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Abstract. An adaptive time stepping method to numerically solve a general SPDE is
proposed, where local step sizes are chosen in regard of the distance between empirical laws
of subsequent time iterates and extrapolated data. The histogram-based estimator uses
a data-driven partitioning of the high-dimensional state space, and efficient sampling by
bootstrapping. Time adaptivity is then complemented by a local refinement/coarsening
strategy of the spatial mesh of a stochastic version of the ZZ-estimator. Next to an im-
proved accuracy, we observe a significantly reduced empirical variance of standard estima-
tors, and therefore a reduced sampling effort. The performance of the adaptive strategies
is studied for SPDEs with linear drift, including the convection-dominated case where the
streamline diffusion method is adopted to attain a stable discretization, and the stochas-
tic version of the non-linear harmonic map heat flow to the sphere S2 where approximate
solutions exhibit discrete blow-up dynamics.

1. Introduction

We develop new space-time adaptive concepts which base on local changes of empirical
laws of approximate solutions of the general SPDE

dXt = A(Xt)dt+ ισ(Xt)dWt in DT := (0, T ]×D,
X0 = x0 in D,

(1.1)

with proper boundary conditions. Here, D ⊂ Rd, d ∈ {1, 2, 3}, is a bounded polyhedral
domain, 0 < T < ∞ denotes the terminal time, and A a (non-)linear second order
differential operator; see (2.1) and (2.4). We denote by W ≡ {Wt; t ∈ [0, T ]} a Hilbert
space-valued trace-class Wiener process; ι ∈ R is later referred to as noise intensity, and σ
is a diffusion operator; see Section 2.1 for details.

For deterministic PDEs, there is a rich literature on adaptive methods to automatically
generate space-time meshes which capture the structure of the solution and thus signif-
icantly reduce the computational effort. For low-dimensional SDEs, different concepts
of time adaptivity have been proposed e.g. in [24] to accurately approximate solutions
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pathwisely, or e.g. in [30] to approximate corresponding laws of iterates. The construc-
tion [25, 30] of an adaptive mesh is based on an (asymptotic) a posteriori estimate, whose
computation involves global, coupled random dual backward equations; conceptually, the
construction rests on using Kolmogorov’s backward equation, which restricts the practical
applicability to small SDE systems. The advantage, however, is a theoretical backup of
this adaptive algorithm.

In order to develop adaptive concepts for large SDE systems, or even those which come
from a Galerkin discretization of the SPDE (1.1), we rather sample empirical laws of
related subsequent iterates in this work and estimate their distance. The algorithm then
initiates refinement/coarsening of the temporal mesh at places where related empirical
laws of subsequent iterates change rapidly/slowly. We motivate conceptual ideas: let Y j ∈
L2(Ω,Vj

h) be an approximation of the solution X of (1.1) at time tj ∈ [0, T ], which has
already been obtained from the finite element-based discretization Scheme 3.1 of (1.1). We
want to determine the new local time step size τ j+1 := tj+1 − tj > 0. For this purpose, we
first check whether a refinement of the earlier time step τ j is needed, by

1) computing the new random variable Y 1,j+1 ∈ L2(Ω,Vj
h) with the help of the pre-

vious step size τ 1,j+1 := τ j in Scheme 3.1, and then determining its empirical law
µ̂1,j+1
τ := L̂(Y 1,j+1).

2) We then proceed correspondingly with the step size τ 2,j+1 := τ j/2, and use extrap-
olation to construct the empirical measure µ̂2,j+1

τ := L̂(Y 2,j+1).
3) Now we compute the (Hellinger-)distance d(µ̂1,j+1

τ , µ̂2,j+1
τ ) of the both empirical

probability measures {µ̂s,j+1
τ ; s ∈ {1, 2}} to decide whether to refine τ j or not.

A corresponding strategy applies to steer coarsening; see Section 4.4 for further details.
A relevant step in this procedure is therefore to efficiently assemble and compare the

involved empirical measures {µ̂s,j+1
τ ; s ∈ {1, 2}}, both of which are defined on a σ-algebra

over the state space RLj , which is isomorphic to the Lj-dimensional finite element space
Vj
h. This σ-algebra is generated by a data-dependent partition P̂j+1

τ ;Rτ
:=
{
Ĉj+1
τ ;r }Rτr=1 of

the state space RLj into Rτ ∈ N many cells; see Figure 1(B) for an illustration in the case
Lj = 2. While this strategy to approximate distributions on (low-dimensional) state spaces
is well-known in the statistical literature [10, Chapter 21], it has only recently been used
in [11] for the simulation of BSDEs resp. BSPDEs, which is again a different setting to
the present one: in Section 4.1, we explain how a data-dependent partition of RLj may
efficiently be generated to assemble the two empirical measures from above. Sections 4.2
and 4.4 then detail the role of the distance of these empirical measures to attain the new
time step τ j+1.

These concepts lead to Algorithm 4.4, which may be used to steer time adaptivity for
the following SDE from [25, Example 5.1],

dXt =
1(1/3,1](t)

2
√
t− 1/3 + 10−8

Xtdt+XtdWt ∀ t ∈ (0, 1], X0 = 1; (1.2)
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Ĉj+1
3
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Figure 1. (Algorithm 4.4) Computation of the new local time step size
τ j+1 := tj+1 − tj > 0 based on the previous step size τ j and the sample
S #„
Y j : (A) The samples S #„

Y 1,j+1 and S #„
Y 2,j+1 are computed by the same dis-

cretization scheme, but with different time step sizes τ 1,j+1 and τ 2,j+1; see
Section 4.4 for the used notation and further details. (B) Sketch to assemble
a single realization of empirical laws µ̂1,j+1

τ and µ̂2,j+1
τ on the data-dependent

partition P̂j+1
τ ;Rτ
≡ P̂j+1

τ ;Rτ

(
S #„
Y 1,j+1 ∪S #„

Y 2,j+1

)
on the state space R2 with Rτ = 8

cells ( ); see Section 4.2.

note that t 7→ E
[
|Xt|

]
fastly changes in the vicinity of t = 1/3, and thus favors a higher

resolution by a refined mesh in its neighborhood; see Figure 2(B).
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Figure 2. (Example 1.1 for d = dH (see Section 4.2), Tolτ = 0.05 ( ) and
Rτ = 26, Mτ = 105) (A) Error for uniform ( , , , , ) vs. adaptive ( )
time meshes via Algorithm 4.4, and (B) corresponding adaptive time step
size. (C) ErrorMτ 7→ EMτ

[
maxtj

∣∣|Y j| − EMτ

[
|Y j|

]∣∣2], and (D) empirical vari-
ance tj 7→ VarMτ

[
|Y j|

]
for uniform vs. adaptive meshes.

Example 1.1. Figure 2(A) displays errors for a drift-implicit Euler discretization of (1.2)
on uniform vs. adaptive time meshes (Mτ = 105 MC simulations). A uniform mesh with
J = 210 time steps is needed vs. an adaptively refined mesh with J = 54 time steps via Algo-
rithm 4.4 ( ) to stay below the given error threshold ( ). The adapted local time step
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size {τ j}j rapidly decays near t = 1/3, and afterwards coarsens again (see Figure 2(B)); com-
pare also with [25, Figure 2]. Figure 2(C) shows a significantly reduced empirical variance
on adaptive meshes

(
EMτ

[
|Y j|

]
:= 1

Mτ

∑Mτ

k=1 |Y j(ωk)|
)
; Figure 2(D) displays the empirical

variance tj 7→ VarMτ

[
|Y j|

]
:= EMτ

[∣∣|Y j| − EMτ

[
|Y j|

]∣∣2] to attribute this observation to a
smaller empirical variance near t = 1/3 via Algorithm 4.4, as opposed to uniform grids.

An important feature of the adaptive Algorithm 4.4 is that the dimension of a system
of SDEs does not affect its applicability — as opposed to [25, 30], where it is practically
limited to small SDE systems.

Example 1.2. Consider

dXt =
[
−JJJ +DDD(t)

]
Xtdt+

[
1 + |Xt|

]
dWt ∀ t ∈ (0, 1], X0 = (1, 1, 1, 1)>, (1.3)

with JJJ = 16 · tridiag[−1, 2,−1] ∈ R4×4, and DDD(t) = diag[γ1(t), . . . , γ4(t)] ∈ R4×4, where
γi(t) := 1(βi,1]

(t)/2
√
t−βi+10−8 and βi := i/5. Here, t 7→ E

[
|Xt|

]
rapidly changes in the

vicinity of times t ∈ {βi}4i=1; see Figure 3(B). Computational studies for other choices
d ∈ {d̃KL, dTV} (see Section 4.2) show comparable results.
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Figure 3. (Example 1.2 for d = dH (see Section 4.2), Tolτ = 0.05 ( ) and
Rτ = 26, Mτ = 105) (A) Error for uniform ( , , , , ) vs. adaptive ( )
time meshes via Algorithm 4.4, and (B) corresponding adaptive time step
size. (C) Mτ 7→ EMτ

[
maxtj

∣∣|Yj| − EMτ

[
|Yj|

]∣∣2], and (D) empirical variance
tj 7→ VarMτ

[
|Yj|

]
for uniform vs. adaptive meshes.

Large systems of SDEs arise after a spatial discretization of the SPDE (1.1), and thus
finer partitions P̂j+1

τ ;Rτ
are expected to properly resolve the high-dimensional state space RLj .

It is also plausible that the type of PDE matters when the number Rτ of used cells is cho-
sen: for example, the simulations in Example 5.1 for SPDE (1.1) with A(X) = ε∆X−βββ·∇X
(ε > 0 small) suggest Rτ ≈ 212 for a stable selection of local time step sizes (see Fig-
ure 11): it is due to the convection-dominated drift that steep spatial gradients inside
diffuse layers appear, which may easily be perturbed by the acting noise. In contrast, we
found that only Rτ ≈ 27 cells are appropriate to reliably detect changes of subsequent em-
pirical distributions in comparative studies for the drift operator A(X) = ∆X. Obviously,
the choice of Rτ also depends on the specific noise, and its intensity ι in (1.1).
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Next to time adaptivity, we use space adaptivity to discretize (1.1); see Figure 4. For
this purpose, we adapt the idea of the ZZ-estimator [33] for deterministic PDEs to possibly
refine/coarsen an element K ∈ T jh , where T jh denotes the triangulation of D at time tj: in
this vein, we compute the distance d(µ̂1,j+1

h;K , µ̂2,j+1
h;K ) for each K, where

1) µ̂1,j+1
h;K is the empirical law of the R-valued random variable |∇Y j+1|K , and

2) µ̂2,j+1
h;K is the empirical law of the norm of the recovered gradient Gh(∇Y j+1) (see

equation (4.5)) which averages gradients locally.
The elementK ∈ T jh is then refined/coarsened depending on the value of d(µ̂1,j+1

h;K , µ̂2,j+1
h;K ) —

which is large for strong local variations of the solution. Constructing the empirical mea-
sures in 1)–2) is again with the help a data-dependent partitioning P̂j+1

h;Rh;K
:= {Ĉj+1

h;r;K}Rhr=1

of the state space, which here is R+
0 ; see Section 4.5 for further details. Adaptivity in space

steers the re-distribution of spatial nodal points at each time step, leading e.g. to a better
resolution of diffuse layers in Figure 4(A) in the case of the convection-dominated SPDE
given in Example 5.1. The comparative studies in Figures 4(A) and 14(A) evidence that
the choice of the distance d ∈ {dH, dKL, dTV} matters, and that dTV should be given prefer-
ence; see also Table 2. However, spatial adaptivity not only enhances the resolution of the
computation (see Figure 13), but also further reduces the empirical variance of estimators,
which was already an outcome of adaptivity in time; see Figure 12. As a consequence,
and if compared to uniform space-time meshes, space-time adaptivity will allow smaller
values Mτ (resp. Mh) of needed samples — whose resourcing is the computationally most
expensive part in the algorithm (see below) — , as well as smaller values of Rτ (resp. Rh).

(A) T jh at tj ∈ {0.25, 3.75}
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Figure 4. (Example 5.1 for ι = 0.3, as well as Tolh = 0.05 and Rh = 25,
Mh = 103 for each K ∈ T jh ): (A) Snapshots of different spatial meshes
T jh at evaluated times tj ∈ [0, 2π] with (B) corresponding histograms of
d(µ̂1,j,?

h;K , µ̂
2,j,?
h;K ) at selected elements K`1 ( ), K`2 ( ) ∈ {T 5

h , T 43
h } in (A) for

d = dH; see Section 4.5.

So far, the number of cells Rτ (resp. Rh) was fixed. However, the dimensionality
and (hence) required resolution of state spaces may change in time (respectively in space),
which, in turn, motivates to adjust the numbers Rτ (resp. Rh) of cells to build the above
pairs of empirical laws in time. The computational studies in Section 5 (see Figure 15) favor
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a heuristic strategy (5.5) which generates a non-constant sequence {R̂j+1
τ }j (resp. {R̂j+1

h }j)
in time to vary the complexity of partitions, leading to further savings of computational
resources while keeping the accuracy; the generation of corresponding partitions {P̂j+1

τ ;R̂j+1
τ
}

(resp. {P̂j+1

h;R̂j+1
h

}) is then supplemented by parallel computation using OpenMP [7] for fur-
ther speed-up; see Table 1. Another motivation for adaptivity of statistical parameters is
due to the already mentioned role of space-time adaptivity to reduce the empirical variance
of computed solutions (recall e.g. Figure 2(D)): as a consequence, sample sizesMτ (resp.Mh)
should be adaptively selected as well to avoid to compute large samples whenever possi-
ble: Figure 13 for Example 5.1 provides equally accurate, comparative simulations for
uniformly vs. adaptively chosen statistical parameters Mτ , Rh which significantly reduce
computational times in the latter case; see Section 5.1.3 for further details. To conclude,
an intimate link of adaptive strategies for space-time discretization and statistics is needed
to properly choose involved parameters.

A relevant issue which prevents an immediate, efficient realization of the given adaptive
concepts so far is its huge computational complexity. The overall computational effort at
time tj is distributed across different tasks: it starts with the computation of two initial
M j

τ -samples of O(M j
τ (Lj)3/2) complexity [14], which is the most time consuming part. To

then build the data-dependent partition P̂j+1

τ ;Rjτ
to initiate time adaptivity only causes low

storage requirements O(Rj
τ (L

j +log(Rj
τ ))) with Rj

τ �M j
τ , and is fastly accomplished since

the partition is stored as a binary tree. Once P̂j+1

τ ;Rjτ
is available, we need another two

fresh M j
τ -samples to assemble a single realization of each {µ̂s,j+1

τ ; s ∈ {1, 2}}; see Figure
1(B) for an illustration. Obviously, it is now impractical to sample this tuple of empirical
measures by a repeated computation of approximate solutions of the SPDE (1.1): instead,
statistical inference about the distribution of d(µ̂1,j+1

τ , µ̂2,j+1
τ ) is then obtained via a boot-

strap estimator, which draws with replacement from the existing sample, thus providing
the needed fresh, independent sample copies; see Section 4.3. This part also requires no
additional storage effort, since bootstrap samples are internally identified via associated
index sets (see Section 4.3); for example, to provide a single sample of size Mτ = 105 with
T jh = T 0

h for h0 = 2−6 (Example 5.1) requires approximatively 10 minutes of computa-
tional time, whereas its generation via bootstrap only takes approximatively 4 seconds.
As a result, the combination of the above adaptive concepts discussed so far with the effi-
cient sampling via bootstrap of the related empirical measures to steer space-time meshes
locally leads to an efficient method. For example, we observe huge savings of more than
75% of computational time to obtain equally accurate simulations for Example 5.1 if com-
pared to those with uniform discretization and statistical parameters; see Figure 13 and
Section 5.1.3.

The proposed adaptive concepts are tested for two prototype problems: we start with a
convection-dominated SPDE with linear drift in Section 2.1. In Section 3.1 we propose a
stable discretization by a stochastic version of the SUPG method (see Section 3.1) which
avoids spurious solutions that otherwise appear for the classical Galerkin scheme; see Fig-
ure 8. It turns out that the SUPG method not only yields a more accurate (see Figure 9),
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stable approximation, see Lemma 3.2, but also reduces the empirical variance of related es-
timators. An SPDE with non-linear drift is the stochastic harmonic map flow to the sphere
S2, for which blow-up is known in the presence of super-critical initial data. For D ⊂ Rd,
d ∈ {2, 3} this SPDE has a weak martingale solution (see e.g. [3]) rather than a proba-
bilistically strong solution as for the former problem; however, our concept of space-time
adaptivity is based on distributions, and therefore is applicable here as well. The simula-
tions in Section 5 illustrate a refinement of space-time meshes close to singular behaviors
of the solution, and a fast coarsening again beyond; concomitantly, the adaptively chosen
number of cells Rj

τ (resp. R
j
h) grows close to the (discrete) blow-up time, and rapidly decays

beyond it again. A corresponding dependence is observed for M j
τ (resp. M j

h), which again
evidences a proper automatic adjustment of involved discretization and statistical param-
eters to efficiently resolve space-time varying behaviors of the solution for this nonlinear
SPDE as well.

2. Two prototype SPDEs

2.1. An SPDE with linear drift. Let T > 0, and A : W1,2
0 →W−1,2 in (1.1) be of the

form

A(u) = div(AAA(t,x)∇u)− βββ(t,x) · ∇u, (2.1)

with measurable AAA : DT → Rd×d
spd , and βββ ∈ L∞(DT ; [W1,∞]d). Let K be a separable

Hilbert space, and σ : L2 → L (L2,K) be Lipschitz continuous, i.e., there exist constants
K1, K2 > 0 such that for all u, v ∈ L2 holds

‖σ(u)‖L (L2,K) 6 K1

(
1 + ‖u‖L2

)
, ‖σ(u)− σ(v)‖2L (L2,K) 6 K2‖u− v‖2L2 , (2.2)

where ‖ · ‖L2 resp. (·, ·)L2 denotes the norm resp. the scalar product in L2 := L2(D). The
norm in Wk,2 := Wk,2(D) for k ∈ {0, 1} is denoted by ‖ · ‖Wk,2 ; see e.g. [2].

Let (Ω,F ,F,P) be a complete filtered probability space, on which a K-valued Q-Wiener
process W ≡ {Wt; t ∈ [0, T ]} with trace-class operator Q is defined. Problem 1.1 with
x0 ∈ L2, and homogeneous Dirichlet boundary data may then be recast into the form: Find
X ≡ {Xt; t ∈ [0, T ]} such that X ∈ L2

F
(
Ω; C([0, T ];L2)

⋂
L2(0, T ;W1,2

0 )
)
satisfies P-almost

surely for every t ∈ [0, T ], and all Ψ ∈W1,2
0 ,

(
Xt,Ψ

)
−
(
x0,Ψ

)
= −

∫ t

0

[(
AAAs∇Xs,∇Ψ

)
+
(
βββs · ∇Xs,Ψ

)]
ds+ ι

∫ t

0

(
σ(Xs)dWs,Ψ

)
.

(2.3)

According to [27], problem (2.3) has a unique solution. Example 5.1 studies its numerical
discretization via Scheme 3.1, and adaptivity in the ‘convection-dominated case’, i.e.AAA ≡ εIII
for ε > 0, and βββ 6= 0. For this purpose, we approximate the K-valued Q-Wiener process W
by a K-valued Q-random walk. Let Iτ := {tj}Jj=0 with τ j+1 := tj+1− tj > 0. A Q-random
walk on (Ω,F ,P) along Iτ is a sequence {ξj+1}J−1j=0 of K-valued independent identically
distributed random variables such that for each j ∈ {0, 1, . . . , J−1} the following conditions
are satisfied:
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(1) E
[
ξj+1

]
= 0, and E

[
(ξj+1, x)K(ξj+1, y)K

]
= τ j+1(Qx, y)K for all x, y ∈ K.

(2) For every p ∈ N, there exists Cp > 0 such that E
[
‖ξj+1‖2pK

]
6 Cp(τ

j+1)p.

2.2. An SPDE with non-linear drift — the stochastic harmonic map flow to
S2. Let T > 0. We look for an S2-valued process X ≡ {Xt; t ∈ [0, T ]} that satisfies the
non-linear SPDE

dXt + Xt ×
[
Xt ×∆Xt

]
dt = ιXt × ◦dWt in DT := (0, T ]×D,

∂nXt = 0 on ∂DT := (0, T ]× ∂D,
X0 = x0 in D,

(2.4)

for x0 ∈W1,2(D; S2), and W = (W1,W2,W3)
> with three independent K-valued Q-Wiener

processes {Wi}3i=1. Here, the Stratonovich integral is used which is indicated by ‘◦’. Prob-
lem (2.4) is only known to have a weak martingale solution (see e.g. [3]), which relaxes the
strong solution concept that applies for (2.3). Related computational experiments in [3]
motivate possible blow-up dynamics of a solution of (2.4). A recent analytical study of this
phenomenon is [19], which in fact characterizes a weak martingale solution as a regular,
strong solution, apart from no more but finitely many space-time points (see [19, Theo-
rem 3]). The computational studies in Section 5 illustrate a proper space-time resolution of
singular behaviors of the solution of (2.4) by the adaptive method discussed in Section 4.

3. Space-time discretization of the SPDE (1.1)

In this section, we propose stable space-time discretizations for problems (2.3) and (2.4).
Let {(τ j, T jh )}Jj=0 be a space-time mesh covering [0, T ]×D. For j ∈ {0, 1, . . . , J}, we define
sequences of W1,2

0 -conforming lowest order finite element spaces [4],

Vj
h :=

{
Ψ ∈ C(D) : Ψ

∣∣
K
∈ P1(K) ∀K ∈ T jh

}
,

with Lj := dimVj
h and elements K ∈ T jh of the regular mesh T jh , with an associated set

of (free) nodes {x`}Lj`=1. Moreover, let {Ψ`}Lj`=1 denote the nodal basis of the finite element
space Vj

h, and
#„

ΥVjh
: Vj

h → RLj the corresponding coordinate map.
A finite element discretization of problem (2.4) uses R3-valued functions ΨΨΨ ∈ [Vj

h]
3 at

time tj. We define a bilinear form (·, ·)h;j : C(D;R3)× C(D;R3)→ R by [3, p. 107]

(·, ·)h;j :=

∫

D

Ijh
[
〈ΨΨΨ(x),ΞΞΞ(x)〉R3

]
dx =

Lj∑

`=1

ζ`〈ΨΨΨ(x`),ΞΞΞ(x`)〉R3 ∀ΨΨΨ,ΞΞΞ ∈ C(D;R3)

for certain weights ζ` =
∫
D

Ψ` dx > 0, ` ∈ {1, . . . , Lj}. The (affine) nodal interpolation
operator Ijh is a bounded map from C(D;R) to Vj

h. The discrete Laplace operator ∆h :

[Vj
h]

3 → [Vj
h]

3 is defined by −(∆hΞΞΞ,ΨΨΨ)h;j = (∇ΞΞΞ,∇ΨΨΨ)L2 for all ΨΨΨ,ΞΞΞ ∈ [Vj
h]

3.
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3.1. Discretization of the SPDE (2.3). A standard finite element discretization of (2.3)
for ι = 0 and with AAA ≡ εIII for some ε > 0, and βββ 6= 000 in (2.3) is known to possibly
lead to approximates with spurious oscillations, which may e.g. be avoided by the stable
streamline-upwind Petrov-Galerkin (SUPG) method; see e.g. [22]. The discretization in [23]
for the related deterministic problem uses the continuous Galerkin method of order > 1,
with (local) space-time test functions Ψ + δK(∂tΨ + βββ · ∇Ψ) on strips Sj := {(t,x); t ∈
(tj, tj+1), x ∈ D}, where {δK}K ⊂ R is a given family of mesh-dependent weights. For
the convection-dominated SPDE (2.3), we rather suggest the SUPG method with spatial
test functions Ψ + δKβββ · ∇Ψ, in combination with the implicit Euler-Maruyama scheme to
control amplification of oscillatory numerical artefacts by the noise term, which is due to
the limited time-regularity of solutions of the SPDE (1.1).

Scheme 3.1. Let ε > 0, Y 0 ∈ V0
h, {(τ j+1, T j+1

h , {δj+1
K }K)}J−1j=0 , and the Q-random walk

{ξj+1}J−1j=0 along Iτ on (Ω,F ,P) be given. For all j ∈ {0, 1, . . . , J − 1}, determine a Vj+1
h -

valued random variable Y j+1 such that P-almost surely for all Ψ ∈ Vj+1
h

(
Y j+1 − Y j,Ψ + δj+1

K βββtj+1
· ∇Ψ

)
L2 + τ j+1ε

(
∇Y j+1,∇Ψ

)
L2

+ τ j+1
(
βββtj+1

· ∇Y j+1,Ψ + δj+1
K βββtj+1

· ∇Ψ
)
L2

= ι
(
σ(Y j)ξj+1,Ψ + δj+1

K βββtj+1
· ∇Ψ

)
L2 .

(3.1)

The term scaled by ε > 0 forgoes the further term ‘τ j+1ε
(
∆Y j+1, δj+1

K βββtj+1
· ∇Ψ

)
L2 ’ due

to the use of piecewise affine finite element functions. Computations for the deterministic
counterpart in [20, 5] favor the uniform choice δj+1

K = maxK hj+1
K /2|βββtj+1 | to achieve stable,

accurate results on coarse meshes T j+1
h ≡ T 0

h , since the small scales which require a sta-
bilization are the spatial ones. Stability for this deterministic case and possible driving
right-hand sides f ∈ BV(0, T ;L2) of the PDE has been shown in [5]; according to [5, Re-
mark 5], a different choice for each δj+1

K of order O(τ j+1) should however be preferred for
a less regular f which, in particular, appears in the stochastic setting in Scheme 3.1; see
also the simulations in Section 5 for computational evidence.

Lemma 3.2. Let {Y j+1}J−1j=0 be the solution of Scheme 3.1, and let maxK δ
j+1
K 6 τ j+1/2 be

valid for each j ∈ {0, 1, . . . , J − 1}. There exists C ≡ C
(
T,Tr(Q),βββ

)
> 0 such that

max
06j6J−1

E
[
‖Y j+1‖2L2

]
+

J−1∑

j=0

E
[
‖Y j+1 − Y j‖2L2

]
+ ε

J−1∑

j=0

τ j+1E
[
‖∇Y j+1‖2L2

]

+
J−1∑

j=0

τ j+1E
[∥∥∥
√
δj+1
K βββtj+1

· ∇Y j+1
∥∥∥
2

L2

]
6 CE

[
‖Y 0‖2L2

]
.

The Lax-Milgram lemma implies the existence and uniqueness of Y j+1 ∈ Vj+1
h for each

j and P-almost surely. We remark that the argument in [5] to prove stability in the deter-
ministic case may not be applied in the present stochastic case, since (discrete) temporal
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derivatives of the iterates {Y j+1}j in Scheme 3.1 grow unboundedly for τ j+1 ↓ 0. For our
numerical experiments in Section 5, we later choose δj+1

K := min{hj+1
K , τ j+1/2}.

Proof. Consider (3.1) for a fixed ω ∈ Ω, and choose Ψ = Y j+1(ω) ∈ Vj+1
h as test function

in equation (3.1). By binomial formula, we obtain

1

2

[∥∥Y j+1
∥∥2
L2 −

∥∥Y j
∥∥2
L2 +

∥∥Y j+1 − Y j
∥∥2
L2

]
+
(
Y j+1 − Y j, δj+1

K βββtj+1
· ∇Y j+1

)
L2

+ τ j+1ε
∥∥∇Y j+1

∥∥2
L2 − τ j+1

(
βββtj+1

· ∇Y j+1, Y j+1
)
L2

+ τ j+1
∥∥∥
√
δj+1
K βββtj+1

· ∇Y j+1
∥∥∥
2

L2

6
(
σ(Y j)ξj+1, {Y j+1 − Y j}+ δj+1

K βββtj+1
· ∇Y j+1

)
L2

+ Ij ,

(3.2)

where Ij :=
(
σ(Y j)ξj+1, Y

j
)
L2 . By Young’s inequality, (2.2), and maxK δ

j+1
K 6 τ j+1/2 we

resume

6 2K2
1

(
1 +

∥∥Y j
∥∥
L2

)2∥∥ξj+1

∥∥2
K +

1

8

∥∥Y j+1 − Y j
∥∥2
L2

+
τ j+1

8

∥∥∥
√
δj+1
K βββtj+1

· ∇Y j+1
∥∥∥
2

L2
+ Ij.

For the sixth term on the left-hand side of (3.2) we use integration by parts to get the
bound

τ j+1
∣∣(βββtj+1

· ∇Y j+1, Y j+1
)
L2

∣∣ =
τ j+1

2

∣∣(div(βββtj+1
), |Y j+1|2

)
L2

∣∣ 6 C
τ j+1

2

∥∥Y j+1
∥∥2
L2 ;

for the fourth term, we use again the assumption maxK δ
j+1
K 6 τ j+1/2 to conclude

∣∣(Y j+1 − Y j, δj+1
K βββtj+1

· ∇Y j+1
)
L2

∣∣ 6 1

4
‖Y j+1 − Y j‖2L2 +

τ j+1

2

∥∥∥
√
δj+1
K βββtj+1

· ∇Y j+1
∥∥∥
2

L2
.

After absorbing terms, we sum over all iteration steps, take expectations, and use inde-
pendence properties of increments {ξj+1}j, the fact that E

[
ξj+1

]
= 0, and the discrete

Gronwall inequality to validate the assertion of the lemma. �

3.2. Discretization of the non-linear SPDE (2.4). Let (Ω,F ,P) be a complete prob-
ability space. A stable discretization for (2.4) may be constructed as in [3, Section 2.2] for
a related problem; see also [3, Chapter 2] for further details on the numerical analysis of
the problem.

Scheme 3.3. Let Y0 ∈ [V0
h]

3 be given such that |Y0(x`)| = 1 for all ` ∈ {1, . . . , L0},
as well as {(τ j+1, T j+1

h )}J−1j=0 , and {ξj+1}J−1j=0 be a Q-random walk along Iτ on (Ω,F ,P).
For all j ∈ {0, 1, . . . , J − 1}, determine a [Vj+1

h ]3-valued random variable Yj+1 such that
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P-almost surely
(
Yj+1 −Yj,ΨΨΨ

)
h;j+1

+ τ j+1
(
Yj+1/2 ×

[
Yj+1/2 ×∆hY

j+1
]
,ΨΨΨ
)
h;j+1

= ι
(
Yj+1/2 × ξj+1,ΨΨΨ

)
h;j+1

∀ΨΨΨ ∈ [Vj+1
h ]3.

(3.3)

Here, Yj+1/2 := 1
2

(
Yj + Yj+1

)
.

The existence of a solution Yj+1 which satisfies (3.3) P-almost surely may be shown
with the help of Brouwer’s fixed point theorem; see e.g. [16, p. 139]. The following stability
properties for Scheme 3.3 may be adapted from [3, Theorem 2.11].

Theorem 3.4. There exists a constant C ≡ C(T,Tr(Q)) > 0 such that
(1) |Yj+1(x`)| = 1 for all ` ∈ {1, . . . , Lj+1}, and all j ∈ {0, 1, . . . , J − 1}, P-a.s.,
(2) E

[
sup

06j6J−1
‖∇Yj+1‖2L2 +

J−1∑
j=0

τ j+1‖Yj+1/2 ×∆hY
j+1‖2h;j+1

]
6 C.

A relevant property of iterates of (3.3) is that the length of initial profiles is pre-
served; cf. (1) in Theorem 3.4.

4. Space-time adaptivity based on the distance of empirical laws

We construct adaptive meshes in time ({τ j+1}j) and space ({T j+1
h }j) to compute iterates

{Y j+1}j from Schemes 3.1 resp. 3.3. At time tj+1 =
∑j

i=0 τ
i+1, we determine sequences

of time step sizes {τ j+1
n }n, of regular spatial meshes {T j+1

h;n }n, and finite element spaces
{Vj+1

h;n }n, indexed by n ∈ N0 until a threshold criterion is met. For this purpose, we propose

• the (BTC) strategy to build a data-dependent partition P̂j+1
τ ;Rτ ;n

(resp. P̂j+1
h;Rh;K;n) of

the state space RLj (resp. R+
0 ) into Rτ ≡ Rτ (Mτ ) (resp. Rh ≡ Rh(Mh)) many cells,

depending on the sample size Mτ (resp. Mh). This partition at time tj + τ j+1
n will

allow a comparison of empirical probability measures {µ̂s,j+1
τ ;n }s (resp. {µ̂s,j+1

h;K;n; K ∈
T j+1
h;n }s) to detect temporal (resp. spatial) changes.

• This temporal strategy uses different distances (Hellinger dH, Kullback-Leibler dKL,
or total variation dTV) to quantify the change of related empirical measure pairs.
• a re-sampling strategy (bootstrap) is used for the estimator d? of this distance to
prevent the ample computation of independent new samples.
• The basic sample size Mτ (resp. Mh), as well as the number of bootstrap replica-
tions Bτ (resp. Bh) are chosen, depending on the empirical variance of computed
realizations.
• a space adaptive strategy is based on the ZZ-estimator, where the new regular
spatial mesh T j+1

h;n+1 is obtained by refining/coarsening elementsK ∈ T j+1
h;n according

to the distance of empirical probability measures of R+
0 -valued random variables

|∇Y j+1
n |K and |Gh(∇Y j+1

n )|K for a random variable Y j+1
n ∈ L2(Ω;Vj+1

h;n ).
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• Partitions P̂j+1

τ ;R̂j+1
τ ;n

(resp. P̂j+1

h;R̂j+1
h;K ;K;n

), where R̂j+1
τ (resp. R̂j+1

h;K) is chosen depending

on the empirical variance of computed realizations are shown to perform equally
well.

4.1. Partitioning. Let Y ∈ L2(Ω;Vh) be a random variable, with corresponding RL-
valued coordinate map

#„

Y =
#„

ΥVh(Y ), where the finite element space Vh is from Section 3,
and L := dimVh. We fix R ≡ R(M), and chooseM � R for the sample S #„

Y := { #„

Y (ωk)}Mk=1.
We use the Binary Tree Cuboid (BTC) method as described in [11, 10] to generate a data-
dependent partition of the state space RL:

P̂R ≡ P̂M ;R

(
S #„
Y

)
=
{
Ĉr
}R
r=1

,
◦

Ĉr ∩
◦

Ĉs = ∅, r 6= s, ∀ r, s ∈ {1, . . . , R},

such that all (closed) cells Ĉr ⊂ RL are equally likely visited, i.e.,

µ̂
[
Ĉr
]
≡ µ̂S #„

Y

[
Ĉr
]

:=
#{k;

#„

Y (ωk) ∈ Ĉr}
M

=
ν̂r
M

∀ r ∈ {1, . . . , R},

where the frequency ν̂r ∈ N0 counts the number of realizations in S #„
Y that lie in Ĉr ∈

P̂R, and
∑R

r=1 ν̂r = M . The partition P̂R will be stored as a binary tree, see e.g. [10,
Chapter 20]. Grouping the events uses geometry-based splittings of the index set of the
spatial nodal points {x`}L`=1; see Figure 5 below.

Algorithm 4.1 (Binary Tree Cuboids (BTC)). Choose κ ∈ N. Let S0,1 := S #„
Y .

For p = 1, . . . , κ+ 1 do:
For q = 1, . . . , 2p−1 do:
(I) Define S := Sp−1,q, consisting of { #„

Y (ωk)}21−p·Mk=1 .
(II) Find the component ` ∈ {1, . . . , L} in the set of vectors S which possesses the largest

empirical standard deviation σ̂` ∈ R; denote this component by `p,q ∈ {1, . . . , L}.
(III) Compute the median medp,q ∈ R of { #„

Y `p,q(ωk)}2
1−p·M
k=1 .

(IV) Divide the (sub-)sample S into two equal parts S = Sp,q ∪Sp,2p−1+q according to the
criterion

#„

Y `p,q(ωk) 6 medp,q (k ∈ {1, . . . , 21−pM}).
Finding the entry `p,q is the most expensive part to create the binary tree; the computa-

tion of all empirical standard deviations at all spatial nodal points x` ∈ D, ` ∈ {1, . . . , L}
may be done through O(LM) many operations in parallel to increase the efficiency; see
Table 1. To determine the median medp,q ∈ R at entry `p,q ∈ {1, . . . , L} is accomplished
by sorting all function values { #„

Y `p,q(ωk)}2
1−p·M
k=1 , which may be done through O(M log(M))

many comparisons. Computational evidence supports that this division of (sub-)samples
is stable against statistical outliers; cf. also [11]. Localizing the cell Ĉr ∈ P̂R where a new
realization of

#„

Y lies in requires O(R) many checks. We remark that to uniformly partition
a large subset of RL via hypercubes [17], or Voronoi meshes [11] is not favorable here due to
the high dimensionality (L� 1), and the equi-probability of the cells is a relevant property
of the (BTC) based partition.
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1 2 3 4 5 6 7

0

0.5

1

med1,1

nodes

Binary Tree - Level 1

node 5

if
#„

Y 5(ωk) > med1,1 if
#„

Y 5(ωk) 6 med1,1

(A) Level 1 of (BTC)

1 2 3 4 5 6 7

0

0.5

1

med2,1

nodes

Binary Tree - Level 2

node 5

node 5

if
#„

Y 5(ωk) > med1,1

if
#„

Y 5(ωk) > med2,1 if
#„

Y 5(ωk) 6 med2,1

if
#„

Y 5(ωk) 6 med1,1

(B) Level 2 of (BTC)

Figure 5. (A) First partition step to construct a (BTC) mesh: M many
realizations of

#„

Y ( ) are divided according to their value at node x5 ( )
and the median med1,1 ( ) into two subsets S1,1( ) and S1,2( ); see step
(IV) in Algorithm 4.1 above. (B) Second partition step to construct a (BTC)
mesh: the realizations in S1,1 ( ) are divided according to their value at
(here again) node x5 ( ) and the median med2,1 ( ) into two subsets S2,1( )
and S2,2( ); from [11].

Table 1. Different number of cells R to build P̂R: the absolute simulation
time (in seconds) in double precision arithmetic. Parallelized calculations
are performed using OpenMP, cf. [7].

R 1024 2048 4096 8192

BTC 246s 468s 812s 1510s
(OpenMP) BTC 51s 61s 123s 201s

4.2. The distance between two RL-valued samples. Let S #„
Y s be an M -sample of

realizations of
#„

Y s ∈ L2(Ω;RL), where s ∈ {1, 2}. We want to compute the distance
d(L(

#„

Y 1),L(
#„

Y 2)) of the related probability measures

µs := L
( #„

Y s
)

(s ∈ {1, 2})
on (RL,B(RL)), where B(RL) is the Borel σ-algebra on RL. For this purpose, we replace
them by their empirical counterparts

{
µ̂s; s ∈ {1, 2}

}
which are obtained from sampling

on the underlying partition P̂R, and check whether

P
[
d
(
µ̂1, µ̂2

)
6 Tol

]
> p, (4.1)

for some given Tol > 0, and p ∈ [0, 1]. The data-dependent partition P̂R of RL uses
the (BTC) method from Section 4.1,

P̂R ≡ P̂R
(
S #„
Y 1,2

)
=
{
Ĉr
}R
r=1

where S #„
Y 1,2 := S #„

Y 1 ∪ S #„
Y 2 .

We then sample again — and refer below again to the new samples as S #„
Y s (s ∈ {1, 2}) — ,

to now compute frequency vectors ν̂ννs :=
(
ν̂s1, . . . , ν̂

s
R

)>, where ν̂sr := #Âs
r, r ∈ {1, . . . , R},
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with associated index set Âs
r :=

{
k;

#„

Y s(ωk) ∈ Ĉr
}
, and thus obtain empirical probability

measures µ̂s via

µ̂s :=
R∑

r=1

q̂sr · ξ̂sr, where q̂sr :=
ν̂sr
M
, and ξ̂sr :=

1

ν̂sr

∑

k∈Âs
r

δ #„
Y s(ωk)

(s ∈ {1, 2}). (4.2)

The Hellinger distance of the discrete measures {µ̂s; s ∈ {1, 2}} is

dH
(
µ̂1, µ̂2

)
=

(
1

2

R∑

r=1

(√
q̂1r −

√
q̂2r

)2
)1/2

.

Other choices are the Kullback-Leibler distance resp. the total variation metric,

dKL
(
µ̂1, µ̂2

)
=

R∑

r=1

q̂1r log

(
q̂1r
q̂2r

)
resp. dTV

(
µ̂1, µ̂2

)
=

1

2

R∑

r=1

∣∣q̂1r − q̂2r
∣∣.

We refer to [15] for further details, and a comparison of these different distance functions.
For comparison of the different distances, a normalization of dKL is achieved below via the
non-linear transformation 1− exp(−dKL) to take values in [0, 1], and is denoted by d̃KL.

Remark 4.2. 1) Likelihood-based inference for
{
µ̂s; s ∈ {1, 2}

}
via Fisher’s non-parametric

χ2-test of homogeneity uses the χ2-distance, see e.g. [26, Chapter 2],

d2χ2

(
µ̂1, µ̂2

)
=

R∑

r=1

(
ν̂1r − ν̂2r

)2

ν̂1r + ν̂2r
= M

R∑

r=1

(
q̂1r − q̂2r

)2

q̂1r + q̂2r
. (4.3)

Recall that if the null-hypothesis H0 : µ1 = µ2 is not rejected, there is no statistical
evidence for µ1 = µ2. As will be discussed in Remark 4.5, this fact limits the use of the
χ2-test for time adaptivity.
2) Contrary to testing the null-hypothesis H0 of homogeneity via d2χ2 in (4.3) with the
well-known asymptotic distribution χ2

R−1 (cf. [18, p. 7]), required computations of proba-
bilities P[d(µ̂1, µ̂2) > Tol |H0] for other choices of d must be approximated via MC simula-
tions; here, the bootstrapping method (see Remark 4.5) is the relevant tool to drastically
reduce the computational effort.

4.3. Bootstrapping. To sample empirical measures for (4.1) requires several independent
M -samples S #„

Y s (s ∈ {1, 2}), which is costly. An alternative way to obtain new independent
M -samples is by a simple random draw with replacement from existent samples S #„

Y s via the
bootstrap method [8]. A detailed algorithm is given in [28], where the ‘Alias method’ [32] is
used as an improved alternative to inversion sampling. The effort to compute a sample via
bootstrap is by far less expensive, and the computational studies in Section 5 confirm both,
accuracy and speed-up. In the following, let quantities indexed by ? indicate bootstrap
estimators for replications of S #„

Y s .
Let RL-valuedM -samples S #„

Y s := { #„

Y s(ωk)}Mk=1 (s ∈ {1, 2}) be given as in Section 4.2; we
then generate B ∈ N many replications {Sb,?#„

Y s
}Bb=1 (s ∈ {1, 2}) of the existing sample S #„

Y s
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via [28, Algorithm 4.3.2], which are each of sample size M . Note that µ̂s,b,? ≡ µ̂s

Sb,?#„
Y s

is a

single realization of µ̂s
S #„
Y s
; according to [8, Theorem 29.1], we may now approximate the

probability in (4.1) via

P?
[
d
(
µ̂1,?, µ̂2,?

)
6 Tol

]
≈ 1

B

B∑

b=1

1(−∞,Tol]
(
d(µ̂1,b,?, µ̂2,b,?)

)
. (4.4)

4.4. Time adaptivity. Let tj be fixed, Mτ ∈ N, d ∈ {dH, d̃KL, dTV}, and Tolτ > 0. Be-
low, we generate a finite sequence {τ j+1

n }n>0 with τ j+1
0 := τ j to (possibly) adaptively

refine/coarsen τ j+1
n . Therefore, for each n ∈ N0, we obtain empirical probability measures

µ̂s,j+1
τ ;n on RLj , where Lj := dimVj

h.
Let S #„

Y s,j+1
n

be an Mτ -sample related to the random variable Y s,j+1
n ∈ L2(Ω;Vj

h) with
unknown law µs,j+1

τ ;n (s ∈ {1, 2}): the first random variable here is the solution of Scheme 3.1
with coarser time step size τ 1,j+1

n := τ j+1
n , while the latter is obtained by extrapolation

using the additional scale τ 2,j+1
n := τ1,j+1

n /2; see e.g. [1], and Algorithm 4.3 below. We
approximate the distance d(µ1,j+1

τ ;n , µ2,j+1
τ ;n ) with the help of the related empirical measures{

µ̂s,j+1
τ ;n ; s ∈ {1, 2}

}
to then steer refinement or coarsening of τ j+1

n > 0. For this purpose,
we sample on the underlying partition P̂j+1

τ ;Rτ ;n
:=
⋃Rτ
r=1 Ĉ

j+1
τ ;r;n of RLj which is obtained via

Algorithm 4.1, i.e.,

P̂j+1
τ ;Rτ ;n

≡ P̂j+1
τ ;Rτ ;n

(
S #„
Y 1,2;j+1
n

)
=
{
Ĉj+1
τ ;r;n

}Rτ
r=1

,

where S #„
Y 1,2;j+1
n

:= S #„
Y 1,j+1
n
∪S #„

Y 2,j+1
n

and S #„
Y s,j+1
n

:= { #„

Y s,j+1
n (ωk)}Mτ

k=1. We then sample again —
and refer below again to the new samples as S #„

Y s,j+1
n

(s ∈ {1, 2}) — , to compute frequency
vectors ν̂ννs,j+1

τ ;n := (ν̂s,j+1
τ ;1;n , . . . , ν̂

s,j+1
τ ;Rτ ;n

)>, where ν̂s,j+1
τ ;r;n := #Âs,j+1

τ ;r;n , r ∈ {1, . . . , Rτ}, with asso-
ciated index set Âs,j+1

τ ;r;n := {k;
#„

Y s,j+1
n (ωk) ∈ Ĉj+1

τ ;r;n}, and thus obtain empirical probability
measures µ̂s,j+1

τ ;n on RLj via

µ̂s,j+1
τ ;n =

Rτ∑

r=1

q̂s,j+1
τ ;r;n · ξ̂s,j+1

τ ;r;n ,

where

q̂s,j+1
τ ;r;n :=

ν̂s,j+1
τ ;r;n

Mτ

, and ξ̂s,j+1
τ ;r;n :=

1

ν̂s,j+1
τ ;r;n

∑

k∈Âs,j+1
τ ;r;n

δ #„
Y s,j+1
n (ωk)

(s ∈ {1, 2}).

We then generate Bτ ∈ N many new bootstrap samples {Sb,?#„
Y s,j+1
n
}Bτb=1 (s ∈ {1, 2}) from

S #„
Y s,j+1
n

to eventually determine the distance of both via (4.4), and then choose the local
time step size τ j+1

n .
In order to reduce the empirical variance of these samples S #„

Y s,j+1
n

(s ∈ {1, 2}), we
interpolate the same Wiener process on [tj, tj+τ

1,j+1
n ]; see e.g. [12]. The following algorithm

precises the generation of these two samples at time tj.
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Algorithm 4.3 (Richardson extrapolation). Let τ j+1
n > 0, andMτ ∈ N be given. Initialize

the samples S #„
Y 1,j+1
n

:= ∅, S #„
Y 2,j+1
n

:= ∅, as well as τ 1,j+1
n := τ j+1

n and τ 2,j+1
n := τ1,j+1

n /2.
For k = 1, . . . ,Mτ do:

(I) Compute ξ1,1;kj+1 := ξtj+1
(ωk)− ξtj(ωk) on [tj, tj + τ 1,j+1

n ].
(II) Compute the realization Y 1,j+1

n;k ≡ Y 1,j+1
n (ωk) via one step of Scheme 3.1 with time

step size τ 1,j+1
n and ξ1,1;kj+1 . Set S #„

Y 1,j+1
n

:= S #„
Y 1,j+1
n
∪ { #„

Y 1,j+1
n;k }.

(III) Compute ξ1,2;kj+1 := 1
2
ξ1,1;kj+1 +Z1,2;k

j,n , with Z1,2;k
j,n ≡ Z1,2

j,n(ωk), for Z1,2
j,n ∼ N (0, tj+τ

2,j+1
n ).

(IV) Compute ξ2,2;kj+1 := 1
2
ξ1,1;kj+1 −Z2,2;k

j,n , with Z2,2;k
j,n ≡ Z2,2

j,n(ωk), for Z2,2
j,n ∼ N (0, tj+τ

2,j+1
n ).

(V) Compute the iterate Y2,j+1
n;k ≡ Y2,j+1

n (ωk) via two steps of Scheme 3.1 with time step
size τ 2,j+1

n , and increments ξ1,2;kj+1 , ξ
2,2;k
j+1 . Define Y 2,j+1

n;k := 2Y2,j+1
n;k − Y 1,j+1

n;k , and set
S #„
Y 2,j+1
n

:= S #„
Y 2,j+1
n
∪ { #„

Y 2,j+1
n;k }.

We may now apply the tools from Section 4.2 to sample d(µ̂1,j+1
τ ;n , µ̂2,j+1

τ ;n ) from (4.2).
These steps are made precise in the following algorithm, and are sketched in Table 6.

Algorithm 4.4 (Adaptivity in time). Fix j > 0, Tolτ > 0 and Mτ ∈ N. Choose a
distance d ∈ {dH, d̃KL, dTV} and Bτ ∈ N. Set τ j+1

0 := τ j.
For n = 0, 1, 2, . . . do:

(I) Compute Mτ -samples S #„
Y s,j+1
n

(s ∈ {1, 2}) for τ j+1
n via Algorithm 4.3.

(II) Create P̂j+1
τ ;Rτ ;n

≡ P̂j+1
τ ;Rτ ;n

(S #„
Y 1,2;j+1
n

) via Algorithm 4.1.
(III) Compute new Mτ -samples S #„

Y s,j+1
n

(s ∈ {1, 2}) for τ j+1
n via Algorithm 4.3.

(IV) Generate Bτ independent bootstrap Mτ -samples {Sb,?#„
Y s,j+1
n
}Bτb=1 (s ∈ {1, 2}) from

S #„
Y s,j+1
n

to obtain Bτ realizations {µ̂s,j+1,b,?
τ ;n }Bτb=1. Then, approximate involved proba-

bilities via (4.4), and decide:
(1) If P?

[
d(µ̂1,j+1,?

τ ;n , µ̂2,j+1,?
τ ;n ) > 2Tolτ

]
> 95%, set τ j+1

n+1 := τ j+1
n /2.

(2) If P?
[
d(µ̂1,j+1,?

τ ;n , µ̂2,j+1,?
τ ;n ) < 1

2
Tolτ

]
> 95%, set τ j+1 := 2τ j+1

n and stop.

Input: Samples

S #„
Y 1,j+1 w.r.t. τ1,j+1 > 0
S #„
Y 2,j+1 w.r.t. τ2,j+1 > 0

Partitioning

P̂j+1
τ ;Rτ

≡ P̂j+1
τ ;Rτ

(
S #„
Y 1,j+1 ∪ S #„

Y 2,j+1

)
Empirical laws

Approximate
{
(µ̂1,j+1,b
τ , µ̂2,j+1,b

τ )
}Bτ
b=1

on P̂j+1
τ ;Rτ

via Bτ bootstrap replications of S #„
Y 1,j+1 , S #„

Y 2,j+1

Adaptivity

• If P
[
d(µ̂1,j+1

τ , µ̂2,j+1
τ ) > 2Tolτ

]
is large, refine τ j+1.

• If P
[
d(µ̂1,j+1

τ , µ̂2,j+1
τ ) < 1

2Tolτ
]

is large, coarsen τ j+1.

Adjust new τ1,j+1, τ2,j+1

Figure 6. Construction of the local time step size τ j+1.

Remark 4.5. The decision criteria in Step (IV) of Algorithm 4.4 involve the probability
P? for the estimators d(µ̂1,j+1,?

τ ;n , µ̂2,j+1,?
τ ;n ), for which the bootstrap method is used. Alterna-

tively, a frequent sampling may be avoided by Fisher’s χ2-test of homogeneity for which
the asymptotic distribution χ2

R−1 is well-known (see Remark 4.2, item 1)): for a fixed level
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of significance α ∈ (0, 1), a local refinement of the time step size τ j+1
n could be based on

the rejection of the null-hypothesis H0 : L(Y 1,j+1
τ ;n ) = L(Y 2,j+1

τ ;n ) by a single realization of
d2χ2 in (4.3), which is achieved by a modification of Step (IV) in Algorithm 4.4 to:

• Let cα ≈ Inv-χ2
R−1(1− α) ∈ R+

0 . If d2χ2(µ̂1,j+1,?
τ ;n , µ̂2,j+1,?

τ ;n ) > cα, set τ j+1
n := τ j+1

n /2.

Coarsening of the previously found τ j+1
n (obtained by successive refinement) may be car-

ried out by performing an additional single (i.e., n = 0) corresponding Fisher χ2-test of
homogeneity with τ j+1

0 := 2τ j+1. Unfortunately, the simulations in Figure 7(B) evidence an
oscillatory behavior of tj 7→ τ j for larger values of α in the case of Fisher’s χ2-test. In fact,
we see the following principle drawbacks that spontaneous refining/coarsening of τ j+1

n via
Fisher’s χ2-test suffers from:
1) The computational studies show a dependence of the adaptive time step size {τ j}j on
the sample size Mτ ; see Figure 7(A). In particular, Figure 7(A) illustrates smaller time step
sizes for growing values of Mτ , which restricts the flexibility of the adaptive sampling al-
gorithm, in particular for singular dynamics (see Examples 5.1, 5.2); see also Figure 13(A)

as reference.

0 0.1 0.2 0.3 0.4 0.5

10−3

10−2

(A) tj 7→ τ j

0 0.1 0.2 0.3 0.4 0.5

10−3

10−2

(B) tj 7→ τ j

Figure 7. (Example 5.1 for the Algorithm in Remark 4.5, item 1) for fixed
T jh ≡ T 0

h with h0 = 2−6, τ 0 = 10−3, n = 0, and Rτ = 212) (A) Behavior
of tj 7→ τ j for varying Mτ ∈ {103 ( ), 104 ( ), 105 ( )} and fixed
α = 0.01. (B) Adaptive time meshes for varying level of significance α ∈
{0.10 ( ), 0.05 ( ), 0.01 ( )} and fixed Mτ = 103.

2) The error of second kind in this adaptive strategy is not controllable, which affects the
stable selection of local time step sizes {τ j}j. For example, in the case of refinement, this
leads to unnecessarily small time step sizes.

As a consequence, we did not pursue this direction further.

4.5. Space adaptivity. Let j ∈ N0 be fixed, Mh ∈ N and τ j+1 > 0 be chosen as detailed
in Section 4.4. We generate a finite sequence {T j+1

h;n }n>0 resp. {Vj+1
h;n }n>0, with T j+1

h;0 := T jh
resp. Vj+1

h;0 := Vj
h via the ZZ estimator by Zienkiewicz and Zhu [33] to (possibly) adaptively

refine/coarsen each element K ∈ T j+1
h;n . Therefore, for every n ∈ N0, we obtain a family

of parametrized empirical probability measures µ̂s,j+1
h;n = {µ̂s,j+1

h;K;n; K ∈ T j+1
h;n } (s ∈ {1, 2}),

each of which is supported on R+
0 , and whose construction is detailed next. For each
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element K ∈ T j+1
h;n , we compare |∇Y j+1

n |K with |Gh(∇Y j+1
n )|K to detect spatial changes in

the solution, where the recovered gradient denoted by Gh(∇Y j+1
n ) ∈ Vj+1

h;n is computed via

Gh

(
∇Y j+1

n

)
(x`;n) :=

1

|wx`;n|

∫

wx`;n

∇Y j+1
n (x) dx , (4.5)

and wx`;n :=
⋃{K ∈ T j+1

h;n : x`;n ∈ K} denotes the patch associated to x`;n ∈ D.
Let SY j+1

n
be an Mh-sample of realizations of Y j+1

n ∈ L2(Ω;Vj+1
h;n ) computed with τ j+1

from Scheme 3.1. Our goal is now to measure the distance d between the (unknown)
probability measures µ1,j+1

h;K;n := L(|∇Y j+1
n |K) and µ2,j+1

h;K;n := L(|Gh(∇Y j+1
n )|K) for each

element K ∈ T j+1
h;n . For this purpose, we sample d(µ̂1,j+1

h;K;n, µ̂
2,j+1
h;K;n) of related empirical laws{

µ̂s,j+1
h;K;n; s ∈ {1, 2}

}
to steer refinement/coarsening of K ∈ T j+1

h;n . For its realization and a
fixed K ∈ T j+1

h;n , we first provide independent Mh-samples

SK
Y 1,j+1
n

:=
{
|∇Y j+1

n (ωk)|K
}Mh

k=1
, SK

Y 2,j+1
n

:=
{
|Gh(∇Y j+1

n (ωk))|K
}Mh

k=1
(4.6)

to then define SK
Y 1,2;j+1
n

:= SK
Y 1,j+1
n

∪ SK
Y 2,j+1
n

; here, SK
Y 1,j+1
n

is easily obtained from the Mh-
sample SY j+1

n
by restricting realizations to the given element K ∈ T j+1

h;n , while SK
Y 2,j+1
n

is
obtained through a local averaging of associated realizations according to (4.5).

We may then generate the partition P̂j+1
h;Rh;K;n :=

⋃Rh
r=1 Ĉh;r;K;n of R+

0 via Algorithm 4.1 to
prepare for the construction of

{
µ̂s,j+1
h;K;n; s ∈ {1, 2}

}
: we therefore sample again — and refer

below again to the new samples as SK
Y s;j+1
n

(s ∈ {1, 2}) — , to compute frequency vectors

ν̂ννs,j+1
h;K;n := (ν̂s,j+1

h;1;K;n, . . . , ν̂
s,j+1
h;Rh;K;n)> and associated index sets Âs,j+1

h;r;K;n for r ∈ {1, . . . , Rh},
where

ν̂1,j+1
h;r;K;n := #Â1,j+1

h;r;K;n, Â1,j+1
h;r;K;n :=

{
k; |∇Y j+1

n (ωk)|K ∈ Ĉj+1
h;r;K;n

}
,

ν̂2,j+1
h;r;K;n := #Â2,j+1

h;r;K;n, Â2,j+1
h;r;K;n :=

{
k; |Gh(∇Y j+1

n (ωk))|K ∈ Ĉj+1
h;r;K;n

}
,

and thus obtain empirical measures
{
µ̂s,j+1
h;K;n; s ∈ {1, 2}

}
we were aiming for, where

µ̂s,j+1
h;K;n =

Rh∑

r=1

q̂s,j+1
h;r;K;n · ξ̂s,j+1

h;r;K;n . (4.7)

We refer to Figure 4(B) for an illustration, where q̂s,j+1
h;r;K;n := ν̂s,j+1

h;r;K;n/Mh, and

ξ̂1,j+1
h;r;K;n :=

1

ν̂1,j+1
h;r;K;n

∑

k∈Â1,j+1
h;r;K;n

δ|∇Y j+1
n (ωk)|K

, ξ̂2,j+1
h;r;K;n :=

1

ν̂2,j+1
h;r;K;n

∑

k∈Â2,j+1
h;r;K;n

δ|Gh(∇Y j+1
n (ωk))|K

.

Hence, we arrive at two families of empirical measures {µ̂s,j+1
h;K;n; K ∈ T jh;n} (s ∈ {1, 2})

for every n ∈ N0. In the algorithm to follow, we involve the difference of first absolute
moments of samples

η̂1,j+1
h;K;n := E

[
|∇Y j+1

n |K
]
, η̂2,j+1

h;K;n := E
[
|Gh(∇Y j+1

n )|K
]

(4.8)
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to stabilize the refinement/coarsening procedure of a fixed element K ∈ T jh;n w.r.t. n ∈
N0. As for time adaptivity, statistical inferences about quantities are again obtained via
bootstrapping.

Algorithm 4.6 (Adaptivity in space). Fix j > 0, Tolh > 0, Mh ∈ N. Choose a distance
d ∈ {dH, d̃KL, dTV}, Bh ∈ N. Set T j+1

h;0 := T jh , as well as Vj+1
h;0 := Vj

h.
For n = 0, 1, 2, . . . do:

(I) Compute a Mh-sample SY j+1
n

:= {Y j+1
n (ωk)}Mh

k=1 for τ j+1 with new {ξj+1(ωk)}Mh
k=1.

(II) For each K ∈ T j+1
h;n do:

(1) Create P̂j+1
h;Rh;K;n based on SK

Y 1,2;j+1
n

in (4.6) via Algorithm 4.1.

(2) Generate Bh new bootstrap samples {SK,b,?
Y s,j+1
n
}Bhb=1 (s ∈ {1, 2}) from SK

Y s,j+1
n

to

approximate the first moments {η̂s,j+1,?
h;K;n }Bhb=1 in (4.8).

(3) Generate Bh new bootstrap samples {SK,b,?
Y s,j+1
n
}Bhb=1 (s ∈ {1, 2}) from SK

Y s,j+1
n

to

obtain Bh measures {µ̂s,j+1,?
h;K;n }Bhb=1. Then, approximate involved probabilities

via (4.4), and decide:
(a) If hj+1

K

∣∣η̂1,j+1,?
h;K;n − η̂2,j+1,?

h;K;n

∣∣P?
[
d(µ̂1,j+1,?

h;K;n , µ̂
2,j+1,?
h;K;n ) > 2Tolh

]
> 95%, mark

K for refinement.
(b) If hj+1

K

∣∣η̂1,j+1,?
h;K;n − η̂2,j+1,?

h;K;n

∣∣P?
[
d(µ̂1,j+1,?

h;K;n , µ̂
2,j+1,?
h;K;n ) < 1

2
Tolh

]
> 95%, mark

K for coarsening.
(III) If maxK∈T j+1

h;n
hj+1
K

∣∣η̂1,j+1,?
h;K;n − η̂2,j+1,?

h;K;n

∣∣P?
[
d(µ̂1,j+1,?

h;K;n , µ̂
2,j+1,?
h;K;n ) 6 Tolh

]
> 95%,

set T j+1
h := T j+1

h;n , Vj+1
h := Vj+1

h;n and stop; otherwise continue.
(IV) Obtain the new mesh T j+1

h;n+1 from T j+1
h;n by local refinement resp. coarsening of the

elements K ∈ T j+1
h;n marked in the previous steps.

For each elementK ∈ T jh , the first moments in Algorithm 4.6 are approximated via (anal-
ogously for η̂2,j+1,?

h;K;n in (4.8))

η̂1,j+1,?
h;K;n := E?

[
|∇Y j+1

n |K
]
≈ 1

Bh

Bh∑

b=1

|∇Y j+1
n (ωb)|K . (4.9)

To summarize, the overall space-time adaptivity strategy in the (j + 1)-th step consists
of the following substeps:

• Time adaptivity according to Algorithm 4.4 to find τ j+1.
• Space adaptivity according to Algorithm 4.6 to find T j+1

h resp. Vj+1
h based on τ j+1.

5. Computational experiments

We computationally study stability and accuracy of the adaptive algorithms from Sec-
tions 4.4–4.5 with respect to the parameters (Mτ , Bτ , Rτ ) (analogously for Mh, Bh, Rh in
space), as well as the distances d ∈ {dH, d̃KL, dTV}. For this purpose, we employ random
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number generators from the GNU Scientific Library [13]. Local mesh refinement and coars-
ening of T j+1

h;n in Algorithm 4.6 is performed using a bisection algorithm, and are based
on the finite element code ALBERTA, cf. [29]. All computations are performed on an
Intel Core i5-4670 3.40GHz processor with 16GB RAM in double precision arithmetic.
Parallelized calculations are performed using OpenMP, cf. [7]. Arising linear algebraic
systems are solved by Gaussian elimination, and the Software package [9].

The computational studies for Example 5.1 resp. Example 5.2 evidence that
• a robust adaptive time mesh may be obtained for all distances d ∈ {dH, d̃KL, dTV} in
Algorithm 4.3 via partitions {P̂j

τ ;Rjτ
} on which the empirical probability measures{

µ̂s,j
τ ; s ∈ {1, 2}

}
may be compared with the help of the bootstrap method.

• an efficient adaptive space mesh may be obtained for d = dTV in Algorithm 4.6,
while d ∈ {dH, d̃KL} leads to unnecessarily fine meshes; cf. Table 2.
• fast computations of estimators as P?, and E? require bootstrapping.
• next to much smaller errors on adaptive space-time meshes, the empirical vari-
ance of the iterates {Y j}j is significantly reduced, leading to reduced samples sizes
M j

τ (resp.M
j
h) and less cellsRj

τ (resp.R
j
h) for a coarser partition P̂jτ ;Rjτ (resp. P̂

j

h;Rjh;K
).

• adaptivity of all involved discretization and statistical parameters is necessary to
accurately resolve singular behaviors of the solution, as e.g. present in Example 5.2.

5.1. Computational experiments for an SPDE (2.3). We use Scheme 3.1 in combina-
tion with space-time adaptivity to approximate the solution of the convection-dominated
linear SPDE (2.3).

Example 5.1. Let D = (0, 1)2, βββ ≡ βββ(x1, x2) = (1
2
− x2, x1 − 1

2
)>, and ι ∈ {0.1, 0.3, 0.5}.

Consider (t ∈ (0, 2π])

dXt −
(
ε∆Xt − θβββ · ∇Xt

)
dt = ι

(
1 + |Xt|

) ∑

06|k|63
σkdW k(t), X0 = x0, (5.1)

with Xt = 0 on ∂D, ε = 10−8, θ = 1.0 (if not specified otherwise), and

σk(x) =
√

2
2∏

i=1

(
2

(2ki + 1)π

)2

sin(kiπxi)

for all x = (x1, x2)
> ∈ D, and multi-indices k = (k1, k2)

> ∈ N2
0 with |k| = k1 + k2. The

initial datum x0 is given by the slotted cylinder; see [21] for an explicit formula of it.

We compute the reference solution X̃ via Scheme 3.1 with mesh sizes hj ≡ h0 = 2−10,
τ j ≡ τ 0 = 10−5, and δjK = min{hjK , τ j/2} according to Lemma 3.2 on uniform meshes, and
Mτ = 105.

Our first series of experiments for Example 5.1 serves to clarify the stability of computed
empirical measures {µ̂s,j+1

τ }s with respect to the used number of cells Rτ to resolve each
state space {RLj+1}j accurately. Next to this, we study reliability of adaptive space-time
meshes with respect to the used distances d (see Section 4.2) of empirical probability
measures. In order to do this, we consider the following parameter constellations:
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• Section 5.1.1: Adaptive {τ j}j, uniform T jh ≡ T 0
h , and Mτ , Rτ , Bτ are fixed.

• Section 5.1.2: Adaptive {(τ j, T jh )}j, and Mτ , Rτ , Bτ are fixed.
• Section 5.1.3: Adaptive {(τ j, T jh ,M j

τ , R
j
τ , B

j
τ )}j.

5.1.1. Time adaptivity. Figure 8 illustrates the stability properties of Scheme 3.1 for a
uniform space-time mesh: the standard Galerkin method (i.e., δjK ≡ 0) yields highly os-
cillatory expectations of iterates to approximate (5.1); this (global Gibbs) phenomenon
is well-known for convection-dominated PDEs, and here is amplified by the noise; see
Figure 8(A). Corresponding simulations of higher moments show a significant reduction
of spurious oscillations outside the diffuse layers. The simulations in Figure 8(B) via the
SUPG based Scheme 3.1 show improved stability properties without oscillatory patterns
attached to the cylindric profile. The stabilization parameter δjK = min{hjK , τ j/2} opti-
mally balances stabilization with accuracy demands; see Lemma 3.2, and Figure 9(A)–9(B).
In addition, this choice of δjK leads to the smallest empirical variances of the computed

(A) δjK = 0 (B) δjK = min{hjK , τ
j
/2} (C) δjK = O(hjK)

Figure 8. (Example 5.1 for T = π/2, and Tolτ = 0.05,Mτ = 105) EMτ

[
|Y j|

]

obtained with the Scheme 3.1 for uniform space-time meshes {(τ j, T jh )}j
with hj ≡ h0 = 2−8, τ j ≡ τ 0 = 10−4, and ι = 0.1: (A) Standard
Galerkin FEM (δjK = 0), (B) δjK = min{hjK , τ j/2}, and (C) δjK = O(hjK).

iterates {Y j}j; see Figure 9(C). Small-scale effects which are initiated by the driving Wiener
process are not accurately recovered for δjK = O(hjK) which heavily diffuses the solution
structure; see Figure 8(C). Thus, we choose the SUPG scheme with δjK = min{hjK , τ j/2} for
all simulations to follow.

Next, we study the dependence on the parameters (Mτ ,Rτ ) to obtain a stable, time-
adaptive mesh for different distances d ∈ {dH, d̃KL, dTV} (see Section 4.2) of involved empir-
ical probability measures. Consider

Rτ := arg min
Rτ

[
max
t∈[0,T ]

∣∣τRτ (t)− τ 2Rτ (t)
∣∣ 6 Tol

]
(5.2)

with Tol := 10−2 mint∈[0,T ] |τ(t)|, where τ(t) ≡ τRτ (t) is the piecewise affine interpolation
of the sequence {(tj, τ j)}j. Criterion (5.2) identifies the minimum value Rτ > 1 where the
adaptive time mesh is not sensitive any more to refinement of the state space RLj . The
results in Figure 10(B) show that at least Rτ > 2 · 103 cells are necessary to partition RLj
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(B) tj 7→ err1
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3

(C) Mτ 7→
( J∑
j=1

τ jEMτ
[∣∣‖Y j‖H1 − EMτ

[
‖Y j‖H1

]∣∣2]) 1
2

Figure 9. (Example 5.1 with reference space-time meshes {(τ j, T jh )}j for
hj ≡ h0 = 2−10, τ j ≡ τ 0 = 10−5. Time adaptivity for T = 2π, ι = 0.3,
as well as d = dH, Tolτ = 0.05, and Rτ = 212, Mτ = 105) Behavior of
tj 7→ errk :=

∣∣EMτ

[
‖X̃tj‖Wk,∞ − ‖Y j‖Wk,∞

]∣∣ for (k = 0) (A), (k = 1) (B),
and empirical variance (C) for the standard Galerkin FEM (δjK = 0) ( ),
δjK = min{hjK , τ j/2} ( ), and δjK = O(hjK) ( ).

with constant Lj ≡ L0 in the case of Example 5.1. This observation is common for all
choices of distances d; see Figure 10(A).

0 0.1 0.2 0.3 0.4 0.5

10−3

10−2

(A) tj 7→ τ j

101 102 103 104

10−2

10−1

(B) Rτ 7→ maxt∈[0,T ]

∣∣τRτ (t)− τ2Rτ (t)∣∣
Figure 10. (Example 5.1 with uniform T jh ≡ T 0

h for hj ≡ h0 = 2−6. Time
adaptivity for T = 1/2, ι = 0.3, as well as τ 0 = 10−3, Tolτ = 0.05 and
Rτ = 212, Mτ = 105) (A) Adaptive time meshes for d = dH ( ), d = dTV (

), d = d̃KL ( ), (B) and behavior of Rτ 7→ maxt∈[0,T ]
∣∣τRτ (t)− τ 2Rτ (t)

∣∣
for ι = 0.1 ( ), ι = 0.3 ( ), and ι = 0.5 ( ) with respect to d = dH.

5.1.2. Space adaptivity. So far, time adaptivity was performed for a fixed uniform spatial
mesh. The results in Figure 11 display the required number of cells Rτ to meet (5.2) for
varying convection resp. noise intensity θ resp. ι in Example 5.1, both, for uniform and
adaptive space-time meshes, and dimensions d ∈ {1, 2}. The studies indicate that the
number of required cells Rτ to partition each RLj is significantly reduced in the case of
space-time adaptivity: here, the meshes T jh resolve regions in space where large gradients
are likely to occur; see also Figure 4(A). Next to an increased spatial resolution, we observe
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(A) d = 1: (left) uniform and (right) adaptive
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(B) d = 2: (left) uniform and (right) adaptive

Figure 11. (Example 5.1 for T = 1.0, as well as d = dH, Tolτ = Tolh =
0.05, h0 = 2−5, τ 0 = 10−3, and Mτ = 105) Number of required cells Rτ to
meet (5.2) for varying convection resp. noise intensity (θ, ι) with ι ∈ [0, 3]
(abscissa) and θ = 1.0 ( ), θ = 2.0 ( ), θ = 3.0 ( ), θ = 4.0 ( )
and θ = 5.0 ( ) on uniform and space-time adaptive meshes for d = 1 (A)

and d = 2 (B).

smaller empirical variances

VarMτ

[
‖Y j‖Wk,2

]
:= EMτ

[∣∣‖Y j‖Wk,2 − EMτ

[
‖Y j‖Wk,2

]∣∣2
] (

k ∈ {0, 1}
)

(5.3)

of computed realizations {Y j}j (see Figure 12(A)–(C)) such that coupled space-time adaptiv-
ity can also be regarded as an importance sampling strategy, where corresponding solutions
with multiple scales imprinted by the adaptive spatial mesh are chosen. As a consequence,
smaller empirical variances of Y j imply smaller confidence intervals and smaller image
ranges

#„

Y j[Ω], such that smaller sample sizes Mτ (resp. Mh) and less cells Rτ (resp. Rh)
are necessary to build an appropriate partition P̂jτ ;Rτ (resp. P̂jh;Rh;K).
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(B) ι = 0.3
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(C) ι = 0.5
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(D) tj 7→ Lj

Figure 12. (Example 5.1 for T = 1.0, as well as d = dH, Tolτ = Tolh =
0.05, h0 = 2−5, τ 0 = 10−3, and Mτ = 105, Rτ = 103) (A)–(C) Behavior
of the empirical variance in (5.3) with k = 0 on uniform meshes of sizes
(2−ih0, 2−iτ 0) with i = 0 ( ), i = 1 ( ) and i = 2 ( ), and for
adaptive ( ) space-time meshes. (D) Behavior of tj 7→ Lj for noise intensity
ι = 0.1 ( ), ι = 0.3 ( ), and ι = 0.5 ( ).

The evolution of tj 7→ Lj for different noise intensities ι is plotted in Figure 12(D).
Related weak errors in Figure 13 are much smaller if compared to a uniform discretization,
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or mere time adaptivity. Moreover, we found that a significantly smaller number of time
steps (J = 83) is needed vs. the uniform grid to meet a given threshold criterion for the
error maxj

∣∣EMτ

[
‖X̃tj‖Wk,2 − ‖Y j‖Wk,2

]∣∣ for k ∈ {0, 1}.
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(A) ι = 0.1
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(B) ι = 0.3
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(C) ι = 0.5

Figure 13. (Example 5.1 for d = dH, Tolτ = Tolh = 0.05, h0 = 2−5,
τ 0 = 10−3, and Mτ = 105, Mh = 103, Rτ = 103, Rh = 26) Behavior of
tj 7→

∣∣EMτ

[
‖X̃tj‖Wk,2 − ‖Y j‖Wk,2

]∣∣ for tj ∈ [0, 1] on uniform time meshes
with J = 28 ( ), J = 29 ( ) and J = 210 ( ) required time steps
for k = 0 (upper row) and k = 1 (lower row) for a given threshold ( ).
Corresponding space-time adaptive meshes for uniform ( ) vs. adaptive (

) statistical parameters (Mτ , Bτ , Rτ ); see Section 5.1.3 for the latter.

So far, the distance d = dH was used for both, time and space adaptivity. Computa-
tional experiments give similar adaptive time meshes for all distances d ∈ {dH, d̃KL, dTV} in
Algorithm 4.4. However, its choice is crucial for the efficiency of space adaptivity in Algo-
rithm 4.6 (cf. Figure 4(A) and Figure 14(A)): we observe that the resolution of the arising
diffuse layer of the solution in Example 5.1, and its width depend on the selected distance
d. According to [15], dTV 6 dH 6

√
dKL, and the algorithm produces indeed more elements

K ∈ T jh in the case of d̃KL (see Section 4.2) to resolve diffusive layers, if e.g. compared to
meshes obtained via dTV; see Figure 14(A) and Table 2A. This ordering for used distances
is also reflected by the related histograms, see Figure 14(B), since e.g. small values of the
realization of d favor coarsening of the corresponding K ∈ T jh . These results motivate the
choice dTV to properly balance costs and accuracy; cf. also Figures 4 and 14.

The simulations that we discussed so far use a fixed number of cells Rτ ≡ Rj
τ , as well

as Mτ , Bτ . In the following, we discuss the relevancy to adaptively select the statistical
parametersMτ , Bτ , and Rτ (analogously in space) as well to further increase the efficiency
of the numerical scheme.

5.1.3. Adaptive choice of statistical parameters Mτ , Bτ , Rτ . We study the time-dependent
choice of Mτ , Rτ , and Bτ , with analogous results for Mh, Rh, and Bh for each K ∈ T jh .
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(A) T jh at tj ∈ {0.25, 3.75}
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(B) Histogram of d(µ̂1,j,?
h;K , µ̂2,j,?

h;K ) on K ∈ T jh

Figure 14. (Example 5.1 for ι = 0.3, as well as Tolh = 0.05 and Rh = 25,
Mh = 103 for each K ∈ T jh ): (A) Snapshots of different spatial meshes
T jh at evaluated times tj ∈ [0, 2π] with (B) corresponding histograms of
d(µ̂1,j,?

h;K , µ̂
2,j,?
h;K ) at selected elements K`1 ( ), K`2 ( ) ∈ {T 5

h , T 43
h } for dTV (up-

per row) and d̃KL (lower row).

Table 2. Error indicators errk := maxj
∣∣EMτ

[
‖X̃tj‖Wk,2 − ‖Y j‖Wk,2

]∣∣ (Ex-
ample 5.1) resp. errk := maxj

∣∣EMτ

[
‖X̃tj‖Wk,2 − ‖Yj‖Wk,2

]∣∣ (Example 5.2)
for k ∈ {0, 1}, and maximum number of degrees of freedom Lmax := maxj L

j.

(A) Example 5.1 (Setup as in Figure 9)

d dH dTV d̃KL

Lmax 29700 20600 41200

err0 0.0223 0.0231 0.0244
err1 0.0941 0.0987 0.1022

(B) Example 5.2 (Setup as in Figure 17)

d dH dTV d̃KL

Lmax 81300 74600 85500

err0 0.0344 0.0337 0.0421
err1 0.1456 0.1417 0.1502

We recall the basic criterion for M j
τ in terms of Var

[
‖Y j‖L2

]
to achieve a certain accuracy:

∀a > 0 : lim
Mj
τ ↑∞

P
[∣∣E
[
‖Y j‖L2

]
− EMj

τ

[
‖Y j‖L2

]∣∣ 6 a

√
Var[‖Y j‖L2 ]/Mj

τ

]
= 2Φ(a)− 1, (5.4)

where Φ is the standard normal distribution. Let Tol > 0, and a := Φ−1(1 − α
2
) > 0 for

some level of significance α ∈ (0, 1): to then control the statistical error in the Monte-
Carlo estimation of E

[
‖Y j‖L2

]
, we replace Var

[
‖Y j‖L2

]
by its estimator VarMj

τ

[
‖Y j‖L2

]
,
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and deduce M j
τ = ba2 VarMj

τ
[‖Y j‖L2 ]/Tol2c from (5.4). Here, a > 0 defines the confidence

interval with probability 1− α = 95%.
The studies in Figure 15(B) suggest smaller sample sizes M j

τ , leading to huge computa-
tional savings if compared to the uniformly chosenMτ , while the accuracy is preserved; see
Figure 13. For adaptivity in space, we proceed correspondingly to select M j

h via (5.4),
where ‖Y j‖L2 is now replaced by ‖∇Y j‖L2 .

Accordingly, we base the selection of the number of required bootstrap replications Bτ

in (4.4) resp. (4.9) on the empirical variance of the estimators d?, by replacing (M j
τ , ‖Y j‖L2)

with (Bj
τ , d(µ̂1,j,?

τ ;n , µ̂
2,j,?
τ ;n )) in (5.4). For the simulations we choose at least Bj

τ > 103 at each
time tj.

In order to adjust the number of cells Rτ = Rj
τ , we use a heuristic strategy from [6,

Chapter 3.2.4], which in particular benefits from the statistically equivalent cell property
of the partition via (BTC): assuming that the adaptive sample size M j

τ is large enough,
we set

Rj
τ = 4

5
√

2
(
Mj
τ/a
)2/5

, (5.5)

which meets Rj
τ = O

(
log(M j

τ )
)
from [10, Theorem 21.8], in particular. As a consequence,

Rj
τ again depends on VarMj

τ

[
‖Y j‖L2

]
through the choice of M j

τ via (5.4); see Figure 15.
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τ (left) and tj 7→ Rjτ (right).
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Figure 15. (Example 1.1 (A) and Example 5.1 (B) for ‖ · ‖W0,2): Behavior of
the required number of MC iterationsM j

τ resp. number of cells Rj
τ according

to (5.4) resp. (5.5) for ι = 0.1 ( ), ι = 0.3 ( ), ι = 0.5 ( ).

We summarize our computational studies in Section 5.1 for Example 5.1. The com-
bination of space-time adaptivity with adaptively chosen statistical parameters leads to
significant savings in simulation times: it is the convection term in (5.1) that causes dif-
fuse layers supporting rapidly changing values in space, and which need to be properly
resolved. This resolution in space mainly triggers a variance reduction of computed re-
alizations {Y j}j, and allows for significantly smaller statistical parameters M j

τ : we recall
that it is the most time consuming part of the algorithm to compute approximate solutions
of the SPDE (1.1) to set up the required samples S #„

Y s,j+1 (s ∈ {1, 2}); hence, smaller sam-
ple sizes M j

τ are therefore very desirable to increase the overall efficiency of the adaptive
strategy. We make the following observations:

• (adaptive discretization parameters) Let Mτ = 105 be fixed. In order to meet
the same error at T = 1 for space-time adaptivity ( in Figure 13), we need
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h0 = 2−8, and τ 0 = 3 · 10−4 for the uniform setting; the corresponding simulation
time increases by more than 25% for the latter.
• (adaptive discretization and statistical parameters) We now choose statistical pa-
rameters adaptively as well. The studies in Figure 15(B) show a reduction of the
sample sizes to 1/10-th in this setting: we observe overall computational time savings
of up to 78% if compared to uniform discretization and statistical parameters.

5.2. Computational experiments for the SPDE (2.4). We use the (P-almost sure)
length-preserving discretization Scheme 3.3, in combination with space-time and statistical
adaptivity. The non-linear algebraic systems at each time step of Scheme 3.3 are solved
by Newton’s method.

In [31], the authors discuss (in-)stability of blow-up dynamics for (2.4) in the case ι = 0.
Below, we computationally study the role that noise exerts on the formation of this singular
behavior, and ‘discrete blow-up dynamics’. We start the evolution from a super-critical
initial datum.

Example 5.2. Let D = B1(0) := {x ∈ R2 | |x| 6 1}, and x0 ∈ H1(D;S2) be given by

x0(x) =





(
0, 0,−1

)>
, for |x| > 1/2,(

2x1A
A2+|x|2 ,

2x2A
A2+|x|2 ,

A2−|x|2

A2+|x|2

)>
for |x| 6 1/2,

∀x ∈ D, (5.6)

and A ≡ A(x) := (1− 2|x|)4. The noise term in (3.3) is simulated by

ξj+1(x) =
∑

06|k|63

3∑

l=1

√
2

2∏

i=1

(
2

(2ki + 1)π

)2

sin(kiπxi)elξ
k,l
j+1 ∀x ∈ D,

where ξk,lj+1 are i.i.d. R-valued Brownian increments, and el for l ∈ {1, 2, 3} are the canonical
basis vectors of R3.

For ι = 0, a corresponding computational study on uniform space-time meshes for (5.6)
in [3] supports a discrete blow-up at the origin x`∗ := (0, 0)> of the domain D at time
t̃j∗ := min{tj ∈ [0, T ]; ‖∇Yj‖L∞ > 1/h}. Once largest possible ‘discrete gradients’ are
attained on a given spatial mesh, this setting is followed by a rapid switching of Yj∗(x`∗),
and the solution becomes almost homogeneous. This dynamics favors Example 5.2 to test
the adaptive concepts described in Section 4. Let hmin := minj minK∈T jh

hjK . According
to Figure 17(B) below, the computational studies for Example 5.2 via Scheme 3.3 and
adaptivity indicate the occurrence of a ‘discrete blow-up time’ tj∗ ≈ 0.05, where

tj∗ := min
{
tj ∈ [0, T ]; ∃K ∈ T jh : |η̂1,j,?h;K − η̂2,j,?h;K |P?

[
d(µ̂1,j,?

h;K , µ̂
2,j,?
h;K ) > 95%

]
> 1/hmin

}
, (5.7)

where
{
η̂s,j,?h;K ; s ∈ {1, 2}

}
are the first absolute moments of the empirical measures

{
µ̂s,j,?
h;K ; s ∈

{1, 2}
}
defined in (4.7) resp. (4.8).

For time adaptivity, we use a modification of the (BTC) strategy in Section 4.1 to
partition (S2)L

j
=
⋃Rτ
r=1 Ĉ

j
τ ;r: grouping the events is based on finding the tuple (`, i), ` ∈
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{1, . . . , Lj}, i ∈ {1, 2, 3} in theM j
τ -sample S #„

Yj := { #„

Yj(ωk)}M
j
τ

k=1 of the (S2)L
j -valued random

variable
#„

Yj which possesses the largest empirical standard deviation. The snapshots in the
top line in Figures 16(A)–(C) display partitions of (marginal) distributions for { #„

Yj(x`∗)}j on
S2 at x`∗ for different times near tj∗ ; the local discrete blow-up of Yj(x`∗) is well-detected
and resolved by locally refined meshes which are generated by the adaptive algorithm (see
bottom line in Figures 16(A)–(C)): more cells are created in areas where the random variable
Yj(x`∗) is more likely to take values. The snapshot in Figure 16(D) displays both, the
empirical expectation EMj

τ
[Yj] (top), and values of

∣∣EMj
τ
[Yj(x`)]

∣∣ nearby x`∗ at time tj ≈
tj∗ , with

∣∣EMj
τ
[Yj(x`∗)]

∣∣ ≈ 0.282. For nodal points x` satisfying |x`∗ − x`| > 0.1,
∣∣EMj

τ
[Yj]

∣∣
is almost 1.0. This shrinking of statistical averages of vectors in the neighborhood of
(tj∗ ,x`∗) is another indication of the discrete blow-up phenomenon; we also refer to [3] for
corresponding studies of single trajectories in the case of uniform space-time meshes.

(A) tj < tj∗ (B) tj ≈ tj∗ (C) tj > tj∗

0, 0
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0, 9

1, 0

(D) E
M
j
τ
[Yj ] (top) and level

sets (bottom) at tj ≈ tj∗

Figure 16. (Example 5.2 for T = 0.1, ι = 0.1, as well as d = dTV,
Tolτ = Tolh = 0.05, M0

τ = M0
h = 103, R0

τ = 28, Rh = 25, and
h0 = 2−4, τ 0 = 10−4, hmin = 2−6) Snapshots of the partitioning of S2 sup-
porting L

( #„

Yj(x`∗)
)
and corresponding spatial meshes T jh for tj < tj∗ (A),

tj ≈ tj∗ (B), and tj > tj∗ (C). (D) Snapshots of EMj
τ
[Yj] (top) and correspond-

ing level sets
{
x` : |x`∗ − x`

∣∣ 6 0.1
∣∣ ∣∣EMj

τ
[Yj(x`)]

∣∣ = c} (bottom) for values
c ∈ {0.0, 0.1, . . . , 1.0} at time tj ≈ tj∗ .

The discrete blow-up phenomenon is computationally detected by shrinking local step
sizes (τ j, {hjK}K) to τ j ≈ h2min near j ≈ j∗, where hmin = 2−6 is chosen as the smallest
admitted mesh-size to terminate repeated refinement; the Newton method requires the most
iterations (up to 50 to meet a P-almost sure threshold criterion) in the neighborhood of tj∗ ,
and its number decreases rapidly afterwards again. As for Example 5.1, and motivated by
the results in Table 2B, the simulations again show superiority of dTV to perform adaptivity
in space, in particular.

In a vicinity of tj∗ , the expected energy loss of iterates is approximatively 4π; see Fig-
ure 17(A). For times tj ↑ tj∗ , the simulations show a growing concentration of spatial nodal
points at x`∗ of D (see Figure 16), and smaller time step sizes τ j; larger values are needed
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here for M j
τ , which is due to an increased empirical variance VarMj

τ

[
‖∇Yj‖L∞

]
of the it-

erates (see Figure 17(D)) near the discrete space-time blow-up. Beyond the time tj∗ , the
time step size τ j rapidly increases, and also T jh coarsens again; accordingly, the adaptive
selection of the statistical parameters M j

h, B
j
h, and R

j
h recovers again to moderate values

for j � j∗. For example, the chosen number M j
τ ≈ 3000 at an initial time rapidly changes

to M j
τ ≈ 180000 close to tj∗ , where also Lj ≈ 75000; cf. Table 2B. Hence, the adaptive

concept from Section 5.1.3 concentrates computer resources to the discrete blow-up phe-
nomenon: in fact, 76% of the overall required time steps (J = 534) are concentrated here.
For comparison, we found that J ≈ 40000 would be necessary for a uniform spatio-temporal
discretization to obtain a similar error err1 as in Table 2B. As a conclusion, and according
to our findings for Example 5.1, the direct comparison with uniform discretization and
statistical parameters again shows a drastically reduced computational effort when the
proposed adaptive concepts are used.
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]
Figure 17. (Example 5.2 for the same setup as in Figure 16) (A) Behavior
of tj 7→ 1

2
EMj

τ

[
‖∇Yj‖2L2

]
, (B) tj 7→ EMj

τ

[
‖∇Yj‖L∞

]
, (C) tj 7→ τ j, and (D) tj 7→

VarMj
τ

[
‖∇Yj‖L∞

]
with ι = 1.0 ( ), ι = 2.0 ( ), ι = 3.0 ( ).
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