., how does ∂iy(t) depend on ∂iy0? Obviously, a small
change in the initial condition would yield an only slightly different trajectory y(t) for a regular
orbit whereas for a chaotic, unpredictable one, the outcome could be completely different.
This observation leads us to another tool to measure chaoticity.

2.4.1. Maximum Lyapunov exponent: The variational method

Deriving both sides of the differential equation (2.18) yields the variational equation

d (∂iy(t))

dt
= [(Df) (y)] ∂iy(t), (2.20)

∂iy(0) = êi (2.21)

which describes how a perturbation in y0 propagates in time. If ϕ̃(a0) is the solution of this
variational equation for an initial condition a0, then

λ(a0) = lim
t→∞

1

t

log ‖ϕ̃(a0)‖
‖a0‖

(2.22)

exists for all a0. When one chooses a basis {ai} of the phase space such that∑
i

λ(ai) ≤
∑
i

λ(ãi) (2.23)

for every other basis {ãi}, then the numbers

λi := λ(ai) (2.24)

are called the Lyapunov exponents of the system (2.18). We remark here that the exponents
depend on the initial position in the phase space. The maximum exponent

λ := max
i
λi (2.25)

is of particular interest. For a regular system, λ is equal to zero. For chaotic motion, λ
tends to a finite value. For each vector v with non-vanishing component in the direction amax
corresponding to the maximum exponent, we have

λ(v) = λ. (2.26)

Therefore, when calculating the solution of the variational equation

dv

dt
= [(Df) (y)] v (2.27)

for an arbitrary v(0), we have with a probability of one that

λ = lim
t→∞

1

t

log ‖ϕ̃(v(0))‖
‖v(0)‖

. (2.28)
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2.4. Lyapunov exponents

This is the variational method to calculate the maximum Lyapunov exponent (LE) as an
indicator of chaos. The definition of the LE (2.28) requires the solution of a variational equation.
In relativistic systems, such as ours in the following chapters, it is often very cumbersome to
derive such an equation. Furthermore, for high-dimensional systems, the (structure preserving)
solution of equation (2.27) is very expensive. Thus, another method to calculate the LE is
normally used by the general relativity community. This will be presented in the next but one
subsection. Before, we deviate a bit from our actual topic, the distinction between chaos and
order, and discuss how to calculate all Lyapunov exponents λi in the next subsection.

2.4.2. A bit offside the main topic: Calculation of all Lyapunov exponents

In order to calculate all λi, one could in theory solve the matrix-valued differential equation

dY

dt
= [(Df) (y(t))]Y (t), (2.29)

Y (0) = (a1, ...,aN ) (2.30)

for the initially orthogonal basis ai of the N -dimensional phase space. Unfortunately, round-off
errors will cause every column of Y (t) to get a small component in the direction corresponding
to the maximum exponent. As a consequence, for integrations over very long times, the
columns of the matrix get aligned causing all λi to equal λ in the end. To avoid this, one
has to re-orthogonalize the vectors from time to time. Benettin et al. (1978) proposed two
algorithms to cope with this challenge. Both are based on the QR-decomposition of a matrix,

Y = QR, (2.31)

where Q is orthogonal and R is an upper tridiagonal matrix. It is well known from numerical
analysis that every matrix can be decomposed in such a way. The decomposition (2.31) can
be conveniently solved by efficient standard algorithms, s., e.g., (Flannery et al., 1992). This
said, the Lyapunov exponents can be calculated as follows:

• In the discrete QR algorithm, the integration interval I is divided into smaller intervals
I = I0 ∪ ... ∪ Ij ∪ ..., Ij = [tj , tj+1] . Then, one sets

Y (0) = Q(0) = I (2.32)

and solves for every small interval Ij :

dYj
dt

= [Df(y(t))]Yj , (2.33)

Yj(tj) = Qj , (2.34)

Yj(tj+1) = Qj+1Rj+1. (2.35)

Here, the QR-decomposition is applied at the end of each interval in step (2.35). One
can then show that the Lyapunov exponents are given as

λi = lim
j→∞

log ‖(Rj)ii · · · (R1)ii‖
tj

(2.36)
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• The continuous QR algorithm uses the ansatz Y (t) = Q(t)R(t) to derive a differential
equation for the orthogonal QR-part Q which reads

dQ

dt
= QA(Q,y), (2.37)

A(Q,y)ij =


(
QT [(Df) (y)]Q

)
ij
, i > j,

0, i = j,

−
(
QT [(Df) (y)]Q

)
ji
, i < j.

(2.38)

This implies the differential equation for diagonal entries of the upper-triangular part

dRii
dt

=
(
QT [(Df) (y)]Q

)
ii
Rii. (2.39)

Dieci et al. (1997) show that in this case, the i-th Lyapunov exponent is given as

λi = lim
t→∞

logRii(t)

t
= lim

t→∞

1

t

t∫
0

(
QT [(Df) (y)]Q

)
ii

dt. (2.40)

We now want to illustrate the two methods. Therefore, we apply them to our chaotic test orbit
in the Hénon-Heiles potential (2.3). For the discrete QR algorithm, we use the RK4 method
with a step size h = 0.01 to solve the variational equation along with the differential equation
for the system (2.18). In order to avoid an overflow, we have to apply the QR-decomposition
every 10 time units. In the case of the continuous QR algorithm, we have to guarantee that
Q(t) stays orthonormal during the integration. If we used the RK4 scheme for this algorithm,
we would have to project the numerical solution Qn after each time-step. The projection P of
a matrix onto the manifold of orthonormal matrices is given by, e.g., (Hairer et al., 2006),

PQn = UV T , (2.41)

where U and V are the orthogonal matrices of the singular value composition

Qn = UΣV T , (2.42)

Σ = diag(σ1, ..., σN ), (2.43)

σ1 ≥ . . . σN ≥ 0. (2.44)

The calculation of the singular value decomposition at each time step would lead to unsus-
tainable computational cost. Therefore, we use an s = 2-stage Gauss Runge-Kutta scheme
with h = 0.1 to solve both the differential equation for the orbit and equation (2.37). The
orthogonality of Q(t) is a first integral,

Q(t)TQ(t) = I = const, (2.45)

and thus conserved by Gauss-Runge-Kutta schemes, see (Hairer et al., 2006) for example. We
then apply the trapezoidal rule to calculate the integral in (2.40). For both QR algorithms,
we integrate until t = 106 in order to approach the limit in time. In Fig. 2.7 we give the
results of our simulations. There, we can see how the exponents approach their limit as time is
advancing. The plots also contain the ‘exact‘ solution for the LE with the variational method.
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2.4. Lyapunov exponents

Once more, the ‘exact‘ solution is given by the Gauss-Runge-Kutta scheme with s = 4 and
h = 0.001. We observe that the largest exponent as given by the QR methods converges
towards the LE for large times. But we notice that the largest exponent of the continuous
QR algorithm does not come as close towards the LE as the one of the discrete algorithm.
With a step size h = 0.1, the trapezoidal rule cannot adequately approximate the integral in
equation (2.40). To demonstrate this, we interpolated the solution between two time steps
with a polynomial of order 4 (which is the same order as the integration scheme). This enabled
us to divide each interval of the trapezoidal rule into 10 smaller ones. Doing so, the largest
exponent given by the continuous QR algorithm was closer to the LE as before. Thus, the
integral (2.40) and not he integration scheme was responsible for the bad approximation.

In order to illustrate the additional computational cost incurred by the need for all Lyapunov
exponents, we compare in table 2.1 the computation time of the two simulations above with
simulations where only the LE is calculated via the variational method (2.28) with the same
two integrators and the same step sizes. It is obviously very expensive to calculate all the
exponents. Let us now focus on our main topic again.
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Figure 2.7: The evolution in time of the Lyapunov exponents λi once calculated with the
discrete QR method (left panel) and once obtained via the continuous QR algorithm.
Both panels also show the LE as a function of time.

Simulation Tcalc[s]

discrete QR 211.59
continuous QR 478.52
LE with RK4 34.57

LE with Gauss, s = 2 61.25

Table 2.1: The CPU calculation times for the QR algorithms are compared with the CPU
times for the calculation of the LE.

2.4.3. LE: The two-particle approach

Although the variational method is much cheaper than the QR algorithms, it can still be very
cumbersome, especially in relativistic simulations. To avoid this, one can resort to an idea
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first introduced by Benettin et al. (1976):

To calculate the LE of a given orbit with initial conditions y0, we consider a second trajectory
ỹ(t) with initial conditions very close to the actual orbit y(t). This is called the two-particle
method or shadow trajectory method. One integrates both orbits simultaneously and tracks
their distance in phase space

d(t) = ‖y(t)− ỹ(t)‖. (2.46)

One can then obtain the maximum Lyapunov exponent as

λ = lim
t→∞

1

t
log

d(t)

d(0)
. (2.47)

For Hamiltonian systems, the manifold defined by H = const is usually bounded. Consequently,
the maximal distance between an orbit and is shadow its bounded, too. Thus, one has to
apply a renormalization to avoid that λ tends to zero due to the bounded distance. With
a fixed threshold d smaller than the diameter of the manifold H = const, the two-particle
method with renormalization is as follows:

1 function calculate_LE
2 i n i t i a l i z e_y(0) ;
3 ca l cu la te_ ỹ(0) ;
4 i n i t i a l i z e_λ = 0 ;
5 while (t < tend ) do
6 ca l cu la te_yn+1(yn, h) ;
7 ca l cu la te_ ỹn+1(ỹn, h) ;
8 ca l cu la te_d(t) = ‖yn+1 − ỹn+1‖ ;
9 i f (d(t) > d) do

10 λ = λ+ 1
tend

log d(t)
d(0)

11 reset_ ỹn+1 = yn+1 + d(0)
d(t) (ỹn+1 − yn+1)

12 f i
13 od
14 end

Wu et al. (2006) argued that the two-particle method should be preferred over the variational
method in general relativistic simulations.

We compare the result of the two methods to calculate the LE in Fig. 2.8. For both the
regular and the chaotic case, the LE as given by the shadow-trajectory approach converges
towards the variational result and we see that either method leads to the same conclusion
about chaoticity.

2.5. Fast Lyapunov Indicator (FLI)

In some cases one can abbreviate the calculations and get a first hint on the kind of motion by
applying the Fast Lyapunov Indicator which was proposed by Wu et al. (2006). The idea is to
omit the time-limit in the LE’s definition (2.47) and track the function

FLI(t) = log
d(t)

d(0)
. (2.48)
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2.5. Fast Lyapunov Indicator (FLI)
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Figure 2.8: The evolution in time of LE calculated with the variational and the two-particle
method. The left panel shows the result for the regular orbit (2.2). The LE for
the chaotic case 2.2 is shown in the right panel in double logarithmic scale.

Put practically, FLI measures how fast two initially close orbits are diverging, thus separating
order from chaos. The advantage of this method is that, in cases where it is applicable, it does
not require a large time interval. Hence, one need not care about the long-time behaviour of
the numerical integrator and can choose a fast scheme instead. We remark that in practical
implementations, a renormalization as described in the previous section is necessary again.

As we have seen in the previous sections, the RK4 scheme with a step size of h = 0.01 shows
a satisfactory behaviour for not too long integrations. We thus employ this scheme to track
the FLI over the interval t ∈ [0, 105]. The results for our two test cases are given in Fig. 2.9.
One observes that the indicator increases slowly with time for the regular orbit whereas it is
growing linearly for chaotic motion. From Fig. 2.9 it becomes also clear that for too small
time scales one cannot distinguish chaos from order as for t < 10000 the plot for the chaotic
orbit resembles the one for the regular trajectory.
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Figure 2.9: The Fast Lyapunov Indicator (FLI) against time for the regular orbit (2.2) (left
panel) and the chaotic test case (2.3) (right panel) in semi-logarithmic scale.

Having introduced the useful tools of chaos analysis, we finally turn our attention towards
binary systems.
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3. Long-time integration of Extreme Mass Ratio Inspirals (EMRIs)

3. Long-time integration of Extreme Mass
Ratio Inspirals (EMRIs)

According to its name, an EMRI is a binary for which the mass of one object is much larger
than the mass of the second. Without loss of generality we have m1 � m2. One can thus
regard an EMRI as a system of a test particle moving in the stationary gravitational field
of the much heavier mass –just as one can approximate the system earth-sun by regarding
the position of the sun as fixed, with the earth moving around it. Given the equivalence
of gravitation and curved space, a test particle in a gravitational field is regarded as a free
particle moving in a non-Euclidean space described by a metric gµν . A free particle that moves
from a point xa to a point xb always does so minimizing the distance between these points. In
a curved spacetime this paths are geodesics. Thus, the equations which describe the orbital
motion of an EMRI’s light mass around the much heavier one are called geodesic equations of
motion. These will be derived as soon as we have introduced some notation in the following
section.

3.1. Notation

Throughout the rest of this work, τ denotes proper time. A dot symbolizes derivation with
regard to τ . In sections elaborating the physical background, we use the standard covariant
and contravariant formalism which is common in relativity. Accordingly, greek letters stand
for indices α = 1, 2, 3, 4 and variables with greek subscript (superscript) denote covariant
(contravariant) four-vectors. Variables with two indices denote tensors. Furthermore, we use
Einstein’s sum convention, i.e.,

gµνx
µxν =

4∑
µ,ν=1

gµνx
µxν . (3.1)

In the numerical analysis parts, we change the symbolism and use common notations from this
field. Thus, h represents the length of a time-step. We distinguish between time and space
and denote space-like vectors by bold variables. In particular, y denotes a point in the phase
space (which itself shall be called X )

y =

(
p
x

)
, (3.2)

where p and x are canonical momenta and coordinates, respectively. In order to simplify the
notation of the Hamilton equations

ṗ = −∇xH (3.3)

ẋ = ∇pH, (3.4)

we introduce

• the unitary matrix I which has half the same dimension of X ,

• the simplecticity matrix

J :=

(
0 I
−I 0

)
, (3.5)
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• the phase space gradient

∇ :=

(
∇p

∇x

)
, (3.6)

• and the function

f(y) := J−1∇H(y). (3.7)

With this, the equations (3.3) and (3.4) are given in short form as
dy

dτ
= f(y). (3.8)

We denote by ϕτ the flow corresponding to a system (3.8) with initial conditions y0, i.e.,

y(τ) = ϕτ (y0). (3.9)

Φh is the numerical approximation to that flow over a time interval h.

When referring to a Runge-Kutta method, we make use of the following quantities:

• the number of inner stages s,

• the inner stages c1, ..., cs,

• the weights at the inner stages, bi and aij , respectively,

• the matrix

A :=

a11 . . . a1s
...

. . .
...

as1 . . . ass

 , (3.10)

• the vector

~yn :=

yn, ...,yn︸ ︷︷ ︸
s times

T

, (3.11)

• the inner-stage values
~Y := (Y1, ...,Ys)

T , (3.12)

• the auxiliary variables
~Z := (Z1, ...,Zs)

T = ~Y − ~yn, (3.13)

• and the function

F (~Y ) := (f(Y1), ..., f(Ys))
T . (3.14)

Furthermore, we define the phase space ~X := X × . . .×X whereby we have ~Y , ~Z ∈ ~X . Finally,
⊗ denotes the tensor product for matrices, i.e., for matrices A and B, we have

A⊗B =

a11B . . . a1nB
...

. . .
...

an1B . . . annB

 . (3.15)

Now, we are prepared to derive the geodesic equations of motion.
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3.2. Geodesic equations of motion

3.2. Geodesic equations of motion

The action S of a free particle of mass m0 that moves from one point in spacetime xa to
another point xb is given by

S = −m0c
2

xb∫
xa

ds, (3.16)

where ds is the Lorentz-invariant line element (ds)2 = gµνdx
µdxν . If we parametrize the

particle’s path via

xµ = xµ(σ), σ ∈ R, (3.17)

we get

dxµ =
dxµ

dσ︸︷︷︸
:=ẋµ

dσ, (3.18)

and thus

ds =
√
gµν ẋµẋνdσ. (3.19)

If we choose as the parameter the line element itself, we have

ds =
√
gµν ẋµẋνds, (3.20)

which implies the four-velocity-constraint

gµν ẋ
µẋν

!
= 1. (3.21)

The particle moves in space in such a way that the action is minimized. Due to the monotony
of the square-root, physic does not change if we replace the integrand (3.19) by

ds = gµν ẋ
µẋνdσ. (3.22)

From this, we deduce the Lagrangian function

L =
1

2
m0gµν ẋ

µẋν , (3.23)

which is a conserved quantity due to the four-velocity constraint.

We now define the momenta pµ via

pµ :=
∂L

∂ẋµ
(3.24)

and apply a Legendre transform to the Lagrangian (3.23) to obtain the corresponding Hamil-
tonian

H = pµẋ
µ − L =

1

2m0
gµνpµpν . (3.25)
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The variables xµ and the momenta (3.24) thus satisfy the Hamilton equations

ṗµ = − ∂H
∂xµ

(3.26)

ẋµ =
∂H

∂pµ
. (3.27)

As, for an EMRI, the gravitational field is considered to be stationary, the metric gµν and, as a
consequence, the Lagrangian does not depend on time explicitly. We thus have an autonomous
system with

dH

dτ
= 0. (3.28)

Most simulations concerning EMRIs consider axisymmetric gravitational fields. Therefore, if
we use spherical space-like coordinates, i.e xµ = (t, r, θ, φ)T , the metric is independent of φ. In
these cases, t and φ are cyclic coordinates and, hence, the corresponding momenta

E := pt =
∂L

∂ṫ
(3.29)

and

Lz := pφ =
∂L

∂φ̇
(3.30)

are conserved. E and Lz are the specific energy and the specific azimuthal component of the
angular momentum respectively. With these two additional constants, the number of ordinary
differential equations of the system (3.26), (3.27) is reduced from eight to four first order
equations. Our numerical example of subsection 3.9 is of exactly this type.

But what are the properties of the just mentioned equations of motion? And how to handle
these numerically? To address these questions, we switch to a notation common in numerical
analysis, as already announced in 3.1.

3.3. Properties of the geodesic equations of motion

Equations (3.26), (3.27) clearly have a canonical structure, i.e., they can be written as

dy

dτ
= f(y), (3.31)

f(y) = J−1∇H(y). (3.32)

Hence, symplectic integration schemes should be legitimate candidates for numerically prop-
agating the system. However, there are some properties of the system which complicate its
numerical solution.

First, we notice that the ‘mass-matrix‘ in the Hamiltonian 3.25, which in this case is the metric
gµν , apparently depends on the positions. Consequently, the Hamiltonian cannot be separated
in the form

H(p,x) = T (p) + V (x). (3.33)
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3.4. Gauss-Runge-Kutta methods

Sadly, a non-separable Hamiltonian and the explicitness of a symplectic scheme are mutually
exclusive, as it is shown by Hairer et al. (2006) for example. As a consequence, one has to
apply implicit schemes.

What is more, in most applications of the geodesic approach, the metric is such that the system
lacks a fourth first integral such as the Carter constant in the Kerr case. As a consequence, not
only does the system become non-integrable but also is it often highly sensitive to changes in
the argument. To state this in a formal way, let (Df) (y) denote the Jacobian of f(y) around
some point y in the phase space X . Then, there exists a subset U ⊂ X , with

‖ (Df) (y)‖ � 1, ∀ y ∈ U . (3.34)

We will see below that this condition combined with the non-separability poses severe restric-
tions on the implementation of structure preserving algorithms. But first, we introduce a class
of structure preserving integration schemes suited for non-separable problems.

3.4. Gauss-Runge-Kutta methods

Gauss-Runge-Kutta methods are in fact collocation methods. Therefore, we give some
background concerning these schemes.

Given an interval [τ0, τ0 + h], stages 0 ≤ c1 < ... < cs ≤ 1, and an initial-value problem

y(τ0) = y0, (3.35)

dy

dτ
= f(τ,y), (3.36)

the polynomial u(τ) of degree s, satisfying

u(τ0) = y0, (3.37)

u̇(τ0 + cih) = f(τ0 + cih, u(τ0 + cih)), i = 1, ..., s (3.38)

is called a collocation polynomial.

In order to solve an initial-value problem (3.35), (3.36) by collocation, one has to find the poly-
nomial u(τ) which satisfies the collocation conditions (3.37), (3.38). This gives an approximate
solution of the initial value problem after a time step h by setting

y(τ0 + h)col := u(τ0 + h). (3.39)

A detailed introduction to collocation methods can be found in (Hairer et al., 1993).

It can now readily be shown, e.g., (Hairer et al., 1993), that a collocation method is equivalent
to an implicit s-stage Runge-Kutta scheme

yn+1 = yn + h

s∑
i=1

bif(Yi), (3.40)

Yi = yn + h

s∑
j=1

aijf(Yj), (3.41)
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with coefficients

aij =

ci∫
0

lj(τ)dτ, (3.42)

bj =

1∫
0

li(τ)dτ. (3.43)

Here, li(τ) denote the Lagrange-polynomials of degree s

li(τ) =
∏
i 6=j

τ − cj
ci − cj

. (3.44)

Depending on which set of stages 0 ≤ c1 < ... < cs ≤ 1 is chosen, different collocation methods
can be constructed. By setting

ci =
1

2
(1 + c̃i), (3.45)

with c̃i being the roots of the Legendre-polynomial of degree s, one obtains a Gauss collocation
method. The order of this methods is O(h2s), cf. (Hairer et al., 1993), which is optimal in
the sense that there are no other s-stage one-step methods that achieve a similar high order
without further numerical ruse. In addition, Gauss collocation methods are symplectic and
time-reversible, as is proven in (Hairer et al., 2006). Due to all these properties, implicit
Gauss-Runge-Kutta methods are one of the most popular candidates for solving non-separable
Hamiltonian systems.

Rewriting the set of implicit equations (3.41) in matrix-vector notation yieldsY1
...

Ys

 = h

a11I ... a1sI
...

. . .
...

as1I ... assI


f(Y1)

...
f(Ys)

 . (3.46)

Using the notation introduced in 3.1, we can write equation (3.46) as

~Y = ~yn + h(A⊗ I)F (~Y ). (3.47)

Employing the auxiliary variables (3.13), the Runge-Kutta scheme’s implicit equations (3.41)
can be given in quite short form as

~Z = h(A⊗ I)F (~Z). (3.48)

Here, F (~Z) is to be read as

F (~Z) =

f(Y1)
...

f(Ys)

 =

f(yn + Z1)
...

f(yn + Zs)

 . (3.49)

The system of implicit equations (3.48) has to be solved during each integration step. We will
see in the following, that this leads to a constraint on the allowed step sizes.
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3.5. The need for an efficient step size algorithm

3.5. The need for an efficient step size algorithm

There are two possibilities to solve equation (3.48) for the inner stage values ~Z.

• The most straightforward way is to apply a direct iteration or fixed-point iteration, i.e.,
to iterate

~Zk+1 = h(A⊗ I)F (~Zk). (3.50)

A sufficient condition for its convergence is given by the Banach fixed-point theorem: If
the iteration (3.50) is a contraction on the whole space X then it converges towards a
unique solution ~Z.

For this to hold, we need∥∥∥~Zk+2 − ~Zk+1
∥∥∥ !
<
∥∥∥~Zk+1 − ~Zk

∥∥∥ . (3.51)

Because of∥∥∥~Zk+2 − ~Zk+1
∥∥∥ =

∥∥∥h(A⊗ I)(F (~Zk+1)− F (~Zk))
∥∥∥

≤ max
~Z∈ ~X

∥∥∥h(A⊗ I) (DF ) (~Z)
∥∥∥∥∥∥~Zk+1 − ~Zk

∥∥∥ , (3.52)

condition (3.51) is nothing other than

h
∥∥∥(A⊗ I)DF (~Z)

∥∥∥ !
< 1, ∀ ~Z ∈ ~X . (3.53)

• An alternative to the simple iteration above is based on the modified Newton iteration.
In this case, we search for the roots of the function

F̂ (~Z) := ~Z − h(A⊗ I)F (~Z), (3.54)

wherefore we use the very modified Newton iteration. Hence, we iterate

~Zk+1 = ~Zk + ∆~Zk (3.55)

∆~Zk = −M−1F̂ (~Zk), (3.56)

with

M := I − (A⊗ I)(I ⊗Df(yn)). (3.57)

Combining (3.55) and (3.56) to one single step

~Zk+1 = ~Zk −M−1F̂ (~Zk), (3.58)

we see that the Newton iteration is in fact a pre-conditioned fixed-point iteration. Thus,
we can again apply Banach’s theorem as soon as we can ensure∥∥∥~Zk+2 − ~Zk+1

∥∥∥ =
∥∥∥~Zk+1 −M−1F̂ (~Zk+1)−

(
~Zk −M−1F̂ (~Zk)

)∥∥∥
≤ max

~Z∈ ~X
h
∥∥∥I −M−1DF̂ (~Z)

∥∥∥∥∥∥~Zk+1 − ~Zk
∥∥∥

!
<
∥∥∥~Zk+1 − ~Zk

∥∥∥ , (3.59)
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or rather

h
∥∥∥I −M−1DF̂ (~Z)

∥∥∥ !
< 1, ∀ ~Z ∈ ~X . (3.60)

When using a modified Newton iteration, one has to calculate a Jacobian and to solve a linear
system which can be very costly. The reduced number of iterations normally does not make up
for this additional effort. Consequently, one should prefer the fixed-point iteration whenever it
is possible. Even heavier machinery for the solution of the implicit equation (3.48) is supplied
by the Newton-Raphson method. There, M in eq. (3.56) is replaced by

M(~Zk) = I − (A⊗ I)(DF (~Zk)). (3.61)

This gives an iteration with quadratic convergence. But it is much more expensive because a
Jacobian has to be calculated at every iteration step. Hence, standard literature recommends
to do without it whenever possible, e.g., (Hairer et al., 2006). In the numerical experiments
part 3.10 we will observe that this still holds true for geodesic equations of motion.

But no matter which iterative scheme we use to solve the implicit equations that inevitably
arise with the use of a collocation method, we always have some restriction on the step size. It
has to bee small enough for a requirement such as (3.53) or (3.60) to hold. For cases with the
property (3.34) of high sensitivity on changes in the argument, this means that to propagate
the system in the subset U , we have to choose a very small step size h << 1. On the other
hand, there will almost surely be other parts V of the phase space, where∥∥(Df) (y)

∥∥ ∼ 1, ∀ y ∈ V. (3.62)

or even parts Ṽ with∥∥(Df) (y)
∥∥� 1, ∀ y ∈ Ṽ. (3.63)

Propagating the system in this parts of the phase space with the very small step size h adapted
to the part U would be a massive waste of computational time. In parts of the phase space for
which (3.62) or (3.63) hold, one would rather work with a large step size.

The only way to cope with this problem is to use a variable step size. But finding a suitable
variable step size algorithm for problems common in the geodesic approach is not a simple
task as we will argue next.

3.6. (Problems with) existing step size algorithms

Variable step sizes have been used for a long time in applications such as stiff differential
equations, e.g., (Hairer and Wanner, 1996). The perhaps easiest way would be to compare
the numerical solution yn with a reference solution and calculate their difference. This can
then be interpreted as the error of the numerical solution. If this error is larger than a given
tolerance, one can reduce the step size and calculate the last step from anew. If, on the other
hand, the numerical integrator does satisfyingly well, one could increase the step size before
calculating the next step.

But, however well such algorithms may work in some cases, one cannot simply combine them
with geometric integrators. Trying to do so, one would realize that the structure preserving
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3.6. (Problems with) existing step size algorithms

property will be lost. An illustration of this phenomenon is given by Hairer et al. (2006). In
fact, Stoffer (1988) demonstrated that variable step size and efficient symplectic integration
are mutually exclusive. Thus, the following structure preserving properties such as symmetry
and reversibility come to the fore:

• A numerical integration scheme Φh is called symmetric, if it satisfies

Φ−h(y) = Φ−1(y). (3.64)

• It is called time-reversible if for the linear involution

ζ

(
p
x

)
=
(
−p,x

)
, (3.65)

one has

Φ−1h ◦ ζ = ζ ◦ Φh. (3.66)

When applying a symmetric, reversible integration scheme to a symmetric, reversible problem,
one can expect the same benevolent long-time behaviour as when applying a symplectic scheme
to a canonical system. Hairer et al. (2006) discuss this in great detail.

Over the last years, some few step size controllers have been proposed for applications in
classical (celestial) mechanics. The most efficient and popular among these was presented by
Hairer and Söderlind (2005). They express the variable step size sequence τ = τ1, ..., τn, τn+1, ...
by means of a constant step size sequence ε = ε1, ..., εn, εn+1, ... and a scalar function σ(y) via
dτ = σ(y)dε. The dependence of y on ε then is as follows:

dy

dε
=

dy

dτ

dτ

dε
= f(y)

dτ

dε
= f(y)σ(y). (3.67)

Their main idea then is to consider the inverse of the scaling function σ(y),

w :=
1

σ(y)
, (3.68)

and its derivative by ε

dw

dε
= − 1

σ2
(∇σ)

dy

dε

= − 1

σ
(∇σ)f(y). (3.69)

The last equality follows by replacing dy
dε with the help of relation (3.67). Combining equations

(3.67), (3.69) and defining

G(y) := − 1

σ
(∇σ)f(y) (3.70)

leads to the augmented system( dy
dε
dw
dε

)
=

(
1
wf(y)
G(y)

)
. (3.71)
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Hairer and Söderlind (2005) solve this system with the scheme

wn+ 1
2

= wn + εG(yn) (3.72)

yn+ 1 = Φε/w
n+1

2

(yn) (3.73)

wn+ 1 = wn+ 1
2

+ εG(yn+1), (3.74)

w0 =
1

σ(y0)
, (3.75)

where Φh is a symmetric reversible integrator for the original equation of motion (3.31). This
method is symmetric and time-reversible, (Hairer and Söderlind, 2005).

Unfortunately, this scheme is of almost no use for the non-integrable systems of the geodesic
approach. To demonstrate this, let us denote the scheme (3.72) - (3.75) by(

yn+1

wn+1

)
= χε(yn, wn). (3.76)

The integrator χe is in fact strang splitted as

χε(yn, wn) = φε/2 ◦ Φε ◦ φε/2, (3.77)

where the propagator φε/2 corresponds to (3.72) and (3.74), respectively, and Φε propagates
y with fixed w. We now first observe that φ is nothing else but the explicit Euler method.
This is known to produce reliable results only if the increment εG(yn) is small (which, by the
way, is the reason why explicit schemes are not used for stiff differential equations). Next, we
already argued that to solve the non-separable initial value problem (3.36) we need to apply a
implicit scheme. This will inevitably lead to implicit equations of the form (3.48). Solving
this system via a fixed-point iteration requires a step size somehow proportional to the inverse
of ‖(Df)(y)‖ due to the constraint (3.53). Therefore, we have

σ(y) ∝ 1∥∥(Df)(y)
∥∥ , (3.78)

and hence

G(y) = − 1

σ
(∇σ)f(y) =

∑
i,j,k

((Df)(y))ij

(
∂((Df)(y)ij)

∂yk

)
(f(y))k∥∥(Df)(y)

∥∥2 . (3.79)

For applications in geodesics, there are surely regions of the phase space where∥∥D2f · f
∥∥� ∥∥Df∥∥ . (3.80)

Thus ε · G(yn) would be very large, unless we choose ε to be very small. But as ε is the
underlying constant step size parameter, this would signify that we were again left with a very
small constant step size during the whole integration.

Choosing a (modified) Newton iteration for the solution of the implicit equations of the type
(3.48) does not improve anything. In this case, we must comply with requirement (3.60), i.e.,
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3.7. IGEM: A variable step size integration scheme for geodesic equations of motion

we have

σ(y) ∝ 1∥∥∥I −M−1DF̂ (~Z)
∥∥∥

=
1∥∥∥I − (I − (A⊗Df(yn)))−1(I − (A⊗ I)DF (~Z))

∥∥∥ . (3.81)

In the scheme (3.72)-(3.75), we have to consider σ as a function of the phase space variable
y. But, is by no means clear how one should do this. The only feasible way would be to set
~Z = (0, . . . ,0)T in the last expression. To calculate G(y), one would then have to derive σ in
(3.81). Derivation of 1

‖...‖ would yield a factor

1∥∥∥I − (I − (A⊗Df(yn)))−1(I − (A⊗ I) (DF ) (~Z))
∥∥∥2 . (3.82)

Because of (DF ) (~Z) = I ⊗Df(y) for the ~Z chosen above, this factor would be

1∥∥I − (I − (A⊗Df(yn)))−1(I − (A⊗ (Df) (y)))
∥∥2 . (3.83)

If, then, in eq. (3.72), we want to evaluate the function G at the point yn, we would have to
divide by zero due to the factor (3.83). As a consequence, it is not possible to use a Newton
iteration along with the presented step size control algorithm. Hence the need for a new
controller which will be presented in the next subsection.

3.7. IGEM: A variable step size integration scheme for geodesic
equations of motion

The Integrator for Geodesic Equations of Motion (IGEM) which we will present now is designed
to cope with all the difficulties we have encountered above. Its variable step size h = h(ε,y)
depends on both an underlying constant step size ε and the actual state of the system y. As
the underlying integrator we use an s-stage Gauss collocation method. With this, our scheme
has the following properties:

• It is symmetric and reversible. Therefore, the theoretical results on the long-time
behaviour of such schemes are applicable, cf. (Hairer et al., 2006).

• It has convergence order O(h2s) as the order is determined by the underlying integration
method.

• For the step size h the relation

h(ε,y) ∝ 1

‖(Df)(y)‖
(3.84)

holds, and, thus, the integrator complies with condition (3.53).

The main idea consists of slightly tweaking requirement (3.53) for the step size and setting∥∥h(Df)(y)
∥∥ !

= ε, ε < 1. (3.85)
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The parameter ε will act as the underlying constant step size. For symmetry’s and reversibility’s
sake, we modify the defining equation (3.85) to∥∥h

2 (Df(Y1) +Df(Ys))
∥∥ !

= ε. (3.86)

Here, Y1 is the inner stage value at the first stage c1, Ys is its counterpart at the last stage
cs. As will be shown now, this modification ensures the structure preserving properties of the
integration scheme.

Symmetry of a numerical scheme means that when starting at a point yn+1 = Φh(yn) and
then propagating backwards, one must be back at yn, i.e.,

Φ−hbackw ◦ Φhforw(yn)
!

= yn. (3.87)

To satisfy this equation, the step size when propagating the system forwards,

hforw = |h(ε,yn)| , (3.88)

must be the same as the step size for a propagation backwards,

hbackw = |h(−ε,yn+1)| . (3.89)

In this case, we have

Φ−hforw ◦ Φhforw(yn) = yn, (3.90)

which holds true because the underlying integrator satisfies the symmetry condition (3.64).

Let Ŷi denote the inner stage values for the integration backwards in time. The symmetry of
the Gauss collocation method then results in

Ŷi = Ys+1−i ∀ i = 1, . . . , s, (3.91)

because the collocation polynomial for yn+1 = Φh(yn), which is the interpolation polynomial
through the points (0, yn) and (ci,Yi), is the same as the collocation polynomial for yn =
Φ−h(yn+1), i.e., the interpolation polynomial through the points (1, yn+1) and (ci, Ŷi). Here,
we tacitly used that for the symmetric Gauss collocation schemes we have

ci = cs+1−i. (3.92)

Now, with the help of relation (3.91), we arrive at

h(−ε,yn+1) =
−ε∥∥1

2 [Df(Ŷ1) +Df(Ŷs)]
∥∥

=
−ε∥∥1

2 [Df(Ys) +Df(Y1)]
∥∥

= −h(ε,yn). (3.93)

We see that the step sizes are indeed equal. As a consequence, the new integrator is symmetric.

For the proof of reversibility, we regard the variable step size integrator Φh(ε,y) as a constant
step size integration scheme Ψε. The reversibility condition then reads

Ψ−1ε ◦ ζ
!

= ζ ◦Ψε. (3.94)
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3.7. IGEM: A variable step size integration scheme for geodesic equations of motion

With the symmetry just proven, this is the same as

Ψ−ε ◦ ζ
!

= ζ ◦Ψε. (3.95)

Inserting the definition of Ψε, the condition becomes

Φh(−ε,ζ yn+1) ◦ ζ
!

= ζ ◦ Φh(ε,yn). (3.96)

From this we see that the reversibility of Ψε follows by the reversibility of the integrator Φh if
we can guarantee

h(−ε, ζ yn+1) = −h(ε,yn). (3.97)

In order to prove condition (3.97), we denote by Ỹ the inner stage values for the integration
that starts at ζ yn+1. We then notice, that the reversibility of the Gauss-Runge-Kutta scheme
means that when calculating the collocation polynomial through the points (0, yn) and (ci,Yi)
and then multiplying the resulting polynomial with ζ, we have the same polynomial as when
calculating the polynomial through (1, ζyn+1) and (ci, Ỹi). Remembering property (3.92), we
find

Ỹi = ζYs+1−i. (3.98)

Using this relation, we get

h(−ε, ζyn+1) =
−ε∥∥1

2 [Df(Ỹ1) +Df(Ỹs)]
∥∥

=
−ε∥∥1

2ζ
−1[Df(Ys) +Df(Y1)]

∥∥
= −h(ε,yn), (3.99)

where the last equality is a consequence of the orthogonality of the linear involution ζ. Thanks
to relation (3.99), our IGEM is reversible.

To implement our scheme, we combine the implicit equation (3.48) for the auxiliary variables
Zi with equation (3.86) for the step size and thus get the system

(
~Z
h

)
=

 h(A⊗ I)F (~Z)
ε∥∥∥1

2 [Df(yn + Z1) +Df(yn + Zs)]
∥∥∥
 . (3.100)

In order to solve this, we insert the second equation into to first one and apply a fixed-point
iteration. This yields

~Zk+1 =
ε(A⊗ I)F (~Zk)

1
2

∥∥Df(yn + Zk1) +Df(yn + Zks)
∥∥ . (3.101)

We thus have an implicit Runge-Kutta scheme which we solve iteratively. Therefore, it seems
useful to give some remarks regarding the implementation of such schemes.
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3.8. Efficient implementation of an implicit Gauss-Runge-Kutta
scheme

In theory, Gauss-Runge-Kutta schemes have a good long-time behaviour and conserve first
integrals of motion such as the energy up to arbitrarily small remainders. In practice, however,
one is confronted with the problem of rounding-errors. At every time step, a small rounding
error occurs due to the finite representation of numbers, normally in double precision. These
round-off errors can then sum up over the integration and destroy the good long-time behaviour.
But these effects can be ameliorated by clever implementation. Let us briefly introduce the
main sources of errors and some simple remedies.

• For every one-step method a propagation in time yn → yn+1 is obtained via

yn+1 = yn + δn, (3.102)

where the increment δn is usually much smaller then the old value yn. For instance,

δn = h
s∑
i=1

bif(Yi) (3.103)

for a Runge-Kutta scheme. Adding a small number to a comparingly large one inevitably
leads to the loss of the smaller number’s last digits. If we have δn/‖yn‖ ≈ 10−2 for example,
the last two of the 16 decimals of δn are not taken into account when calculating yn+1.
Relief to this problem is given by the compensated summation. It uses a ‘storage‘ variable
ystore to collect the omitted last decimals at every time step. If, then, the omitted last
decimals add up to a large enough number, they are returned back to the actual value
yn. A numerical one-step scheme with compensated summation looks as follows.

1 function one_step_method (y0 )
2 ystore = 0 ;
3 yn = y0 ;
4 do while(τ < tend)
5

calculate_increment(f, δn,yn)

τ = τ + h;

// start of compensated summation

ystore = ystore + δn;

yn+1 = yn + ystore;

ystore = ystore + (yn − yn+1);

// end of compensated summation

yn+1 = yn

6 od
7 end

A nice illustration of the compensated summation can be found in (Higham, 1993).
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3.9. Our test case: The Manko, Sanabri-Gómez, Manko spacetime background

• Another source of round-off errors is connected to the use of iteration methods for
implicit schemes. Often, the iteration for an equation such as (3.48) is implemented in
the following way:

1 function f i x ed_po in t_i t e ra t i on ( ~Z )

2 do while(
∥∥∥~Zk+1 − ~Zk

∥∥∥ > Tol)

3 . . . ;
4 od
5 end

Here, Tol is a small number but still greater than 0. Thus, again, errors occur during
each step which can accumulate. Hairer et al. (2008) propose to implement the iteration
as

1 function f i x ed_po in t_i t e ra t i on ( ~Z )

2 do while(
∥∥∥~Zk+1 − ~Zk

∥∥∥ < ∥∥∥~Zk − ~Zk−1
∥∥∥ &&

∥∥∥~Zk+1 − ~Zk
∥∥∥ > 0)

3 . . . ;
4 od
5 end

which they show to reduce the long-time accumulation of errors.

• To reduce the number of iterations, it is recommendable to start the iteration with a
good guess for ~Z. For an implicit Runge-Kutta scheme one can easily obtain such a guess
without any additional function evaluation. Let ~Zn−1 denote the auxiliary variables of
the previous step. A reasonable guess for the starting values for the current iteration ~Z0

n

is then given by

Z0
n,i = h

s∑
j=1

βijf(Zn−1,j) (3.104)

where the function evaluations are available from the previous step. If the coefficients
βij satisfy

s∑
j=1

βijc
k−1
j =

(1 + ci)
k

k
, k = 1, ..., s, (3.105)

one has
∥∥∥~Zn − ~Z0

n

∥∥∥ = O(hs), e.g., (Hairer et al., 2006).

In all simulations for this work, compensated summation was used. The other aforementioned
techniques were applied whenever possible, above all when implementing Gauss collocation
schemes.

3.9. Our test case: The Manko, Sanabri-Gómez, Manko
spacetime background

As a simple example to compare the performance of our new integrator with various others,
we choose a stationary solution of the Einstein equations that is asymptotically flat and
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axisymmetric. More precisely, we take the solution found by Manko et al. (2000) which
describes the exterior field of a charged, magnetized, and spinning deformed mass, see (Manko
et al., 2000). The metric depends on five parameters which are

• the mass m,

• the total charge q,

• the magnetic dipole momentM,

• the mass quadrupole moment Q,

• and the spin per unit mass a.

Q andM implicitly define two auxiliary parameters µ and b via

M = µ+ q(a− b), (3.106)

Q = −m(d− δ − a b+ a2), (3.107)

with

δ :=
µ2 −m2b2

m2 − (a− b)2 − q2
, (3.108)

d :=
1

4
[m2 − (a− b)2 − q2]. (3.109)

Because of its axisymmetry, the spacetime can suitably be described by cylindrical position
coordinates ρ, φ, z. ρ and z can be transformed to prolate spherical coordinates u and v via(

u
v

)
= χ−1(ρ, z), (3.110)

where

χ(u, v) =

(
κ
√

(u2 − 1)(1− v2)
κuv

)
, (3.111)

κ :=
√
d+ δ. (3.112)

With the help of the prolate spherical coordinates, one can define the following auxiliary
functions:

P := 2{κmu[(2κu+m)2 − 2v2(2δ + ab− b2)− a2 + b2 − q2]

− 2κ2q2u2 − 2v2(4δd−m2b2)}, (3.113)

R := 4[κ2(u2 − 1) + δ(1− v2)]2 + (a− b)[(a− b)(d− δ)−m2b+ q µ](1− v2)2, (3.114)

S := −4(a− b)[κ2(u2 − v2) + 2δv2] + v2(m2b− q µ), (3.115)

T := 4(2κmbu+ 2m2b− q µ)[κ2(u2 − 1) + δ(1− v2)] + ...

+ (1− v2){(a− b)(m2b2 − 4δd)− ...

− (4κmu+ 2m2 − q2)[(a− b)(d− δ)−m2b+ q µ]}, (3.116)
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3.9. Our test case: The Manko, Sanabri-Gómez, Manko spacetime background

λ1 := κ2(u2 − 1), (3.117)

λ2 := v2 − 1, (3.118)

E = R2 + λ1λ2S
2, (3.119)

D = E +RP + λ2ST, (3.120)

F = RT − λ1SP. (3.121)

These messy functions, in turn, help to define three functions

f =
E

D
, (3.122)

e2γ =
E

16
κ8(u2 − v2)4, (3.123)

ω = (v2 − 1)
E

F
, (3.124)

with the help of which the components of the metric in prolate spherical coordinates can be
given as

gtt = −f, (3.125)

guu =
κ2e2γ

f

u2 − v2

u2 − 1
, (3.126)

gvv =
κ2e2γ

f

u2 − v2

1− v2
, (3.127)

gφφ =
1

f

[
κ2(u2 − 1)(1− v2)− (fω)2

]
, (3.128)

gtφ = ωf = gφt. (3.129)

The other components are all equal to 0. If we insert these expressions for the metric
components into equation (3.23), we get the Lagrangian as a function of (t, u, v, φ):

L =
1

2

(
gttṫ

2 + 2gtφṫφ̇+ gφφφ̇
2 + guuu̇

2 + gvvv̇
2
)
. (3.130)

As the metric does neither depend on t nor on φ, we have

∂L

∂t
= 0 (3.131)

and
∂L

∂φ
= 0, (3.132)

whereby the energy (3.29) and the angular momentum (3.30) are indeed conserved, as was
already mentioned in 3.2. The equations for the energy and the angular momentum,

∂L

∂ṫ
= −m0E , (3.133)

∂L

∂φ̇
= Lz, (3.134)
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can be transformed to yield

ṫ =
gtφLz + gφφm0E
κ2(u2 − 1)(1− v2)

, (3.135)

φ̇ = −
gttLz + gtφm0E

κ2(u2 − 1)(1− v2)
. (3.136)

The Euler-Lagrange equations for u and v,

d

ds

∂L

∂u̇
=
∂L

∂u
(3.137)

d

ds

∂L

∂v̇
=
∂L

∂v
, (3.138)

lead to

ü =
1

guu

(
1

m0

∂L

∂u
−
(
∂guu
∂u

u̇+
∂guu
∂v

v̇

)
u̇

)
, (3.139)

and

v̈ =
1

gvv

(
1

m0

∂L

∂v
−
(
∂gvv
∂u

u̇+
∂gvv
∂v

v̇

)
v̇

)
, (3.140)

with

1

m0

∂L

∂u
=

1

2

(
∂gtt
∂u

ṫ2 + 2
∂gtφ
∂u

ṫφ̇+
∂gφφ
∂u

φ̇2 +
∂guu
∂u

u̇2 +
∂gvv
∂u

v̇2
)

(3.141)

and

1

m0

∂L

∂v
=

1

2

(
∂gtt
∂v

ṫ2 + 2
∂gtφ
∂v

ṫφ̇+
∂gφφ
∂v

φ̇2 +
∂guu
∂v

u̇2 +
∂gvv
∂v

v̇2
)
. (3.142)

In order to write the Euler-Lagrange equations as a system of first order differential equations,
we introduce the ‘momenta‘

pu = u̇ (3.143)

and

pv = v̇. (3.144)

With these, the equations of motion (3.31) read

ṗu =
1

guu

(
1

m0

∂L

∂u
−
(
∂guu
∂u

pu +
∂guu
∂v

pv

)
pu

)
, (3.145)

ṗv =
1

gvv

(
1

m0

∂L

∂v
−
(
∂gvv
∂u

pu +
∂gvv
∂v

pv

)
pv

)
, (3.146)

u̇ = pu, (3.147)

v̇ = pv. (3.148)
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3.10. Numerical experiments for the MSM case

Their exact form is given by replacing φ̇ and ṫ in (3.141) and (3.142) with the help of (3.135)
and (3.136) and meticulously calculating all derivatives appearing in (3.139), (3.140), (3.141)
and (3.142). The result of this tedious exercise is given in appendix A.

The right hand side of the equations of motion (3.145)-(3.148) is not of the symplectic form
(3.32). This is because we express the equations of motion by means of the coordinates u,
v and the ‘momenta‘ which are in fact their corresponding velocities. We do so because it
would be more cumbersome to re express the velocities through the momenta (3.24). But as
the Lagrange formalism leads to the same motion as the canonical Hamiltonian equations
(3.26), (3.27), the system is still symplectic. In order to calculate the Hamiltonian’s error in
the numerical experiment section, we can consider it as a function of the coordinates and
velocities. We simply have to replace the momenta in the Hamiltonian (3.25) with the help of
their definition (3.24), i.e., with pu and pv now denoting the momenta corresponding to u and
v, we use

pu =
∂L

∂u
= guuu̇ (3.149)

and

pv =
∂L

∂v
= gvvv̇. (3.150)

Having derived the equations of motion, we are now able to carry out numerical tests in the
next section.

3.10. Numerical experiments for the MSM case

As competitors for our IGEM scheme, we choose four methods that are a representative
cross-section of frequently used algorithms. Let us shortly introduce them:

• To represent simple explicit methods with constant step size, we use a fifth-order Cash-
Karp Runge-Kutta scheme (CK5) with constant step size h. The CK5 scheme is given
by the following tableau, cf. (Flannery et al., 1992):

0
1/5 1/5
3/10 3/40 9/40
3/5 3/10 −9/10 6/5
1 −11/54 5/2 −70/27 35/27
7/8 1631/55296 175/512 575/13824 44275/110592 253/4096

37/378 0 250/621 125/594 0 512/1771.

(3.151)

Hereinafter, this method is denoted by ‘CK5con‘.

• As an example for explicit schemes with standard ‘stiff differential equations like‘ control
algorithms, a CK5 method with variable step size, ‘CK5var‘, is considered. One step of
this algorithm is qualitatively given by the following lines of pseudo code:

1 function CK5var_step(yn, ε)
2 calculate_CK5con_step(yn, h) ;

3 δH =
∣∣∣H(yn+1)−H(yn)

H(yn)

∣∣∣ ;
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4 i f (δH > tol1 && h > hmin) then
5 h = h

2 ;
6 go back to l i n e 2 ;
7 e l s e i f (δH < tol2 && h < hmax) then
8 h = 2h ;
9 f i

10 yn = yn+1 ;
11 end

Unless stated otherwise, the parameters are set to be hmin = 10−10, tol1 = 10−12, and
tol2 = 10−14. For hmax we used different values during the experiments.

• We also test one of the most popular controllers in classical astronomy. This is the
algorithm exposed in section 3.6 where the scaling function is σ(y) = 1/‖f(y)‖. As the
underlying integrator, we choose implicit Gauss-Runge-Kutta schemes. This method
will be referred to as ‘Astro1‘.

• To illustrate the problems which harsh conditions on the implicit equations such as
(3.53) pose to step size controllers of classical astronomy, we combine the controller of
section 3.6 with the scaling function σ(y) = 1/‖(Df)(y)‖. Again, implicit Gauss collocation
methods are used as the underlying integrator. In the following, this algorithm shows up
under the name ‘Astro2‘.

All schemes employed in this section are implemented in the error-minimizing way described
in section 3.8. As for our test case, the parameters introduced in 3.9 are fixed as m = 2.904,
a = 1.549, q = 0, µ = 0, and b = 0.8. The constant momenta are set to be E = 0.971 and
Lz = 9.3, respectively. Our calculations are done using the prolate spherical coordinates for
which the equations of motion were derived in 3.9, i.e., the variables of our N = 4-dimensional
phase space are

yn = (u̇, v̇, u, v). (3.152)

The output is given in cylindrical coordinates which are linked to the prolate ones via the
transformation (3.111). To compare the individual methods, we analyse the relative error in
the Hamiltonian

∆H =

∣∣∣∣H(yn)−H(y0)

H(y0)

∣∣∣∣ . (3.153)

In chapter 2, bad energy conservation was shown to cause incorrect predictions of a system’s
behaviour. Therefore, our simulations are aborted due to low accuracy as soon as

∆H > 10−6. (3.154)

The Hamiltonian has a constant value of H = −1/2. With regard to the initial values, we
always set z = ρ̇ = 0, while we vary ρ to obtain different sorts of motion. The vertical velocity
ż is then implicitly determined by

H(ρ, z = 0, ρ̇ = 0, ż)
!

= −1

2
. (3.155)

We consider three different sorts of motion.
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3.10. Numerical experiments for the MSM case

3.10.1. ρ = 30.7: Quasiperiodic motion

For ρ = 30.7 the orbit is regular. To illustrate this, we plot in Fig. 3.1 the trajectory in the
configuration space along with the Poincaré sections for z = 0 as obtained via the ‘exact‘
solution for τ ∈ [0, 500 000]. The ‘exact‘ solution is given by IGEM with the very small step
size ε = 0.01 and s = 6 stages in the underlying integrator. To compare the accuracy of
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Figure 3.1: For the case ρ = 30.7 the left panel is showing the ρ, z-projection of the trajectory
of the light particle in the time interval τ ∈ [0, 500 000]. The corresponding sections
of the z = 0-plane are depicted in right panel. The plots clearly correspond to
quasiperiodic motion. N.b.: The quantity along the right panel’s vertical axis is
the ‘momentum‘ pρ = ρ̇ as introduced in 3.9.

the individual integrators, we plot their relative error in the energy for an integration time
τ ∈ [0, 500 000] in Fig. 3.2. In table 3.1, we list the respective calculation times Tcalc the
integrators needed to arrive at τ = 500 000.

Integrator Tcalc[s]

CK5con, h = 0.01 222.9
CK5var, hmax = 0.01 160.6
Astro1, ε = 1.0, s = 4 17.3
Astro2, ε = 1.0, s = 4 46.1
IGEM, ε = 1.0, s = 4 41.3

Table 3.1: The CPU calculation times for the proper time interval τ ∈ [0, 500 000] for the
individual integration schemes in the quasiperiodic case ρ = 30.7.

The CK5 schemes do not conserve the first integral of motion but show a linear drift. This is
despite their very small step size which in turn makes them very slow. The other integrators
show, up to rounding errors, no variation in this constant of motion. Taking into account the
calculation times, we observe that the Astro1 shows the best performance for this quasiperiodic
motion case. This is no surprise given the fact that for the relatively large initial distance
ρ = 30.7 between the two particles, the system resembles a classical Keplerian motion. Astro1
was constructed for exactly those classical planetary orbits.
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Figure 3.2: The relative error in the Hamiltonian for the respective integration schemes with
initial condition ρ = 30.7. The explicit schemes show a linear drift but the other
integrators conserve the energy.

3.10.2. ρ = 1.7: Non-chaotic but ill-mannered sort of motion

With this shorter initial distance between the light particle and the stationary, heavy one,
the motion becomes a bit ‘nastier‘. To demonstrate this, we again plot the trajectory in
the configuration space together with the corresponding Poincaré section as given by the
‘exact‘ solution, s. Fig 3.3. As the ‘exact‘ solution, we again take IGEM with ε = 0.01 and
s = 6. To further illustrate the behaviour of the motion, we track the the step sizes of the
IGEM-integrator with ε = 0.1 along the propagation (Fig. 3.4), as we have h ∝ 1/‖Df(y(τ))‖.∥∥Df(y(τ))

∥∥ is varying fast with time. For this kind of orbit, we again tested the individual
integrators. When we used the CK5var scheme, it needed one week of calculation time only to
arrive at τ = 758. Therefore, we relaxed the restrictions on the acceptable relative errors per
step and set tol1 = 10−9 and tol2 = 10−11. The result of the simulations is shown in Fig. 3.5
and table 3.2. We observe that the symplectic standard schemes from classical celestial

Integrator Tcalc[s]

CK5con, h = 10−4 23813.2
CK5var, hmax = 10−4 19207.7
Astro1, ε = 0.1, s = 4 266.9
Astro2, ε = 0.1, s = 4 2100.9
IGEM, ε = 0.1, s = 4 2202.1

Table 3.2: The calculation times Tcalc for the proper time interval τ ∈ [0, 500 000] for the
different integrators in the case of the still regular orbit with ρ = 1.7.

mechanics are fastest but show very bad conservation properties for the Hamiltonian. The
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Figure 3.3: For the case ρ = 1.7 the left panel is showing the ρ, z-projection of the trajectory of
the light particle in the time interval τ ∈ [0, 500 000]. The corresponding sections
of the z = 0-plane are depicted in the right panel. The Poincaré section shows
the quasiperiodic character of the motion but the trajectory behaves in a more
ill-mannered way. N.b.: The quantity along the right panel’s vertical axis is the
‘momentum‘ pρ = ρ̇ as introduced in 3.9.
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Figure 3.4: The variable step size of the IGEM integrator as function of integration time τ .
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Figure 3.5: The relative error ∆H as function of the proper time τ in normal scale for the
orbit with ρ = 1.7.

relative error is even worse than for the constant step size, explicit CK5con which shows a
linear drift. On the other side of the spectrum, IGEM shows the best long-time behaviour for
affordable computational cost.

As, in this work, we are concerned with the impact which a certain scheme can have on the
indicators of chaos, we now consider the Poincaré sections resulting from the five schemes.
First, we see that the number of sections in the integration interval (25699) is the same for
every integrator. Calculating the relative error at each section as

err =

√
(ρnum − ρexact)2

ρ2exact
+

(pρnum − pρexact)2
pρ2exact

, (3.156)

we observe in Fig. 3.6 that there are large differences between the schemes, in accord with
Fig. 3.5. But looking at the respective sections in Fig. 3.7, we see that for the time interval of
the simulation, the differences in err do not yet result in qualitatively different plots.

3.10.3. ρ = 0.7: Chaotic motion

Putting the two objects this close together, leads to chaotic motion. To visualize this, we show
the trajectory of the light particle along with its Poincaré section in Fig 3.8. Additionally, we
plot the Fourier spectrum for ρ in figure 3.9. We see that the motion has no distinguished
frequency and noise prevails. This is characteristic for chaotic orbits.

As in this case the calculation becomes much more expensive, we reduce the integration interval
to τ ∈ [0, 50000]. We again conducted simulations with all five integration schemes. The
results of these simulations are listed in table 3.3. All of them, except the one with IGEM,
were soon aborted because of low accuracy. For Astro1 the step size became negative during
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Figure 3.6: The relative error err at the Poincaré sections as function of the proper time τ in
normal scale for the orbit with ρ = 1.7.

the simulation. We see, that the IGEM is the only scheme that can cope with this initial
conditions. But when plotting its relative error in the Hamiltonian in Fig. 3.10 we observe

Integrator result Tcalc[s] until abortion
CK5con, h = 10−6 aborted after propagation time of τ = 11254.0 because ∆H > 10−6 40739.7

CK5var, hmax = 10−4 aborted after propagation time of τ = 1087.3 because ∆H > 10−6 149469.9
Astro1, ε = 0.01, s = 4 aborted after propagation time of τ = 9559.9 because h(l,y) < 0 34.2
Astro2, ε = 0.01, s = 4 aborted after propagation time of τ = 4180.1 because ∆H > 10−6 1353.9
IGEM, ε = 0.1, s = 4 no abortion in τ = [0, 50000], Tcalc = 995.3s. −

Table 3.3: Results of the simulations for the chaotic orbit with ρ = 0.7.

some peaks. In order to explain them, we first notice that they coincide with non-convergence
of the fixed-point iteration (3.101). For this iteration to be a contraction, it must satisfy∥∥∥∥∥D

(
ε(A⊗ I)F (~Z)

1
2‖Df(Z1) +Df(Zs)‖

)∥∥∥∥∥ !
< 1, (3.157)

with

D

(
ε(A⊗ I)F (~Z)

1
2

∥∥Df(Z1) +Df(Zs)
∥∥
)
ij

=

(
ε(A⊗ I) (DF ) (~Z)

)
ij

1
2

∥∥Df(Z1) +Df(Zs)
∥∥ −

(
ε(A⊗ I)F (~Z)

)
i

1
2

∥∥Df(Z1) +Df(Zs)
∥∥3 × ...

×
∑
kl

(Df(Z1)kl +Df(Zs)kl)
∂ (Df(Z1)kl +Df(Zs)kl)

∂ ~Zj
. (3.158)

The norm of the first term is smaller than 1 by construction of the algorithm but the second
term can be large. This happens at points, where f(y) becomes almost singular. To see
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Figure 3.7: Poincaré sections for the case ρ = 1.7 for an integration time τ ∈ [0, 500 000]. All
plots resemble the exact Poincaré section shown in the bottom right panel.
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Figure 3.8: For the case ρ = 0.7 the left panel is showing the ρ, z-projection of the trajectory
of the light particle in the time interval τ ∈ [0, 5000]. The unusual Poincaré section
as shown in the right panel suggests chaotic motion.
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Figure 3.10: The relative error ∆H in semi-logarithmic scale for the IGEM with ε = 0.1 as a
function of proper time τ for the chaotic orbit with ρ = 0.7.

this, we plot the ‘velocity‘ V 2(τ) = ż2 + ρ̇2 in Fig. 3.11. We observe that each peak in the
Hamiltonian comes hand in hand with a peak in the velocity. To analyse the peaks further,
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Figure 3.11: The ’velocity’ V (τ)2 as function of proper time τ for the chaotic orbit with
ρ = 0.7.

we first localize the first peak at τ = 2296.39. We then consider the interval τ ∈ [2286, 2306]
and compare the behaviour of IGEM with that of the ‘exact‘ solution. As the ‘exact‘ solution,
we choose IGEM with the prohibitively small step size ε = 10−4. As it would take to much
simulation time to calculate until τ = 2306 using ε = 10−4, we obtain the ‘accurate‘ solution
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3.10. Numerical experiments for the MSM case

as follows: We propagate the system until τ = 2286 with IGEM and only then switch to
ε = 10−4. When we plot the trajectory as given by this accurate solution along with some
points of the trajectory given by IGEM, see Fig. 3.12, we realize that the peak coincides with
an inflexion point of the trajectory where f(y) becomes almost singular. In other words, the
EMRI’s light particle behaves like a ball which is thrown upon a wall. Fig. 3.12 shows further
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Figure 3.12: The trajectory of the test particle for τ ∈ [2286, 2306]. The points correspond to
the trajectory calculated by IGEM whereas the continuous line gives the ‘accurate‘
trajectory. One can see how the test particle bounces back once having arrived at
ρ = 0.66.

that the solution as calculated by IGEM seems to come back close to the accurate solution
soon after the rebound. To state this quantitatively, we plot the difference

Dif =

√
(ρIGEM − ρac)2

ρ2ac
+

(ρ̇IGEM − ρ̇ac)2
ρ̇2ac

+
(zIGEM − zac)2

z2ac
+

(żIGEM − żac)2
ż2ac

(3.159)

in Fig. 3.13 and see that the solution by IGEM indeed recovers its original trajectory. This
behaviour matches perfectly with Fig. 3.10 where we see that the Hamiltonian recovers its
previous value right after the inflexion. During the simulation we observed that only for a
time range of 3 · 10−3 out of the whole integration interval of 50000 is the relative error in the
Hamiltonian larger than ∆H = 10−9 and, hence, the Hamiltonian is conserved for almost all
τ ∈ [0, 50000].

One can now hope to circumvent the convergence-problems at the near-singular points by
replacing the fixed-point iteration with a Newton-Raphson scheme. However, when trying this
one observes that some peaks in the Hamiltonian still remain. What is more, the computational
cost increases steeply to Tcalc = 7521.0s. The reason for this increase is that during each
iteration the complicated derivative of (3.101) has to be calculated. As a consequence, the cost
per iteration multiplies while the average number of iterations per integration step decreases

55



 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0  2  4  6  8  10

D
if

τ-τinfl

Figure 3.13: Difference between IGEM and the ‘accurate‘ solution directly after the first
inflexion at τinfl = 2296.

only slightly from 3.94 to 3.57. We thus observe that for geodesic equations of motions, too,
one should renounce on the Newton-Raphson iteration.

As a last point, we want to know which effect our algorithm to calculate the Poincaré sections
has on the accuracy. As announced in subsection 2.2.1, it is convenient to take use of the
collocation property when calculating sections with a Gauss-Runge-Kutta scheme. Because of
this, we applied this algorithm to calculate the Poincaré sections for our three test cases. But
we have also seen in subsection 2.2.1 that the collocation error is O(hs) and thus the error for
the sections can be of order O(hs) +O(h2s) for Gauss collocations. Due to the collocation a
term larger than the integration error occurs in the error estimate (2.8). To examine whether
this is a problem in the EMRI case, we calculate all Poincaré sections for the chaotic test
case in the interval t ∈ [0, 50000] with our IGEM and the help of the collocation algorithm of
subsection 2.2.1. We then consider the relative error in the energy for the points on the section

∆Hsect =

∣∣∣∣H(ysect)−H(y0)

H(y0)

∣∣∣∣ , (3.160)

and plot it along with the relative error for the trajectory that has already been considered in
Fig. 3.10. The result is shown in Fig. 3.14. We observe that the energy at almost all sections
is the same as for the points of the trajectory. Thus, the error term of order O(hs) does
not become noticeable. This is why we recommended the use of the convenient collocation
algorithm in subsection 2.2.1.

Having constructed an integrator which suits the special demands of the geodesic equations of
motion, we can now turn our attention on binary systems with a less extreme mass ratio.
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3.10. Numerical experiments for the MSM case
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Figure 3.14: For the chaotic test case and τ ∈ [0, 50000], the error in the energy at the Poincaré
sections obtained via IGEM with ε = 0.1 and s = 4 and the help of the collocation
algorithm is compared with the error along the trajectory for the same integrator.
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4. Long-time integration of post-Newtonian equations of motion

4. Long-time integration of
post-Newtonian equations of motion

In current research concerning a binary of equal or not extremely unequal masses, the post-
Newtonian formalism is the state-of-the-art approach. Here, the system is described by a
Hamiltonian which is composed of a Newtonian part describing Keplerian orbital motion and
smaller perturbative terms. Let us first present this formalism.

4.1. The post-Newtonian formalism

The Einstein equations for a free gravitational field,

Rµν −
1

2
gµνR = 0, (4.1)

were derived as the Euler-Lagrange equations of the coordinate invariant action

S =

∫
Ld4x =

∫
d4x
√
−gR. (4.2)

Here, g is the determinant of the metric gµν , and Rµν is the Ricci tensor which is the trace of
the Riemann curvature tensor

Rµν = Rλµλν = ∂λΓλµν − ∂νΓλµλ + ΓλµνΓαλα − ΓλµαΓανλ, (4.3)

with the Christoffel-symbols

Γλαβ =
1

2
gλδ
(
∂gδα
∂xν

+
∂gδβ
∂xα

− ∂gµν
∂xδ

)
. (4.4)

The Gauss curvature R, in turn, is the contraction of the Ricci tensor,

R = Rµµ. (4.5)

One can now single out the time-like dimension by defining the quantities

N :=
1√
−g00

, (4.6)

Ni := g0i, (4.7)

πij :=
√
−g
(

Γ0
αβ − gαβΓ0

γδg
γδ
)
giαgjβ. (4.8)

With these, the Lagrangian in (4.2) can be rewritten in parametrized form

L = πij∂tgij −NR0 −NiR
i, Rµ

!
= 0, (4.9)

where t denotes the parameter and

Rµ = Rµ(gij , π
ij) (4.10)
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are four constraint equations. The Ni can thus be considered as Lagrange multipliers. Due to
the analogy between system (4.9) and a parametrized Lagrangian of N particles in classical
mechanics,

L =

N+1∑
i

pi∂tqi −NR, R
!

= 0, (4.11)

the πij are regarded as the canonical conjugate variables to the metric field gij . Along the
lines of classical mechanics, one can derive a Hamiltonian formulation for the system (4.9).
With the eccentric curvature

Kij =
1√
−g

(
1

2
gklπ

klgij − gikgjlπkl
)
, (4.12)

the corresponding Hamiltonian reads

H = −
∫
N(R+K2 −KijK

ij)− 2N i(DjK
j
i −DiK)

√
−gd3x, (4.13)

where Di is the covariant derivative with regard to the 3-metric gij , e.g., (Arnowitt et al.,
1962). The solutions (πij , gij , N

µ) of the Hamiltonian equations

∂πij

∂t
= − ∂H

∂gij
, (4.14)

∂gij
∂t

=
∂H

∂πij
, (4.15)

∂H

∂Nµ
= 0, (4.16)

solve the Einstein equations (4.1).

To describe a gravitational field which is caused by matter, a source term has to be added to
the field equations. They then read

Rµν −
1

2
gµνR =

16πG

c4
Tµν . (4.17)

Here, G is the gravitational constant and Tµν is the stress-energy tensor. For a fluid with
energy-density e, pressure p and fluid velocity uµ, the stress-energy tensor looks like

Tµν = (e+ p)uµuν + pgµν . (4.18)

In presence of a source term, the Hamiltonian becomes

H =

∫
d3x

[
N

(
(16πG)2

c6
πijGijklπ

kl −
√
−gR+

16πG

c4
√
−gnµTµνnν

)
−N i(2gikDjπ

kj − 1

c
√
−g

T 0
i )

]
+

c4

16πG

∮
∞

d2si(∂jgij − ∂igjj), (4.19)

with the unit normal vector to the hypersurface nµ and the three-dimensional contravariant
metric

Gijkl =
1

2
√
g

(gikgjl + gilgjk − gijgkl). (4.20)
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4.1. The post-Newtonian formalism

Choosing the mass-density ρ and its canonical conjugate

πi =
1

c
√
−g

T 0
i (4.21)

as variables for the fluid, the Hamilton equations (4.14) and (4.15) are joined by the equations

∂ρ

∂t
= −∂i

(
δH

δπi
ρ

)
, (4.22)

∂πi
∂t

= −∂j
(
δH

δπj
πi

)
− ∂i

(
δH

δπj

)
πj − ∂i

(
δH

δρ

)
ρ, (4.23)

where δ denotes the Fréchet derivative. Not all the components of the metric tensor are
independent. Instead, the whole field can be expressed by means of the transverse, traceless
components gTTij and πijTT , which satisfy

∂jgTTij
!

= 0, gTTii
!

= 0, (4.24)

∂jπ
ijTT !

= 0, piiTT
!

= 0. (4.25)

When modeling a binary of two compact masses, the source variables can be set to be

ρ =
2∑

a=1

maδ
3(x− xa(t)), (4.26)

πi =
2∑

a=1

mapaiδ
3(p− pa(t)). (4.27)

The positions xa and momenta pa satisfy the Hamilton equations

∂pa
∂t

= −∇xaH, (4.28)

∂xa
∂t

= ∇paH. (4.29)

Alas, the exact form of the Hamiltonian is not known as it depends on the field variables gTTij
and πijTT which in turn depend on xa and pa.

The ansatz in the post-Newtonian approach is now to expand the metric gµν as follows,
(Schäfer, 1997):

c2g00 = −c2 +
∞∑
n=0

1

c2n
g
(n)
00 (x, ρ, gTT , πTT ), (4.30)

cg0i =

∞∑
n=0

1

c2n
g
(n)
0i (x, ρ, gTT , πTT ), (4.31)

gij = δij +

∞∑
n=0

1

c2n
g
(n)
ij (x, ρ, gTT , πTT ). (4.32)
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Until now, it has been possible to express the metric components up to n = 3 by means of
only the coordinates and momenta of the compact masses, see, e.g., (Jaranowski and Schäfer,
2001). The Hamiltonian of the equations (4.28) and (4.29) is thus approximated as

H(p,x) = HN(p,x) +H1PN(p,x) +H2PN(p,x) +H3PN(p,x). (4.33)

Here, we only consider the center of mass dynamics with x = x1 − x2 and p = p1 = −p2, as
these are of interest in most applications. HnPN contains all contribution of the nth-order.
The zero-order term HN(p,x) is just the Hamiltonian of Newtonian gravitation.

The Hamiltonian (4.33) still misses an important aspect of general relativity. It was derived
assuming the compact particles to be point-like. In fact, each object is of finite size. Therefore,
the motion of an object around its own axis, i.e., its spin, has to be taken into account. The
equations of motion of a particle’s four-dimensional spin vector Sµ are known to be

DτSµ = 0, (4.34)

where D is the covariant derivative with regard to proper time. The derivative with regard to
coordinate time t = x0/c is then given as

dSµ
dt

= cΓνµαSνv
α, (4.35)

with

vµ =
1

c

dxµ

dt
. (4.36)

Equation (4.35) describes the interaction between a particle’s spin and its orbit. With the
help of the spin supplementary condition,

Sµu
µ !

= 0 (4.37)

(uµ being the normalized 4-velocity), equation (4.35) can be transformed to yield an equation
for the three-dimensional spin

dSi
dt

= εijkΩjSk. (4.38)

The interaction term Ωj depends on the position and the momentum of the particle as well as
on the gravitational field. Inserting the field’s post-Newtonian expansion, one can obtain a
spin-orbit interaction Hamiltonian HSO, such that equation (4.38) is given as

dSi
dt

= εijk
∂HSO

∂Sj
Sk. (4.39)

The detailed derivation of the spin-orbit interaction can be found in (Damour et al., 2008).
When considering a binary of compact objects, one can similarly derive a spin-spin interaction
Hamiltonian HSS. Putting everything together, we are able to present the Hamiltonian system
of the post-Newtonian approximation in the next section.
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4.2. The post-Newtonian equations of motion

4.2. The post-Newtonian equations of motion

The Hamiltonian for a binary system in the center-of-mass frame depends on the positions
x = x2 − x1, the momenta p = p1 = −p2, and the spins of the two particles S1 and S2. It
has the form

H(p,x,S1,S2) = HN(p,x) +HPN(p,x) +HSO(p,x,S1,S2) +HSS(p,x,S1,S2). (4.40)

The dynamics of the respective variables are given by

dp

dt
= −∇xH, (4.41)

dx

dt
= ∇pH, (4.42)

dSa
dt

= (∇SaH)× Sa. (4.43)

In most ongoing applications, orbital terms up to the third post-Newtonian order and spin-orbit
interactions of first or second order are taken into account. As for the spin-spin contribution,
only the leading order is considered as the next term would already be small compared to the
3PN orbital term. As the motion does not depend on the absolute value of the masses but on
their ratio, one can w.l.o.g. assume the total mass m := m1 +m2 to be equal to 1. Using the
reduced mass µ = m1m2/m, q = ‖x‖, ν = µ/m, and the unit vector n = x/q and choosing units
such that G = c = 1, the relevant terms of the orbital Hamiltonian are

HN(p,x) =
p2

2µ
− µ

q
, (4.44)

H1PN(p,x) =
1

8µ3
(3ν − 1)(p2)2 − 1

2µ2q
[(3 + ν)p2 + ν(np)2] +

µ

2q2
, (4.45)

H2PN(p,x) =
1

16µ5
(1− 5ν − 5ν2)(p2)3 +

1

8µ3q

[
(5− 20ν − 3ν2)(p2)2

−2ν2(np)2p2 + 3ν2(np)4
]

+ ...

+
1

2µq2
[3ν(np)2 + (5 + 8ν)p2]− (1 + 3ν)µ

4q3
, (4.46)

H3PN(p,x) =
1

128µ7
(−5 + 35ν − 70ν2 + 35ν3)(p2)4 + ...

+
1

16µ5q

[
(−7 + 42ν − 53ν2 − 5ν3)(p2)3 + (2− 3ν)ν2(np)2(p2)2

+3(1− ν)ν2(np)4p2 − 5ν3(np)6
]

+ ...

+
1

16µ3q2

[
(−27 + 136ν + 109ν2)(p2)2 + ...

+(17 + 30ν)ν(np)2p2 +
3

4
(5 + 43ν)ν(np)4

]
+ ...

+
1

µq3

{[
−25

8
+

(
π2

64
− 335

48

)
ν − 23

8
ν2
]

p2 + ...
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+

(
−85

16
− 3π2

64
− 7ν

4

)
ν(np)2

}
+ ...

+
µ

q4

[
1

8
+

(
109

12
− 21π2

32

)
ν

]
. (4.47)

The leading order spin-orbit coupling can be expressed by means of the orbital angular
momentum L = x× p and the effective spin

Seff =

(
1 +

3m2

4m1

)
S1 +

(
1 +

3m1

4m2

)
S2 (4.48)

as

HSO(p,x,S1,S2) = 2
Seff · L
q3

. (4.49)

The spin-spin interaction is composed of three terms:

HSS(p,x,S1,S2) = HS1S2(p,x,S1,S2) +HS1S1(p,x,S1) +HS2S2(p,x,S2), (4.50)

where the individual contributions are given as

HS1S2(p,x,S1,S2) =
1

q3
[3(S1n)(S2n)− S1S2] , (4.51)

HS1S1(p,x,S1) =
m2

2m1q3
[
3(S1n)2 − S1S1

]
, (4.52)

HS2S2(p,x,S2) =
m1

2m2q3
[
3(S2n)2 − S2S2

]
. (4.53)

The equations of motion corresponding to the just presented Hamiltonian are given in ap-
pendix B. There is obviously no possibility to solve them analytically. Numerical tools for
their solution are necessary. In view of this, we now discuss the numerical properties of the
post-Newtonian equations.

4.3. Numerical properties of the PN equations of motion

The equations (4.41)-(4.43) are a Poisson-system for y = (p,x,S1,S2)
T , i.e.,

dy

dt
= B(y)∇H, (4.54)

with

B(y) =


0 −I 0 0
I 0 0 0
0 0 B1(y) 0
0 0 0 B2(y)

 , (4.55)

B1(y) =

 0 −S1z S1y
S1z 0 −S1x
−S1y S1x 0

 , B2(y) =

 0 −S2z S2y
S2z 0 −S2x
−S2y S2x 0

 . (4.56)
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4.4. Poisson integrator for post-Newtonian equations

Thus, one should preferably apply a numerical scheme which preserves this special structure.
In this case, one can expect a benevolent long-time behaviour similar to the symplectic case,
e.g., (Hairer et al., 2006).

The post-Newtonian system can be considered as a perturbed Kepler problem, the corrections
to the classical motion scaling with 1/c2. In the units G = c = 1 this scaling is encoded in
the higher orders of 1/q or p2 in the post-Newtonian terms. As q > 1 and p2 < 1 in most
circumstances, one has a Hamiltonian of the form

H = HN + δH̃, δ << 1, (4.57)

where the ‘larger‘ part can be solved analytically. But still, when the two compact objects are
close together, the post-Newtonian corrections can become relatively large.

As a last point, we notice that the Hamiltonian is non-separable as the variables are coupled in
the non-classical contributions. A structure preserving integration will thus inevitably involve
implicit methods.

We now present two ways to construct an integrator which copes with all these requirements.
We start with an idea of Lubich et al. (2010).

4.4. Poisson integrator for post-Newtonian equations

The idea is to calculate one by one the flows ϕN, ΦPN and ΦSS,SO corresponding to the
Hamiltonian HN, HPN and HSO,SS, respectively, and then construct the numerical solution
Φh as a suitable composition of the single integrators. In this approach, ϕN can be obtained
exactly. To solve the orbital post-Newtonian contribution, one uses a symplectic scheme,
the order of which does not need to be high because a simple splitting does not have order
higher than two anyway. The Hamiltonian HSO,SS is split into parts which can each be solved
exactly. This was the major achievement of Lubich et al. (2010). As a composition of exact
and symplectic flows, the overall integrator will then preserve the structure (4.54). Let us now
show briefly how to obtain ΦSS,SO.

First, one decomposes the spin-orbit Hamiltonian as

HSO = Hx
SO +Hy

SO +Hz
SO, (4.58)

with

H i
SO =

2

q3
(Seff · êi)(L · êi). (4.59)

The equations of motion corresponding to H i
SO are

dp

dt
=

2Seff · êi
q3

êi × p + 3H i
SO

x

q2
, (4.60)

dx

dt
=

2Seff · êi
q3

êi × x, (4.61)

dS1

dt
=

(
1 +

3m2

4m1

)
2L · êi
q3

êi × S1, (4.62)

dS2

dt
=

(
1 +

3m1

4m2

)
2caL · êi

q3
êi × S2. (4.63)
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Taking the inner product of (4.61) with x yields

0 =
dp

dt
· x =

1

2

dq2

dt
. (4.64)

Similarly, one can deduce

dSa
dt
· êi = 0. (4.65)

This implies that Seff · êi and q are constant. We now observe that equations of the form

da

dt
= Ω× a, (4.66)

where Ω is a constant vector, are solved by a simple rotation, i.e.,

a(t) = rot(Ω, t)a(0). (4.67)

Here, the rotation operator is defined via

rot(Ω, t)a(0) := a(0) +
sin(‖Ω‖t)
‖Ω‖

Ω× a(0) + 2

sin
(
‖Ω‖
2 t
)

‖Ω‖

2

Ω×Ω× a(0). (4.68)

The constancy of Seff · êi and q combined with (4.67) immediately gives

x(t) = rot

(
2Seff · êi

q3
êi, t

)
x(0) (4.69)

and

p(t) = rot

(
2Seff · êi

q3
êi, t

)(
p(0) +

3tH i
SO

q2
x(0)

)
. (4.70)

Furthermore, equations (4.60) and (4.61) imply that the equation of motion for the angular
momentum L is also of the form (4.67). Therefore, its length is conserved and, as a consequence,
the equations for the spins (4.62) and (4.63) are again of the type (4.67). Thus, the motion of
the spins is given by

S1(t) = rot

((
1 +

3m2

4m1

)
2L · êi
q3

êi, t

)
S1(0), (4.71)

S2(t) = rot

((
1 +

3m1

4m2

)
2L · êi
q3

êi, t

)
S3(0). (4.72)

In the same way, one can split the spin-spin Hamiltonian as

HSS = H1
SS +H2

SS +H3
SS +H4

SS, (4.73)

66



4.5. Transformation to symplectic form

with

H1
SS = −S1 · S2

q3
, (4.74)

H2
SS = −S1 · S1

2q3
− S2 · S2

2q3
, (4.75)

H3
SS =

3(S1 · n)(S2 · n)

q3
, (4.76)

H4
SS =

3(S1 · n)(S1 · n)

2q3
+

3(S2 · n)(S2 · n)

2q3
. (4.77)

The corresponding flows Φi
SS are derived with the same methods as in the spin-orbit case. The

result is given in appendix C. Putting everything together, one arrives at

ΦSO,SS = ϕxSO ◦ ϕ
y
SO ◦ ϕ

z
SO ◦ ϕ1

SS ◦ ϕ2
SS ◦ ϕ3

SS ◦ ϕ4
SS. (4.78)

The sequence of the individual flows is not fixed and can be changed ad libitum.

Right after the first, we want to present another possibility to obtain structure preserving
algorithms for the post-Newtonian formalism.

4.5. Transformation to symplectic form

The Darboux-Lie theorem states that for every Poisson system (4.54), one can find a transfor-
mation

z = Ψ(y), (4.79)

such that the system in the coordinates z is locally canonical. There are two properties of the
post-Newtonian equations which enable us to find such a transformation in this case. Firstly,
the positions and momenta are already in canonical form. Thus, a transformation (4.79) only
has to focus on the spin coordinates. Secondly, by multiplying the equations of motions of the
spins (4.43) with the respective spin Sa, we see that

1

2

d‖Sa‖
dt

=
dSa
dt
· Sa = 0, (4.80)

i.e., the length of the individual spins is a first integral. These two observations make it
surprisingly easy to obtain the transformation to symplectic form.

From the constancy of the spin-length we see that two spin variables are redundant. The
post-Newtonian system can therefore be described by N = 10 variables. Because of this, Wu
and Xie (2010) proposed the use of cylindrical coordinates for the spins:

Sa = m2
aχa

ρa cos(ξa)
ρa sin(ξa)

ξa

 , (4.81)

where χa relates the length of an object’s spin to the square of its mass. The conservation of
the spin-length allows for the elimination of one of the variables (ρa, φa, ξa). Therefore, we
can express ρa in terms of ξa as

ρa =
√

1− ξ2a, (4.82)
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whereby the spin and thus the Hamiltonian only depend on φa and ξa. In order to deduce the
equations of motion for the two independent variables, we observe that the following equalities
hold true:

∂H

∂φa
=

∂H

∂Sax

∂Sax
∂φa

+
∂H

∂Say

∂Say
∂φa

, (4.83)

∂H

∂ξa
=

∂H

∂Sax

∂Sax
∂ξa

+
∂H

∂Say

∂Say
∂ξa

+
∂H

∂Saz

∂Saz
∂ξa

, (4.84)

∂Sax
∂φa

= −ρa sin(φa) = −Say, (4.85)

∂Say
∂φa

= ρa cos(φa) = Sax, (4.86)

Saz = χam
2
aξa. (4.87)

For the sake of shorter notation, we assume w.l.o.g. that χam2
a = 1 until the end of this

section. Due to relation (4.87), we have

dξa
dt

=
dSaz
dt

=
∂H

∂Sax
Say −

∂H

∂Say
Sax, (4.88)

where the second equality is simply the equation of motion for the z-component of the spin.
Substituting Sax and Say with the help of equations (4.85) and (4.86), and then applying
(4.83) we get

dξa
dt

= − ∂H

∂Sax

∂Sax
∂φa

+
∂H

∂Say

∂Say
∂φa

= − ∂H
∂φa

. (4.89)

We now consider the time-derivatives of the x- and y- components. Taking into account the
equations of motion for these components, the derivatives with regard to time are

∂H

∂Say
Saz −

∂H

∂Saz
Say =

dSax
dt

=
∂Sax
∂ξa

dξa
dt

+
∂Sax
∂φa

dφa
dt

, (4.90)

∂H

∂Saz
Sax −

∂H

∂Sax
Saz =

dSay
dt

=
∂Say
∂ξa

dξa
dt

+
∂Say
∂φa

dφa
dt

. (4.91)

We can multiply the first equation with ∂Say/∂ξa and the second with ∂Sax/∂ξa and substract
the two equations. This leads to(

∂Sax
∂φa

∂Say
∂ξa

− ∂Say
∂φa

∂Sax
∂ξa

)
dφa
dt

=
∂H

∂Say

∂Say
∂ξa

Saz −
∂H

∂Saz

∂Say
∂ξa

Say − ...

− ∂H

∂Say
Saz

∂Sax
∂ξa

Sax +
∂H

∂Sax

∂Sax
∂ξa

Saz. (4.92)

Calculating the partial derivatives of the spin components with regard to the new variables on
the left hand side and some of the partial derivatives on the right hand side, equation (4.92)
becomes

ξa
dφa
dt

=
∂H

∂Say

∂Say
∂ξa

ξa +
∂H

∂Saz
ξa +

∂H

∂Sax

∂Sax
∂ξa

ξa. (4.93)
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4.6. Structure preserving integrators for post-Newtonian equations of motion

Keeping in mind that ∂Saz/∂ξa = 1 and then taking use of relation (4.84), we arrive at

dφa
dt

=
∂H

∂ξa
. (4.94)

Thus, the post-Newtonian equations for the ten independent variables (p, ξa,x, φa) read

d

dt



p
ξ1
ξ2
x
φ1
φ2

 =

(
0 −I
I 0

)


∇p

∂ξ1
∂ξ2
∇x

∂φ1
∂φ2

H. (4.95)

Sadly, the proof of symplecticity in the new coordinates given by Wu and Xie (2010) is wrong.
But as has been shown by the last few lines, the system is indeed symplectic. What is more,
the transformation is defined globally as it only consists in expressing the spins with constant
length via cylindrical coordinates. As a consequence, a structure preserving algorithm for
the post-Newtonian equations can be obtained by carrying out the global transformation to
canonical form and then applying a symplectic integrator.

Next, we take use of the the last two sections’ theory and present some integrators.

4.6. Structure preserving integrators for post-Newtonian
equations of motion

In the last two sections, the groundwork for a structure preserving integration was laid down.
Now, we consider another property of section 4.3, namely the shape of the Hamiltonian (4.57).
This gives a natural splitting of the Hamiltonian into two parts. It is well known, e.g., (Liao,
1997), that an integrator which is splitted in this natural way has a smaller local error than a
comparable scheme. More precisely, when comparing the splitted integrator

Φsplit,h := ϕN,h
2
◦ ΦδH̃,h ◦ ϕN,h

2
(4.96)

with the scheme ΦH,h, where Φh is the same second order scheme for both methods, the
corresponding local errors are

‖ϕH,h − ΦH,h‖ = O(h3) (4.97)

and

‖ϕH,h − Φsplit,h‖ = O(δh3). (4.98)

Having thus obtained a second order scheme with a small truncation error, one can lift the
scheme to higher order by apt composition. In this work, we consider 4th order methods given
by the state-of-the art Suzuki composition

Φ4th,h = Φsplit,αh ◦ Φsplit,αh ◦ Φsplit,βh ◦ Φsplit,αh ◦ Φsplit,αh, (4.99)
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with

α =
1

4− 41/3
, (4.100)

β =
41/3

4− 41/3
. (4.101)

Concerning the splitted, second order integrator Φsplit,h, we notice that the error estimate (4.98)
still holds, when we replace the scheme by

Φ̃split,h = ΦδH̃,h
2
◦ ϕN,h ◦ ΦδH̃,h

2
. (4.102)

There are two reasons why one should expect Φsplit,h to be superiour to Φ̃split,h:

• At every composition in (4.99), one can combine

... ◦ ϕN,γ1h ◦ ϕN,γ2h ◦ ... = ... ◦ ϕN,(γ1+γ2)h ◦ ... (4.103)

due to the group property of the exact flow,

ϕh ◦ ϕs = ϕh+s. (4.104)

When employing Φ̃split,h instead, one cannot ‘merge‘ parts in the Suzuki composition
without catching more errors.

• The post-Newtonian terms in the Hamiltonian are non-separable, as has already been
stated in 4.3. Therefore, the numerical flow ΦδH̃,h corresponding to the non-Newtonian
Hamiltonian requires the solution of implicit equations. This yields computational cost
and we can expect the calculation of ΦδH̃,h to be more expensive than the calculation
of ϕN,h. Thus, the scheme where ΦδH̃,h has to be calculated less often, i.e., the scheme
using compositions of Φsplit,h, should be more efficient.

On the other hand, the splitting Φ̃split,h uses half as large a step size in the approximation
ΦδH̃,h

2
. This gives a smaller error in each application of ΦδH̃,h. Furthermore, when using a

smaller step size in the implicit method, the number of iterations per application of ΦδH̃,h
should be smaller, thus partly compensating for the extra numerical cost caused by the form
of Φ̃split,h.

Using the ideas for sections 4.4 and 4.5, as well as Suzuki’s composition (4.99), we explicitly
construct four different integrators. We will use both the splitting Φsplit,h and its alternative
Φ̃split,h:

• For the first integrator, we combine the ideas of 4.4 with the splitting (4.96). We
numerically calculate the flow given by the non-classical corrections as

ΦδH̃,h = Φ∗SO,SS,h
2

◦ ΦPN,h ◦ ΦSO,SS,h
2
, (4.105)

with ΦSO,SS as given in (4.78) and its adjoint

Φ∗SO,SS = Φ4
SS ◦ Φ3

SS ◦ Φ2
SS ◦ Φ1

SS ◦ Φz
SO ◦ Φy

SO ◦ Φx
SO. (4.106)

The orbital part ΦPN is solved by the symplectic 2nd order implicit midpoint rule

yn+1 = yn + hf

(
1

2
(yn + yn+1)

)
. (4.107)
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4.7. Calculating the ‘exact‘ Kepler-flow

With this, the splitted integrator Φsplit,h is symplectic, time-reversible and of second
order. When applying the Suzuki composition, we merge terms as in (4.109). The
integrator obtained in this way is called PoissonI in the following.

• We also construct a Poisson integrator with the splitting (4.102). Again, we solve the
orbital post-Newtonian contributions with the help of the implicit midpoint rule and set

Φ̃split,h = Φ∗SO,SS,h
2

◦ ΦPN,h
2
◦ ϕN,h ◦ ΦPN,h

2
◦ ΦSO,SS,h

2
. (4.108)

In Suzuki’s composition, we can merge

... ◦ ϕ4
SS,γ1h ◦ ϕ

4
SS,γ2h ◦ ... = ... ◦ ϕ4

SS,(γ1+γ2)h ◦ ... . (4.109)

This scheme will be referred to as PoissonII.

• The next scheme, SympI, uses the transformation of section 4.5. Thanks to this transfor-
mation, one can solve all the relativistic contributions at once by applying the implicit
midpoint rule to the whole Hamiltonian δH̃. This gives a second order flow Φrel. In the
case of SympI, we split in the way

Φsplit,h = ϕN,h
2
◦ Φrel,h ◦ ϕN,h

2
. (4.110)

which allows us to merge parts of the integration during the composition in the
way (4.109).

• As a last example, we split the canonical system as

Φ̃split,h = Φrel,h
2
◦ ϕN,h ◦ Φrel,h

2
, (4.111)

where Φrel again accounts for all non-classical contributions calculated via the implicit
midpoint rule. Once more, we enhance the order with the help of composition (4.99).
Hereinafter, this scheme will be denoted by SympII.

Besides the splitting methods, we can ignore property (4.57) and apply an implicit Gauss-Runge-
Kutta scheme to the system in symplectic form H(p, ξ1, ξ2,x, φ1, φ2). Gauss-Runge-Kutta
schemes have been introduced in section 3.4. Here, we will test schemes with s = 2, s = 3,
and s = 4 inner stages. The corresponding integrators will be denoted by Gauss2, Gauss3,
Gauss4, respectively.

Before testing and comparing these schemes, we want to expose an interesting fact concerning
the flow ϕN in the next section.

4.7. Calculating the ‘exact‘ Kepler-flow

As is well known, the system described by the Hamiltonian of a classical two-body problem (4.44)
can be solved analytically. But, the analytical solution is implicit as a function of the time-
parameter t. If we consider, without loss of generality, the trajectory to be in the x, y-plane,
the solution in cylindrical coordinates (ρ, φ) with the stationary mass in the origin is given as

ρ(φ(t)) =
L2
z

µ2 [1 + e cos (φ(t)− φper)]
, (4.112)

φ(t)∫
φ(0)

dφ̃
1

1 + e cos
(
φ̃− φper

) =
µ3

L3
z

t. (4.113)
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Here, φper is the angle at the periapsis, Lz is the conserved z-component of the angular
momentum and e is the eccentricity,

e =

√
1 +

2HL2
z

µ3
. (4.114)

We clearly observe the implicitness in equation (4.113). Thus, every time we want to calculate
the analytic Kepler-flow for the integrators in 4.6, we have to iteratively solve an implicit
equation. The smaller the step size, the more often we need to apply an iteration. But as
we have already seen in section 3.8, round-off errors can occur which can accumulate during
long-time integrations.

Having said this, we can remember the separability of the Kepler Hamiltonian and apply the
2nd order, explicit, symplectic and reversible Störmer-Verlet ΦSV:

p̃ = pn −
hµ

2q3
xn (4.115)

xn+1 = xn +
h

µ
p̃ (4.116)

pn+1 = p̃− hµ

2q3
xn+1. (4.117)

Lifting the order with the composition

ΦKep,h = ΦSV,α1h ◦ ΦSV,α2h ◦ ΦSV,α3h ◦ ΦSV,α4h ◦ ΦSV,α5h ◦ ΦSV,α6h ◦ ΦSV,α7h ◦ ...

◦ ΦSV,α8h ◦ ΦSV,α7h ◦ ΦSV,α6h ◦ ΦSV,α5h ◦ ΦSV,α4h ◦ ΦSV,α3h ◦ ΦSV,α2h ◦ ΦSV,α1h,
(4.118)

α1 = 0.741 670 364 350 612 953 448 227 80,

α2 = −0.409 100 825 800 031 593 997 300 10,

α3 = 0.190 754 710 296 238 379 953 876 26,

α4 = −0.573 862 471 116 082 266 656 387 73,

α5 = 0.299 064 181 303 655 923 844 463 54,

α6 = 0.334 624 918 245 298 183 784 957 98,

α7 = 0.315 293 092 396 766 596 632 056 66,

α8 = −0.796 887 939 352 916 354 019 788 84,

one obtains a fast and accurate method of order 8 to calculate the flow of the two-body
problem, see, e.g., (Hairer et al., 2006). When using compensated summation, there should be
no rounding errors during the numerical integration, as was argued in 3.8. We note in passing
that one can merge the steps (4.115) and (4.117), thus saving computational effort. But we
will not do so in the test below as this merger is not possible in the post-Newtonian splitting.
When the analytical solution is divided into many steps, as is the case when using it in the
splitting integrators of the last section, we have reason to believe that it is inferior to the
explicit ΦKep in speed and accuracy. In order to check this, we consider a two-body problem
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4.7. Calculating the ‘exact‘ Kepler-flow

in center-of-mass coordinates with µ = 3/16 and initial conditions

x = 50, (4.119)

py = 0.027475637, (4.120)

y = z = px = pz = 0. (4.121)

For different step-sizes h, we integrate this system until tend = 107, once with the numerical
flow ΦKep,h and once with the analytic flow ϕN,h which is qualitatively described by the
following lines of pseudo-code:

1 function ana ly t i c a l_so lu t i on_st ep (h, xn, yn, px,n, py,n)
2 ca l cu la te_φn(xn, yn) ;
3 ca l cu la te_Lz(xn, yn, px,n, py,n) ;
4 ca l cu la te_e (H,Lz, µ) ;
5 calculate_eccentr ic_anomaly_En ;
6 calculate_mean_anomaly_Mn = En − e sinEn ;
7 calculate_major_semi−axis_a ;

8 Mn+1 = Mn +
√

1+µ
a3
h ;

9 i t e r a t i v e l y_so lve_fo r_En+1_in_Mn+1 = En+1 − e sinEn+1 ;
10 ca l cu la te_x = a[cos(En+1)− e] ;
11 ca l cu la te_y = a

√
1− e2 sin(En+1) ;

12 ca l cu la te_ρn+1 =
√
x2n+1 + y2n+1 ;

13 ca l cu la te_ φ̇n+1 = Lz/µρ2n+1 ;
14 ca l cu la te_ ρ̇n+1 =

√
1/µ [2 (H + µ/ρn+1)− L2

z/µρ2n+1] ;
15 ca l cu la te_px,n+1(φ̇n+1, ρ̇n+1, ρn+1) ;
16 ca l cu la te_py,n+1(φ̇n+1, ρ̇n+1, ρn+1) ;
17 end

We list the calculation times in table 4.1 and plot the relative error in the Hamiltonian

∆H(t) =

∣∣∣∣H(y(t))−H0

H0

∣∣∣∣ (4.122)

in Fig. 4.1. Obviously, ΦKep,h is much faster than ϕN,h. Furthermore, for not too large step

h ϕN,h ΦKep,h
1 94 s 12 s
5 18 s 2 s
20 4 s 0.4 s
40 2 s � 1 s

Table 4.1: Comparison of the calculation times for the integrators ϕN,h and ΦKep,h applied
with different step sizes h to the Kepler problem in the time interval t ∈ [0, 107].

sizes, the numerical solution is more accurate than the ‘exact‘ one. We can see very well
how the round-off errors of the iteration sum up over time for the ‘exact‘ solution. Therefore,
we recommend to replace the ‘exact‘ solution ϕN,h with the composition of Störmer-Verlet
methods (4.118) when implementing the integrators of section 4.6.

73



 1e-016

 1e-015

 1e-014

 1e-013

 1e-012

 1e-011

 0  2e+006  4e+006  6e+006  8e+006

∆
H

(t
)

t

analytical, h=1
numerical, h=1

 2e+006  4e+006  6e+006  8e+006  1e+007

t

analytical, h=5
numerical, h=5

 1e-015

 1e-014

 1e-013

 1e-012

 1e-011

 1e-010

∆
H

(t
)

analytical, h=40
numerical, h=40

analytical, h=20
numerical, h=20

Figure 4.1: The energy error ∆H as a function of time t for the integrators ϕN,h (‘analytical‘)
and ΦKep,h (‘numerical‘) in the time interval t ∈ [0, 107] for various step sizes h.

4.8. Numerical experiments

In this section, we want, among others, to compare the accuracy of different schemes. Therefore,
we will employ measures in line with section 3.10, namely the relative error in the Hamiltonian

∆H =

∣∣∣∣H(yn)−H(y0)

H(y0)

∣∣∣∣ , (4.123)

and the relative error along the trajectory

err =

√√√√ N∑
i=1

(
yinum − yiex

yiex

)2

. (4.124)

Unless stated otherwise, the ‘exact‘ solution yex(t) will be given by an s = 6 -stage Gauss-
Runge-Kutta scheme with a step size h = 0.1 which we apply to the system in canonical
coordinates.

The simulations are aborted due to poor accuracy as soon as the error in the energy exceeds
the tolerance

∆H > 10−6. (4.125)

We will show below that setting a tolerance for the error in the energy is necessary in the
long-time analysis of a binary’s behaviour, as for such systems, integrators with bad energy
conservation lead to false chaos indicators. This is the same effect as the one observed for the
classical Hénon-Heiles problem in section 2.

As standard explicit competitors for the structure preserving integrators, we choose the classical
RK4 method (2.13) and the CK5 scheme (3.151).

Let us now present the test cases with the help of which we compare the individual methods.
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4.8. Numerical experiments

4.8.1. The test cases

We model three different kinds of motion, each of which is often encountered in binary
simulations. We always fix the total mass as m = 1. Consequently, the important parameter
concerning the two compact object’s masses is the mass ratio σ = m1/m2. The individual
masses and the reduced mass are thus given as

m1 =
σ

1 + σ
, (4.126)

m2 =
1

1 + σ
, (4.127)

µ =
σ

(1 + σ)2
. (4.128)

The other relevant parameter is the factor χa, already introduced in section 4.5, that links
masses with spins via

‖Sa‖ = χam
2
a. (4.129)

Hence, the nature of a binary’s orbit depends on the parameters σ, χ1, χ2 and the initial values

y(0) = (px(0), py(0), pz(0), ξ1(0), ξ2(0), x(0), y(0), z(0), φ1(0), φ2(0))T . (4.130)

This said, the three kinds of motion are represented by the following respective examples:

• With the set of initial data

y(0) =

(
0,

3

80
, 0, 0, 0, 35, 0, 0, 0, 0

)T
,

σ =
1

3
, (4.131)

χ1 = χ2 = 0,

we model a system without spin effects. The spin contributions being switched off,
the post-Newtonian system is integrable, e.g., (Zhong et al., 2010), and the motion
is restricted to the initial plane due to the conservation of the angular momentum.
We present the orbit and the Poincaré sections for t ∈ [0, 107] as obtained via ‘exact‘
integration in Fig. 4.2. The orbit is apparently quasiperiodic.

• As a second test case, we choose the data set

y(0) =

(
0,

3

80
, 0, 0.25,−0.025, 35, 0, 0,

π

4
,
π

4

)T
,

σ =
1

3
, (4.132)

χ1 = χ2 =
3

4
.

In Fig. 4.3, we plot a part of the orbital trajectory for t ∈ [0, 107]. Alongside this, we plot
the frequency spectrum of the x component for I1 = [0, 106] and I2 = [107 − 106, 107].
We see that although the spin contributions have been switched on, the motion is still
regular.
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Figure 4.2: For the test case without spin contributions and t ∈ [0, 107], the left panel shows
an extract of the trajectory. The Poincaré sections for y = 0 and py > 0 are given
in the right panel.
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Figure 4.3: For the test case (4.132), the left panels shows the trajectory for t ∈ [0, 50000]. The
frequency spectra |fx(ω)| for the time intervals I1 = [0, 106] and I2 = [107−106, 107]
are depicted in the right panel.
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4.8. Numerical experiments

• We also consider a chaotic orbit. More precisely, we set

y(0) =

(
1, 0,

3

40
, 0, 0.25,−0.025, 6, 0, 0,

π

4
,
π

4

)T
,

σ = 1, (4.133)

χ1 = χ2 = 1.

We illustrate the chaotic behaviour by showing a part of the orbital trajectory and the
FLI in Fig. 4.4.
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Figure 4.4: For the chaotic test case, the left panel shows the trajectory for t ∈ [0, 25000]. The
linearly growing FLI is depicted in the right panel in semi-logarithmic scale.

Having thus established the test cases, we are able to start with our experiments.

4.8.2. Comparing splitting methods I

In section 4.6 we discussed different ways to split operators with regard to the special structure
of the Hamiltonian (4.57). We now want to find out which possibility yields the better
performance. More precisely, we want to compare the splitting methods (4.96) and (4.102).
Therefore, we apply the integrators SympI, SympII, PoissonI, and PoissonII to the two regular
test cases using various step sizes. We plot the relative error in the Hamiltonian (4.123) in
Figs. 4.5, 4.6 and tabulate the corresponding calculation times Tcalc in tables 4.2 and 4.3.
During all simulations, the integration time was t ∈ [0, 107].

The plots show quite clearly that splitting technique (4.96) leads to an energy error roughly
half an order of magnitude smaller than the one of method (4.102). But not only is this
splitting method more accurate but also does it result in less computational costs, cf. table
4.3. Apparently, having to calculate the implicit schemes less often and being able to apply
mergers of the sort (4.109) is more of an advantage than the smaller step size for the implicit
scheme. This circumstance is more pronounced for the Symp-algorithms, as for them, the
implicit equations also include the spins and are thus of higher dimension. Therefore, we
strongly recommend alternative (4.96) for the construction of splitting schemes.
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Figure 4.5: For initial data (4.131), t ∈ [0, 107] and different step sizes h, the relative error
in the Hamiltonian ∆H is plotted against time t for the splitting integrators of
section 4.6, PoissonII (orange), SympII (light blue), PoissonI (magenta), and SympI
(black).
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in the Hamiltonian ∆H is plotted against time t for the splitting integrators of
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78



4.8. Numerical experiments

Integrator h = 40 h = 20 h = 5 h = 1

PoissonI 4.36 8.35 30.95 142.86
SympI 4.36 8.35 30.95 142.86
SympII 6.11 11.56 41.91 191.55
PoissonII 6.11 11.56 41.91 191.55

Table 4.2: The CPU calculation times in [s] for the splitting integrators of section 4.6 applied
to the regular test case (4.131) with different step sizes h. The integration interval
was t ∈ [0, 107] in all simulations. N.b.: As the spin contributions are turned off,
methods I and II are the same in this case.

Integrator h = 40 h = 20 h = 5 h = 1

SympI 9.90 18.72 67.75 304.95
PoissonI 17.37 34.23 133.34 655.11
SympII 15.41 29.36 104.03 463.43
PoissonII 19.15 37.48 144.65 705.18

Table 4.3: The CPU calculation times in [s] for the splitting integrators of section 4.6 applied
to the regular, spinning test case (4.132) with different step sizes h. The integration
interval was t ∈ [0, 107] in all simulations.

4.8.3. Comparing splitting methods II

We now want to compare the two underlying ideas for our splitting integrators, namely
the Poisson integrator introduced in section 4.4 and the transformation to canonical form
as illustrated in section 4.5. For the purely orbital motion, both ideas result in the same
integration scheme wherefore we consider the test cases with spin.

By analysing Fig. 4.6, we observe that there is no difference in the accuracy for the regular
motion. However, with regard to the computation times in table 4.3, the Poisson scheme
turns out to be much more expensive. Taking into account table 4.2, we notice that the exact
calculation of all terms for the spin-orbit, spin-spin part (4.78) increases the computational
effort drastically. For SympI and SympII the additional costs are lower. One can see further
that the difference between the Poisson... and Symp... schemes is much larger than the
difference due to the splitting techniques (4.96) and (4.102).

This said, we focus on the chaotic test orbit (4.133) and analyse the error in the energy ∆H.
As, for these initial values, the system has an unfavourable behaviour, we use smaller step sizes
than before. The results for SympI are shown in Fig. 4.7, the corresponding CPU times are
listed in table 4.4. Although for h = 5 the simulation falls victim to criterion (4.125), SympI
can cope with the chaotic orbit for smaller step sizes. Not so PoissonI. When applying this
scheme to the chaotic orbit, simulations are soon aborted even for very small step sizes. As an
illustration, we plot the energy error for the small step size h = 0.1 in Fig. 4.8. We observe
perturbations at some times which successively take the numerical solution away from the
exact one until, at one point, the system is exploding altogether. Numerical tests reveal that
reducing the step size to h = 0.01 does not alleviate the problem.
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Thus, integration schemes based on the transformation to symplectic form are faster and more
reliable for chaotic systems than Poisson integrators such as PoissonI. But how do splitting
schemes fare in comparison to other methods?
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Figure 4.7: For initial data (4.133), t ∈ [0, 107] and different step sizes h, the relative error in
the Hamiltonian ∆H during simulations with SympI is plotted against time t.

Integrator h = 5 h = 1 h = 0.5 h = 0.1

SympI a 463.78 833.85 3445.49

Table 4.4: The CPU calculation times in [s] for the splitting integrator SympI applied to the
chaotic test case (4.133) with different step sizes h. The integration interval was
t ∈ [0, 107] in all simulations. ‘a‘ signifies ‘aborted due to condition (4.125)‘.

4.8.4. Comparing various integration methods

As was already mentioned in section 4.6, the binary system in canonical form can be solved
with Gauss collocation schemes instead of splitting methods. Of course, one can also try
standard explicit schemes. Therefore, we apply Gauss2, Gauss3, Gauss4, RK4, and CK5 to our
three orbits (4.131)-(4.133). As for the Gauss collocation schemes, we use the same step sizes
as for the splitting integrators. For the explicit schemes, the step size is reduced because we
expect these to have worse accuracy. The simulation times for the three test cases are shown
in tables 4.5-4.7. It is obvious that all five Runge-Kutta schemes are much faster than the
splitting schemes, cf. tables 4.2-4.4. Looking more closely, one can observe that the implicit,
structure preserving Gauss collocation methods are not significantly slower than the explicit
schemes when using the same step size. Above all for small step sizes, the additional cost is
minimal. This is thanks to the starting approximations, introduced in section 3.8, resulting in
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4.8. Numerical experiments
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Figure 4.8: For initial data (4.133) and a step size h = 0.1, the relative error in the Hamiltonian
∆H is plotted against time t for the PoissonI scheme.

small numbers of iterations per step. We illustrate this by listing the iterations per step for
Gauss 4 in table 4.8. Tables 4.2-4.4 show further that the Gauss Runge-Kutta schemes allow
for the use of larger step sizes without violating condition (4.125).

Integrator h = 40 h = 20 h = 5 h = 1 h = 0.5 h = 0.1

RK4 a a a 13.80 27.58 137.91
CK5 a a 4.70 23.01 46.07 230.01

Gauss2 a 3.89 11.44 43.81 81.73 344.41
Gauss3 3.27 5.32 15.44 58.48 105.73 422.69
Gauss4 3.96 6.47 18.74 67.26 120.59 443.49

Table 4.5: The CPU calculation times in [s] for explicit and implicit Runge-Kutta schemes
applied to the orbital test case (4.132) with different step sizes h. The integration
interval was t ∈ [0, 107] in all simulations. ‘a‘ signifies ‘aborted due to condition
(4.125)‘.

In order to investigate the accuracy in detail, we consider the cases with spin and compare
the relative error along the trajectory (4.124) in Figs. 4.9, 4.11, as well as the error in the
energy (4.123) in Figs. 4.10, 4.12. The explicit schemes show pronounced drifts in the energy
and the relative error. SympI has good conservation properties but the Gauss collocation
schemes offer by far the best accuracy for small computational cost.

Having found the fastest and most accurate way to integrate post-Newtonian equations of
motion – a transformation to symplectic form followed by the application of a Gauss collocation
method – we now turn our attention towards the indicators of chaos. We start with the Poincaré
sections.
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Integrator h = 40 h = 20 h = 5 h = 1 h = 0.5 h = 0.1

RK4 a a a 43.99 87.93 439.44
CK5 a a 14.31 71.56 143.02 716.16

Gauss2 a 10.03 29.37 111.23 205.68 852.88
Gauss3 8.10 13.19 38.09 141.19 255.60 997.65
Gauss4 10.00 16.44 46.63 160.95 283.26 1068.56

Table 4.6: The CPU calculation times in [s] for explicit and implicit Runge-Kutta schemes
applied to the regular, spinning test case (4.132) with different step sizes h. The
integration interval was t ∈ [0, 107] in all simulations. ‘a‘ signifies ‘aborted due to
condition (4.125)‘.

Integrator h = 5 h = 1 h = 0.5 h = 0.1 h = 0.05 h = 0.01

RK4 a a a a a 2997.76
CK5 a a a a a 4840.96

Gauss2 a a a 1190.14 − −
Gauss3 a a 449.47 1548.56 − −
Gauss4 a 347.22 566.67 1893.45 − −

Table 4.7: The CPU calculation times in [s] for explicit and implicit Runge-Kutta schemes
applied to the chaotic test case (4.132) with different step sizes h. The integration
interval was t ∈ [0, 107] in all simulations. ‘a‘ signifies ‘aborted due to condition
(4.125)‘, ‘-‘ means that no simulation has been run for the corresponding step size.

test case h = 40 h = 20 h = 5 h = 1 h = 0.5 h = 0.1

initial values (4.131) 9.19 7.44 5.16 3.46 2.99 2.13
initial values (4.132) 9.31 7.59 5.30 3.54 3.07 2.24
initial values (4.133) − − a 9.21 7.44 4.85

Table 4.8: Number of iterations per step for Gauss4, applied with different step sizes to the
three test cases. ‘a‘ signifies ‘aborted due to condition (4.125)‘, ‘-‘ means that no
simulation has been run for the corresponding step size.
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4.8. Numerical experiments
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Figure 4.9: For initial data (4.132) and t ∈ [0, 107], the relative error along the trajectory err
is plotted against time t for various integration schemes.
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Figure 4.10: For initial data (4.132) and t ∈ [0, 107], the relative error in the Hamiltonian ∆H
is plotted against time t for various integration schemes.
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Figure 4.11: For initial data (4.133), the relative error along the trajectory err is plotted
against time t for various integration schemes.
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Figure 4.12: For initial data (4.133) and t ∈ [0, 107], the relative error in the Hamiltonian ∆H
is plotted against time t for various integration schemes.
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4.8. Numerical experiments

4.8.5. Comparing methods to calculate Poincaré sections

In subsection 2.2.1, three distinct methods for the calculation of Poincaré sections were
presented. We now test which of these is best suited for applications in the realm of post-
Newtonian equations. Therefore, we calculate sections in all three ways once for the purely
orbital motion and once for the chaotic test case. We choose Gauss3 as the underlying
integrator as this scheme has proven to be a trustworthy tool in the last subsection. The
step size in the purely orbital case is h = 20; for the chaotic orbit it is set to be h = 0.1.
For the first algorithm, the successive reduction of the step size, we reduce the time steps
until they reach a value of hstep = eps, where eps ≈ 10−16 is the double precision. For the
interpolation algorithm, we choose a polynomial of order p̃ = 6 as this equals the order of
a Gauss scheme with s = 3 stages. The respective calculation times are listed in table 4.9.
Obviously, the reduction of the step size results in much more computational cost. In order to

algorithm purely orbital motion chaotic motion
reducing the step size 7.23 1650.96

interpolation 5.34 1557.86
collocation 5.33 1555.72

Table 4.9: The CPU calculation times in [s] for the calculation of all Poincaré sections of the
y = 0-plane for t ∈ [0, 107] with Gauss3 and the three algorithms of subsection 2.2.1.

examine whether this additional effort is rewarded by higher accuracy, we plot the error in the
energy for points of the section,

∆Hsect =

∣∣∣∣H(ysect)−H(y0)

H(y0)

∣∣∣∣ , (4.134)

in Fig. 4.13. We observe that although the reduction of the step size yields a smaller error
in the energy, the other algorithms show good results as well. The difference between the
interpolation method and the collocation is not very large. For small step sizes, as in the
test for the chaotic orbit, the difference between both algorithms vanishes completely. On
the whole, if a reliable scheme is used for integrating the equations of motion, the collocation
polynomial will yield satisfactory results in the most convenient way. Thus, we were right to
recommend its use in subsection 2.2.1 above.

In chapter 2 integration schemes with bad energy conservation were found to be misleading
concerning the chaoticity of a classical system. We thus ask ourselves what happens with the
Poincaré section of our relativistic system in such a case. In order to answer this question,
we apply the RK4 scheme with step sizes h = 1, 5, 20, 40 to our purely orbital motion which
is in fact four-dimensional and therefore well represented by a two-dimensional section. The
respective results are depicted in Fig. 4.14. We see that the larger the step size, the more the
sections deviate from the exact form. For h = 40, the sections look rather chaotic. Analysing
the error in the energy ∆H, shown in Fig. 4.15, we see that the aberration in the sections goes
hand in hand with a deteriorating energy conservation. Contrarily, for Gauss3 with h = 40
the energy is conserved. This yields the correct Poincaré sections of the quasiperiodic motion,
as can bee deduced from Fig. 4.16.

We now proceed with the next indicator of chaos.
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Figure 4.13: For the three methods to calculate Poincaré sections, initial data (4.133), and
t ∈ [0, 107], the relative error in the Hamiltonian on the section ∆Hsect is plotted
against time t in the left panel. The right panel shows the same for initial
values (4.131).
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4.8. Numerical experiments
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Figure 4.15: For the classical RK4 scheme applied with different step sizes h to the purely
orbital test case, the error in the energy ∆H is plotted against integration time t.
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4.8.6. The two-particle method applied to the binary system

In chapter 2 the maximum Lyapunov exponent was introduced as a reliable tool to indicate
chaos for systems with more than two degrees of freedom. Furthermore, the two-particle
method was shown to be more comfortable than the variational approach. We now examine its
results when applied to the post-Newtonian equations of motions in combination with different
integration schemes. First we use Gauss3 with the very large step size h = 40 to propagate
the purely orbital test case along with its shadow trajectory. We also apply Gauss3 with
h = 0.5 to the chaotic orbit (4.133). The resulting LEs are shown in Fig. 4.17 along with the
exact solutions. We delightedly see a striking similarity between numerical and exact solution.
Whereas for the quasiperiodic motion the LEs are steadily decreasing, they tend to a small but
still positive value in the chaotic case. As in the last subsection, we now employ the classical
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Figure 4.17: The left panel shows the exact solution and the result obtained via Gauss3 and
h = 40 of the maximum Lyapunov exponent λ for the purely orbital test case. In
the right panel, the same results, with h = 0.5 instead of h = 40 for Gauss3, are
plotted for the chaotic test case.

RK4 method. When applying this scheme with h = 0.5 to the chaotic test case, simulations
were soon aborted because the renormalization interval was too large. This caused an overflow
in LE’s value. The result for RK4 with h = 40 applied to the purely orbital motion is shown
in Fig. 4.18. One observes a bent at around t = 8 · 106, which lets the LE converge towards a
finite value. This is in accordance with our results of the previous subsection.

We now focus on a different aspect concerning the two-particle method: Tancredi et al. (2001)
found out that for some classical examples, the approximation of the variational method by
a finite distance between two trajectories can inflict errors which sum up over the length of
the integration, in particular so when small step sizes are used. To examine this phenomenon
in our relativistic application, we calculate the orbital motion’s LE with explicit and Gauss
collocation schemes, choosing for each a step size of h = 1. With this step size, even RK4
yielded the correct Poincaré section above. As for the corresponding maximum Lyapunov
exponents, however, for large t, the explicit solutions deviate from the exact ones and converge
towards a constant positive value, see Fig. 4.19. Hence, for binaries, too, round-off errors can
accumulate during the integration if too small a step size is used. For Gauss3, a small drift
is observed which for Gauss4, h = 1 vanishes altogether. Therefore, we have demonstrated
another advantage of the structure preserving schemes: Even if they lead to a small aberration
due to round-off errors for small step sizes, they can be applied with large time steps, thus
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4.8. Numerical experiments
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Figure 4.18: The left panel shows the exact solution and the result obtained via RK4 and
h = 40 for the maximum Lyapunov exponent λ for the purely orbital test case.
In the right panel, the same results, with h = 0.5 instead of h = 40 for RK4, are
plotted for the chaotic test case.

avoiding the occurrence of such awkward effects. This said, we go on to another indicator.
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Figure 4.19: The maximum Lyapunov exponent λ obtained via integrations with small step
sizes compared with the exact solution. The left panel shows the result for explicit
schemes, the right panel is the same for Gauss collocation methods.

4.8.7. The frequency spectra

When calculating frequency spectra for the post-Newtonian equations, we expect the same
phenomena as the ones encountered in the last two subsections. To verify this, we again
consider RK4 with h = 1, 5, 20, 40, and calculate the x-component’s frequency spectra in the
intervals t ∈ [0, 106] and t ∈ [0, 107− 106] for the regular spinning motion corresponding to the
initial values (4.132). Looking at the results in Fig. 4.20, we see that for h = 20 there is a shift
in the frequencies. For h = 40, there is not only a shift but the spectra already resemble a noisy
frequency distribution common for chaotic orbits. This fits well to the respective Poincaré
sections, cf. Fig. 4.14 above. In contrast, the Gauss collocation schemes show outstanding
results even for large step sizes. To illustrate this, we calculate the spectra with Gauss3 and
h = 40 and plot the results in Fig. 4.21 along with the exact solution. No difference between
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the structure preserving algorithm and the exact solution can be observed. Thus, for all three
main indicators of chaos, Gauss collocation schemes give the correct predictions with regard
to chaoticity. If energy is not conserved, however, the indicators can lead to false conclusions.
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Figure 4.20: The frequency spectra of the x-component, |fx(ω)|, with arbitrary normalization
in the intervals I1 = [0, 106] and I2 = [107 − 106, 107] as obtained by the RK4
method with different step sizes.
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Figure 4.21: The left panel shows the frequency spectra of the x-component, |fx(ω)|, with
arbitrary normalization in the intervals I1 = [0, 106] and I2 = [107 − 106, 107] as
obtained by Gauss3 with h = 40. The right panel depicts the corresponding exact
solution.

4.8.8. Systems with radiation

We have seen that the structure preserving algorithms have excellent conservation properties
when applied to symplectic systems. What will happen if we add a radiation term to the binary
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4.8. Numerical experiments

system? On the one hand, the system loses the structure which gave rise to the advantageous
integrators in the first place. On the other hand, it is known from classical mechanics that, at
least in this field, structure preserving algorithms outperform explicit schemes also when a
non-conservative term is added to the Hamiltonian. In order to examine the corresponding
behaviour for relativistic binaries, we modify the equation of motion of the momenta (4.41)
to account for radiation. We choose a model derived by Buonanno et al. (2006) which is
commonly used in general relativity and set

dp

dt
= −∇xH + Frad. (4.135)

The exact form of the radiation term Frad is given in appendix E below. To illustrate its
effects on the trajectory, we plot the evolution of the radial distance q for our regular, spinning
test case (4.132) as given by the exact solution in Fig. 4.22. Here, we calculate the ‘exact‘
solution with CK5 and the very small step size h = 0.01. As time increases, the distance
between the two particles is decreasing faster and faster. For t > 500 000, the binary will soon
collapse. Thus, we restrict our simulations to an interval t ∈ [0, 500 000].
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Figure 4.22: The radial distance q as function of integration time t for the regular spinning
orbit with radiation effects included.

In the subsections above, CK5 and Gauss3/Gauss4 showed the best results for explicit and
structure preserving schemes, respectively. We thus focus on these integrators and compare
their performance with the radiation turned on. We first list the calculation times for the
three schemes applied with different step sizes each, cf. table 4.10. With increasing time steps,
the difference in CPU time becomes ever smaller as the collocation methods’ average number
of iterations per step decreases analogously to the conservative case.

As a measure for the accuracy we plot the relative error along the trajectory (4.124) in Fig. 4.23.
Taking into account the calculation times, the collocation methods yield the better results for
less computational costs – just as in the conservative case.
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Figure 4.23: The relative error along the trajectory, err against integration time t for explicit
and collocation schemes.

Integrator h = 40 h = 20 h = 5 h = 1 h = 0.5 h = 0.1

CK5 0.14 0.28 1.21 5.75 11.50 57.51
Gauss3 0.92 1.47 4.04 16.45 25.69 99.77
Gauss4 1.08 1.72 4.72 17.28 32.00 133.36

Table 4.10: The CPU calculation times in [s] for explicit and implicit Runge-Kutta schemes
applied with different step sizes h to the test case (4.132) with radiation effects
included. The integration interval was t ∈ [0, 500 000] for all simulations.
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4.8. Numerical experiments

Long story short, Gauss-Runge-Kutta schemes turn out to be magnificent tools for the post-
Newtonian equations – with or without non-conservative radiation terms. Let us now, finally,
summarize our results in the next chapter.
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5. Summary

5. Summary

In this work, we first introduced the most important indicators to analyse the chaoticity
of a dynamical system, namely Poincaré sections, frequency spectra, maximum Lyapunov
exponents, as well as the fast Lyapunov indicator, and discussed how they can be implemented
in an efficient way. When applying these indicators to a simple classical system, the Hénon-
Heiles problem, we could see that their behaviour is influenced by the numerical integration
scheme with which the system is propagated in time. In particular, the use of integrators
with a shift in the energy could make regular motion look like chaotic orbits. But by placing
appropriate demands on the accuracy of the scheme, the indicators show the right behaviour
independent of the integration scheme. Furthermore, we discussed algorithms to calculate all
Lyapunov exponents of a system. Unfortunately, these algorithms proved very expensive when
testing them for the Hénon-Heiles case. Therefore, we recommended to only calculate the
maximum exponent when investigating a system for chaotic behaviour. Having demonstrated
that a correct prediction with regard to chaoticity requires accurate schemes and long time
intervals, we turned our attention towards relativistic compact binary systems.

First, we considered Extreme Mass Ratio Inspirals. We explained that the resulting equations of
motion can show properties which demand for very sophisticated numerical solution techniques.
Above all, structure preserving step size algorithms are indispensable in such cases. However,
the hitherto available step size controllers failed to deliver satisfactory results. Thus, we
proposed a new efficient structure preserving algorithm well-suited for applications in geodesic
equations of motion. Due to the non-separability of the geodesic equations of motion, our new
algorithm is based on Gauss collocation methods. Therefore, we discussed their properties
and then described in detail how to implement these implicit schemes. After proving our
integrator’s structure-preserving properties, we demonstrated the new algorithm’s superiour
performance in numerical experiments.

Hereafter, we focused on binaries with rather equal masses. We exposed that these systems
can be approximated by the post-Newtonian formalism. This approach leads to a Hamiltonian
with spins, which from a numerical analysis point of view is equivalent to a Poisson system. We
described two different possibilities for the structure preserving integration of these systems.
One yields a Poisson integration which splits the Hamiltonian in many parts, almost each of
which can be solved analytically. The second method is based on a coordinate transformation.
We proved that the system in the new coordinates has a canonical structure. Therefore,
symplectic integration schemes can be applied. As the post-Newtonian equations resemble
a perturbed Kepler problem, we analysed splitting techniques adapted to the Hamiltonian’s
perturbative form. We tested splitting methods for both the Poisson integration and the
coordinate transformation ansatz. Besides these, Gauss collocation methods were applied to
the transformed system. Numerical experiments showed that the splitting methods are much
more expensive than the Gauss collocation schemes. Thus, a transformation to canonical form
combined with a Gauss-Runge-Kutta scheme was shown to be the best approach.

Afterwards, chaos indicators were tested for the post-Newtonian equations. We saw that here,
too, bad energy conservation properties can lead to false estimates with regard to chaoticity.
Thus, numerical simulations have to be aborted as soon as the error in the energy becomes
too large.

As a last point, we showed that Gauss collocation methods are the best choice even when
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radiation effects are taken into account although, then, the system’s structure is destroyed by
the additional terms.

In short, despite its age, Gauss collocation seems to be the stat-of-the art integration technique
when considering relativistic binary systems. Energy conservation is very important to ensure
reliable forecasts of a system’s behaviour. This said, advantageous integration methods for
both common formalisms of relativistic binary systems have been singled out and efficient
implementations of the most important chaos indicators have been proposed. We hope that
all this will be of great use in simulations by the gravitational wave astronomy.
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A.

A.

Using the auxiliary functions of section 3.9, we list here the equations of motion for the MSM
spacetime in the form they have been implemented in:

ṗu =
1

2guu

{
− 1

D

(
∂E

∂u
− E

D

∂D

∂u

)
(gtφLz + gφφm0E)2

(κ2(u2 − 1)(1− v2))2
− 2

1− v2

D

(
∂F

∂u
− F

D

∂D

∂u

)
× ...

×
(gtφLz + gφφm0E)(gttLz + gtφm0E)

(κ2(u2 − 1)(1− v2))2
−

(gttLz + gtφm0E)2

(κ2(u2 − 1)(1− v2))2
× ...

×
[
2λ2

∂λ1
∂u
− λ2
D2

∂D

∂u
[λ1(P

2 − E) + λ2T
2]

+
λ2
D

(
∂λ1
∂u

(P 2 − E) + λ1

(
2P

∂D

∂u
− ∂E

∂u

)
+ 2λ2T

∂T

∂u

)]
− ...

− 1

8κ6(u2 − 1)(u2 − v2)4

(
u2 − v2

2

(
∂D

∂u
− 8uD

u2 − v2

)
− uD 1− v2

u2 − 1

)
pu

2 + ...

+
1

16κ6(1− v2)(u2 − v2)4

(
(u2 − v2)

(
∂D

∂u
− 8uD

u2 − v2

)
+ 2uD

)
pv

2 − ...

− 2

16κ6(u2 − 1)(u2 − v2)4

(
(u2 − v2)

(
∂D

∂v
+

8vD

u2 − v2

)
− 2vD

)
pupv

}

ṗv =
1

2gvv

{
− 1

D

(
∂E

∂v
− E

D

∂D

∂v

)
(gtφLz + gφφm0E)2

(κ2(u2 − 1)(1− v2))2
− ...

−2

(
2u
F

D
− 1− v2

D

(
∂F

∂v
− F

D

∂D

∂v

))
× ...

×
(gtφLz + gφφm0E)(gttLz + gtφm0E)

(κ2(u2 − 1)(1− v2))2
−

(gttLz + gtφm0E)2

(κ2(u2 − 1)(1− v2))2
× ...

×
[
2λ1

∂λ2
∂v

+
1

D

(
∂λ2
∂v
− λ2
D

∂D

∂v

)
(λ1(P

2 − E) + λ2T
2)

+
λ2
D

(
λ1

(
2P

∂P

∂v
− ∂E

∂v

)
+
∂λ2
∂v

T 2 + 2λ2T
∂T

∂v

)]
+ ...

+
1

8κ6(u2 − 1)(u2 − v2)4

(
(u2 − v2)

(
∂D

∂v
+

8vD

u2 − v2

)
− 2vD

)
pu

2 − ...

− 1

16κ6(1− v2)(u2 − v2)4

(
(u2 − v2)

(
∂D

∂v
+

8vD

u2 − v2

)
+ 2vD

u2 − 1

1− v2

)
pv

2 − ...

− 2

16κ6(1− v2)(u2 − v2)4

(
(u2 − v2)

(
∂D

∂u
− 8uD

u2 − v2

)
+ 2uD

)
pupv

}
u̇ = pu

v̇ = pv,
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The ‘tmp-variables‘ are:

∂E

∂u
= 2R

∂R

∂u
+ λ2S

(
s
∂λ1
∂u

+ 2λ1
∂S

∂u

)
∂E

∂v
= 2R

∂R

∂v
+ λ1S

(
s
∂λ2
∂v

+ 2λ2
∂S

∂v

)
∂D

∂u
=
∂E

∂u
+ P

∂R

∂u
+R

∂P

∂u
+ λ2

(
T
∂S

∂u
+ S

∂T

∂u

)
∂D

∂v
=
∂E

∂v
+ P

∂R

∂v
+R

∂P

∂v
+ λ2

(
T
∂S

∂v
+ S

∂T

∂v

)
+ TS

∂λ2
∂v

∂F

∂u
= T

∂R

∂u
+R

∂T

∂u
−
(
SP

∂λ1
∂u

+ λ1S
∂P

∂u
+ λ1P

∂S

∂u

)
∂F

∂v
= T

∂R

∂v
+R

∂T

∂v
− λ1

(
S
∂P

∂v
+ P

∂S

∂v

)
∂λ2
∂u

= 2κ2x

∂λ2
∂v

= 2v

∂P

∂u
= 2

{
κm[(2κu+m)2 − 2v2(2δ + ab− b2)− a2 + b2 − q2] + ...

+4κ2mu(2κu+m)− 4κ2q2u
}

∂P

∂v
= −8[κmuv(2δ + ab− b2) + v(4δd−m2b2)]

∂R

∂u
= 16κu[κ2(u2 − 1) + δ(1− v2)]

∂R

∂v
= −16δv[κ2(u2 − 1) + δ(1− v2)]− ...

− 4v(1− v2)(a− b)[(a− b)(d− δ)−m2b+ qµ]

∂S

∂u
= −8(a− b)κ2u

∂S

∂v
= −8v[(a− b)(2δ − κ2) + (m2b− qµ)]

∂T

∂u
= 4{2κmb[κ2(u2 − 1) + δ(1− v2)] + 2κ2u(2κmbu+ 2m2b− qµ)} − ...

− kκm(1− v2)[(a− b)(d− δ)−m2b+ qµ]

∂T

∂v
= −2v{(a− b)(m2b2 − 4δd)− ...

− (4κmu+ 2m2 − q2)[(a− b)(d− δ)−m2b+ qµ]} − ...

− 8δv(2κmbu+ 2m2b− qµ)
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B.

B.
The equations of motion of the post-Newtonian formalism with 3PN orbital and leading
spin-orbit and spin-spin contribution are given here. They read

dp

dt
= −∇xHN −∇xHPN −∇xHS0,SS

dx

dt
= ∇pHN + ∇pHPN + ∇pHS0,SS,

dS1
dt

=

[
2

(
1 +

3m2

4m1

)
L− S2 + 3

(
nS2 +

m2

m1
nS1

)
n

]
× S1,

dS2
dt

=

[
2

(
1 +

3m1

4m2

)
L− S1 + 3

(
nS1 +

m1

m2
nS2

)
n

]
× S2.

As they are referred to in the text above, we give the individual terms in (B) and (B) in detail.
The Newtonian terms are simply

∇xHN =
µ

q3
x,

and

∇pHN =
1

µ
p.

The terms due to the spin-orbit and spin-spin Hamiltonian read

∇xHS0,SS =
2

q3
p× Seff +

{[
3

(
S1S2 +

1

2

(
m2

m1
S1S1 +

m1

m2
S2S2

))
− ...

− 15

(
(nS2)(nS1) +

1

2

(
m1

m2
(nS1)

2 +
m2

m1
(nS2)

2

))
− 6SeffL

]
n + ...

+3

[(
nS2 +

m2

m1
nS1

)
S1 +

(
nS1 +

m1

m2
nS2

)
S2

]}
1

q4
,

∇pHS0,SS =
2

q3
Seff × x,

where L, Seff, and q are given in 4.2. In order to present the orbital post-Newtonian terms in
the form in which they have been implemented, we first define the following ‘tmp-variables‘:

P1,1 :=
3ν − 1

2
,

P1,2 :=
3 + ν

2
,

P1,3 :=
ν

2
,

P2,1 :=
6− 30ν(1− ν)

16
,
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P2,2 :=
5− ν(20 + 3ν)

8
,

P2,3 :=
ν2

2
,

P2,4 :=
3

2
ν2,

P2,5 := 3ν,

P2,6 := 5 + 8ν,

P2,7 :=
3 + 9ν

4
,

P3,1 :=
280ν[1 + ν(ν − 2)]− 40

128
,

P3,2 :=
ν[42− ν(53 + 5ν)]− 7

16
,

P3,3 :=
(2− 3ν)ν2

16
,

P3,4 :=
3ν2(1− ν)

16
,

P3,5 :=
ν(136 + 109ν)− 27

16
,

P3,6 :=
(17 + 30ν)ν

16
,

P3,7 :=
(5 + 43ν)ν

12
,

P3,8 :=

(
ν

(
π2

64
− 335

48
− 23

8
ν

)
− 25

8

)
,

P3,9 :=

(
−85

16
− 3π2

64
− 7ν

4

)
ν,

P3,10 :=

(
1

2
+

(
109

3
− 21π2

8

)
ν

)
,

P3,11 :=
5

16
ν3.

With these quantities and

pn :=
n · p
µ2

,

pp :=
p · p
µ2

,

we have

∇xHPN =

{[
pp[P1,2 − pp(P2,2 + ppP3,2)] + ...
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B.

+ p2n

(
3P1,3 + pp

(
3

2
P2,3 − 3ppP3,3

)
+ p2n

(
5

4
P2,4 + 7P3,11p

2
n − 5P3,4pp

))
+ ...

+
1

q

(
1

q

(
P2,7 − 3ppP3,8 − 5P3,9p

2
n −

P3,10

q

)
− pp(P2,6 + 2P3,5pp)− ...

−p2n(2P2,5 + 4P3,6pp + 6p2nP3,7)− 1

)]
µ

q
x + ...

+

[
pp(2P3,3pp − P2,3)− 2P1,3 + p2n(4P3,4 − P2,4 − 6P3,11p

2
n) + ...

+
1

q

(
P2,5 + 2P3,6pp + 4P3,7p

2
n +

2P3,9

q

)]
pnp

}
1

q2
,

∇pHPN =

{
pp

[
P1,1 +

4

q

(
P2,2 + P3,3p

2
n +

P3,5

q

)
+ ...

+ pp

(
P2,1 +

6P3,2

q
+ P3,1pp

)]
+ ...

+
1

q

[
−2P1,2 +

1

q

(
P2,6 +

2P3,8

q

)
+ ...

+ p2n

(
2P3,6

q
− P2,3 + 2P3,4p

2
n

)]}
1

µ
p + ...

+

[
1

q

(
P2,5 +

2P3,9

q

)
− 2P1,3 + 2pp

(
P3,3pp −

P2,3

2
+
P3,6

q

)
+ ...

+4p2n

(
P3,4pp −

P2,4

4
− 3P3,11p

2
n

2
+
P3,7

q

)]
pn
q2

x
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C.

We give here the flows Φi
SS which are obtained after the splitting of the leading order post-

Newtonian spin-spin HamiltonianHSS. In addition to the rotation operator rot(Ω, t) introduced
in section 4.4, we make use of the operator r̃ot which is defined as

r̃ot(Ω, t)a(0) :=

t∫
0

rot(Ω, s)a(0)ds = ...

= ta(0) + 2

(
sin(‖Ω‖2 t)

‖Ω‖

)2

Ω× a(0) +
‖Ω‖t− sin(‖Ω‖t)

‖Ω‖3
Ω×Ω× a(0).

As the spin-spin Hamiltonian is independent of the momenta p, the positions remain constant.
For the Hamiltonian H1

SS, we have

ϕ1
SS,t(p(0),x(0),S1(0),S2(0)) =


p(t)
x(t)
S1(t)
S2(t)

 =


p(0)− 3tH1

SS
q2

x(0)

x(0)

rot
(
− 1
q3

(S1(0) + S1(0)), t
)

S1(0)

rot
(
− 1
q3

(S1(0) + S1(0)), t
)

S2(0)

 .

The Hamiltonian H2
SS leads to a motion only in the momenta. Its flow is

ϕ2
SS,t(p(0),x(0),S1(0),S2(0)) =


p(t)
x(t)
S1(t)
S2(t)

 =


p(0)− 3tH2

SS
q2

x(0)

x(0)
S1(0)
S2(0)

 .

The flow corresponding to H3
SS yields

p(t) = p(0) +
5tH3

SS
q2

x(0)− 3n · S2(0)

q4
r̃ot

(
3nS2(0)

q3
n, t

)
S1(0)− ...

− 3n · S1(0)

q4
r̃ot

(
3nS1(0)

q3
n, t

)
S2(0),

x(t) = x(0),

S1(t) = rot

(
3nS2(0)

q3
n, t

)
S1(0),

S2(t) = rot

(
3nS1(0)

q3
n, t

)
S2(0),
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C.

whereas ϕ4
SS results in

p(t) = p(0) +
5tH3

SS
q2

x(0)− 3n · S1(0)

2q4
r̃ot

(
3nS1(0)

2q3
n, t

)
S1(0)− ...

− 3n · S2(0)

2q4
r̃ot

(
3nS2(0)

2q3
n, t

)
S2(0),

x(t) = x(0),

S1(t) = rot

(
3nS1(0)

2q3
n, t

)
S1(0),

S2(t) = rot

(
3nS2(0)

2q3
n, t

)
S2(0).
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D.
We give here the post-Newtonian equations of motion for the system given in terms of the 10
canonical variables (p,x, φ1, ξ1, φ2, ξ2). In this case, the equations of motion for the positions
and momenta are they same as in the original coordinates. One only has to re express S1 and
S2 in (B) and (B) by means of the canonical variables (φ1, ξ1, φ2, ξ2). The equations for the
canonical angles are

dφ1
dt

=
2

q3

[(
1 +

3m2

4m1

)(
m2

1χ1Lz −
ξ1
ρ1
m2

1χ1[cos(φ1)Lx + sin(φ1)Ly]

)
+ ...

+
1

2q2

(
m2

m1
xS1 + xS2

)(
zm2

1χ1 −m2
1χ1[cos(φ1)x+ sin(φ1)y]

ξ1
ρ1

)
+ ...

+
1

2

ρ2
ρ1
ξ1m

2
1m

2
2χ1χ2[cos(φ1) cos(φ2) + sin(φ1) sin(φ2)− ξ2]

]
,

dφ2
dt

=
2

q3

[(
1 +

3m1

4m2

)(
m2

2χ2Lz −
ξ2
ρ2
m2

2χ2[cos(φ2)Lx + sin(φ2)Ly]

)
+ ...

+
1

2q2

(
m1

m2
xS2 + xS1

)(
zm2

2χ2 −m2
2χ2[cos(φ2)x+ sin(φ2)y]

ξ2
ρ2

)
+ ...

+
1

2

ρ1
ρ2
ξ2m

2
2m

2
2χ2χ1[cos(φ2) cos(φ1) + sin(φ2) sin(φ1)− ξ1]

]
,

dξ1
dt

=
2

q3

[(
1 +

3m2

4m1

)
m2

1χ1ρ1[cos(φ1)Ly − sin(φ1)Lx] + ...

+
1

2

(
m2

m1
xS1 + xS2

)
ρ1m

2
1χ1[cos(φ1)y − sin(φ1)x] + ...

−1

2
m2

1m
2
2χ1χ2ρ1ρ2[cos(φ1) sin(φ2)− cos(φ2) sin(φ1)]

]
,

dξ2
dt

=
2

q3

[(
1 +

3m1

4m2

)
m2

2χ2ρ2[cos(φ2)Ly − sin(φ2)Lx] + ...

+
1

2

(
m1

m2
xS2 + xS1

)
ρ2m

2
2χ2[cos(φ2)y − sin(φ2)x] + ...

−1

2
m2

1m
2
2χ1χ2ρ1ρ2[cos(φ2) sin(φ1)− cos(φ1) sin(φ2)]

]
,

with the orbital angular momentum

L =

LxLy
Lz

 = x× p,

and the other quantities as introduced in 4.5.
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E.

E.
We give here the radiation force in our simulations of subsection 4.8.8. With the quantities of
chapter 4 and the angular momentum as in the appendix above, the radiation contribution
reads

Frad =
1

ω‖L‖
dE

dt
p +

8

15
ν2

v8ω
qL2

[(
61 + 48

m2

m1

)
pS1 +

(
61 + 48

m1

m2

)
pS2

]
L,

with

vω =

(
Gmω

c3

) 1
3

,

ω =
dx
dt −

(
dx
dt n
)
n

q
,

and the ‘energy-loss rate‘

dE

dt
= −32

5
ν2v10ω

(
1 + f2v

2
ω + [f3 + f3SO(p,x,S1,S2)]v

3
ω + ...

+[f4 + f4SS(p,x,S1,S2)]v
4
ω + f5v

5
ω + [f6 + f61 ln(4vω)]v6ω + f7v

7
ω

)
.

With Euler’s gamma γe = 0.577 215, the coefficients are

f2 = −1247

336
− 35

12
ν2,

f3 = 4π,

f4 = −44711

9072
+

9271

504
ν +

65

18
ν2,

f5 = −
(

8191

672
+

583

24
ν

)
π,

f6 =
6 643 739 519

69 854 400
+

16

3
π2 − 1712

105
γe +

(
−134 543

7776
+

41

48
π2
)
ν − ...

− 94 403

3024
ν2 − 775

324
ν3,

f61 = −1712

105
,

f7 =

(
−16 285

504
+

214 745

1728
ν +

193 385

3024
ν2
)
π,

f3SO(p,x,S1,S2) = −
(

11

4
+

5m2

4m1

)
LS1

m2‖L‖
−
(

11

4
+

5m1

4m2

)
LS2

m2‖L‖
,

f4SS(p,x,S1,S2) =
ν

48m2
1m

2
2

(
289

(LS1)(LS2)

‖L‖2
− 103(S1S2)

)
.
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