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Abstract

This dissertation studies the numerical approximation of time-dependent acoustic and electro-
magnetic wave scattering problems in the presence of non-standard boundary conditions. Of
particular interest is the numerical treatment of generalized impedance boundary conditions,
effective models that approximate the wave-material interaction of partially penetrable obsta-
cles. Classical applications of such boundary conditions are the scattering of highly absorbing
materials and perfectly reflecting obstacles with a thin coating. Moreover, acoustic boundary
conditions are discussed in the context of the acoustic wave equation. Finally, a class of nonlin-
ear boundary conditions is covered in the context of electromagnetic scattering.

Formulated on the time domain, these boundary conditions contain surface differential op-
erators and temporal convolution operators. The resulting boundary value problems on exte-
rior domains are reformulated to retarded boundary integral equations, which are themselves
nonlocal in time and space, but fully formulated on the boundary. Several new fundamental
properties of the time-harmonic classical potential operators and boundary operators for the
acoustic wave equation and the Maxwell’s equations are shown, in particular in view of their
temporal counterparts. These theoretical results are the necessary preparations for the subse-
quent numerical analysis of these problems.

To derive numerical methods, the boundary integral equations are then discretized in time
and space. The temporal discretization is carried out using the Runge–Kutta convolution
quadrature method. Fully discrete schemes are derived by combining the time discretization
with appropriate boundary element methods in space. Error bounds with specific convergence
rates are shown for all boundary conditions.

The presentation of the linear boundary conditions is focused on emphasizing the similar-
ities and differences of the acoustic and the electromagnetic settings. The error analysis for
the nonlinear scattering problem substantially differs from the analysis of the linear boundary
conditions and several new concepts are necessary to overcome the difficulties arising through
the nonlinearity of the corresponding boundary integral equation. Numerical experiments il-
lustrate the theoretical results and investigate practical aspects of the proposed methods.
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Zusammenfassung

Die vorliegende Arbeit untersucht numerische Verfahren zur Simulation von akustischen und
elektromagnetischen Wellen im Kontext von zeitabhängingen Streuproblemen, die an eine nicht-
triviale Randbedingung gekoppelt werden. Eine Vielzahl solcher Randbedingungen sind in der
Praxis von Interesse, insbesondere wenn mehrere physikalische Skalen involviert sind. Effekti-
ve Randbedingungen beinhalten Modelle für dünne Schichten auf reflektierenden Materialien,
oder beschreiben das Verhalten eines stark absorbierenden Mediums. Motiviert durch diese
Anwendungen, behandelt die vorliegende Arbeit drei Klassen von Randbedingungen:

• akustische Streuprobleme mit einer abstrakten, linearen Randbedingung, die neben den
beschriebenen Anwendungen auch akustische Randbedingungen beinhaltet,

• elektromagnetische Streuprobleme mit einer abstrakten linearen Randbedingung,

• elektromagnetische Streuprobleme mit einer nichtlinearen Randbedingung.

Zur Bearbeitung dieser Problemstellungen werden, basierend auf Repräsentationsformeln, zeit-
abhängige Randintegralgleichungen hergeleitet. Diese Gleichungen sind vollständig auf dem
Rand des Streuobjekts formuliert und äquivalent zum ursprünglichen Streuproblem. Essenzi-
elle Eigenschaften der zugrunde liegenden zeitabhängigen Randintegraloperatoren und Re-
präsentationsformeln werden mithilfe von Transmissionsproblemen gezeigt. Mithilfe dieser
fundamentalen Resultate wird die Wohlgestelltheit der Randintegralgleichungen hergeleitet,
womit die Wohlgestelltheit der jeweiligen Randwertprobleme insgesamt gezeigt wird.

Die Randintegralgleichungen werden in der Zeit durch Faltungsquadraturen basierend auf
den Radau IIA Runge–Kutta Methoden diskretisiert. Die Stabilität der Semi-Diskretisierungen
folgen aus den fundamentalen Eigenschaften der Randintegraloperatoren und allgemeinen Ei-
genschaften der Faltungsquadraturen. Komplementiert wird die Zeitdiskretisierung mit der
Randelementmethode im Raum, um Volldiskretisierungen zu konstruieren, deren Lösungen
effektiv berechnet werden können. Die resultierenden Verfahren berechnen in einem ersten
Schritt die numerischen Lösungen auf dem Rand. Anschließend können die Approximationen
durch diskrete Repräsentationsformeln an beliebigen Punkten im Gebiet ausgewertet werden.

Fehleranalysen leiten Konvergenzraten für die numerischen Approximationen her. Die No-
tation der Behandlung der linearen Randbedingungen für akustische und elektromagnetische
Wellen wurde entsprechend angepasst, sodass Gemeinsamkeiten und Unterschiede herausge-
stellt werden. Für die nichtlinearen Randbedingungen wird eine Fehleranalyse mithilfe neuer
Techniken basierend auf diskreten Transmissionsproblemen durchgeführt.

Alle numerischen Verfahren wurden implementiert und mit verschiedenen Parametern und
Gittern getestet. Empirische Konvergenzraten illustrieren und komplementieren die theoreti-
schen Ergebnisse. Visualisierungen der numerischen Approximationen zeigen den Nutzen der
untersuchten Verfahren.
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1. Introduction

Wave phenomena are of paramount importance in science as well as engineering and their
understanding is a crucial aspect in a large class of applications in modern technologies. The
study of waves has therefore been a long-standing scientific endeavour and remains an active
field of research. Mathematically, these phenomena are described by hyperbolic partial dif-
ferential equations, which are also referred to as wave equations. When an incoming wave
interacts with an obstacle, some material law governing the behaviour of the wave inside of
the scatterer must be coupled to the wave equation along the boundary of the impeding object.
This problem setting is generally known as wave scattering. When the behaviour of the wave
inside of the obstacle is mainly determined by a small scale effect near the boundary, the effects
on the scattered wave are local, up to a defect depending on the difference in scales. Examples
of such physical settings of interest are the electromagnetic scattering from obstacles with high
conductivity or perfect conductors with a thin dielectric coating.

The general concept behind generalized impedance boundary conditions (GIBC) is then to replace
a full model inside of the scatterer with an asymptotic model on the interface. Coupling these
approximate boundary conditions with the wave equation of interest then yields effective mod-
els for wave diffraction, whose discretizations do not require the computational resolution of
the small scale. Such models are particularly relevant when the boundary condition takes the
explicit form of a surface boundary differential equation.

This dissertation provides numerical analysis for a large class of such boundary conditions in
the context of time-dependent wave scattering. The covered boundary conditions investigated
in this thesis fall into the following classes.

• Highly absorbing obstacles: These boundary conditions approximate the scattering from
highly conductive obstacles, a medium in which electromagnetic waves are absorbed and
decay rapidly. As a consequence, the waves penetrate only a thin layer inside of the scat-
terer, a phenomenon which is also referred to as the skin effect. The width of this thin layer
then constitutes the small scale, which affects the wave on the normal scale, but is compu-
tationally expensive to resolve numerically. Boundary conditions which approximate the
effect of imperfect conducters have been used extensively in the engineering literature,
starting already before the advent of computers in the 1930s to model the interaction of
radio waves with the surface of the earth [71].

• Thin dielectric layers around perfect conductors: This class of boundary condition con-
siders obstacles whose material properties are accurately modeled by an ideal conductor
with a thin dielectric layer of a small width. In this case, the physical width of the thin
coating is the small scale, whose properties influence the overall behaviour of the wave.
As a consequence of the difference in scale of the layer thickness and the magnitude of
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Chapter 1. Introduction

the obstacle, the effects due to these material properties are well approximated by local
operators, a fact reflected in the spatial locality of the operators arising in the boundary
condition. The derivation of these models is a much more recent development than the
development of strongly absorbing boundary conditions, starting in the 1990s with [32].

• Acoustic boundary conditions: This type of boundary condition simulates the interac-
tion of acoustic waves with obstacles by assuming that each point on the scattering sur-
face acts like a spring. The boundary condition is then derived by neglecting transverse
tensions along neighboring points on the surface, which was proposed in [20].

• Nonlinear boundary conditions for electromagnetic scattering: The interaction of elec-
tromagnetic waves with obstacles whose material inhibits physical phenomena that are
nonlinear, such as thin ferromagnetic coatings, is effectively modeled by the use of non-
linear boundary conditions, as demonstrated in [3], [39] and [40]. These models result
from the coupling of Maxwell’s equations with the Landau–Lifschitz–Gilbert equation on
the surface of the scatterer and are beyond the scope of this dissertation. Nevertheless,
the existence of applications for nonlinear boundary conditions motivates the study of a
nonlinear model problem in this dissertation. The nonlinear boundary condition chosen
for the present work is of a power-law form which was originally discussed in [66] and
subsequent work of the authors in the context of quasi-static Maxwell’s equations on a
bounded domain. The final chapter of the present thesis studies this nonlinear boundary
condition in the context of scattering problems.

The specific formulation of the addressed boundary conditions are technically more chal-
lenging than classical Dirichlet or Neumann boundary conditions, in particular when formu-
lated in the time domain. Generally, these boundary conditions consist of operators associated
to surface partial differential equations and of time-dependent convolution operators. The
temporal differential operators are generally nonlocal in time and belong to the framework of
fractional calculus, or more generally the operational calculus of Heaviside. Retarded bound-
ary integral equations naturally cope with these difficulties and are therefore an attractive tool
to overcome these difficulties, in particular in the context of wave scattering problems.

The domain of interest for wave scattering problems, in this context the exterior of the
bounded scatterer, is naturally unbounded. Unbounded domains pose a challenge for the
derivation of numerical methods. The literature concerning numerical analysis for partial
differential equations on unbounded domains is mainly divided into the following two ap-
proaches.

The first approach is to truncate the domain by an artificial boundary. Undesirable reflections
at the artificial boundary can be mitigated by approximate non-reflecting boundary conditions,
such as perfectly matched layers [21]. Techniques of this type require the artificially truncated
domain to be convex, in order to avoid waves that re-enter the domain of interest. The resulting
boundary value problems, then formulated on a bounded domain, can be discretized by more
classical approaches, such as finite differences or finite element techniques.

The second approach to treat wave problems on exterior domains, which is the method of
choice throughout this thesis, is the use of boundary integral equations. The analytic foun-
dations of these ideas for time-dependent problems originate from [8, 9, 52] and were later
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1.1. Notation and conventions

extended in [47]. The key idea behind these techniques is the use of representation formulas,
which explicitly formalize the relation of wave functions and their traces. Through a limit pro-
cess towards the boundary, general conclusions on the traces of wave problems can be drawn
and consequently lead to the derivation of boundary integral equations. These formulations
are equivalent to the full scattering problem, but completely formulated on the boundary. The
space discretization of these boundary integral equations is carried out with boundary ele-
ments, either by the Galerkin method or through collocation. Two approaches to discretize
such time-dependent boundary integral equations are known to guarantee stability in the lit-
erature. Firstly, the space-time Galerkin approach (for example in [36] and [37]) and secondly,
the convolution quadrature method, proposed in the original works [50] and [52]. These time
discretizations of the temporal boundary integral equation rely purely on the evaluation of the
corresponding time-harmonic operators and are generally known to possess good stability and
approximation properties [52]. Consequently, these methods have been used in a large number
of publications (see, for example, [7, 11, 17, 19, 38]). Particularly related to the present thesis
is [62], which investigates the convolution quadrature method in the context of an impedance
boundary condition. The numerical methods throughout this thesis are derived through a
combination of the convolution quadrature method with Galerkin-based boundary element
techniques.

Another research result is indispensable for the techniques in the present thesis, namely the
analysis of the temporal Calderón operator of the wave equation. Crucial initial results have
been obtained in [1], in which the authors couple a discontinuous finite element method inside
the scatterer with boundary integral equations in the exterior domain and show a partial stabil-
ity result, which in particular does not include error bounds. The same setting, with different
numerical and analytical methods, is investigated in [16], which gives a complete numerical
analysis for the described setting. Both works rely on the Calderón operator, whose positivity
(see [16]) is the key to obtain the desired stability of the proposed schemes. Leveraging the
favourable stability properties of boundary integral equations derived through the Calderón
operator, provably convergent numerical methods for nonlinear boundary conditions in the
context of the acoustic wave equation have been derived in [13] and [18]. The results of [16]
have further been transferred to electromagnetic wave propagation problems in [46] (addition-
ally note [58]). These publications motivated and prepared the investigations of the present
thesis.

1.1. Notation and conventions

In order to discuss the boundary conditions investigated in this thesis in more detail, some
basic terminology and notational conventions are required. This section gives the fundamental
definitions necessary to provide a precise formulation of the problems of interest.

Domains and surfaces

All problems in this thesis are formulated on exterior domains Ω ⊂ R3, assumed to be the com-
plement of one or several scatterers. Wherever not explicitly stated otherwise, these domains
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Chapter 1. Introduction

are assumed to be Lipschitz domains [29]. At several points in the thesis, stronger regularity
is assumed for the domain, either for the ease of presentation or to enable the derivation of re-
sults relying on bounds for higher derivatives of exact solutions of the studied wave equations.
Regularity assumptions on the domain naturally carry over to its boundary Γ = ∂Ω.

The unit normal vector is denoted by ν : Γ → R3. This vector field is the normalized vector
field defined on the boundary orthogonal to the tangent space, which by convention points
into the exterior domain Ω.

Differential operators and vector calculus

We give a brief definition of fundamental differential operators, which are the building blocks
indispensable to formulate strong forms of the wave equations and boundary conditions cov-
ered in this thesis.

Throughout the thesis, we denote vectors, vector-valued functions and operators acting on
such functions with boldface symbols to separate them from scalar entities. Two vector prod-
ucts appear in the thesis for three-dimensional vectors a, b ∈ C3. The scalar product, denoted
by · and also referred to as dot product, reads

a · b = aTb =
3

∑
i=1

aibi, (1.1)

where a is the componentwise complex conjugate of a. The vector-valued cross product is
denoted by × and is defined by

a× b =

a2b3 − a3a2
a3b1 − a1a3
a1b2 − a2a1

 .

Spatial differential operators on the domain Ω

These operations, combined with spatial partial derivatives, are the building blocks of the wave
equations occuring in this thesis. The partial derivatives with regards to the spatial coordinates
x1, x2 and x3 are denoted by ∂1, ∂2 and ∂3. The gradient then collects these partial derivatives
and reads,

∇ =

∂1
∂2
∂3

 .

The divergence and curl operators are notationally the vector products with the gradient,
where the multiplication in (1.1) is understood as the application of the partial derivatives.
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1.1. Notation and conventions

The divergence operator is thus defined, for a vector field v : Ω→ C3, by

div v = ∇ · v =
3

∑
i=1

∂ivi.

Composing the divergence of the gradient yields the Laplace operator

∆ = div ◦ ∇ = ∇ · ∇.

The curl operator is notationally the concatenation of the gradient with the cross product,
which gives the expression

curl v = ∇× v =

∂2v3 − ∂3v2
∂3v1 − ∂1v3
∂1v2 − ∂2v1

 .

Spatial differential operators on the boundary Γ

Whereas the differential operators on the domain are the building blocks of the wave equa-
tions, analogous operators on the boundary Γ = ∂Ω play a similar role for the formulation
of the studied boundary conditions. For functions and vector fields defined on the boundary,
the surface gradient for a function f : Γ→ C is the gradient of some arbitrary local extension
around the the surface projected to the tangent space, which reads for f : R3 → C

∇Γ f = ∇ f − (∇ f · ν) ν on Γ.

Analogous to their counterparts in the domain, the divergence and the curl operators are now
deduced from the components of the surface gradient.

The surface divergence of a vector field on the boundary vΓ : Γ→ C3 is defined via

divΓ vΓ = ∇Γ · vΓ.

As it bears no relevance to the topics covered in this thesis, the definition of the surface curl
is omitted. The Laplace-Beltrami operator is defined as the surface divergence of the surface
gradient, which reads

∆Γ = divΓ ◦ ∇Γ = ∇Γ · ∇Γ.

Details on surface differential equations are found in [30].

Frequency domain and temporal convolutional operators

Finally, temporal convolutional operators generalize a large class of differential operators in
time. The derivative in time, the most basic temporal convolutional operator, is denoted anal-
ogously to the partial derivatives in space by ∂t.
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Chapter 1. Introduction

Key to many of our observations is the Laplace transform L. Given a temporal function
g : (0, ∞)→ R, its Laplace transform is defined via the integral

ĝ(s) = (Lg) (s) :=
∫ ∞

0
e−stg(t)dt, for all Re s > 0,

provided that the right-hand side is finite. The Laplace transform ĝ(s) is consequently, un-
der sufficient regularity of g, a well-defined analytic function on C+ = {s ∈ C | Re s > 0}, the
complex half space with real part.

Laplace transforms of quantities of interest or operators which act exclusively on Laplace
transforms are also referred to as time-harmonic, or are said to be in the Laplace domain. Some-
times, these functions and operators are also said to be in the frequency domain.

Consider a function defined on the Laplace domain, namely some polynomially bounded
Z(s) : C → C, analytic on the half space C+. This analytic transfer function now defines
a temporal convolutional operator via the Heaviside notation of operational calculus, which
writes

Z(∂t)g = (L−1Z) ∗ g. (1.2)

This definition is a generalization of the classical notation of differential operators, namely the
temporal convolution operator associated with the scalar multiplication Z(s) = s (for g with
vanishing initial conditions and sufficiently regular), corresponds to the time derivative ∂t in
the time domain. Under the same assumptions, this expression redefines the integral by setting
Z(s) = s−1. The expression (1.2) further gives a definition of the fractional derivative ∂1/2

t , by
inserting Z(s) = s1/2.

1.2. Boundary conditions studied in this thesis

With these expressions at our disposal, we are in the position to formulate all wave equations
and boundary conditions studied in this thesis, starting from the acoustic wave equation with
generalized impedance boundary conditions. All of the boundary conditions are presented, in
contrast to most of their original literature, in their first-order formulation. This will prove to
be a convenient setting for the presentation throughout the thesis.

1.2.1. Time-dependent acoustic scattering

The acoustic wave equation (with wave speed set to c = 1 in appropriate physical units) reads

∂t ptot −∇ · vtot = 0
∂tvtot −∇ptot = 0

in the exterior domain Ω. (1.3)

The operators∇ and∇· denote the gradient and the divergence as discussed in the previous
section. The total wave (ptot, vtot) is assumed to have initial support away from the boundary
Γ = ∂Ω and to initially coincide with a closed form solution of the acoustic wave equation
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1.2. Boundary conditions studied in this thesis

on the whole space R3, which is referred to as the incidental wave (pinc, vinc). As the total
wave and the incidental wave are solutions of the acoustic wave equation, their differences
p := ptot − pinc and v := vtot − vinc, referred to as scattered waves, again solve the acoustic wave
equation. The objective is now to find the unknown scattered wave (p, v), such that the total
wave fulfills a specified boundary condition.

All boundary conditions studied in this context enforce a relation between the entities ptot

and vtot along the boundary Γ. Since boundary conditions in the literature are often expressed
in terms of the second-order formulation of the acoustic wave equation, the following identity
is crucial for the conversion to the present notation. The Neumann trace of the acoustic pressure
coincides with the derivative of an appropriate trace of the velocity field, namely

∂n ptot = ∇ptot · ν = ∂tvtot · ν on Γ = ∂Ω,

where the right-hand side is to be understood as the appropriate trace operator applied to the
total velocity field.

Generalized impedance boundary conditions for acoustic scattering

Consider a perfectly reflecting material, which is coated by a thin-layer of a homogeneous
material. The interaction of such a scatterer with an incoming acoustic wave is the objective
of the generalized impedance boundary condition derived in [32]. This boundary condition is
explicitly formulated as a surface partial differential equation, itself reminiscent of the acoustic
wave equation, and reads

∂tvtot · ν = δ(∂2
t ptot − ∆Γ ptot) on Γ. (1.4)

The small parameter δ � 1 on the right-hand side is a physical property of the scattering
problem and is proportional to the thickness of the thin-layer. Integration on both sides yields,
in view of the Heaviside notation (1.2), the equivalent formulation

vtot · ν = δ(∂t ptot − ∂−1
t ∆Γ ptot) on Γ. (1.5)

This formulation, where the left-hand side consists solely of the trace of the velocity field, will
prove to be a convenient setting for the presentation.

A particularly interesting use of generalized impedance boundary conditions is the incor-
poration of small scale effects along the boundary, which is noticable through the presence of
small parameters in the boundary condition. The magnitude of these parameters are in the
order of the small physical scale arising in the problem of interest, for example the thickness
of the coating in the boundary condition discussed above. To unify our notation, these small
positive parameters are denoted by the same letter δ� 1.

The first boundary condition dedicated to the scattering from strongly absorbing media is
attributed to Leontovich (published in [48] and [49] (cited from [71]), although the initial dis-
covery is assumed to be much earlier in the 1930s). Higher-order extensions of this boundary
condition were developed by Rytov [61]. These extensions were based on an expansion of the
wave inside and outside of the scatterer by a power series in terms of the small parameter δ
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Chapter 1. Introduction

and omitting terms of at least a given order. A rigorous asymptotic analysis of this boundary
condition in the time domain has been conducted much later in [55]. In the present context,
this boundary condition is compactly formulated through the use of fractional calculus, which
reads

vtot · ν =
1
δ

∂−1/2
t ptot on Γ. (1.6)

This boundary condition approximates the effects of coupling the exterior acoustic wave equa-
tion to the damped wave equation

∂2
t ptot +

1
δ2 ∂t ptot − ∆ptot = 0 in the interior domain R3 \Ω.

Solutions to this damped wave equation decay exponentially in terms of the distance to the
boundary. For δ small enough, the wave is consequently almost zero beyond a thin-layer inside
of the scatterer, which causes the skin-effect phenomenon. This boundary condition is also
referred to as a first-order approximation, as its pertubation to the full problem is in the order
of O(δ2), for sufficiently small δ. A second-order extension of the above boundary condition
has been rigorously analyzed by [41] in the time-harmonic setting and reads, when translated
to the time domain

∂t ptot · ν =
1
δ

∂1/2
t ptot −Hptot on Γ, (1.7)

where H is the mean curvature of Γ. Whereas these boundary conditions were the original
motivating examples for this thesis, another boundary condition is of particular interest to
specifically model acoustic waves. Effective models for scatterers with a vibrating surface are
acoustic boundary conditions; see [20]. These boundary conditions are typically formulated as the
following coupled system

m ∂2
t w + α ∂tw + k w + ∂t ptot = 0

∂tw = −∂tvtot · ν
on Γ, (1.8)

completed by vanishing initial conditions for w and ∂tw. The physical constants m > 0, α ≥ 0
and k > 0 are the given mass, damping and stiffness parameters, respectively.

We formulate the described problems into a general first-order system, which fits well into
the framework of time-dependent boundary integral equations. The presented boundary con-
ditions (1.4)–(1.8) are special cases of the following abstract generalized impedance boundary
condition

vtot · ν = Z(∂t)ptot on Γ. (1.9)

Generally, this boundary condition thus enforces some linear relation between the traces of the
two quantities occuring in the first-order formulation of the wave equation, which is analogous
to the subsequently discussed treatment of electromagnetic scattering. The temporal convolu-
tion operator Z(∂t) is assumed to fulfill a positivity condition, which is shown for all stated
boundary conditions in the subsequent chapter.
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1.2. Boundary conditions studied in this thesis

Interest in these boundary conditions was the starting point of this thesis, yet the main prac-
tical interest is found in applications based on their electromagnetic counterparts, which are
introduced in the following section.

1.2.2. Time-dependent electromagnetic scattering

Our attention turns towards electromagnetic wave propagation, mathematically described by
the time-dependent Maxwell’s equations. The total electromagnetic fields, consisting of the electric
field Etot(x, t) and the magnetic field Htot(x, t), both vector fields with three components, are
strong solutions to Maxwell’s equations, if

ε ∂tEtot − curl Htot = 0
µ ∂tHtot + curl Etot = 0

in the exterior domain Ω. (1.10)

The free space is assumed to be a homogeneous medium, namely the electric permittivity ε
and the magnetic permeability µ are assumed to be positive constants in Ω. Analogous to the
acoustic case, this constitutes a first-order hyperbolic system of equations with two quantities
of interest.

Throughout the thesis and for all studied wave equations, the wave speed c is assumed to
be normalized, i.e. c = 1. This condition can safely be assumed and is equivalent to rescal-
ing the time variable t → ct. Under this (always achievable) assumption, the product of the
permittivity ε and permeability µ is 1, since

εµ = c−2 = 1.

In order to completely eliminate any physical constants in the problem formulation we further
use the rescaling µH → H. This rescaled field is sometimes also referred to as the magnetic field
B. With these conventions, the time-dependent Maxwell’s equations are free of the physical
constants ε and µ, and read

∂tEtot − curl Htot = 0
∂tHtot + curl Etot = 0

in the exterior domain Ω. (1.11)

Generalized impedance boundary conditions for electromagnetic scattering

The time-dependent generalized impedance boundary condition studied in the context of elec-
tromagnetic wave propagation is structurally similar to the acoustic case and reads

Etot
T + Z(∂t)

(
Htot × ν

)
= 0 on Γ. (1.12)

The additional subscript in Etot
T denotes the tangential projection of total electric field Etot on

the tangent space of the surface Γ. Analogous to the acoustic setting, Z(∂t) is an abstract lin-
ear operator, which generally consists of a combination of temporal convolutions and surface
differential operators. This operator is also referred to as the time-dependent impedance operator.

Several examples of Z(∂t) from the literature are of interest and presented in the following.

9



Chapter 1. Introduction

Obstacles with thin coating

The starting point of our investigations into generalized impedance boundary conditions is an
effective boundary condition for a perfectly conductor with a thin dielectric coating, which was
introduced by Engquist & Nédélec [32, equation (4.9)] in the time-harmonic context. Consider a
thin coating of a small depth δ� 1, consisting of a dielectric material with electric permittivity
εδ and magnetic permeability µδ around a perfectly conducting obstacle. Formulated in the
time domain, the effective boundary condition is then given by (1.12) with

Z(∂t) = δ

(
µδ

µ
∂t −

( εδ

ε

)−1
∂−1

t ∇Γ divΓ

)
. (1.13)

The temporal operator ∂−1
t denotes integration in time and is a special case of the Heaviside

notation (1.2). The above boundary condition is again a first-order approximation with respect
to the parameter δ. For a fixed frequency, this boundary condition was treated by Ammari &
Nédélec [5, 6] using boundary integral equations.

Multiple extensions of this boundary condition have been proposed subsequently, most no-
tably a second-order approximate boundary condition for thin layers, for which a rigorous
error analysis was in the time-harmonic regime by Haddar & Joly [40, Eq. (95)]. Transferred to
the time domain, it corresponds to (1.12) with

Z(∂t) = δ

(
µδ

µ
∂t
(
1 + δ (H− C)

)
−
( εδ

ε

)−1
∂−1

t ∇Γ [(1− δH)divΓ]

)
, (1.14)

where C and H denote the curvature tensor and the mean curvature respectively. Other ex-
tensions of these boundary conditions include models to approximate the effects of inhomoge-
neous coatings, which were derived in [4], and the effects of multiple layers placed on top of
each other, which is explored in [34] and [35].

Highly conductive obstacles

The oldest applications of impedance boundary conditions is the approximation of the inter-
action of highly conductive materials with electromagnetic waves. The mathematical litera-
ture, conducting rigorous analysis of such boundary conditions and deriving error estimates in
terms of the small scale, is more recent [40], [41] and [42].

The boundary conditions of interest for highly conductive materials have been derived in the
time-harmonic setting by Haddar, Joly & Nguyen [42]. Electromagnetic waves in a conductive
medium decay rapidly, which limits the penetration depth of the wave. As in the acoustic
case, this causes the wave to vanish mostly in the interior of the scatterer, creating the skin-effect
in the electromagnetic setting. An asymptotic expansion, with respect to the (small) depth of
the penetration then yields reduced models. In the original reference [42], the authors derive
multiple boundary conditions in the time-harmonic setting, covering multiple orders up to
order 3. To limit the scope of the thesis, only the first- and second-order boundary conditions,
or respectively their corresponding impedance operators, are discussed.
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1.2. Boundary conditions studied in this thesis

The following impedance operator yields a first-order boundary condition to the described
problem setting

Z(∂t) = δ ∂1/2
t , (1.15)

where δ is inversely proportional to the square root of the high conductivity. The fractional
derivative ∂1/2

t is a special case of the Heaviside notation (1.2) and is defined as the convolu-
tion with the kernel (πt)−1/2. First-order in this context refers again to the power in the small
parameter δ, which is a small physical parameter since the conductivity of the material is as-
sumed to be large. The time domain impedance operator corresponding to the second-order
boundary conditions reads

Z(∂t) = δ ∂1/2
t − δ2µ(H− C), (1.16)

where again C andH denote the curvature tensor and the mean curvature respectively.

1.2.3. Electromagnetic scattering from nonlinear boundary conditions

Finally, a class of nonlinear boundary conditions coupled to Maxwell’s equations are studied.
This type of boundary condition is obtained by replacing the linear impedance operator Z by a
nonlinear function a (or more generally a nonlinear operator). The nonlinear boundary condition
enforces the following relation between the traces of the electromagnetic fields:

Etot × ν + a(Htot × ν)× ν = 0 on Γ, (1.17)

where ν denotes the outer unit normal vector.
Despite the apparent similarity of this boundary condition and the generalized impedance

boundary condition (1.12), serious challenges arise in the discussed analysis of this boundary
condition. The nonlinearity impedes the application of time-harmonic results and requires
consequently a separate analysis, in particular for the derivation of error estimates.

We restrict the type of nonlinearities covered to the following class of power-law type

a(x) = |x|α−1 x for all x ∈ R3, (1.18)

with the parameter α ∈ (0, 1]. The study of this boundary condition stems from [66] and [67],
in which numerical analysis for such boundary conditions is conducted on bounded domains.
The nonlinearity further plays a key role in the evolution boundary condition studied in [70].
Well-posedness analysis and decay results are available for this boundary condition and can
be found in [31]. As in the chapters before, ν denotes the unit outward surface normal and the
region of interest Ω is the exterior domain. We therefore note that the signs of ν appearing in
the boundary condition (1.17) change in comparison to analysis on the inner domain, compare
for example the notation used in the mentioned references.

This formulation of the nonlinear boundary condition appears in the literature and is used
in the original paper [57] of the same author. Instead of repeating the analysis there, we use the
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Chapter 1. Introduction

following equivalent formulation of the boundary condition in this thesis

Htot × ν + b(−Etot × ν)× ν = 0 on Γ = ∂Ω. (1.19)

The nonlinearity here is the inverse of a, which is also a power-law type function and reads

b(x) = a−1(x) = |x|
1−α

α x for all x ∈ R3. (1.20)

1.3. Contributions of this thesis

The present thesis intends to give the first extended numerical analysis for a large class of
non-standard boundary conditions in the context of acoustic and electromagnetic wave scat-
tering problems. On the basis of time-dependent representation formulas, stable boundary
integral equations are derived. Fundamental results for the time-dependent potential opera-
tors and boundary integral operators, namely time-harmonic frequency-specific bounds, are
shown. Combining these results with assumptions on the studied boundary conditions gives
stability results for the corresponding temporal boundary conditions. In particular, this in-
cludes a new general well-posedness result for generalized impedance boundary conditions in
the context of time-dependent electromagnetic scattering.

Discretizing the boundary integral equations with the convolution quadrature method in
time and boundary elements in space then yields fully discrete schemes. The chosen discretiza-
tions conserve crucial properties of the boundary integral equations, which is the foundation of
the present error analysis. For all presented boundary conditions, a complete error analysis is
conducted. Under regularity assumptions on the exact solutions, error bounds with explicit er-
ror rates are derived, both for the boundary data and the solution away from the scatterer. The
error analysis conducted for the nonlinear boundary condition should be particularly empha-
sized, since it relies on a novel stability analysis based on time-discrete transmission problems.
Several key results are shown in the process of the convergence analysis, which in particu-
lar includes a discrete partial integration inequality for the m-stage Radau IIA Runge–Kutta
method. Numerical experiments illustrate the use of the proposed methods and complement
the theoretical results.

These main results were first published in their respective original works of the same author,
namely in

• [15], joint work with L. Banjai and Ch. Lubich, for the treatment of GIBCs in the context
of acoustic scattering, which is presented in Chapter 2;

• [59], joint work with B. Kovács and Ch. Lubich, for the treatment of GIBCs in the context
of electromagnetic scattering, which is presented in Chapter 3;

• [57] for the treatment of a nonlinear boundary condition in the context of electromagnetic
scattering, which is presented in Chapter 4.

To present these results in a unified notation and further contribute to the scientific litera-
ture, substantial modifications are made to the original presentations. Throughout the thesis,
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particular emphasis will be placed on the connections of the acoustic and the electromagnetic
settings, where the notation is chosen to highlight similarities in the analysis. Results from
[15], which considered the numerical analysis for acoustic scattering from GIBCs, were refor-
mulated in a first-order setting. This change was motivated by the electromagnetic analysis
conducted in [59] and clarifies the connections of both settings. Some fundamental results from
[59], mainly with respect to time-harmonic bounds on boundary integral operators, are carried
over to the acoustic setting in order to give a unified presentation of the two settings. These ef-
forts to unify the analysis of the settings then culminates in error bounds whose proofs contain
large passages that are word for word identical, thus emphasizing the structural similarities
of the acoustic and electromagnetic scattering problems. To the knowledge of the author, such
a presentation is in itself a new contribution, in particular in the context of time-dependent
retarded boundary integral equations.

The nonlinear boundary condition was originally investigated in a formulation where the
nonlinearity is applied to the magnetic field, which is also known as ”H-to-E”. In the present
thesis, the techniques developed in the original paper [57] are used to treat the equivalent re-
arranged boundary condition (then ”E-to-H”), where the nonlinearity is instead applied to
the electric field. This change results in an equivalent scattering problem, however the result-
ing boundary integral equation and consequently the derived numerical methods differ. The
structure of the original error analysis is transferred to this transformed discrete boundary in-
tegral equation to obtain error bounds for the alternative formulation. For this new scheme, the
present analysis predicts slightly improved convergence rates in comparison with the original
results. Numerical experiments compare the two methods.

1.4. Outline

The results of this dissertation are mainly divided into the following three chapters, each de-
voted to the study of a separate class of boundary conditions. These chapters are comple-
mented by Appendices A–C, which formulate important notation and general approximation
results that are omnipresent throughout the thesis.

Chapter 2: GIBCs for the acoustic wave equation

Our investigations start with the acoustic wave equation, to which the second chapter is dedi-
cated. The analytic setting of the acoustic impedance operator and its connection to the setting
of acoustic traces are discussed in Sections 2.1–2.2. In the subsequent Section 2.3, the fun-
damental operators associated to the Helmholtz problem are introduced and connected to a
time-harmonic transmission problem. Time-harmonic bounds that explicitly formulate the de-
pendence on the Laplace parameter s are derived and proven through an effective use of the
jump conditions and Green’s formula. These results are then used in Section 2.4 to derive time-
harmonic boundary integral equations, whose solutions solve the time-harmonic acoustic scat-
tering problem with the generalized impedance boundary condition. Section 2.5 transports the
time-harmonic results to the time-dependent setting. In Section 2.6, the convolution quadra-
ture method based on the m-stage Radau IIA method is employed to discretize the boundary
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integral equation in time. Combining the semi-discrete scheme with a boundary element dis-
cretization in Section 2.7 yields a fully discrete scheme. An error analysis is conducted and
error estimates with explicit convergence rates are shown, under regularity assumptions on
the exact solution. Finally, Section 2.8 presents numerical experiments of the proposed scheme
and provides convergence plots. The chapter closes with the visualization of scattered waves
under several boundary conditions to demonstrate the use of the method.

Chapter 3: GIBCs for Maxwell’s equations

The third chapter is devoted to transport the previous results to the setting of electromagnetic
scattering and is therefore structurally similar to the previous chapter. Section 3.1 introduces
the functional analytic framework used in the context of electromagnetic scattering. An abstract
framework for the generalized impedance boundary conditions is presented. This abstract
framework includes the presented boundary conditions, which is shown in Section 3.2. The
subsequent Section 3.3 introduces the potential and boundary operators associated to the time-
harmonic Maxwell’s equations and a time-harmonic electromagnetic transmission problem is
formulated. Time-harmonic bounds for the potential operators that are explicit in the Laplace
parameter s are shown, in particular also for point evaluations of the potential operators. Using
the tools introduced in these sections we derive time-harmonic boundary integral equations in
Section 3.4. A well-posedness result shows the equivalence of the boundary integral equation
and the time-harmonic scattering problem. Section 3.5 carries these results over to the time-
dependent problem and derives time-dependent boundary integral equations for Maxwell’s
equations. Employing the convolution quadrature method based on the m-stage Radau IIA
method in Section 3.6 then gives a time-discrete scheme, whose approximation properties are
guaranteed by previously established time-harmonic results. Section 3.7 combines a Raviart–
Thomas boundary element discretization with the convolution quadrature time discretization
to obtain a fully discrete boundary integral equation. The notation and the analysis up to this
point is carefully adjusted so that the error analysis required is almost identical to the error
analysis conducted in the acoustic setting. The necessary arguments to obtain error estimates
are nevertheless completely formulated, as closely to the previously covered acoustic case as
possible. Finally, Section 3.8 demonstrates the use of the proposed method with numerical
experiments.

Chapter 4: Nonlinear boundary conditions for Maxwell’s equations

The final chapter investigates a nonlinear boundary condition in the context of electromagnetic
scattering. Section 4.1 describes the problem setting and provides an appropriate functional
analytic framework of the nonlinear operator associated to the power-law type nonlinearity.
Nonlinear boundary integral equations are derived in Section 4.2 and a bound on the solution
in terms of the incident fields is given. Section 4.3 uses the convolution quadrature method
based on the m-stage Radau IIA Runge–Kutta method to discretize the temporal convolution
operators in the nonlinear boundary integral equation. Several important auxiliary results for
the error analysis are shown, including a discrete partial integration inequality and techniques
surrounding a time-discrete electromagnetic transmission problem. A temporally discrete error
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analysis demonstrates the use of energy techniques based on the time-discrete transmission
problem and proves optimal order convergence rates in time.

Section 4.4 considers the time-continuous boundary integral equation with a spatial semi-
discretization based on Raviart–Thomas elements. A stability result is shown through applying
a strong monotonicity property of the nonlinearity and combined with interpolation estimates
for the Raviart–Thomas boundary element spaces to obtain convergence rates for the semi-
discretization in space.

Employing the convolution quadrature method and the Raviart–Thomas boundary element
method of the previous sections together gives the full discretization described in Section 3.7.
Combining the ideas of the previously conducted error analysis gives error bounds for the fully
discrete solutions in the natural norms, under regularity assumptions on the exact solution.
Furthermore, through the use of new bounds on the potential operators associated to the time-
harmonic Maxwell’s equations and a chain of Hölder inequalities, pointwise error bounds are
shown for points away from the boundary. Finally, the numerical solution is shown to be
bounded, without any regularity assumptions on the exact solution. Numerical experiments
illustrate the use of the method and complement the theoretical results in Section 3.8.
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2. Acoustic scattering from generalized
impedance boundary conditions

Acoustic scattering theory is a natural starting point for this thesis. We start with a strong for-
mulation of the acoustic scattering problem with a generalized impedance boundary condition,
which is expressed in terms of the scattered wave. Consider the setting of Section 1.2.1 and let
p = ptot − pinc and v = vtot − vinc denote the scattered fields, which are outgoing solutions of
the acoustic wave equation with vanishing initial conditions.

The scattered acoustic wave equation with an abstract generalized impedance boundary con-
dition, formulated for the acoustic pressure p and the velocity field v, is therefore the following
boundary value problem

∂t p−∇ · v = 0 in Ω, (2.1)
∂tv−∇p = 0 in Ω, (2.2)

v · ν− Z(∂t)p = ginc on Γ. (2.3)

Initially, p and v are assumed to vanish. The right-hand side of the boundary condition is fully
determined by the incoming wave, through

ginc = Z(∂t)pinc − vinc · ν. (2.4)

The scattered wave (p, v) has finite wave speed c = 1, which together with its vanishing initial
support implies that the support of the wave is finite at any time t. Consequently, the scat-
tered wave is square integrable at any time t without the application of additional asymptotic
boundary conditions for |x| → ∞.

2.1. Traces, Sobolev spaces and a further Hilbert space
V ⊂ H−1/2(Γ)

The boundary condition relates the trace of the acoustic pressure p and the trace of the velocity
field v along the boundary. For a scalar function u : Ω→ C, the Dirichlet trace reads

γu = u|Γ on Γ.
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Chapter 2. Acoustic scattering from GIBCs

The normal trace, associated to the Neumann trace of the pressure in the context of the acoustic
wave equation, is given for a vector field v : Ω→ C3 by

γνv = v|Γ · ν on Γ.

This trace is related to the classical definition of the Neumann trace through the expression

∂νu = γν∇u.

These trace operators provide a suitable setting for the described boundary conditions. To
rigorously define these operators, some functional analytic spaces are required. Proofs and
rigorous derivations associated to the following definitions are found in [33, Chapter I]. On the
exterior domain Ω, we define the spaces of square integrable functions by

L2(Ω) =

{
u : Ω→ C

∣∣∣∣ ∫Ω
|u|2 dx < ∞

}
, L2(Ω) =

{
u : Ω→ C3

∣∣∣∣ ∫Ω
|u|2 dx < ∞

}
.

With these spaces, the general Sobolev space Hk(Ω) of integer order k ≥ 0, is defined by

Hk(Ω) = {u ∈ L2(Ω) |Dα
xu ∈ L2(Ω) for all |α| ≤ k},

where Dα
x denotes the combination of spatial derivatives associated to the multi-index α (details

are found e.g. in [33, Section I.1]). The above spaces are equipped with their natural norms
‖·‖L2(Ω) , ‖·‖L2(Ω) and ‖·‖Hk(Ω), which make them Hilbert spaces.

Two spaces are particularly relevant in the context of the acoustic wave equation. First, the
classical space H1(Ω), which is defined by the above expression and reads

H1(Ω) = {u ∈ L2(Ω) | ∇u ∈ L2(Ω)}.

Analogously, the Sobolev space associated to the divergence operator reads

H(div, Ω) = {v ∈ L2(Ω) | ∇ · v ∈ L2(Ω)}.

A key identity is Green’s formula [33, Corollary 2.1], which implies, for the function u ∈ H1(Ω)
and the vector field v ∈ H(div, Ω), the expression∫

Ω
∇u · v + u∇ · v dx =

∫
Γ

γνv γu dx. (2.5)

We note that the complex conjugation of the gradient in the first summand is already included
in the definition of the dot product (1.1). The right-hand side of this identity is the sesquilinear
L2-pairing on the boundary, which is for φ, ψ : Γ→ C denoted by

(φ, ψ)Γ =
∫

Γ
φ ψ dx. (2.6)

The traces extend to surjective bounded linear operators on the above spaces and map into
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respective spaces on the boundary. For any order k ≥ 0, we define the following Hilbert space

Hk−1/2(Γ) = γ
(

Hk(Ω)
)

.

These trace spaces become Hilbert spaces by equipping them with appropriate norms ‖·‖Hk−1/2(Γ).
The dense embedding in L2(Γ) then implies, for r ≥ 0, the dense chain of inclusions

Hr(Γ) ⊂ L2(Γ) ⊂ H−r(Γ),

where the duality between H−r(Γ) and Hr(Γ) is formally obtained by extending the L2-pairing
(2.6). The Dirichlet trace extends, by construction, to a bounded surjective operator (details are
found e.g. in [33, Section I.1])

γ : H1(Ω)→ H1/2(Γ).

Furthermore, the normal trace extends to a bounded surjective operator

γν : H(div, Ω)→ H−1/2(Γ).

A complete derivation of these results is found in [33, Section I.2.2], where the continuity and
surjectivity are shown in [33, Theorem 2.2 & Corollary 2.4].
An additional Hilbert space is necessary to treat the acoustic generalized impedance boundary
condition, in order to account for the impedance operator Z(s). Consider the dense subspace
V ⊂ H1/2(Γ), assumed to be equipped with a (semi-)norm |·|V , which implies the full norm

‖φ‖2
V = ‖φ‖2

H1/2(Γ) + ‖φ‖
2
V . (2.7)

2.1.1. Setting of the transfer operator Z(s)

The subspace V provides a suitable setting for the transfer operator Z(s). Specifically, the norm
of this analytic family is assumed to be polynomially bounded in terms of the Laplace parameter
s in the following way: there exists a real constant κ, such that for any σ > 0 there exists a
constant Cσ < ∞, such that

‖Z(s)‖V′←V ≤ Cσ |s|κ , Re s ≥ σ > 0. (2.8)

All boundary conditions presented in the introduction correspond to transfer operators which
fulfill this bound for some κ ≤ 1, a property that is therefore assumed in order to simplify the
presentation throughout the chapter. Furthermore, the operator family Z(s) is assumed to be
of positive type: For every σ > σ0 ≥ 0, there exists a positive constant cZ

σ > 0, such that

Re 〈ψ, Z(s)ψ〉Γ ≥ cZ
σ Re s

∣∣s−1ψ
∣∣2
V for all ψ ∈ V and Re s ≥ σ > σ0, (2.9)

where the anti-duality between V and V ′, denoted by 〈·, ·〉Γ, is the appropriate extension of the
L2-pairing.
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Chapter 2. Acoustic scattering from GIBCs

2.2. The transfer operators from (1.4)–(1.8)

Lemma 2.1 (Thin coating). The transfer operator corresponding to the boundary condition (1.4) is a
well-posed operator on the space V = H1(Γ), equipped with the δ-dependent semi-norm

|φ|2V = δ ‖∇φ‖2
L2(Γ) .

The full norm (2.7) makes this space an appropriate setting of the transfer operator Z(s) : V → V ′

corresponding to the acoustic thin layer boundary conditions (1.4), in the sense that (2.8) and (2.9) hold
with κ = 1 and σ0 = 0 respectively.

Proof. From the general form of the abstract generalized impedance boundary condition (1.9)
and the specific thin layer boundary condition (1.4), we read that the corresponding temporal
transfer operator has the expression

Z(∂t) = δ(∂t − ∂−1
t ∆Γ).

The corresponding time-harmonic transfer operator, formally derived by taking the Laplace
transform, has for all s ∈ C with Re s > 0 the form

Z(s) = δ
(
s− ∆Γs−1).

The setting of this operator is naturally V = H1(Γ), equipped with the δ-dependent semi-norm
and norms stated. In these norms, the transfer operator Z(s) satisfies the polynomial bound
(2.8) with κ = 1 and a constant that is independent of δ for 0 < δ ≤ 1, since

‖Z(s)‖V′←V = sup
ψ1,ψ2∈V

‖ψ1‖V=‖ψ2‖V=1

|〈ψ2, Z(s)ψ1〉Γ|

and, for Re s ≥ σ > 0 and arbitrary ψ1, ψ2 ∈ V, we estimate∣∣∣〈ψ2, δ
(
s− ∆Γs−1)ψ1〉

∣∣∣ ≤ ∣∣∣δ |s| (ψ2, ψ1)L2(Γ) + δ |s|−1 (∇Γψ2,∇Γψ1)L2(Γ)

∣∣∣
≤ δ |s| ‖ψ2‖L2(Γ) ‖ψ1‖L2(Γ) + δ |s|−1 ‖∇Γψ2‖L2(Γ) ‖∇Γψ1‖L2(Γ)

≤ |s| (δ + σ−2) ‖ψ2‖V ‖ψ1‖V .

Furthermore, the transfer operator Z satisfies the positivity condition (2.9), because for ψ ∈ V
we obtain

Re 〈ψ, δ
(
s− ∆Γs−1)ψ〉 = δ Re s ‖ψ‖2

L2(Γ) + δ Re s ‖s−1∇Γψ‖2
L2(Γ)3

≥ δ Re s ‖s−1∇Γψ‖2
L2(Γ)3

= Re s
∣∣s−1ψ

∣∣2
V .
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Lemma 2.2 (Strong absorption). The transfer operators corresponding to the boundary conditions
(1.6)–(1.7) are well-posed operators on the space V = L2(Γ), equipped with the δ-dependent semi-norm

|φ|2V = δ−1 ‖φ‖2
L2(Γ) .

The full norm (2.7) then makes this space an appropriate setting for the transfer operators Z(s) : V → V ′

corresponding to the highly absorbing boundary conditions (1.6) and (1.7). In the case of the first-order
boundary condition (1.6), the polynomial bound (2.8) holds for κ = −1/2 and the positivity (2.9)
holds for σ0 = 0. For the second order boundary condition (1.7), we assume that the L∞-norm of the
mean curvature of Γ is bounded by some constant. Under this assumption, both properties hold for the
parameters κ = −1/2 and σ0 = max(0, 2δHmax)2, where Hmax denotes the maximum of the mean
curvature of the boundary Γ.

Proof. From the general form of the generalized impedance boundary condition (1.9), we find
that the time-harmonic transfer operator associated to the boundary condition (1.6) is of the
form

Z(s) = δ−1s−1/2,

whereas the second order formulation (with respect to δ) (1.7) corresponds to the family of
transfer operators associated to the expression

Z(s) = δ−1s−1/2 −Hs−1.

With the stated norm, we obtain for arbitrary boundary functions ψ1, ψ2 that are normalized by
setting ‖ψ1‖V = ‖ψ2‖V = 1, the following estimate∣∣∣〈ψ2,

(
δ−1s−1/2 −Hs−1

)
ψ1

〉∣∣∣
≤
(

δ−1 |s|−1/2 + ‖H‖L∞(Γ) |s|
−1
)
‖ψ2‖L2(Γ) ‖ψ1‖L2(Γ)

≤
(
|s|−1/2 + δ ‖H‖L∞(Γ) |s|

−1
)
≤ σ−1M,

where the final estimate holds for σ < 1. Consequently, both absorbing boundary conditions
satisfy (2.8) with µ = 0, σ0 = 0 and constants Mσ independent of δ.

The analytic family associated to the first-order boundary condition (1.6) fulfills the positivity
condition (2.9) with σ0 = 0 since for Re s ≥ σ we obtain

Re〈ψ, Z(s)ψ〉Γ = Re
s1/2

δ |s| ‖ψ‖
2
L2(Γ) ≥ Re

σ1/2

|s| ‖ψ‖
2
V ≥ σ1/2 Re s

∥∥∥s−1ψ
∥∥∥2

V
.

For the transfer operator corresponding to the boundary condition of second order (1.7), we
have for Re s > 0, with the maximum value of the mean curvature denoted by Hmax, the
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Chapter 2. Acoustic scattering from GIBCs

estimate

Re〈ψ, Z(s)ψ〉Γ ≥
(

δ−1 Re s−1/2 −Hmax Re s−1
)
‖ψ‖2

L2(Γ)

= |s|
(

δ−1 Re s1/2 −Hmax
Re s
|s|

)
‖s−1ψ‖2

L2(Γ) ≥ Re s
σ1/2

2

∣∣∣s−1ψ
∣∣∣2
V

,

where the final estimate uses Re s1/2 ≥ 2δHmax, which holds for Re s ≥ σ0 = max(0, 2δHmax)2.

Lemma 2.3 (Acoustic boundary conditions). The transfer operator associated to acoustic boundary
conditions is a well-posed operator on the original trace space V = H1/2(Γ), equipped with the trivial
semi-norm

|φ|2V = 0.

In this context, the polynomial bound (2.8) and the positivity condition (2.9) hold with κ = 0 and
σ0 = 0.

Proof. Integrating both equations of (1.8) on both sides and inserting the second identity into
the first reveals that the boundary condition of interest is a special case of the abstract boundary
condition (1.9) with the temporal transfer operator

Z(∂t) =
(

m∂t + α + k∂−1
t

)−1
.

An application of the Laplace transform then gives the analytic family of time-harmonic trans-
fer operator, which reads

Z(s) = (ms + α + ks−1)−1.

This family of operators is bounded in terms of the stated norms, since for Re s > 0 we have

‖Z(s)‖H−1/2(Γ)←H1/2(Γ) =
∣∣∣ms + α + ks−1

∣∣∣−1
‖Id‖H−1/2(Γ)←H1/2(Γ) ≤ α−1.

This transfer operator is of positive type in the stated form (2.9), since for Re s > 0 we obtain

Re Z(s) = Re (ms + α + ks−1)−1 = Re
(ms + α + ks−1)∣∣ms + α + ks−1

∣∣2 ≥ 0.

Inserting this identity into the left-hand side of (2.9) shows the stated positivity.

Remark 2.2.1 (Neumann and Robin boundary conditions). We note that the setting of the acoustic
boundary condition also applies to Neumann boundary conditions (through setting Z(s) = 0 ) and
Robin boundary conditions (through setting Z(s) = c for some positive constant c).
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2.3. The Helmholtz problem

2.2.1. Weak formulation of the generalized impedance boundary conditions

Testing the boundary condition by inserting the time-invariant continuous boundary function
φ on Γ into the L2-pairing yields

(φ, γνv)Γ − (φ, Z(∂t)γp)Γ =
(
φ, ginc)

Γ .

From the strong formulation of the temporal convolution operator Z(∂t), we derive a family of
weak time-harmonic operators Z(s) : V → V ′ such that the duality coincides with the L2(Γ)
inner product when the regularity of the trace γp is sufficient:

〈υ, Z(∂t)γp〉Γ = (υ, Z(∂t)γp)Γ , υ ∈ V.

Moreover, the right-hand side depending on the incidental wave is understood as an element
in the dual V ′, through the expression

〈υ, ginc〉Γ =
(
υ, ginc)

Γ , υ ∈ V. (2.10)

Inserting these identities into the tested boundary condition then reveals the weak formulation
of the boundary condition (1.9): find

p ∈ L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω))

and
v ∈ L2(0, T; H(div, Ω)) ∩ H1(0, T; L2(Ω)),

solution to the acoustic wave equations with vanishing initial support, such that their traces
γνv ∈ L2(0, T; H−1/2(Γ)) and γp ∈ Hκ

0 (0, T; H1/2(Γ)) fulfill for almost every t ∈ (0, T)

〈υ, γνv〉Γ − 〈υ, Z(∂t)γp〉 = 〈υ, ginc〉Γ for all υ ∈ V. (2.11)

The weak formulation of the boundary condition therefore weakly enforces a relation between
the traces of solutions to the first-order formulation of the acoustic wave equation. Under
the stated regularity assumptions, all of the terms in the weak formulation of the boundary
condition are finite. For ginc ∈ H3

0(0, T; V ′), the above described formulation is well-posed in
the stated regularities. In the case of general positive κ, the necessary temporal regularity grows
linearly, specifically ginc ∈ H2+κ

0 (0, T; V ′). In the following sections, such a well-posedness
result is given, with the stated regularities. The techniques and results developed in the process
of deriving this result further take a central role in the subsequent numerical analysis.

2.3. The Helmholtz problem

We recall some basic notions of time-harmonic potential equations, which will be the founda-
tion of our construction of solutions of time-dependent wave equations throughout this paper.

With time-dependent problems in mind, we start with the careful study of their time-harmonic
counterparts. Frequency-specific bounds are then the key to a temporal well-posedness result.

23



Chapter 2. Acoustic scattering from GIBCs

Let us begin by applying the Laplace transform to the acoustic wave equation in the first-
order formulation (2.1)–(2.2). Under the assumption of vanishing initial conditions, we obtain
a first-order formulation of the Helmholtz problem, which reads for Re s > 0

sp̂−∇ · v̂ = 0
sv̂−∇ p̂ = 0

on Ω. (2.12)

In the literature, the Helmholtz problem is often formulated in terms of the Fourier parameter
ω (see e.g. [26]), which is related to the Laplace parameter s through the identity s = −iω.

Completing these equations with asymptotic boundary conditions for |x| → ∞ renders solu-
tions of the Helmholtz problem unique. Solutions defined through the representation formulas
discussed in the subsequent sections always automatically satisfy these conditions by construc-
tion. With these decay conditions, the solutions of the Helmholtz problem are ensured to fulfill
p̂ ∈ H1(Ω) and v̂ ∈ H(div, Ω).

2.3.1. Recap: Potential operators and representation formulas

We repeat the classical notation of potential operators and representation formulas for the
Helmholtz problem, used e.g. in [16, 47, 64]. The notation in the present setting is slightly
adapted, motivated by the notation used in [1].

The fundamental solution of the Helmholtz equation is given by the radial outgoing scalar
solution centered at the origin

p̂radial(z) = G(s, z) =
e−s|z|

4π |z| for z ∈ R3 \ {0},

which solves the time-harmonic system (2.12) in the role of p̂, when complemented with

v̂radial(z) =
∇G(s, z)

s
for z ∈ R3 \ {0}.

The superposition of point sources along all points located on the boundary Γ defines the single
layer potential operator, which reads

(S(s)ϕ) (x) =
∫

Γ
γy p̂radial(x− y) ϕ(y)dΓy x ∈ R3 \ Γ.

The single layer potential is complemented by the double layer potential operator, which is defined
by the superposition of all velocity fields along the boundary, which reads

(D(s)ψ) (x) =
∫

Γ
γνy v̂radial(x− y)ψ(y)dΓy x ∈ R3 \ Γ.

Note that this definition differs slightly from the conventions in the literature by a factor of
s (c.f. [47, Section 3]). Due to this particular form of the double layer potential, we obtain
representation formulas with a consistent scaling of the potential operators.
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2.3. The Helmholtz problem

The fundamental properties of these operators are presented in terms of transmission prob-
lems, for which we introduce some additional notation. Throughout this thesis, we consider
boundary value problems on exterior domains Ω and we will only be interested in the ap-
proximation of solutions in these domains. Nevertheless, it will turn out to be essential for
the analysis to pose some auxiliary problems on the complete space, decomposed into an exte-
rior domain Ω+ (which for our purposes coincides with the domain of interest Ω), an interior
domain Ω− describing the inside of the scatterer, and the boundary Γ at the interface of the
interior domain and the exterior domain.

The trace operators γ and γν are readily extended on the interior domain Ω−, where ν re-
mains the outer normal vector pointing in the exterior domain Ω+. Trace operators, applied in
the context of transmission problems, are denoted by an additional superscript to denote their
respective domain, namely by writing γ+, γ−,γ+

ν and γ−ν , respectively. For functions which are
defined on both the interior domain and exterior R3, we introduce jumps and averages, which
derive from the traces and are defined by

[γ] = γ+ − γ−, {γ} = 1
2

(
γ+ + γ−

)
,

[γν] = γ+
ν − γ−ν , {γν} = 1

2

(
γ+

ν + γ−ν
)

.

The bounds on the respective traces naturally extend to the jumps and averages. Of great
interest are the composition of these trace operators with the potential operators, which reveals
the behaviour of the representation formulas when the boundary Γ is approached.

Concatenating the jumps and the potential operators reveals the jump conditions, which for
the respective traces read

[γ] ◦ sS(s) = 0, [γ] ◦ sD(s) = Id,
[γν] ◦ ∇S(s) = −Id, [γν] ◦ ∇D(s) = 0.

With this notation, we are now in the position to formulate the time-harmonic transmission
problem. Let (ϕ̂, ψ̂) ∈ H−1/2(Γ)× H1/2(Γ) be some arbitrary boundary functions in the trace
space 1 and let p̂ and v̂ on R3 \ Γ be defined by

p̂ = sS(s)ϕ̂ + sD(s)ψ̂, (2.13)

v̂ = ∇S(s)ϕ̂ +∇D(s)ψ̂. (2.14)

Four potential operators have emerged, namely the single layer potential, the double layer
potential and their gradients. These operators map boundary densities towards the fields in
the domain and will ultimately be used to numerically recover the fields p̂ and v̂ away from the
boundary. The construction and the jump conditions of the potential operators then imply, for

1The notation (ϕ̂, ψ̂) is used, when these functions appear as the boundary densities of the time-harmonic acous-
tic fields ( p̂, v̂). The hats indicate that these functions are Laplace transforms of time-dependent quantities of
interest. Whenever a generic function from the trace space is denoted, without a relation to a time-dependent
function of interest, the hats are omitted.
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Chapter 2. Acoustic scattering from GIBCs

the quantities of the representation formulas (2.13)–(2.14), the following transmission problem

sp̂−∇ · v̂ = 0 in R3 \ Γ, (2.15)

sv̂−∇ p̂ = 0 in R3 \ Γ, (2.16)
−[γν]v̂ = ϕ̂, (2.17)

[γ] p̂ = ψ̂. (2.18)

For arbitrary boundary data of appropriate regularity, there exist associated acoustic fields
( p̂, v̂), such that the above described transmission problem holds, however, at this point the
regularity of these fields is unclear. This technique of associating a transmission problem to
arbitrary boundary functions of sufficient regularity is omnipresent in the subsequent proofs
of this thesis in the context of acoustic, electromagnetic, time-harmonic, time-dependent and
time-discrete problems.

Until this point, the results presented in this section were restricted to the established theory
surrounding the well-known potential operators associated to the Helmholtz problem. In the
following, we use these identities to give s-explicit estimates on the quantities of interest and
show fundamental inequalities, which play a key role in the subsequent sections.

2.3.2. Transmission problems and boundary operators

The expression on the right-hand side of the representation formulas (2.13)–(2.14), more pre-
cisely the linear map (ϕ̂, ψ̂) 7→ ( p̂, v̂), extends to a linear operator from the trace space

H−1/2(Γ)× H1/2(Γ) to H1(R3 \ Γ)× H(div, R3 \ Γ).

Moreover, this operator is bounded by a constant which depends polynomially on the Laplace
parameter s, which is crucial for the subsequent analysis of the temporal counterpart.

The following lemma gives such an estimate, by exploiting the trace theorem and Green’s
formula.

Lemma 2.4. Let (ϕ̂, ψ̂) ∈ H−1/2(Γ) × H1/2(Γ) be complex-valued boundary functions in the trace
spaces. Consider ( p̂, v̂), defined through the representation formulas (2.13)–(2.14), and therefore the
solution of the associated time-harmonic acoustic transmission problem (2.15)–(2.18) for Re s > 0.
Then, the following inequality holds∥∥∥∥( p̂

v̂

)∥∥∥∥
H1(R3\Γ)×H(div,R3\Γ)

≤ CΓ
|s|2 + 1

Re s

∥∥∥∥(ϕ̂

ψ̂

)∥∥∥∥
H−1/2(Γ)×H1/2(Γ)

, (2.19)

where the constant is the maximum of the operator norms of the occuring traces

CΓ = max
(
‖{γ}‖H1/2(Γ)←H1(R3\Γ) , ‖{γν}‖H−1/2(Γ)←H(div,R3\Γ)

)
. (2.20)

26



2.3. The Helmholtz problem

Proof. Let us start by inserting solutions of the time-harmonic Helmholtz problem (2.12) into
Green’s formula (2.5), which yields on the exterior and interior domains respectively

±
∫

Γ

(
γ±ν v̂

)
γ± p̂ dx =

∫
Ω±
∇ p̂ · v̂ + ( p̂) (∇ · v̂) dx

=
∫

Ω±
s̄ |v̂|2 + s | p̂|2 dx.

Note that the conjugation of the first summand on the right-hand side is included in the nota-
tion of the dot product, which is defined through a · b = aTb on C3. Summation of the identity
on the inner domain and the exterior domain yields

I :=
∫

R3\Γ
s̄ |v̂|2 + s | p̂|2 dx =

(
γ+

ν v̂, γ+ p̂
)

Γ −
(
γ−ν v̂, γ− p̂

)
Γ . (2.21)

The time-harmonic acoustic fields are readily rewritten in terms of their counterpart by insert-
ing (2.12). Using the separation I = (1− θ)I + θI and inserting the Helmholtz problem in the
second summand reformulates the left-hand side to the expression

I =
∫

R3\Γ

(
(1− θ)s̄ |v̂|2 + θs

∣∣∣s−1∇ · v̂
∣∣∣2

+ (1− θ)s | p̂|2 + θs̄
∣∣∣s−1∇ p̂

∣∣∣2)dx.

The real part of both sides then simplifies the s-dependency to

Re I = Re s
∫

R3\Γ

(
(1− θ) |v̂|2 + θ

∣∣∣s−1∇ · v̂
∣∣∣2 (2.22)

+ (1− θ) | p̂|2 + θ
∣∣∣s−1∇ p̂

∣∣∣2)dx. (2.23)

The parameter θ is free and chosen in such a way that the preceding factors of the summands
agree, which is achieved by setting (1− θ) = θ |s|−2. Rearranging this requirement leads to the
choice of θ = 1/(1 + |s|−2), for which we obtain

Re I =
Re s

|s|2 + 1

(
‖ p̂‖2

H1(R3\Γ) + ‖v̂‖
2
H(div,R3\Γ)

)
. (2.24)

The real part of I therefore simplifies, up to the given preceding factor, to the left-hand side of
the stated bound (2.19). Moreover, taking the real part of (2.21) gives

Re I = Re
(
γ+

ν v̂, γ+ p̂
)

Γ − Re
(
γ−ν v̂, γ− p̂

)
Γ .

Rewriting the right-hand side of this expression in terms of the jumps and averages through
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adding intermediate terms yields

Re I = Re ([γν]v̂ , {γ} p̂)Γ + Re ([γ] p̂ , {γν}v̂)Γ

= Re (−ϕ̂, {γ} p̂)Γ + Re
(
ψ̂, {γν}v̂

)
Γ .

(2.25)

Applying the dual estimate on the right-hand side and subsequently the Cauchy–Schwarz in-
equality on R2 yields

Re I ≤ ‖ϕ̂‖H−1/2(Γ) ‖{γ} p̂‖H1/2(Γ) +
∥∥ψ̂
∥∥

H1/2(Γ) ‖{γν}v̂‖H−1/2(Γ)

=

(
‖ϕ̂‖H−1/2(Γ)∥∥ψ̂
∥∥

H1/2(Γ)

)
·
(
‖{γ} p̂‖H1/2(Γ)
‖{γν}v̂‖H−1/2(Γ)

)

≤
(
‖ϕ̂‖2

H−1/2(Γ) +
∥∥ψ̂
∥∥2

H1/2(Γ)

)1/2 (
‖{γ} p̂‖2

H1/2(Γ) + ‖{γν}v̂‖2
H−1/2(Γ)

)1/2
.

(2.26)

In the following, we estimate the second factor above through the bound on the traces γ and γν.
The time-harmonic acoustic fields p̂ and v̂ are, by [63, Theorem 3.16], in the local Sobolev spaces
H1

loc(R
3 \ Γ) and H loc(div, R3 \ Γ) respectively. Moreover, the exponential decay in terms of the

distance away from the boundary for Re s > 0 implies that these quantities are in the spaces
H1(R3 \ Γ) and H(div, R3 \ Γ) respectively. The operator norms for the traces then finally yield

Re I =
(
‖ϕ̂‖2

H−1/2(Γ) +
∥∥ψ̂
∥∥2

H1/2(Γ)

)1/2 (
‖ p̂‖2

H1(R3\Γ) + ‖v̂‖
2
H(div,R3\Γ)

)1/2
.

Inserting (2.24) on the left-hand side and dividing through the second factor the right-hand
side yields the stated bound.

Setting the boundary densities in Lemma 2.4 mutually to zero gives bounds on the potential
operators, which is formulated in the following Lemma.

Lemma 2.5. For Re s > 0, the scalar potential operators extend by density to a family of bounded linear
operators on their respective spaces, which fulfill the bounds

‖sS(s)‖H1(R3\Γ)←H−1/2(Γ) ≤ CΓ
|s|2 + 1

Re s
,

‖sD(s)‖H1(R3\Γ)←H1/2(Γ) ≤ CΓ
|s|2 + 1

Re s
.

The identical bound holds for the potential operators composed with the gradients, which fulfill

‖∇S(s)‖H(div,R3\Γ)←H−1/2(Γ) ≤ CΓ
|s|2 + 1

Re s
,

‖∇D(s)‖H(div,R3\Γ)←H1/2(Γ) ≤ CΓ
|s|2 + 1

Re s
.

The constant CΓ is the maximum operator norm of the traces, as defined by (2.20).
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2.3. The Helmholtz problem

All operator norms discussed in this section are bounded by the same constant, namely the
preceding factor appearing in the bound (2.19) associated to the transmission problem. Note
that the scaling of the scalar potentials S(s) and D(s) improves their frequency dependent
bound to

‖S(s)‖H1(R3\Γ)←H−1/2(Γ) ≤ CΓ
|s|+ |s|−1

Re s

and analogously for D(s). The bounds on the scaled operators sS(s) and sD(s) are however,
due to their appearance in the representation formulas (2.13)–(2.14), more relevant.

We turn our attention towards the transmission problem (2.15)–(2.18), which holds for arbi-
trary functions given through the representation formulas (2.13)–(2.14). The unknown time-
harmonic acoustic scattered fields p̂ and v̂ only operate on the exterior domain of interest
Ω = Ω+, but solve an appropriate transmission problem when extended by zero in the in-
side of the scatterer Ω−. In this case, the jumps and averages reduce to the exterior traces.
Inserting the boundary data of the scattered fields into the representation formulas therefore
recovers the scattered fields at any point, namely it holds that

p̂ = sS(s) (−γνv̂) + sD(s) (γ p̂) , (2.27)
v̂ = ∇S(s) (−γνv̂) +∇D(s) (γ p̂) . (2.28)

Throughout this thesis, we attempt to solve the boundary value problems of interest in a two
step approach. First, the boundary data of the scattered waves are determined by appropriate
boundary integral equations. Then, conclusions on the scattered wave are drawn through the
representation formula. The previously established time-harmonic bounds of Lemma 2.4 can
be sharpened when the corresponding solution of the transmission problem vanishes in one of
the domains, which is proven in the next lemma.

Lemma 2.6. Consider the situation of Lemma 2.4 and assume further that the interior traces γ− p̂
and γ−ν v̂ vanish, consequently reducing the boundary densities to ϕ̂ = −γνv̂ and ψ̂ = γ p̂. Then, the
following bound holds

∥∥∥∥( p̂
v̂

)∥∥∥∥
H1(Ω)×H(div,Ω)

≤
(
|s|2 + 1
2 Re s

)1/2 ∥∥∥∥(ϕ̂

ψ̂

)∥∥∥∥
H−1/2(Γ)×H1/2(Γ)

.

Furthermore, we have the following stronger bound for the weaker L2-norm∥∥∥∥( p̂
v̂

)∥∥∥∥
L2(Ω)×L2(Ω)

≤
(

1
2 Re s

)1/2 ∥∥∥∥(ϕ̂

ψ̂

)∥∥∥∥
H−1/2(Γ)×H1/2(Γ)

.

Proof. The proof of the first bound is identical to that of Lemma 2.4 down to (2.25), which now
implies the bound Re I ≤ 1

2

(
‖ϕ̂‖2

H−1/2(Γ) + ‖ψ̂‖2
H1/2(Γ)

)
and yields the stated result. The stated

L2-bound follows readily from applying the argument directly to (2.21) instead of (2.24).
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Chapter 2. Acoustic scattering from GIBCs

2.3.3. Time-harmonic boundary operators and the Calderón operator

In view of the derivation of boundary integral equations, we are interested in the representation
formulas for x approaching the boundary. In the following, we define the boundary operators
as averages of the potential operators associated to the transmission problem (2.15)–(2.18).
The boundary integral operators are consequently defined by the compositions

V(s) = {γ} ◦ sS(s), K(s) = {γ} ◦ sD(s),
KT(s) = {γν} ◦ ∇S(s), W(s) = {γν} ◦ ∇D(s).

(2.29)

Explicit expressions are found e.g. in [47, Section 3]. These operators are the building blocks of
the acoustic Calderón operator, which is defined by the boundary integral operators through

C(s) =
(

V(s) K(s)
−KT(s) −W(s)

)
. (2.30)

The sign structure of this block operator derives from the representation formulas. Moreover,
applying the averages on both sides of the representation formulas (2.13)–(2.14) reveals, by
construction, the jump conditions of the Calderón operator, which read

C(s)
(
−[γν]v̂
[γ] p̂

)
=

(
{γ} p̂
−{γν}v̂

)
. (2.31)

The application of the Calderón operator therefore transforms the jumps of the transmission
problem into the averages, which gives time-harmonic bounds through Lemma 2.4 and even
more directly through Lemma 2.5.

Lemma 2.7. The Calderón operator forms an analytic family of bounded linear operators on the complex
half space with positive real part. For Re s ≥ 0, we further have the bound

‖C(s)‖H1/2(Γ)×H−1/2(Γ)←H−1/2(Γ)×H1/2(Γ) ≤ C2
Γ
|s|2 + 1

Re s
,

and by extension we obtain the same bound on the boundary integral operators defined by (2.29), on their
respective spaces. The constant is again the maximum of the trace operator norms, specifically given by
(2.20).

The L2-pairing is extended to the anti-duality between H−1/2(Γ)× H1/2(Γ) and H1/2(Γ)×
H−1/2(Γ) through 〈(

ϕ
ψ

)
,
(

υ
η

)〉
Γ
= 〈ϕ, υ〉Γ + 〈ψ, η〉Γ ,

for appropriate boundary functions.
As was shown in [16], the Calderón operator C(s) is positive with respect to this extension

to the L2-pairing. In the following lemma, we give an explicit proof of this property, with a
slightly modified s-dependency in comparison to the original result.
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2.4. Time-harmonic boundary integral equations

Lemma 2.8 (essentially [16, Lemma 3.1]). The Calderón operator (2.30) satisfies the positivity bound

Re
〈(

ϕ̂

ψ̂

)
, C(s)

(
ϕ̂

ψ̂

)〉
Γ
≥ 1

c2
Γ

Re s

|s|2 + 1

(
‖ϕ̂‖2

H−1/2(Γ) + ‖ψ̂‖
2
H1/2(Γ)

)
,

The constant cΓ is the maximum of the norms of the jump operators associated to the traces

cΓ = max
(
‖[γ]‖H1/2(Γ)←H1(R3\Γ) , ‖[γν]‖H−1/2(Γ)←H(div,R3\Γ)

)
. (2.32)

Proof. Let (ϕ̂, ψ̂) ∈ H−1/2(Γ)×H1/2(Γ) and further let the time-harmonic fields defined through
the representation formulas (2.13)–(2.14) be denoted by p̂ ∈ H1(R3 \ Γ) and v̂ ∈ H(div, R3 \ Γ).
The result is then given by the following compact chain of inequalities∥∥∥∥(ϕ̂

ψ̂

)∥∥∥∥2

H−1/2(Γ)×H1/2(Γ)
=

∥∥∥∥(−[γν]v̂
[γ] p̂

)∥∥∥∥2

H−1/2(Γ)×H1/2(Γ)
by (2.17)–(2.18)

≤ c2
Γ

(
‖ p̂‖2

H1(Ω) + ‖v̂‖
2
H(div,Ω)

)
by def. of cΓ

= c2
Γ
|s|2 + 1

Re s
Re
〈(
−[γν]v̂
[γ] p̂

)
,
(
{γ} p̂
−{γν}v̂

)〉
Γ

by (2.24)–(2.25)

= c2
Γ
|s|2 + 1

Re s
Re
〈(
−[γν]v̂
[γ] p̂

)
, C(s)

(
−[γν]v̂
[γ] p̂

)〉
Γ

by (2.31)

= c2
Γ
|s|2 + 1

Re s
Re
〈(

ϕ̂

ψ̂

)
, C(s)

(
ϕ̂

ψ̂

)〉
Γ

by (2.17)–(2.18).

2.4. Boundary integral equation for the Helmholtz problem under
time-harmonic generalized impedance boundary conditions

The previous results prepare a path to develop well-posed and stable boundary integral equa-
tions for the Helmholtz problem with Re s > 0. We turn our attention towards the time-
harmonic scattering from the generalized impedance boundary condition, which completes
the first-order formulation of the Helmholtz problem in and reads

〈υ, γνv̂〉Γ − 〈υ, Z(s)γ p̂〉 = 〈υ, ginc〉Γ for all υ ∈ V, (2.33)

where Z(s) satisfies the framework (2.8)–(2.9) and the data ginc is assumed to be at least in V ′.
The unknown solution to the Helmholtz problem on the exterior domain Ω, fulfilling the weak
formulation of the boundary condition, is extended by zero inside the scatterer in the interior
domain Ω−.

Applying the properties of the transmission problem to the extended exterior solution then
reveals the representation formulas (2.27)–(2.28) and the jump conditions of the Calderón op-

31



Chapter 2. Acoustic scattering from GIBCs

erator (2.31) simplify to

C(s)
(
−γνv̂

γ p̂

)
=

1
2

(
γ p̂
−γνv̂

)
. (2.34)

We follow ideas from [13] and [18], which eliminate the Dirichlet trace on the right-hand side
by introducing a skew-symmetric block operator. This defines the shifted Calderón operator
Cimp(s), which reads

Cimp(s)
(
−γνv̂

γ p̂

)
=

(
0
−γνv̂

)
, where Cimp(s) = C(s) +

(
0 − 1

2 Id
1
2 Id 0

)
. (2.35)

The traces on the left-hand side are also referred to as the boundary densities and denoted by

ϕ̂ = −γνv̂, ψ̂ = γ p̂. (2.36)

Testing both sides of the shifted jump conditions with test functions (υ, ξ) ∈ H−1/2(Γ)×V
yields 〈(

υ
ξ

)
, Cimp(s)

(
ϕ̂

ψ̂

)〉
Γ
= 〈ξ,−γνv̂〉Γ .

The boundary integral equation in weak form is now given by inserting the boundary condition
on the right-hand side and rearranging all unknown quantities to the left-hand side.

Time-harmonic boundary integral equation: Let Re s > 0 and further let ĝinc ∈ V ′. The boundary
data (ϕ̂, ψ̂) ∈ H−1/2(Γ)×V weakly solves the time-harmonic boundary integral equations if for all
(υ, ξ) ∈ H−1/2(Γ)×V it holds that〈(

υ
ξ

)
, Cimp(s)

(
ϕ̂

ψ̂

)〉
Γ
+
〈
ξ, Z(s)ψ̂

〉
Γ =

〈
ξ,−ginc〉

Γ . (2.37)

The components of the left-hand side of the boundary integral equation are collected in the
analytic operator family

A(s) : H−1/2(Γ)×V → H1/2(Γ)×V ′,

namely for all (ϕ, ψ) ∈ H−1/2(Γ)× V and (υ, ξ) ∈ H−1/2(Γ)× V we define the evaluation of
A(s) through 〈(

υ
ξ

)
, A(s)

(
ϕ
ψ

)〉
Γ
=

〈(
υ
ξ

)
, Cimp(s)

(
ϕ
ψ

)〉
Γ
+ 〈ξ, Z(s)ψ〉Γ , (2.38)

where the anti-duality 〈·, ·〉 on functions with two components is between H−1/2(Γ)× V and
H1/2(Γ)× V ′. With this operator family, the boundary integral equation simplifies to the fol-
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2.4. Time-harmonic boundary integral equations

lowing formulation: find (ϕ̂, ψ̂) ∈ H−1/2(Γ)×V, such that〈(
υ
ξ

)
, A(s)

(
ϕ̂

ψ̂

)〉
Γ
=
〈
η,−ginc〉

Γ for all (υ, ξ) ∈ H−1/2(Γ)×V.

Moreover, dropping the universal dual pairing with arbitrary test functions yields the compact
notation

A(s)
(

ϕ̂

ψ̂

)
=

(
0
−ginc

)
. (2.39)

This operator A(s) describes the complete boundary integral equation for our time-harmonic
scattering problem and inherits crucial bounds of C(s) and Z(s). In the following, we col-
lect these bounds and coercivity results of the analytic operator family A(s) for appropriate
impedance operators Z(s) fulfilling the polynomially bound (2.8) and the positivity condition
(2.9).

Lemma 2.9 (Boundedness). Let Z(s) : V → V ′ satisfy the polynomial bound (2.8) with the real-
valued rate κ ≤ 1 (as shown to hold in Lemmas 2.1–2.3 for all presented boundary conditions). The
operator family A(s) defined by (3.41) then form an analytic family of bounded linear operators on the
complex half-space with positive real part. For all σ > 0 there further exists a constant Cσ, such that for
all Re s ≥ σ it holds that

‖A(s)‖H1/2(Γ)×V′←H−1/2(Γ)×V ≤ Cσ
|s|2

Re s
,

where the constant Cσ grows at most polynomially in σ−1.

Proof. The statement is a direct consequence of the triangle inequality applied to the Calderón
operator C(s) and the transfer operator Z(s). The bounds on C(s) proven in Lemma 2.7 readily
extend to the stated spaces due to the continuous embedding V ⊂ H1/2(Γ). Furthermore, the
identities IdH1/2(Γ)←V and IdV′←H−1/2(Γ) are bounded due to the chain of continuous embed-
dings of V ⊂ H1/2(Γ) ⊂ H−1/2(Γ) ⊂ V ′.

Lemma 2.10 (Coercivity). The analytic family of operators A(s) has the following positivity property:
For every σ > σ0 ≥ 0 there exists a positive constant cσ > 0 such that for all Re s ≥ σ, we have

Re
〈(

ϕ
ψ

)
, A(s)

(
ϕ
ψ

)〉
≥ cσ

Re s

|s|2 + 1

(
‖ϕ‖2

H−1/2(Γ) + ‖ψ‖
2
V

)
for all boundary densities (ϕ, ψ) ∈ H−1/2(Γ)× V. The anti-duality on the left-hand side is naturally
extended to H−1/2(Γ)×V and H1/2(Γ) × V ′ respectively. The constant in the lower bound has the
explicit form cσ = min

(
c−2

Γ , cZ
σ

)
, where cΓ is the maximum of the norms of the trace operators as

defined in (2.20) and cZ
σ is the constant from the positivity bound on Z(s) in (2.9).
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Proof. Coercivity bounds on the Calderón operator and the transfer operator are already estab-
lished and the remaining shift is skew-hermitian since

Re
〈(

ϕ
ψ

)
,
(

0 − 1
2 I

1
2 I 0

)(
ϕ
ψ

)〉
=

1
2

Re (− 〈ϕ, ψ〉+ 〈ψ, ϕ〉) = 0.

We conclude, by applying the coercivity of the Calderón operator from Lemma 2.8 and the
assumed positivity condition (2.9) on the transfer operator, which yields for Re s ≥ σ > 0

Re
〈(

ϕ
ψ

)
, A(s)

(
ϕ
ψ

)〉
≥ Re

〈(
ϕ
ψ

)
, C(s)

(
ϕ
ψ

)〉
+ Re 〈ψ, Z(s)ψ〉

≥ 1
c2

Γ

Re s

|s|2 + 1

(
‖ϕ‖2

H−1/2(Γ) + ‖ψ‖
2
H1/2(Γ)

)
+

cZ
σ Re s

|s|2
|ψ|2V

= cσ
Re s

|s|2 + 1

(
‖ϕ‖2

H−1/2(Γ) + ‖ψ‖
2
V

)
,

where cσ = min
(
c−2

Γ , cZ
σ

)
> 0.

This coercivity result has direct consequences for the boundary integral equation (3.41), a fact
that is described in the following proposition.

Proposition 2.1 (Well-posedness of the time-harmonic boundary integral equation). Let Re s ≥
σ > σ0 ≥ 0 and consider the boundary integral equation (3.41) with the boundary operator A(s). For
incident waves of sufficient regularity, in particular fulfilling ĝinc ∈ V ′, there exists a unique solution
(ϕ̂, ψ̂) ∈ H−1/2(Γ)×V, which is bounded by∥∥∥∥(ϕ̂

ψ̂

)∥∥∥∥
H−1/2(Γ)×V

≤ Cσ
|s|2

Re s
∥∥ĝinc∥∥

V′ . (2.40)

The constant depends is explicitly given by the inverse of the constant in the coercivity result 2.10, i.e.
Cσ = c−1

σ = max(c2
Γ, 1/cZ

σ ).

Proof. The bounds on A(s) from Lemma 2.9–2.10 provide the conditions of Lax-Milgram Lemma,
which implies the well-posedness of the inverse boundary integral operator and the bound

∥∥∥A−1(s)
∥∥∥

H−1/2(Γ)×V←H1/2(Γ)×V′
≤ Cσ

|s|2

Re s
. (2.41)

The stated result is the consequence of applying this bound to the time-harmonic boundary
integral equation (2.39).

Remark 2.4.1. The dependency of the incidental wave is measured through the abstract norm associated
to the vector space V ′. However, since ‖φ‖H1/2(Γ) ≤ ‖φ‖V for all φ ∈ V, we obtain for more regular
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data ĝinc ∈ H−1/2(Γ) the estimate∥∥ĝinc∥∥
V′ = sup

‖φ‖V=1

〈
φ, ĝinc〉

Γ ≤ sup
‖φ‖H1/2(Γ)≤1

(
φ, ĝinc)

Γ =
∥∥ĝinc∥∥

H−1/2(Γ) .

The data ĝinc = Z(s) p̂inc − v̂inc is sufficiently regular for the above bound for sufficiently smooth
incidental waves p̂inc and v̂inc, sufficiently smooth boundaries Γ and the described transfer operators
Z(s) of Lemmas 2.1–2.3.

2.4.1. Well-posedness of time-harmonic scattering with generalized impedance
boundary conditions

Combining the previously established results with regards to the time-harmonic boundary
integral equation gives the following well-posedness result for the time-harmonic scattering
problem.

Theorem 2.1 (Well-posedness of the time-harmonic acoustic scattering problem). Consider the
Helmholtz problem (2.12) for Re s ≥ σ > σ0 ≥ 0, completed with the generalized impedance boundary
condition (2.33), where Z(s) satisfies the polynomial bound (2.8) and the positivity condition (2.9).
Furthermore, we assume the incident wave to be of sufficient regularity such that ĝinc ∈ V ′. Under
these conditions, the following statements hold.

(a) The time-harmonic scattering problem has the unique solution

( p̂, v̂) ∈ H1(Ω)× H(div, Ω),

given by the representation formulas (2.13)–(2.14). The boundary data is uniquely determined by
(ϕ̂, ψ̂) = (−γνv̂, γ p̂) ∈ H−1/2(Γ)×V, the solution to the boundary integral equation (2.38). Conse-
quently, the boundary data is bounded in terms of the incident wave, as described in Proposition 2.1.

(b) The solutions are bounded by

‖ p̂‖H1(Ω) + ‖v̂‖H(div,Ω) ≤ Cσ
|s|3

(Re s)3/2

∥∥ĝinc∥∥
V′ ,

where Cσ depends polynomially on σ−1 and on the boundary Γ through norms of the traces. Moreover,
in the case of the transfer operators discussed in Lemmas 2.1 and 2.2, the constant is independent of δ.

Proof. Let (ϕ̂, ψ̂) ∈ H−1/2(Γ)×V be the unique and bounded solution to the boundary integral
equation (2.38), whose existence and uniqueness is provided by Proposition 2.1.

We define p̂, v̂ ∈ H1(R3 \ Γ)× H(div, R3 \ Γ) via the representation formulas (2.13)–(2.14),
such that the transmission problem (2.15)–(2.18) holds. Expressing the functions (ϕ̂, ψ̂) in
terms of the jumps of ( p̂, v̂) by means of (2.17)–(2.18) and applying the jump conditions of
the Calderón operator yields

Cimp(s)
(

ϕ̂

ψ̂

)
= C(s)

(
ϕ̂

ψ̂

)
+

1
2

(
−ψ̂
ϕ̂

)
=

(
{γ} p̂
−{γν}v̂

)
− 1

2

(
[γ] p̂
[γν]v̂

)
=

(
γ− p̂
γ+

ν v̂

)
.
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Inserting this identity on the left-hand side of the boundary integral equation (2.38) yields

γ− p̂ = 0, (2.42)

γ+
ν v̂ + Z(s)ψ̂ = ĝinc. (2.43)

The application of Green’s formula in the inner domain and using (2.42) implies

Re s
∫

Ω−
|v̂|2 + | p̂|2 dx = −

∫
Γ

γ−ν v̂ γ− p̂ dx = 0. (2.44)

Consequently, ( p̂, v̂)|Ω+ vanish in the inner domain and the boundary data reduces to (ϕ̂, ψ̂) =
(−γνv̂, γ p̂), thus proving (a). Inserting this identity further for ψ̂ in (2.43) shows that the outer
traces fulfill the weak formulation of the generalized impedance boundary condition (2.11).

Given that the inner traces vanishes, we are in the position of Lemma 2.6, which together
with the bound of Theorem 2.1 yields the remaining statement (b) of the theorem.

Remark 2.4.2. The L2- bound of Lemma 2.6 implies the additional L2- bound

‖ p̂‖L2(Ω) + ‖v̂‖L2(Ω) ≤ Cσ
|s|2

(Re s)3/2

∥∥ĝinc∥∥
V′ . (2.45)

2.4.2. Boundary integral equations for the inverted boundary condition

Transfer operators fulfilling the stated framework (2.8)–(2.9) are, as a consequence of the Lax–
Milgram theorem, invertible. Applying the inverse operator to the generalized impedance
boundary condition is therefore a well-posed operation and yields an equivalent boundary
condition, which reads

γ p̂− Z(s)−1γνv̂ = ĝinc
− . (2.46)

The right-hand side collects again terms, which only depend on the incidental wave and is of
the form ĝinc

− = Z(s)−1γνv̂inc − γ p̂inc.
The boundary integral equation discussed previously has been derived by inserting the

boundary condition into the trace of the velocity field v̂, which appears by using a shift and the
jump conditions of the Calderón operator. Repeating this approach by changing the sign of the
shift yields the operator

C−imp(s)
(
−γνv̂

γ p̂

)
=

(
γ p̂
0

)
, where C−imp(s) = C(s)−

(
0 − 1

2 I
1
2 I 0

)
. (2.47)

The remaining right-hand side only depends on the trace of the acoustic pressure, in which the
rearranged boundary condition (2.46) is inserted to obtain

C−imp(s)
(

ϕ̂

ψ̂

)
=

(
−Z(s)−1 ϕ̂ + ĝinc

−
0

)
.
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Addition with the unknown term Z(s)−1 ϕ̂ in the first component on both sides yields the
boundary integral equation

A−(s)
(

ϕ̂

ψ̂

)
=

(
ĝinc
−
0

)
, where A−(s) = C−imp(s) +

(
Z(s)−1 0

0 0

)
. (2.48)

The analysis conducted so far, in particular Proposition 2.1, is readily transported to this bound-
ary integral equation, for operator families Z(s) whose inverse Z(s)−1 is itself admissible in the
sense of an appropriate counterpart of the polynomial bound (2.8) (which is already implied
by the Lax–Milgram Lemma) and the positivity condition (2.9).

The Helmholtz problem under the generalized impedance boundary condition consequently
admits two distinct boundary integral equations, the properties of which are determined by the
transfer operator Z(s) and its inverse Z(s)−1. A direct application of this insight is the following
consideration. The dependence on the small parameter δ is at this point in the thesis unclear
and clarified in the subsequent sections. It is however natural, that any defect measured in
the semi-norm chosen to treat the absorbing boundary condition (1.6) , which has the form
|ψ|V = δ−1/2 ‖ψ‖L2(Γ), can only be bounded by an estimate which depends unfavourably on
the factor δ−1/2. This is a drawback of the present boundary integral equation, as the boundary
condition is particularly interesting for very small δ. The alternative approach described in
this section completely avoids this difficulty and instead works with the inverse impedance
operator, which is simply given by

Z(s)−1 = δs1/2.

This transfer operator is polynomially bounded with the rate κ = 1/2 and fulfills the pos-
itivity condition (2.9) with the semi-norm |·|V = δ1/2 ‖·‖L2(Γ) installed on the Hilbert space
V = H1/2(Γ). The positivity condition is obtained for the semi-norm by

Re
〈

ϕ̂, Z(s)−1 ϕ̂
〉
= Re s

(
δ ‖ϕ̂‖2

L2(Γ)

)
= |s|2 Re s

∣∣∣s−1 ϕ̂
∣∣∣
V
≥ σ2 Re s

∣∣∣s−1 ϕ̂
∣∣∣
V

, (2.49)

which holds for all Re s ≥ σ and ϕ̂ ∈ V. The alternative boundary integral equation (2.48) then
yields a formulation based on this positivity condition, which subsequently gives favourable
results in the following sections for strongly absorbing boundary conditions with the transfer
operator as described in Lemma 2.2.

With this positivity, we obtain that the inverse of the operator family

A−(s) : V × H1/2(Γ)→ V ′ × H−1/2(Γ),

described in (2.48) with the transfer operator is Z(s) = δ−1s1/2, is well defined. Moreover, the
positivity of this operator family, as given in (2.49), shows the following bound of the inverse
operator for Re s ≥ σ > 0

∥∥∥(A−(s)
)−1
∥∥∥

V′×H−1/2(Γ)←V×H1/2(Γ)
≤ Cσ

|s|2

Re s
, (2.50)
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where the constant depends on σ and Γ. The operator family A−(s) therefore shares the crucial
properties of the boundary integral equation operator A(s) described in Lemmas 2.9–2.10.

2.4.3. Bounds for the time-harmonic potential operators away from the boundary

Point evaluations of the potential operators fulfill bounds with a more favourable dependence
on the real part of the Laplace parameter s than the previously established bounds of Lemma 2.5.

Such an estimate for the single layer potential operator is provided by [12, Lemma 7]. The
same argument is accessible for the double layer potential operator and gives the following
result.

Lemma 2.11. Let x ∈ R3 \ Γ be an arbitrary point, away from the boundary with the positive distance
d = dist(x, Γ) > 0. The point evaluation for the single and double layer potential operators S(s),D(s)
evaluated at this point satisfies the following bound:

|(S(s)ϕ) (x)| ≤ C |s| e−d Re s ‖ϕ‖H−1/2(Γ) ,

|(D(s)ψ) (x)| ≤ C |s| e−d Re s ‖ψ‖H1/2(Γ) ,

for Re s ≥ σ > 0, and for any (ϕ̂, ψ̂) ∈ H−1/2(Γ) × H1/2(Γ). The s-independent constant C only
depends on σ, x and Γ.

Moreover, differentiating the point evaluations at any point is bounded directly by repeating
the proof of the above Lemma with the differentiated fundamental solution, which gives the
following Lemma.

Lemma 2.12. Let k be some positive integer order of differentiation and consider an arbitrary par-
tial derivative, corresponding to the coordinate j = 1, 2, 3. Further let x ∈ R3 \ Γ be an arbitrary
point and consider the differentiated point evaluation for the single and double layer potential operators
S(s),D(s). Then, we have the following bounds∣∣∣(∂k

xj
S(s)ϕ

)
(x)
∣∣∣ ≤ C |s|1+k e−d Re s ‖ϕ‖H−1/2(Γ) ,∣∣∣(∂k

xj
D(s)ψ

)
(x)
∣∣∣ ≤ C |s|1+k e−d Re s ‖ψ‖H1/2(Γ) ,

for Re s ≥ σ > 0, and for any (ϕ, ψ) ∈ H−1/2(Γ) × H1/2(Γ). The s-independent constant C only
depends on k, σ, x and Γ. Arbitrary combinations of the partial derivatives fulfill the identical bound,
where k then corresponds to the overall order of differentiation.

Taking the above estimate and integrating over all points away from the boundary by at least
a distance d > 0, gives the following bound.

Lemma 2.13. Consider the domain away from the boundary by at least some fixed distance d > 0
with positive distance from the boundary Ωd = {x ∈ Ω | dist(x, Γ) > d}. The single and double layer
potential operators S(s),D(s), restricted on this domain, then satisfy the following bound: For any
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2.5. Time-dependent acoustic wave equation with GIBCs

σ > 0 there exists a constant Cσ, such that for all Re s ≥ σ we have

‖sS(s)‖H1(Ωd)←H−1/2(Γ) ≤ Cσ |s|3 e−d Re s,

‖sD(s)‖H1(Ωd)←H1/2(Γ) ≤ Cσ |s|3 e−d Re s.

The s-independent constant Cσ only depends on σ, x and Γ. In view of the representation formulas, the
following bounds for the potential operators composed with the gradients are of interest

‖∇S(s)‖H(div,Ωd)←H−1/2(Γ) ≤ Cσ |s|3 e−d Re s,

‖∇D(s)‖H(div,Ωd)←H1/2(Γ) ≤ Cσ |s|3 e−d Re s.

Proof. Let ϕ ∈ H−1/2(Γ) be an arbitrary boundary function. Consider the square of this

‖S(s)ϕ‖2
H1(Ωd)

=
∫

Ωd

|(S(s)ϕ) (x)|2 + |(∇S(s)ϕ) (x)|2 dx

≤ Cσ ‖ϕ‖2
H−1/2(Γ) |s|

4
∫

Ωd

e−2 dist(x,Γ)Re s dx.

The stated result for the single layer potential operator S(s) is then obtained by estimating
the final integral, which decays exponentially with respect to the distance to the boundary. To
estimate the integral on the right-hand side, we let R > 0 be large enough, such that the ball
BR with radius R encloses the scatterer Γ ⊂ BR, and its complement is a subset of Ωd. Then,
separating the integral domain yields the chain of inequalities∫

Ωd

e−2 dist(x,Γ)Re s dx =
∫

Ωd∩BR

e−2 dist(x,Γ)Re s dx +
∫

Ωd\BR

e−2 dist(x,Γ)Re sdx

≤
∫

Ωd∩BR

e−2d Re s dx + e−2d Re s
∫

R3\BR

e−2(‖x‖−R)Re s dx

≤ 4
3

πR3e−2d Re s + e−2d Re s4π
∫ ∞

R
r2e−2(r−R)Re s dr

≤ e−2d Re s
(

4
3

πR3 + 4π
2σ2R2 + 2σR + 1

4σ3

)
.

Taking the square root on both sides yields the bound for the single-layer potential operator.
Repeating this argument structure for the remaining potential operators gives the stated re-

sults.

2.5. Time-dependent acoustic wave equation with generalized
impedance boundary conditions

This section is devoted to leverage the Laplace domain results of the previous section, to give
corresponding results to the time-dependent scattering problem, which are the overall objective
of this chapter.
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Chapter 2. Acoustic scattering from GIBCs

This approach, to derive properties of time-dependent problems via intermediate Laplace
domain results, is notationally already present in the Heaviside notation (1.2) and follows the
proposed framework of [52]. The foundation of this analysis are the frequency explicit bounds
that have been derived in the previous section for all operators arising in relation to the time-
harmonic acoustic scattering.

We begin with a time-dependent formulation of the boundary integral equation (2.38), ob-
tained by formally replacing the Laplace transform variable s by the time differentiation oper-
ator ∂t. In view of a future boundary element discretization, we further test the equation by
time invariant test functions, which yields the following weak formulation.

Time-dependent boundary integral equation: The time-dependent boundary densities, denoted by
(ϕ, ψ) : [0, T] → H−1/2(Γ)× V with sufficient temporal regularity (to be specified in the subsequent
sections) are said to be solutions of the time-dependent acoustic boundary integral equation, if for almost
every time t ∈ [0, T] and for all (υ, ξ) ∈ H−1/2(Γ)×V, it holds that〈(

υ
ξ

)
, Cimp(∂t)

(
ϕ
ψ

)〉
Γ
+ 〈ξ, Z(∂t)ψ〉Γ = −〈ξ, ginc〉Γ. (2.51)

The right-hand side ginc : [0, T] → V ′ is the time-dependent counterpart of the time-harmonic
right-hand side of (2.38), which is assumed to be of the regularity ginc ∈ Hr

0(0, T; V ′) with
sufficiently large r. Some background on temporal Hilbert spaces and convolutional operators
is introduced in Appendix A.

Through the operator family A(s) : H−1/2(Γ)×V → H1/2(Γ)×V ′, which effectively collects
the time-harmonic boundary integral equation, we obtain the following compact representa-
tion of the time-dependent boundary integral equation (2.51) by

A(∂t)

(
ϕ
ψ

)
=

(
0
−ginc

)
. (2.52)

In the interest of deriving properties of the time-dependent boundary densities (ϕ, ψ) we rewrite
this boundary integral equation by using the temporal operator associated to the operator fam-
ily A(s)−1 for Re s > σ0, which by (2.41) constitutes a well-posed bounded operator family.
Consequently, the temporal convolution operator A−1(∂t) is also well-defined by (A.3), and by
the composition rule of operational calculus (A.2) we obtain the identity

A−1(∂t)A(∂t) = A(∂t)A(∂t) = Id.

Applying the operator A−1(∂t) on both sides of the temporal boundary integral equation yields
a closed form of the time-dependent boundary data, which reads(

ϕ
ψ

)
= A−1(∂t)

(
0
−ginc

)
. (2.53)

We are now in the position to apply the bound (A.3) from [52, Lemma 2.1] on the temporal
convolution operator A−1(∂t), where the necessary Laplace domain bounds are supplied by
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2.5. Time-dependent acoustic wave equation with GIBCs

Proposition 2.1 with the exponent κ = 2.
Consequently, we obtain the well-posedness of the temporal boundary integral equation,

complemented by a bound of the exact solution in terms of the incident wave, which is de-
scribed in the following Proposition.

Proposition 2.2 (Well-posedness of the time-dependent boundary integral equation). Consider
the boundary integral equation (2.51) and let ginc ∈ Hr+3

0 (0, T; V ′) with r ≥ 0. There exists a unique
solution (ϕ, ψ) ∈ Hr+1

0 (0, T; H−1/2(Γ)×V) and it is bounded by∥∥∥∥(ϕ
ψ

)∥∥∥∥
Hr+1

0 (0,T;H−1/2(Γ)×V)

≤ CT
∥∥ginc∥∥

Hr+3
0 (0,T;V′) . (2.54)

The constant CT depends on norm of the trace operators and on the final time T. For transfer operators
with σ0 = 0 in (2.8)–(2.9), the dependence on the final time is furthermore only polynomial.

The boundary densities ϕ, ψ of Proposition 2.2 uniquely identify the time-dependent scat-
tered fields p and v, which are recovered by the temporal representation formulas

p = ∂tS(∂t)ϕ + ∂tD(∂t)ψ, (2.55)
v = ∇S(∂t)ϕ +∇D(∂t)ψ. (2.56)

The following theorem shows that the solution (ϕ, ψ) is in fact the boundary data to the time-
dependent scattering problem of interest, namely the acoustic wave equation (1.3) with the
time-dependent generalized impedance boundary condition (1.9). In combination with Propo-
sition 2.2, this yields a well-posedness result of this temporal scattering result, which is com-
plemented by a bound on the scattered wave in terms of the incoming wave.

The theorem is consequently the time-dependent counterpart of the time-harmonic well-
posedness result from Theorem 2.1 and is proven by transporting the results from the Laplace
domain to the time domain.

Theorem 2.2 (Well-posedness of the time-dependent scattering problem). Consider the acoustic
wave equation (1.3), complemented the generalized impedance boundary condition (2.11), where Z(s)
satisfies the conditions (2.8)–(2.9) with κ ≤ 1 and with ginc ∈ Hr+3

0 (0, T; V ′) for some arbitrary real-
valued r ≥ 0.

(a) Let p and v be defined through the representation formulas (2.55)–(2.56), where ϕ and ψ are
solution to the boundary integral equation (2.52). These fields are the unique solution to the time-
dependent scattering problem with the generalized impedance boundary conditions and are further at
least of the regularity

(p, v) ∈ Hr
0(0, T; H1(Ω)× H(div, Ω)) ∩ Hr+1

0 (0, T; L2(Ω)× L2(Ω)).

The traces of this solution are uniquely determined by the boundary integral equation of Theorem 2.2,

(ϕ, ψ) = (−γνv, γp) ∈ Hr+1
0 (0, T; H−1/2(Γ)×V).
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Chapter 2. Acoustic scattering from GIBCs

(b) The scattered wave fulfills the bound

‖p‖Hr
0(0,T;H1(Ω)) + ‖v‖Hr

0(0,T;H(div,Ω)) ≤ CT‖ginc‖Hr+3
0 (0,T;V′),

and the same bound holds for the norm Hr+1
0 (0, T; (L2(Ω)× L2(Ω)) norms. The constant CT depends

on T (polynomially if σ0 = 0 in (2.9)) and on the norms of the trace operators.

Proof. This proof was essentially formulated in [59, Theorem 4.2], in the analogous electromag-
netic setting.

We start by extending the data ginc ∈ Hr+3
0 (0, T; V ′) on the right-hand side from the interval

[0, T] to a function in Hr(R; V ′) on the whole real line, with support in [0, T̃], where T̃ > T
is chosen such that the Hr-norm of the extension of ginc is equivalent to the Hr norm of the
original data ginc (only defined on [0, T]).

Let (p, v) be defined by the time-dependent boundary integral equation (2.52) and the time-
dependent representation formulas (2.55)–(2.56). The stated regularity is the consequence of
(A.3), used with the time-harmonic bounds given in Theorem 2.1. These bounds hold on every
finite time interval (0, T̄), with at most exponential growth in T̄ of the norm with an arbitrary
exponent σ1 > σ0. The Laplace transform ( p̂(s), v̂(s)) then exists for Re s > σ0, and it is obtained
by the solution to the time-harmonic boundary integral equation (2.39) and the time-harmonic
representation formulas (2.13)–(2.14).

The well-posedness result of the time-harmonic scattering problem described in Theorem 2.1
then implies that the Laplace transforms ( p̂(s), v̂(s)) are indeed the unique solution to the time-
harmonic scattering problem with the time-harmonic generalized impedance boundary condi-
tions. The application of the inverse Laplace transform then shows that the temporal quantities
(p, v) solve the time-dependent scattering problem (2.1)–(2.2) under the generalized impedance
boundary condition (2.3). Finally, the uniqueness of the time-dependent solution (p, v) follows
from the uniqueness of the traces and the well-posedness of the time-dependent acoustic wave
equation with a given trace.

2.6. Semi-discretization in time by Runge–Kutta convolution
quadrature

2.6.1. Convolution quadrature for the scattering problem

Applying the convolution quadrature method to discretize the temporal operators of (2.52)
gives the following time-discrete convolution equation

A(∂τ
t )

(
ϕτ

ψτ

)
=

(
0
−ginc

)
. (2.57)

The treatment of this formulation is structurally identical to the analytic treatment of the bound-
ary integral equation, enabled through the discrete counterpart of the composition rule, as for-
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2.6. Semi-discretization in time

mulated in (B.9), which implies the identity

A−1(∂τ
t )A(∂τ

t ) = A(∂τ
t )A(∂τ

t ) = Id.

In view of this identity, we obtain the following direct representation of the temporal semi-
discretization (

ϕτ

ψτ

)
= A−1(∂τ

t )

(
0
−ginc

)
. (2.58)

This representation is crucial, both for the error analysis and for practical computations, since it
rewrites the numerical approximation as a forward application of an understood temporal con-
volution operator. The subsequent error analysis then revolves around the application of gen-
eral convolution quadrature results, in particular Lemma B.1. This approach has particularly
favourable properties with regards to the stability of the resulting temporal semi-discretization.

The time-discrete numerical solution is recovered on the whole domain Ω through the tem-
poral representation formulas discretized by the convolution quadrature method, which read

pτ = ∂tS(∂τ
t )ϕτ + ∂tD(∂τ

t )ψ
τ, (2.59)

vτ = ∇S(∂τ
t )ϕτ +∇D(∂τ

t )ψ
τ. (2.60)

These fields are therefore characterized directly in terms of the boundary data ginc via the com-
posite operator U (∂t) defined through(

pτ

vτ

)
= U (∂τ

t )ginc of
(

p
v

)
= U (∂t)ginc, (2.61)

where the composite operator is explicitly given by the composition of solving the discrete
boundary integral equation and insert the result into the representation formulas, which reads

U (s) =
(

sS(s) sD(s)
∇S(s) ∇D(s)

)
A(s)−1

(
Id
0

)
: V ′ → H1(Ω)× H(div, Ω).

This operator family is polynomially bounded through Theorem 2.2 (b), namely for any σ > σ0
there exists a constant Cσ, such that for all Re s ≥ σ it holds that

‖U (s)‖H1(Ω)×H(div,Ω)←V′ ≤ Cσ
|s|3

(Re s)3/2 .

Moreover, for points away from the boundary with at least some minimum fixed distance d
we obtain bounds with a more favourable dependence on the real part Re s. As a consequence
of the bounds on the potential operators described in Lemma 2.11–2.13, we further have for
Re s ≥ σ > σ0 ≥ 0

‖U (s)‖C1(Ωd)×C1(Ωd)3←V′ + ‖U (s)‖H1(Ωd)×H(div,Ωd)←V′ ≤ Cσ |s|5 e−d Re s,
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Chapter 2. Acoustic scattering from GIBCs

where Ωd = {x ∈ Ω : dist(x, Γ) > d} with d > 0 denotes all points in the domain with at least
the fixed distance d from the boundary.

Remark 2.6.1. The discrete velocity field vτ is curl-free, just as the exact continuous velocity field v.
This identity directly follows from observing that the generating function ∑n≥0 vnζn is itself directly
characterized by time-harmonic representation formulas for |ζ| < 1.

With these bounds, we obtain error bounds for the semi-discretization by applying the gen-
eral convolution quadrature result formulated in Lemma B.1 to the operator family U (s).

Proposition 2.3 (Error bound of the semi-discretization in time). In the setting of Theorem 2.2,
consider the semi-discretization in time (2.57), discretized by Runge–Kutta convolution quadrature
based on the Radau IIA method with m stages. Let pτ and vτ further denote the solutions of the discrete
representation formulas (2.59)–(2.60). Let r > 2m + 3 and assume that the regularity of the inciden-
tal wave implies ginc ∈ Cr([0, T], V Γ

′), with ginc initially vanishing together with its first r − 1 time
derivatives.

Under these conditions, the approximations of the semi-discrete electromagnetic fields pn =
[
(pτ)n−1]

m
and vn =

[
(vτ)n−1]

m fulfill the following error bounds at the time tn = nτ ∈ [0, T]:∥∥∥∥(pn − p(tn)
vn − v(tn)

)∥∥∥∥
H1(Ω)×H(div,Ω)

≤ C τm−1/2 M(ginc, tn).

On the domain away from the boundary by at least some fixed distance d > 0, namely the domain
Ωd = {x ∈ Ω : dist(x, Γ) > d} a corresponding bound of the full classical order 2m− 1 holds:∥∥∥∥(pn − p(tn)

vn − v(tn)

)∥∥∥∥
H1(Ωd)×H(div,Ωd)∩C1(Ωd)×C1(Ωd)3

≤ Cd τ2m−1 M(ginc, tn).

An equivalent bound holds for point evaluations at any point x ∈ Ω. The constant originates from
Lemma B.1 and has the explicit form

M(g, t) = ‖g(r)(0)‖V′ +
∫ t

0
‖g(r+1)(t′)‖V′ dt′.

The constants C and Cd in the error bounds depend on the final time T and on the boundary Γ, but
are crucially independent of n, τ and ginc. As indicated by the index, Cd additionally depends on the
distance d. In particular, for the scattering problems associated to the boundary conditions (1.4)–(1.7),
both C and Cd are independent of the small parameter δ.

In the context of acoustic scattering from a sound-soft obstacle, full-order convergence away
from the boundary for the Runge–Kutta convolution quadrature time discretization was first
observed and proved in [14].
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2.7. Full discretization

Consider a family of regular triangulations of the boundary Γ with maximal mesh widths h.
On these triangulations, we define the following boundary element spaces

Xh ⊂ H−1/2(Γ), Vh ⊂ V ⊂ H1/2(Γ).

In the present chapter, we make the following choices for these spaces. For the integer order
k ≤ 1, we let Xh be the boundary element space of discontinuous piecewise polynomial basis
functions of degree k − 1 and Vh to be the boundary element space of globally continuous
piecewise polynomials of degree k.

Let IXh and IVh denote the boundary interpolation operators as defined in Section 4.3 of the
monograph [63]. For a regular family of triangulations, the results [63, Theorem 4.3.20, Theo-
rem 4.3.22] provide the following approximation results for the interpolation operator.

Lemma 2.14. Consider the subspaces Xh ⊂ H−1/2(Γ) and Vh ⊂ V, chosen as the discontinuous
polynomial boundary elements of order k− 1 and the continuous polynomial boundary elements of order
k ≥ 1 respectively. Then, there exists a constant C, such that for all ξ ∈ Hk+1(Γ) we have∥∥Ir

Xh
ξ − ξ

∥∥
H−1/2(Γ) ≤ C hk+1/2 ‖ξ‖Hk(Γ) ,∥∥Ir

Vh
ξ − ξ

∥∥
Hr(Γ) ≤ C hk+1−r ‖ξ‖Hk+1(Γ) ,

(2.62)

where the second estimate holds for arbitrary r ∈ [0, 1]. The constant C only depends on the boundary
Γ.

In view of the setting of the boundary integral equation, we are interested in bounds on the
interpolation error on the functional analytic settings associated to the transfer operators of the
boundary conditions studied.

Lemma 2.15. Let ξ ∈ Hk+1(Γ) be some arbitrary boundary function and consider the boundary element
space Vh consisting of piecewise continuous polynomials of order k, where IVh ξ denotes the interpolation
of ξ. For the norm associated to the thin-layer boundary condition, as described by Lemma 2.1

‖IVh ξ − ξ‖V =
(
‖IVh ξ − ξ‖2

H1/2(Γ) + δ ‖IVh ξ − ξ‖2
H1(Γ)

)1/2
≤ C

(
hk+1/2 + δ1/2hk

)
. (2.63)

For the norm associated to the strongly absorbing boundary condition, described by Lemma 2.2, we have

‖IVh ξ − ξ‖V =
(
‖IVh ξ − ξ‖2

H1/2(Γ) + δ−1 ‖IVh ξ − ξ‖2
L2(Γ)

)1/2
≤ C

(
hk+1/2 + δ−1/2hk+1

)
. (2.64)

Finally, the interpolation error for the trace space associated to the acoustic boundary condition, described
by Lemma 2.3, is directly estimated through

‖IVh ξ − ξ‖V = ‖IVh ξ − ξ‖H1/2(Γ) ≤ Chk+1/2. (2.65)

The constant C is independent of ξ and h, but depends on k and Γ.
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Formulating the weak formulation of (2.57) and the restriction onto the finite dimensional
subspace Xh ×Vh yields the following full discretization:〈(

υh
ξh

)
, A(∂τ

t )

(
ϕτ

h
ψτ

h

)〉
Γ
= 〈υh, ginc〉Γ for all (υh, ξh) ∈ (Xh ×Vh)

m. (2.66)

The solution to these discrete schemes are approximations to the boundary densities, which are
denoted by

ϕτ
h =

(
(ϕτ

h)
n)

n≥0 with (ϕτ
h)

n =
(
(ϕτ

h)
n
i
)m

i=1 ∈ Xm
h ,

ψτ
h =

(
(ψτ

h )
n)

n≥0 with (ψτ
h )

n =
(
(ψτ

h )
n
i
)m

i=1 ∈ Vm
h .

Through the time-discrete representation formulas, these approximations imply fully discrete
solutions away from the boundary. Inserting the fully discrete boundary densities into (2.59)–
(2.60) therefore reveals the numerical approximations in the domain Ω via

pτ
h = ∂τ

t S(∂τ
t )ϕτ

h + ∂τ
tD(∂τ

t )ψ
τ
h , (2.67)

vτ
h = ∇S(∂τ

t )ϕτ
h +∇D(∂τ

t )ψ
τ
h . (2.68)

The following theorem gives error bounds for these approximations, where the various bounds
of the potential operators Lemma 2.5, Lemma 2.11 and Lemma 2.13 imply corresponding error
bounds.

Theorem 2.3 (Error bound of the full discretization). Consider the boundary integral equation in
the setting of Theorem 2.2 under the conditions stated there. In this setting, consider the approximations
with the following discretizations:

• Convolution quadrature time discretization based on the Radau IIA Runge–Kutta method with
m ≥ 2 stages employed for the boundary integral equation (2.66) and the discrete representation
formulas (2.59)–(2.60); and

• boundary element space discretization Xh ×Vh, consisting of discontinuous piecewise polynomi-
als of order k − 1 and continuous piecewise polynomials of order k respectively, applied to the
boundary integral equation (2.66).

In addition to the assumptions of Theorem 2.2, we assume ginc ∈ Cr([0, T], V ′) for some r > 2m+ 3 and
further assume that ginc vanishes at t = 0 together with its first r − 1 time derivatives. Moreover, the
exact solution (ϕ, ψ) of the boundary integral equation (2.52) is assumed to be in C10([0, T], Hk+1(Γ)2)
and vanish at t = 0 together with its time derivatives.
The error rates depend on the functional analytic setting of the boundary condition, as described by
Lemmas 2.1–2.3. The following error bounds are therefore referenced to their functional analytic setting
through their corresponding Lemma. Under these conditions, the following error bounds hold for the
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approximations pn
h =

[
(pτ

h)
n−1]

m and vn
h =

[
(vτ

h)
n−1]

m in time and space at tn = nτ ∈ [0, T]:∥∥∥∥(pn
h − p(tn)

vn
h − v(tn)

)∥∥∥∥
H1(Ω)×H(div,Ω)

≤ C
(
τm−1/2 + hk+1/2 + δ1/2hk) Lemma 2.1,

≤ C
(
τm−1/2 + hk+1/2 + δ−1/2hk+1) Lemma 2.2,

≤ C
(
τm−1/2 + hk+1/2) Lemma 2.3.

On the domain of points away from the boundary by at least a fixed distance d > 0, namely the
domain Ωd = {x ∈ Ω : dist(x, Γ) > d}, corresponding bounds for the full classical order 2m− 1 in
time hold: ∥∥∥∥(pn

h − p(tn)
vn

h − v(tn)

)∥∥∥∥
H1(Ωd)×H(div,Ωd)

+

∥∥∥∥(pn
h − p(tn)

vn
h − v(tn)

)∥∥∥∥
C1(Ωd)×C1(Ωd)

≤ Cd
(
τ2m−1 + hk+1/2 + δ1/2hk) Lemma 2.1,

≤ Cd
(
τ2m−1 + hk+1/2 + δ−1/2hk+1) Lemma 2.2,

≤ Cd
(
τ2m−1 + hk+1/2) Lemma 2.3.

The constants C and Cd in the error bounds depend on the final time T, on the boundary Γ, on
the incidental waves through ginc and on higher Sobolev norms of the exact solution (ϕ, ψ), but are
crucially independent of h,n and τ. As indicated by the index, Cd additionally depends on the distance
d. In particular, for the impedance operators (1.4)–(1.7), both C and Cd are independent of the small
parameter δ.

Proof. The proof is separated into three parts (a)–(c), starting from analyzing the time-harmonic
space discretization, extending these results to the time-dependent space discretization and fi-
nally showing the stated bounds for the time-dependent full discretization. In order to simplify
the presentation, we reduce the present the arguments for the thin-layer boundary condition,
with the corresponding functional analytic setting of Lemma 2.1.

(a) (Discretized time-harmonic boundary integral equation). Consider the time-harmonic bound-
ary integral equation (2.37), for Re s ≥ σ > σ0 ≥ 0. The spatially discrete solution operator
of the time-harmonic boundary integral equation, which maps ĝ 7→ (ϕ̂h, ψ̂h), is denoted by
Lh(s) : V ′ → Xh ×Vh and defined by the Galerkin approximation in Xh ×Vh〈(

υh
ξh

)
, A(s)

(
ϕ̂h
ψ̂h

)〉
Γ
= 〈υh, ĝ〉Γ ∀ (υh, ξh) ∈ Xh ×Vh. (2.69)

By the bound of A(s) in Lemma 2.9, the coercivity estimate of Lemma 2.10 and the Lax–
Milgram Lemma, we obtain the bound

‖Lh(s)‖Xh×Vh←V′ ≤
1
cσ

|s|2
Re s

. (2.70)

Additionally, consider the Ritz projection associated to the bilinear form on the left-hand side,
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denoted by Rh(s) : H−1/2(Γ)×V → Xh ×Vh. This operator projects the boundary densities
(ϕ̂, ψ̂) ∈ H−1/2(Γ)×V into the boundary element space (ϕ̂h, ψ̂h) ∈ Xh × Vh and is defined by
the formulation〈(

υh
ξh

)
, A(s)

(
ϕ̂h
ψ̂h

)〉
Γ
=

〈(
υh
ξh

)
, A(s)

(
ϕ̂

ψ̂

)〉
Γ

∀ (υh, ξh) ∈ Xh ×Vh.

By employing the bounds Lemmas 2.9 and 2.10 on A(s) and applying the Lax–Milgram Lemma,
we obtain that the above problem is well-posed. Applying Céa’s Lemma further yields an esti-
mate of the projection error in terms of the approximation properties of the underlying bound-
ary element space∥∥∥∥(ϕ̂h

ψ̂h

)
−
(

ϕ̂

ψ̂

)∥∥∥∥
H−1/2(Γ)×V

≤ Cσ|s|4
cσ(Re s)2 inf

(υh,ξh)∈Xh×Vh

∥∥∥∥(υh
ξh

)
−
(

ϕ̂

ψ̂

)∥∥∥∥
H−1/2(Γ)×V

.

The best-approximation on the right-hand side is the subject of Lemma 2.14 and applying the
bounds therein shows that the associated error operator

Eh(s) = Rh(s)− Id

is a bounded operator from Hk+1(Γ)2 to V Γ × XΓ that fulfills, for Re s ≥ σ > σ0 ≥ 0,

‖Eh(s)‖H−1/2(Γ)×V←Hk+1(Γ)2 ≤ C̃σ
|s|4

(Re s)2

(
hk+1/2 + δ1/2hk

)
. (2.71)

(b) (Error of the spatial semi-discretization). We turn our attention towards the spatial semi-
discretization of the time-dependent boundary integral equation (2.52), which reads〈(

υh
ξh

)
, A(∂t)

(
ϕh
ψh

)〉
Γ
= 〈υh, ginc〉Γ ∀ (υh, ξh) ∈ Xh ×Vh. (2.72)

The unique solution of the above system is characterized directly by the discussed operators
transferred to the time domain, namely it holds that(

ϕh
ψh

)
= Lh(∂t)ginc = Rh(∂t)

(
ϕ
ψ

)
,

where (ϕ, ψ)> = A−1(∂t)(ginc, 0)> is the solution to the fully continuous boundary integral
equation (2.52). We collect the potential operators and their sign structure from the representa-
tion formulas in a block operator, which is denoted by

W(s) =
(

sS(s) sD(s)
∇D(s) ∇S(s),

)
and set

Uh(s) =W(s)Lh(s) : V ′ → H1(Ω)× H(div, Ω). (2.73)
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2.7. Full discretization

Employing the established bounds of the operatorsW(s) and Lh(s), namely the bounds from
Lemma 2.5 and (2.70), imply the bound

‖Uh(s)‖H1(Ω)×H(div,Ω)←V′ ≤ C̄σ
|s|4

(Re s)2 . (2.74)

The temporal convolution operator Uh(∂t) is therefore well-defined and extends to a bounded
operator via (A.3). Consequently, the spatial semi-discretization of the scattering problem is
characterized by the evaluation of this operator on the right-hand side, namely(

ph
vh

)
= Uh(∂t)ginc.

By employing the analogous identity for the fully continuous densities (2.61), its error is rewrit-
ten as (

ph
vh

)
−
(

p
v

)
= Uh(∂t)ginc −U (∂t)ginc =W(∂t)

(
ϕh
ψh

)
−W(∂t)

(
ϕ
ψ

)
=W(∂t)(Rh − Id)

(
ϕ
ψ

)
=W(∂t) Eh(∂t)

(
ϕ
ψ

)
.

Using the bounds of Lemma 2.5 for the complete potential operatorW(s), the bound (2.71)
for the error operator Eh(s), in combination with (A.3) (with κ = 2 and κ = 4 respectively)
yields that their time-dependent counterparts extend to well-posed bounded operators on the
spaces stated there. Further using the embedding H1(0, T; H) ⊂ C([0, T], H), which holds for
any Hilbert space H, we obtain the following error bound for the spatial semi-discretization

max
0≤t≤T

∥∥∥∥(ph(t)
vh(t)

)
−
(

p(t)
v(t)

)∥∥∥∥
H1(Ω)×H(div,Ω)

≤ C
∥∥∥∥(ph

vh

)
−
(

p
v

)∥∥∥∥
H1

0(0,T;H1(Ω)×H(div,Ω))

(2.75)

≤ cT

∥∥∥∥Eh(∂t)

(
ϕ
ψ

)∥∥∥∥
H3

0 (0,T;Xh×Vh)

≤ CT

(
hk+1/2 + δ1/2hk

) ∥∥∥∥(ϕ
ψ

)∥∥∥∥
H7

0 (0,T;Hk+1(Γ)2)

. (2.76)

Repeating the argument with the pointwise bounds away from the boundary given by Lem-
mas 2.11 and 2.12 instead of Lemma 2.5, yields the analogous result

max
0≤t≤T

∥∥∥∥(ph(t)
vh(t)

)
−
(

p(t)
v(t)

)∥∥∥∥
C1(Ωd)×C1(Ωd)

≤ CT

(
hk+1/2 + δ1/2hk

) ∥∥∥∥(ϕ
ψ

)∥∥∥∥
H8

0 (0,T;Hk+1(Γ)2)

.
(2.77)

An identical bound holds for any point evaluation x ∈ Ω.
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(c) (Error of the full discretization). We decompose the total error into the differences(
pn

h
vn

h

)
−
(

pn

vn

)
+

(
pn

vn

)
−
(

p(tn)
v(tn)

)
.

The second summand of the above expression is the error of the temporal semi-discretization,
bounded by the stated orders in their respective norms in Proposition 2.3. Our focus is therefore
on the first difference, which is rewritten by the operators introduced in the first part of this
proof via

W(∂τ
t )Eh(∂

τ
t )

(
ϕ
ψ

)
=

(
W(∂τ

t )Eh(∂
τ
t )

(
ϕ
ψ

)
−W(∂t)Eh(∂t)

(
ϕ
ψ

))
+ W(∂t)Eh(∂t)

(
ϕ
ψ

)
.

The summand in the last row is the error of the spatial semi-discretization and therefore bounded
in the part (b) by (2.75).

The remaining difference written on the right-hand side is a defect due to the convolution
quadrature method, which is accessible by the general approximation result of Lemma B.1. The
established bounds onW(s)Eh(s) ensure that the approximation property of Lemma B.1 holds
with the constants Mσ ≤ Cσhk+1, κ = 6 and ν = 3.

Choosing q = 2 and r = 10 > 2q − 1 + κ, gives a convergence in time of order min(2q −
1, q + 1 − κ + ν) = q − 2 = 0. The error term is therefore shown to be of the overall order
O(hk+1/2 + δ1/2hk) in the H1(Ω)× H(div, Ω)-norm. Combining the defects yields overall the
stated O(τm−1/2 + hk+1/2 + δ1/2hk) error bound in the H1(Ω)× H(div, Ω) norm.

We turn our attention towards the full-order error bound away from the boundary. To derive
full-order error bounds for points away from the boundary, we rewrite the total error by(

pn
h

vn
h

)
−
(

ph(tn)
vh(tn)

)
+

(
ph(tn)
vh(tn)

)
−
(

p(tn)
v(tn)

)
.

Contrasting the argument structure before, the second difference is now the error of the spatial
semi-discretization studied in part (b). The remaining first difference is a convolution quadra-
ture defect for the transfer operator Uh(s) of (2.73). For points away from the boundary, this
operator decays exponentially in terms of the real part of s, which leads to favourable conver-
gence properties of the convolution quadrature scheme. In particular, stronger convergence
bounds are obtained by rewriting the remaining error as(

pn
h

vn
h

)
−
(

ph(tn)
vh(tn)

)
=
[(

Uh(∂
τ
t )ginc)n−1

]
m
−Uh(∂t)ginc(tn),

which is bounded by the full classical order through Lemma B.1, by employing the exponen-
tially decaying bounds from Lemmas 2.11–2.13.
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2.7. Full discretization

The proof of the above theorem further implies the following corollary, in which a conver-
gence result is formulated for the boundary densities, namely the boundary data of the numer-
ical solution. The concrete result is given by following the arguments of the previous proof,
where the complete operator (2.73) simplifies to Lh(s).

Corollary 2.1. Consider the setting and assumptions of Theorem 2.3. The following error bounds hold
for the approximations ϕn

h =
[
(ϕτ

h)
n−1]

m and ψn
h =

[
(ψτ

h )
n−1]

m in time and space at tn = nτ ∈ [0, T]∥∥∥∥(ϕn
h − ϕ(tn)

ψn
h − ψ(tn)

)∥∥∥∥
H−1/2(Γ)×V

≤ C
(
τm + hk+1/2 + δ1/2hk) Lemma 2.1,

≤ C
(
τm + hk+1/2 + δ−1/2hk+1) Lemma 2.2,

≤ C
(
τm + hk+1/2) Lemma 2.3.

The constant C in the error bounds depend on the final time T, on the boundary Γ, on the incidental
waves through ginc and on higher Sobolev norms of the exact solution (ϕ, ψ), but are independent of h,n
and τ. For the transfer operators (1.4)–(1.7), C is independent of the small parameter δ.

Remark 2.7.1 (Convergence of the inverted formulation for strongly absorbing boundary con-
ditions). For the strongly absorbing boundary condition of Lemma 2.2, the convergence results predict
an unfavourable dependence on the parameter δ for the numerical approximation defined through the
full discretized boundary integral equation (2.66). This difficulty is circumvented by instead using the
full discretization of the inverted formulation as sketched in Section 2.4.2 in the time-harmonic domain,
whose temporal full discretization reads〈(

υh
ξh

)
, A−(∂τ

t )

(
ϕτ,h
−

ψτ,h
−

)〉
Γ

= 〈υh, ginc
− 〉Γ for all (υh, ξh) ∈ (Xh ×Vh)

m, (2.78)

where A−(s) : V × H1/2(Γ)→ V ′ × H−1/2(Γ) is the operator family described in (2.48), with Z(s) =
δ−1s1/2. Following the proof of Theorem 2.3, in particular with the bound (2.50), then analogously gives
the following result, in the setting and under the assumptions of Theorem 2.3.

The numerical approximations obtained by inserting (ϕτ,h
− , ψτ,h

− ) into the discrete representation for-
mulas (2.67)–(2.68) are denoted by pn,h

− =
[
(pτ,h
− )n−1]

m and vn,h
− =

[
(vτ,h
−
]

m at the time tn = nτ ∈
[0, T]. Then, in the case of the transfer operator described in Lemma 2.2 corresponding to the boundary
condition (1.6), we have the following error bound∥∥∥∥∥

(
pn,h
− − p(tn)

vn,h
− − v(tn)

)∥∥∥∥∥
H1(Ω)×H(div,Ω)

≤ C
(
τm−1/2 + hk+1/2).

As before, for the domain Ωd = {x ∈ Ω : dist(x, Γ) > d} with d > 0, a corresponding bound of the

51



Chapter 2. Acoustic scattering from GIBCs

full classical order 2m− 1 in time holds:∥∥∥∥∥
(

pn,h
− − p(tn)

vn,h
− − v(tn)

)∥∥∥∥∥
H1(Ωd)×H(div,Ωd)

+

∥∥∥∥∥
(

pn,h
− − p(tn)

vn,h
− − v(tn)

)∥∥∥∥∥
C1(Ωd)×C1(Ωd)

≤ Cd
(
τ2m−1 + hk+1/2).

The constants C and Cd are subject to the same dependencies as the error constants in Theorem 2.3 and
crucially independent of the parameter δ.

2.8. Numerical experiments

We conclude our investigations into the acoustic scattering with some practical computations.
All numerical experiments in this section were conducted using continuous piecewise linear
boundary element functions for Vh and discontinuous piecewise constant boundary element
functions for Xh. For the time discretization, the convolution quadrature method based on
the Radau-IIA Runge–Kutta method with 2- and 3-stages is used. With these choices, the ex-
periments of the original work [15], which were conducted with multistep based convolution
quadratures and a coupling of continuous linear elements, are repeated here. The convolution
quadrature weights are approximated via the trapezoidal rule over a complex contour, as dis-
cussed in the original paper [51] and in C.10. The boundary integral operators are realized by
the C++ library Bempp (see [68]), which provides a Python interface. The implementation that
has been used for these experiments is available under [56].

2.8.1. Spherically symmetric scattering: an example with an accurate reference
solution

We begin with the scattering from a sphere, namely we choose Ω to be the exterior of the
unit sphere. The interaction of a spherically symmetric incident wave pinc, given through the
expression

pinc(x, t) =
e−5(|x|−(3−t))2

|x| ,

is observed on the time interval [0, 4]. Constant functions on the sphere are eigenfunctions of
all the boundary operators and are further eigenfunctions of the time-harmonic transfer oper-
ators described in Lemmas 2.1–2.3. Consequently, the scattered wave p and the corresponding
boundary densities (ϕ, ψ) is therefore constant on the unit sphere, i.e. itself spherically sym-
metric. The relation between the traces of scattered field on the boundary Γ and evaluations of
p in the domain Ω then simplifies to the identity

p(x, t) =
1
|x| p(y, t− (|x| − 1)) =

1
|x|ψ(y, t− (|x| − 1)), for all |y| = 1. (2.79)
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2.8. Numerical experiments

Furthermore, the boundary integral equation (2.52) simplifies in this fully spherically symmet-
ric case. Through eliminating ϕ in (2.52) we obtain

(L(∂t) + Z(∂t))ψ = −Z(∂t)pinc + γνvinc, (2.80)

where the operator in the first summand is, up to a differentiation in time, the temporal exterior
Dirichlet-to-Neumann operator. The corresponding operator family in the frequency domain
is therefore the scaled exterior Dirichlet-to-Neumann operator, namely

L(s) = W(s)− (
1
2

I − KT(s))V(s)−1(
1
2

I − K(s)) = −s−1DtN(s). (2.81)

Since this operator is a composition of the boundary operators, constant functions remain
eigenfunctions of this operator family. Moreover, the corresponding eigenvalue is given by

L(s)ψ̂ =

(
1 +

1
s

)
ψ̂. (2.82)

More details on spherical harmonics for the boundary operators associated with the Helmholtz
problem are found in [54]. With this identity, the boundary integral equation (2.80) simplifies to
a temporal convolution equation, which is computationally cheap to solve with a fine time step
size. For the present computation, a reference density ψref was computed with N = 214 steps by
employing the convolution quadrature method based on the 3-stage Radau IIA Runge–Kutta
method. The reference solution is then evaluated at an arbitrary point P ∈ Ω away from the
sphere through (2.79). As the boundary condition, we employ the strongly absorbing boundary
condition (1.7), with δ = 10−2.

Since pointwise error bounds are predicted by Theorem 2.3, the numerical approximations
are compared to the reference solution away from the boundary, which was set to P = (2, 0, 0)
for our computations. The error computed here is the maximum error in time, namely

max
0≤n≤N

∣∣∣pτ
h (P, tn)− pref (P, tn)

∣∣∣ .

Mutually fixing h and τ respectively then gives the convergence plots of Figures 2.1–2.2, by
varying the mesh sizes hj = 2−j for j = 0, ..., 4 and the number of time steps Nj = 2j for
j = 4, ..., 11. As the time discretization, the convolution quadrature method based on the 2-
stage Radau IIA Runge–Kutta method is employed.

Throughout the thesis, the effects of boundary approximation are neglected. Despite these
additional pertubations in the numerical scheme, the predicted convergence rates of Theo-
rem 2.3 accurately describe the error behaviour of the method, indicating that the neglected
error terms are of higher order. For small τ and h, the error curves flatten out as expected,
since the space- or time-discretization error respectively becomes the leading part in the full
discretization error.
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The formulation of the inverted boundary condition (2.78)

The convergence plots were repeated for to the inverted formulation of the boundary integral
equation, as described in Remark 2.7.1. All parameters have been chosen to coincide with
the previous experiments, to compare the two schemes (2.66) and (2.78). The small parameter
δ = 10−2 has an unfavourable dependence on the error bounds of the numerical approximation
defined by (2.66) and a favourable dependence on the error bounds of the numerical approx-
imation defined by (2.78). This numerical experiment reveals that the methods are practically
identical, as their convergence plots Figures 2.3–2.4 essentially coincide with the original con-
vergence plots in Figures 2.1–2.2. The unfavourable dependence with respect to δ in the error
bounds for the strongly absorbing boundary conditions (1.6)–(1.7) therefore seems to be an ar-
tifact of the analysis and not an inherent property of the method, at least in the present setting.

2.8.2. Scattering of a plane wave from a halfpipe for different boundary conditions

Consider a halfpipe shape with a length of 1, a width of 0.5 and a height of 0.5 (as seen from
above in Figures 2.5–2.6), embedded in a homogeneous medium. An incoming planar wave,
initially almost vanishing on the boundary, traverses the free space and interacts with the
boundary condition enforced at the scatterer. The present computations are conducted with
the closed form of the planar incoming wave

pinc(x, t) = e−100(x·a−(t−t0))
2
,

where the parameters t0 = 1 and a = (0,−1, 0) are chosen. The interaction of the wave with
the scatterer is then observed until the final time T = 5.

Three different generalized impedance boundary conditions are employed at the surface and
visualized in the columns of Figure 2.5–2.6:

• The thin-layer boundary condition (1.4) with δ = 0.1

• The strongly absorbing boundary condition (1.6) with δ = 0.1

• The acoustic boundary condition (1.8) with m = α = k = 1

The surface of the scatterer is approximated by a triangulation containing around 103 nodes,
on which the same boundary element spaces as in the previous experiment are employed. For
the time discretization, the convolution quadrature method based on the 3-stage Radau IIA
Runge–Kutta multistage method is used with N = 200 steps.
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Figure 2.1.: Time convergence plot for the full discretization (2.66) with the 2-stage Radau IIA
Runge–Kutta method.

Figure 2.2.: Space convergence plot for the full discretization (2.66), based on the boundary el-
ement method with piecewise linear continuous boundary elements and piecewise
constant discontinuous boundary elements.
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2.8. Numerical experiments

Figure 2.3.: Time convergence plot for the alternative full discretization (2.78), based on the 2-
stage Radau IIA Runge–Kutta method.

Figure 2.4.: Space convergence plot for the alternative full discretization (2.78), based on the
boundary element method with piecewise linear continuous boundary elements
and piecewise constant discontinuous boundary elements.
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Figure 2.5.: Several boundary conditions, employed at the described halfpipe scatterer, interact
with an incoming plane wave. Shown is the plane x3 = 0.25, the middle of the
scatterer, at several time points.
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2.8. Numerical experiments

Figure 2.6.: Several boundary conditions, employed at the described halfpipe scatterer, interact
with an incoming plane wave. Shown is the plane x3 = 0.25, the middle of the
scatterer, at several time points.
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3. Electromagnetic scattering from generalized
impedance boundary conditions

Electromagnetic scattering theory is a natural topic of interest, as a large class of practical appli-
cations fo the theory of wave scattering is found in the context of electromagnetic phenomena.
The sections of this chapter are set up in parallel to the previous chapter to highlight the sim-
ilarities of acoustic and electromagnetic phenomena. Technical details and proofs vary, but
nevertheless lead to several analogous theorems, through which the qualitative similarity of
the phenomena will become apparent.

A fitting point to start this chapter is the problem setting, formulated in its strong form.
Let

(
Einc, H inc) be an incidental electromagnetic wave, which is assumed to solve the time-

dependent Maxwell’s equations on R3. The initial support of the incidental wave is assumed
to be away from the boundary Γ and fully in the exterior domain Ω. The objective of this chap-
ter is to compute and investigate the scattered fields E = Etot − Einc and H = Htot − H inc,
which together are an outgoing solution to Maxwell’s equations and ensure that the total elec-
tromagnetic fields fulfill the specified boundary conditions. The electric field E and the magnetic
field H therefore solve the following initial boundary value problem of Maxwell’s equations:

∂tE− curl H = 0 in Ω, (3.1)
∂tH + curl E = 0 in Ω, (3.2)

ET + Z(∂t) (H × ν) = ginc on Γ, (3.3)

where the tangential component of the electric field E is denoted by ET, and given through the
expression ET = (I − νν>)E = −(E× ν)× ν. The right-hand side on the boundary condition
is completely determined by the incident waves and takes the form

ginc = −
(
Einc

T + Z(∂t)(H inc × ν)
)

on Γ. (3.4)

Since the initial support of the incidental waves is away from the boundary, we further impose
vanishing initial values at t = 0 in Ω for the electromagnetic scattered fields E and H.
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3.1. Tangential trace, trace space XΓ and a further Hilbert space
V Γ ⊂ XΓ

The tangential trace is the key quantity in the electromagnetic boundary conditions of interest
and defined, for a continuous vector field v : Ω→ C3, by the expression

γTv = v|Γ × ν on Γ,

where the exterior unit surface normal is denoted by ν and is pointing into the exterior do-
main Ω. The field v|Γ can either be understood as the restriction of the field v to the bound-
ary Γ, or its tangential component, which is given by projecting v into the tangent space via
vT = (I − νν>)v|Γ = −(γTv)× ν.

A key identity of the present analysis is Green’s formula for the curl operator. For sufficiently
regular vector fields u, v : Ω→ C3, it reads∫

Ω

(
curl u · v− u · curl v

)
dx =

∫
Γ
(γTu× ν) · γTv dx, (3.5)

where the dot · denotes again the Euclidean inner product (1.1). The right-hand side in this for-
mulation is already slightly rewritten from the original Green’s formula (compare for example
in contrast [26, Section 2.1]), which is attributed to the identity∫

Γ
(γTu× ν) · γTv dx =

∫
Γ
(u|Γ × ν) · v|Γ dx.

A rigorous definition for Green’s formula on Lipschitz domains is given and derived in [24]. Ei-
ther way, the right-hand side of Green’s formula for the curl operator defines a skew-hermitian
sesquilinear form for continuous tangential vector fields on the boundary, which is denoted for
φ, ψ : Γ→ C3 by

[φ, ψ]Γ =
∫

Γ
(φ× ν) ·ψ dx. (3.6)

We turn our attention towards the functional analytic setting of the tangential trace operator
γT. The natural Sobolev space describing the spatial regularity of electromagnetic fields in the
domain Ω is H(curl, Ω), namely

H(curl, Ω) = {v ∈ L2(Ω) : curl v ∈ L2(Ω)}.

The tangential trace extends to a continuous operator from H(curl, Ω) into an appropriate trace
space XΓ. This Hilbert space, which is also referred to as the proper trace space, is equipped
with an appropriate norm ‖ · ‖XΓ .

In the following, the definition of this space is roughly sketched, following the original works
from Alonso & Valli [2] for smooth domains and Buffa, Costabel & Sheen [25] for Lipschitz
domains. We further refer the reader to the surveys [26, Sect. 2.2] and [54, Sect. 5.4].
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3.1. Tangential trace, trace space XΓ and a further Hilbert space V Γ ⊂ XΓ

For the real positive order r ≥ 0, we define the Hilbert space

Hr
×(Γ) = γT

(
Hr+1/2(Ω)

)
.

These spaces are subspaces of the tangential L2(Γ) space, which is defined by

L2
T(Γ) =

{
φ ∈ L2(Γ) | φ · ν = 0

}
.

This space, equipped with its natural scalar product (·, ·)Γ, serve an appropriate pivot space,
such that with the dense embedding Hr

×(Γ) ⊂ L2
T(Γ), we have the set of inclusions

Hr
×(Γ) ⊂ L2

T(Γ) ⊂ H−r
× (Γ),

where H−r
× (Γ) denotes the dual space to Hr

×(Γ), where the dual pairing is chosen to coincide
with the scalar product installed on the pivot space L2

T(Γ). Finally, we have the necessary
spaces in place to give a definition of the proper trace space, which reads

XΓ = {φ ∈ H−1/2
× (Γ) | divΓφ ∈ H−1/2(Γ)}.

The norms associated to the spaces Hr
×(Γ) are rather convoluted and their specific forms do not

enter in our analysis. For curvilinear polyhedra, a specific form of the norm ‖·‖H1/2
×

has been
given in [24]. Nevertheless, the associated norm to the trace space enters in the analysis and
is denoted by ‖·‖XΓ

. Subsequent sections naturally yield computationally useful characteriza-
tions of this norm, by leveraging boundary operators arising in the context of time-harmonic
Maxwell’s equations.

With this notation in place, the tangential trace extends to a bounded surjective operator (see
[25, Theorem 4.1])

γT : H(curl, Ω)→ XΓ.

The anti-symmetric pairing (3.6) extends to a non-degenerate continuous bilinear form on the
trace space XΓ, which renders it to be its own dual [23, Theorem 2]. In other words, the dual of
XΓ is itself, with the skew-symmetric form acting as the dual pairing.

A further Hilbert space is required for the treatment of the generalized impedance boundary
conditions, which must be reconciled with the above setting of traces of Maxwell’s equations.
Consider the dense subspace of the trace space V Γ ⊂ XΓ, assumed to be equipped with a
(semi-)norm |·|V Γ

, which naturally equips the space with the full norm

‖φ‖2
V Γ

= ‖φ‖2
XΓ

+ |φ|2V Γ
. (3.7)

3.1.1. Setting of the impedance operator

The subspace V Γ is tailored to the impedance operator, such that the underlying analytic fam-
ily of time-harmonic impedance operators Z(s) extends to linear operators on these spaces. In
particular, the operator norm of the weakly formulated impedance operator must be polyno-
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mially bounded in terms of the frequency in the following way: for every positive σ > 0, there
exists a positive constant Cσ < ∞ , such that

‖Z(s)‖V Γ
′←V Γ

≤ Cσ |s|κ , Re s ≥ σ > 0. (3.8)

Throughout this chapter we always have κ ≤ 1, and for convenience we assume this (inessen-
tial) bound of κ in the following. The operator family Z is assumed to be of positive type: for
every σ > σ0 ≥ 0, there exists cσ > 0 such that the following bound from below holds

Re〈φ, Z(s)φ〉Γ ≥ cσ Re s
∣∣s−1φ

∣∣2
V Γ

for all φ ∈ V Γ and Re s ≥ σ > σ0, (3.9)

where the anti-duality between V Γ and V Γ
′ is the extended L2-pairing and denoted by 〈·, ·〉Γ.

The conditions imposed here are very close to the setting of the acoustic impedance operator
discussed in the previous chapter.

3.2. The impedance operators (1.13)–(1.16)

The impedance operators formulated in the introduction are special cases of the abstract frame-
work above, which is shown in the following lemmas.

In addition to the Sobolev space of tangential, square integrable vector fields L2
T(Γ), we in-

troduce the additional vector space

H(divΓ, Γ) = {φ ∈ L2
T(Γ) : divΓ φ ∈ L2(Γ)}.

Lemma 3.1 (Thin coating). The impedance operator is well-posed and positive on the space

V Γ = XΓ ∩ H(divΓ, Γ),

which is equipped with the following δ-dependent semi-norm

|φ|2V Γ
= δ

(
‖φ‖2

L2(Γ) + ‖divΓ φ‖2
L2(Γ)

)
.

The above expression is a complete norm, but the semi-norm notation is nevertheless used to differentiate
the term from the full norm, as defined via (3.7). The impedance operator Z(s) : V Γ → V Γ

′ correspond-
ing to the thin layer boundary conditions (1.13) and (1.14) then satisfy the bound (3.8) with κ = 1
and the positivity condition (3.9), with Cσ and cσ > 0 independent of the small parameter δ. For the
second-order boundary condition (1.14), the expressions 1 + δ (H− C) and 1− δH are assumed to be
bounded from below by a positive constant, which is always achieved for small enough δ on sufficiently
regular boundaries Γ. With this assumption, we further have σ0 = 0 in the positivity assumption (3.9).

Proof. We restrict the proof to (1.13), as the extension to (1.14) is straightforward. The physical
constants describing the material of the thin layer εδ and µδ are assumed to be positive and
constant on the whole boundary. To simplify the terms in this proof, we simply show the
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3.2. The impedance operators (1.13)–(1.16)

stated properties for the transfer operator

Z(s) = δ
(
s− s−1∇Γ divΓ

)
,

where the material constants have been set to one. The anti-duality between V Γ and V Γ
′ is

obtained by testing the above expression by some test function of appropriate regularity in the
L2-pairing and applying Green’s formula. Consequently, the anti-duality is to be understood
as follows: for φ, ψ ∈ V Γ we write

〈φ, Z(s)ψ〉Γ = δs
(
φ, ψ

)
Γ + δs−1(divΓ φ, divΓ ψ

)
Γ, (3.10)

where the round brackets denote the L2 inner product on the surface, taken anti-linear in the
first argument. This expression fulfills, with the notation m(|s|) = max(|s|, |s|−1), the following
chain of estimates

|〈φ, Z(s)ψ〉Γ| ≤ m(|s|) δ
(
‖φ‖L2(Γ) ‖ψ‖L2(Γ) + ‖divΓ φ‖L2(Γ) ‖divΓ ψ‖L2(Γ)

)
≤ m(|s|) δ

(
‖φ‖L2(Γ) + ‖divΓ φ‖L2(Γ)

)(
‖ψ‖L2(Γ) + ‖divΓ ψ‖L2(Γ)

)
≤ 2 m(|s|) |φ|V Γ |ψ|V Γ

≤ 2 m(|s|) ‖φ‖V Γ ‖ψ‖V Γ .

In particular, we obtain the polynomial bound (3.8) with κ = 1. Furthermore, by setting φ = ψ
and for all Re s ≥ σ > 0, we obtain the following bound from below

Re〈φ, Z(s)φ〉Γ = δ (Re s) ‖φ‖2
L2(Γ) + δ

Re s
|s|2 ‖divΓ φ‖2

L2(Γ)

≥ δ(Re s)σ2‖s−1φ‖2
L2(Γ) + δ(Re s)‖s−1 divΓ φ‖2

L2(Γ)

≥ min(σ2, 1) (Re s) |s−1φ|2V Γ
,

which yields (3.9).

Lemma 3.2 (Highly conductive obstacle). By setting V Γ = XΓ ∩ L2(Γ) and, in (3.7), the weighted
norm

|φ|2V Γ
= δ‖φ‖2

L2(Γ),

the impedance operators (1.15) and (1.16) become well-posed operators Z(s) : V Γ → V Γ
′ for Re s > 0,

which further satisfy the bound (3.8) with κ = 1/2 and the positivity condition (3.9), with Mσ and
cσ > 0 independent of the small parameter δ. In the case of (1.15), we further have σ0 = 0 in the
positivity property (3.9). For (1.16), the positivity of (3.9) is still obtained with σ0 = max(0, 2µδCΓ)

2,
with the constant CΓ = supx∈Γ(H(x)− C(x)), which is finite for sufficiently regular Γ.

Proof. We restrict the presentation of the result to the first-order boundary condition (1.15), as
the proof for (1.16) is a straightforward extension. In that case, the transfer operator is

Z(s) = δ s1/2,

65



Chapter 3. Electromagnetic scattering from GIBCs

for which the anti-duality between V Γ and V Γ
′ is defined for φ, ψ ∈ V Γ, as the weighted L2-

pairing
〈φ, Z(s)ψ〉Γ = δs1/2(φ, ψ

)
Γ. (3.11)

As a direct consequence of the Cauchy–Schwarz inequality, we obtain

|〈φ, Z(s)φ〉Γ| ≤ |s|1/2‖φ‖V Γ ‖φ‖V Γ ,

which gives the polynomial bound (3.8) with the order κ = 1/2. The positivity is directly
obtained by the following chain of inequalities from below, which for Re s ≥ σ > 0 read

Re〈φ, Z(s)φ〉Γ ≥ δ(Re s1/2) ‖φ‖2
L2(Γ) ≥ σ3/2(Re s)|s−1φ|2V Γ

,

which yields (3.9).
The polynomial bound for (1.16) follows in the same way as before. For the positivity, we

use the estimate

Re〈φ, Z(s)φ〉Γ = Re
(

δs1/2(φ, φ
)

Γ − δ2µ
(
φ, (H− C)φ

)
Γ

)
≥ Re

(
s1/2 − δµCΓ

)
|s|2 |s−1φ|2V Γ

≥ Re s
σ3/2

2
|s−1φ|2V Γ

,

where the last inequality holds for Re s1/2 ≥ 2δµCΓ, with the constant CΓ purely determined by
the boundary through CΓ = supx∈Γ(H(x)− C(x)). This assumptions alway holds, under the
condition Re s ≥ σ0 = max(0, 2µδCΓ)

2.

3.2.1. Weak formulation of the generalized impedance boundary condition

The choice of the anti-duality is not as clear as in the acoustic context. We clarify the role
of the two dual pairings, respectively on XΓ and V Γ, by deriving a weak formulation of the
boundary condition (3.3). Assuming sufficient regularity of the boundary traces and taking the
L2(Γ) inner product (·, ·)Γ with an arbitrary continuous tangential vector field φ on Γ, yields
the intermediate formulation

(φ, ET)Γ + (φ, Z(∂t)γT H)Γ = (φ, ginc)Γ. (3.12)

In the following, we rearrange this boundary condition to purely depend on the tangential
traces of the electromagnetic fields.

For vector fields E with well-defined tangential traces, we employ the pointwise identity
ET × ν = E× ν = γTE to obtain the following identity with regards to the bilinear forms

(φ, ET)Γ = (φ× ν, ET × ν)Γ = (φ× ν, γTE)Γ = [φ, γTE]Γ,

where the right-hand side is the anti-symmetric pairing (3.6). Through the strong formulation
of the temporal convolution operator Z(∂t), which in general includes surface differential op-
erators, the analytic family of weak operator Z(s) : V Γ → V Γ

′ is constructed.
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3.3. Time-harmonic Maxwell’s equations

The duality then coincides with the L2(Γ) inner product when restricted to tangential vector
fields γT H of sufficient regularity:

〈υ, Z(∂t)γT H〉Γ = (υ, Z(∂t)γT H)Γ, υ ∈ V Γ.

The previous lemmas provided precisely this treatment for the concrete examples (1.13)–(1.16)
in (3.10) and (3.11). Analogously, the tangential vector field ginc is understood as an element in
the dual V Γ

′, by association with the following functional on V Γ

〈υ, ginc〉Γ = (υ, ginc)Γ, υ ∈ V Γ.

These identities and the tested boundary condition (3.12) yield the weak formulation of the
boundary condition (3.3): find E, H ∈ L2(0, T; H(curl, Ω)) ∩ H1(0, T; L2(Ω)), solutions to the
time-dependent Maxwell’s equations with vanishing initial conditions, such that their tangen-
tial traces γTE ∈ L2(0, T; XΓ) and γT H ∈ Hκ

0(0, T; V Γ), with κ from (3.8) fulfill for almost every
t ∈ (0, T)

[υ, γTE]Γ + 〈υ, Z(∂t)γT H〉Γ = 〈υ, ginc〉Γ for all υ ∈ V Γ. (3.13)

This weak formulation thus weakly enforces a relation between the tangential traces of the elec-
tromagnetic fields E and H. All expressions on both sides are finite under the stated regularity
assumptions on γTE, γT H and ginc.

The above formulation is well-posed in the stated regularities if ginc is sufficiently differen-
tiable in time, namely ginc ∈ H3

0(0, T; V Γ
′). In the case of general positive κ, the necessary

temporal regularity scales accordingly with ginc ∈ H2+κ
0 (0, T; V Γ

′). The subsequent two sec-
tions will be devoted to proof a well-posedness and stability result in the stated Hilbert spaces.
Techniques and arguments that are developed in the process of the stability analysis will later
be crucial in the analysis of the applied numerical methods.

3.3. Time-harmonic Maxwell’s equations

As before in the acoustic chapter, we will turn to the time-harmonic problem, which is struc-
turally simpler and offers valuable insights in the time-dependent problem of interest. In con-
trast to classical theory, we study a range of frequencies, in particular on a complete complex
half space.
The time-harmonic Maxwell’s equations read, for s ∈ C with Re s > 0 ,

sÊ− curl Ĥ = 0 in Ω, (3.14)

sĤ + curl Ê = 0 in Ω. (3.15)

These equations are completed with asymptotic conditions for |x| → ∞, to ensure that the scat-
tered wave is an outgoing wave. Solutions constructed through the representation formula
automatically satisfy these conditions. The imposed conditions ensure that the strong solutions
decay sufficiently fast for the fields to fulfill Ê, Ĥ ∈ H(curl, Ω).
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Chapter 3. Electromagnetic scattering from GIBCs

We shortly sketch the structure of this section. Starting from the fundamental solution and
potential operators, representation formulas for the time-harmonic Maxwell’s equations are
presented. Through these formulas, the relation between the solution fields Ê and Ĥ and their
tangential traces become apparent.

The representation formulas sit at the heart of our analysis and a series of lemmas is devoted
to thoroughly investigate their properties. Essential estimates, which are explicit in s for Re s >
0, are shown for operators in the context of the time-harmonic Maxwell’s equations.

Based on the representation formulas, boundary integral equations for the tangential traces
of Ê and Ĥ fulfilling the time-harmonic generalized impedance boundary conditions are de-
rived. Well-posedness results and s-explicit bounds are shown in appropriate norms. As a con-
sequence of the representation formulas, the time-harmonic scattering problem with the asso-
ciated generalized impedance boundary conditions is shown to be well-posed and a stability
result with s-explicit bounds is given.

These results, obtained for all frequencies on a complex half space, then yield the well-
posedness of the time-dependent scattering problem in the subsequent Section 3.5. The specific
powers from the s-explicit bounds further take a crucial role in the subsequent error analysis.

3.3.1. Recap: Potential operators and representation formulas

The following subsection describes the basic terminology and standard notions that are used in
the context of time-harmonic Maxwell’s equations. As such, these results are not original and
can be found, with more details, in the survey [26] and the reference [54]. The fundamental
solution of the time-harmonic Maxwell’s equations reads

G(s, x) =
e−s|x|

4π |x| , Re s > 0, x ∈ R3 \ {0}.

The electromagnetic single layer potential operator is denoted by S(s). Applied to a complex-
valued boundary function ϕ of sufficient regularity for the expressions to be finite, and evalu-
ated at a point x ∈ R3 \ Γ away from the boundary, it reads

S(s)ϕ(x) = −s
∫

Γ
G(s, x− y)ϕ(y)dy + s−1∇

∫
Γ

G(s, x− y)divΓ ϕ(y)dy.

The electromagnetic double layer potential operator is denoted by D(s) and is given in the same
context by

D(s)ϕ(x) = curl
∫

Γ
G(s, x− y)ϕ(y)dy.

By construction, the potential operators fulfill the relations

sS(s)− curl ◦D(s) = 0, sD(s) + curl ◦S(s) = 0. (3.16)
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3.3. Time-harmonic Maxwell’s equations

For any boundary function ϕ of appropriate regularity, the fields Ê = S(s)ϕ and Ĥ = D(s)ϕ
solve the time-harmonic Maxwell’s equations (3.14)–(3.15) on R3 \ Γ. Likewise, due to the in-
herent anti-symmetry of Maxwell’s equations, the same statement holds for the fields Ê = D(s)ϕ
and Ĥ = −S(s)ϕ. Note that without the appropriate rescaling and assumptions on ε and µ, as
discussed in the introduction, these constants would enter into the formulas above.

In the previous chapter, transmission problems were the key tool to prove significant results
for the time-harmonic problem. In the same way, this section relies heavily on electromagnetic
transmission problems, formulated on the whole space R3 \ Γ. Jumps and averages for the
tangential traces are defined as in the previous chapter by

[γT] = γ+
T − γ−T , {γT} = 1

2

(
γ+

T + γ−T
)

.

The composition of the jumps with the potential operators reveals the jump relations, which
read

[γT] ◦S(s) = 0, [γT] ◦D(s) = −Id. (3.17)

Analogously to the previous chapter, a time-harmonic transmission problem is associated to
any pair of boundary densities of appropriate regularity.

The identities (3.16) and the jump relations (3.17) imply that any given boundary densities
(ϕ̂, ψ̂) from the trace space XΓ × XΓ are associated to electromagnetic fields by

Ê = −S(s)ϕ̂+D(s)ψ̂, (3.18)

Ĥ = −D(s)ϕ̂−S(s) ψ̂, (3.19)

which are fields that solve the transmission problem

Ê− curl Ĥ = 0 in R3 \ Γ, (3.20)

Ĥ + curl Ê = 0 in R3 \ Γ, (3.21)

[γT]Ĥ = ϕ̂ , (3.22)

−[γT]Ê = ψ̂ . (3.23)

Up to this point, this section was restricted to the presentation of established operators and
identities, which hold for boundary densities of sufficient regularity. The next section provides
bounds in terms of the appropriate norms, which in particular gives a rigorous setting for the
previously defined operators.

3.3.2. Transmission problems and boundary operators

The right-hand side of the representation formula, namely the operator associated to the linear
map (ϕ̂, ψ̂) 7→ (Ê, Ĥ), extends by density to a bounded linear operator from the trace space XΓ

2

to H(curl, Ω)2. The following lemma proves this and further provides an s-explicit bound. A
related result can be found in [27, Lemma 6.4].
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Chapter 3. Electromagnetic scattering from GIBCs

Lemma 3.3. Let (ϕ̂, ψ̂) ∈ XΓ
2 be some complex-valued boundary functions in the trace space. There ex-

ist time-harmonic electromagnetic fields (Ê, Ĥ), that are defined by the representation formulas (3.18)–
(3.19), which solve the transmission problem (3.20)–(3.23) for Re s > 0 and are bounded by∥∥∥∥( Ê

Ĥ

)∥∥∥∥
H(curl,R3\Γ)2

≤ CΓ
|s|2 + 1

Re s

∥∥∥∥(ϕ̂
ψ̂

)∥∥∥∥
XΓ

2
, (3.24)

where the constant CΓ = ‖{γT}‖XΓ←H(curl,R3\Γ) is the operator norm of the tangential trace operator.

Proof. Inserting solutions of the time-harmonic Maxwell’s equations (3.14)–(3.15) into Green’s
formula (3.5)–(3.6) yields

±
[
γ±T Ĥ, γ±T Ê

]
Γ
=
∫

Ω±

(
curl Ĥ · Ê− Ĥ · curl Ê

)
dx

=
∫

Ω±

(
s̄
∣∣Ê∣∣2 + s

∣∣Ĥ∣∣2)dx. (3.25)

Note that Ω± refers to the inner and exterior domain respectively. The conjugation of the
Laplace parameter in the first summand stems from the anti-linearity of the inner product,
which has been defined via a · b = a>b on C3. Summation of these two terms yields the iden-
tity

I :=
∫

R3\Γ
s̄
∣∣Ê∣∣2 + s

∣∣Ĥ∣∣2dx =
[
γ+

T Ĥ, γ+
T Ê
]

Γ
−
[
γ−T Ĥ, γ−T Ê

]
Γ

. (3.26)

Any part of the time-harmonic electromagnetic fields can always be rewritten in terms of each
others curl, by inserting (3.20) and (3.21) respectively. Using the separation I = (1− θ)I + θI
and inserting the time-harmonic Maxwell problem in the second summand reformulates the
left-hand side to the expression

I =
∫

R3\Γ

(
(1− θ)s̄

∣∣Ê∣∣2 + θs
∣∣s−1 curl Ê

∣∣2
+ (1− θ)s

∣∣Ĥ∣∣2 + θs̄
∣∣s−1 curl Ĥ

∣∣2)dx.

Taking the real part on both sides slightly simplifies the right-hand side to

Re I = Re s
∫

R3\Γ

(
(1− θ)

∣∣Ê∣∣2 + θ |s|−2 ∣∣ curl Ê
∣∣2

+ (1− θ)
∣∣Ĥ∣∣2 + θ |s|−2 ∣∣ curl Ĥ

∣∣2)dx.

The parameter θ is free and chosen in such a way that the preceding factors of the summands
agree, which is achieved by setting 1− θ = θ|s|−2. Rearranging this requirements leads to the
choice of θ = 1/(1 + |s|−2). Inserting this particular choice of θ, yields the identity

Re I =
Re s
|s2|+ 1

(
‖Ê‖2

H(curl,R3\Γ) + ‖Ĥ‖2
H(curl,R3\Γ)

)
. (3.27)
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3.3. Time-harmonic Maxwell’s equations

In other words, the real part of the term I constitutes, up to a preceding factor, the left-hand
side of the stated bound (3.24). The real part of I is, due to the right-hand side of (3.26), also
characterized by

Re I = Re
([

γ+
T Ĥ, γ+

T Ê
]

Γ
−
[
γ−T Ĥ, γ−T Ê

]
Γ

)
.

Rewriting the right-hand side in terms of jumps and averages by summing several mixed terms
and using the transmission conditions (3.22)–(3.23) yields

Re I = Re
([

[γT]Ĥ, {γT}Ê
]

Γ
+
[
−[γT]Ê, {γT}Ĥ

]
Γ

)
(3.28)

= Re
([

ϕ̂, {γT}Ê
]

Γ
+
[
ψ̂, {γT}Ĥ

]
Γ

)
.

The self-duality of XΓ implies a Cauchy–Schwarz type inequality with the corresponding norm
and the duality pairing [·, ·]Γ. Combined with the Cauchy–Schwarz inequality on R2, this yields

Re I ≤ ‖ϕ̂‖XΓ ‖{γT}Ê‖XΓ + ‖ψ̂‖XΓ ‖{γT}Ĥ‖XΓ =

(
‖ϕ̂‖XΓ

‖ψ̂‖XΓ

)
·
(
‖{γT}Ê‖XΓ

‖{γT}Ĥ‖XΓ

)
≤
(
‖ϕ̂‖2

XΓ
+ ‖ψ̂‖2

XΓ

)1/2(
‖{γT}Ê‖2

XΓ
+ ‖{γT}Ĥ‖2

XΓ

)1/2
.

To estimate the second factor of the above expression, we intend to use the bound of the tan-
gential trace {γT} : H(curl, R3 \ Γ) → XΓ. The time-harmonic electromagnetic fields Ê and Ĥ
are in the local Sobolev space H loc(curl, R3 \ Γ) (c.f. [26]). Moreover, the tangential trace {γT}
extends to a bounded operator from H(curl, ΩΓ) to XΓ, where ΩΓ is a bounded domain large
enough to contain the boundary Γ. Hence, the left-hand side Re I is bounded and the electro-
magnetic fields are in the global Sobolev space H(curl, R3 \ Γ). With the operator norm of the
tangential average CΓ = ‖{γT}‖XΓ←H(curl,R3\Γ), the right-hand side is therefore bounded via

Re I ≤ CΓ

(
‖ϕ̂‖2

XΓ
+ ‖ψ̂‖2

XΓ

)1/2(
‖Ê‖2

H(curl,R3\Γ) + ‖Ĥ‖2
H(curl,R3\Γ)

)1/2
.

Inserting (3.27) on the left-hand side and dividing through the second factor on the right-hand
side yields the stated bound.

Setting the boundary densities in Lemma 3.3 successively to zero yields the following result.

Lemma 3.4. For s with positive real part, the electromagnetic layer potential operators extend by density
to a family of bounded linear operators from XΓ to H(curl, R3 \ Γ). The operator norms fulfill the
bounds

‖S(s)‖H(curl,R3\Γ)←XΓ
≤ CΓ

|s|2 + 1
Re s

,

‖D(s)‖H(curl,R3\Γ)←XΓ
≤ CΓ

|s|2 + 1
Re s

,

where again CΓ = ‖{γT}‖XΓ←H(curl,R3\Γ).

71



Chapter 3. Electromagnetic scattering from GIBCs

Consider the transmission problem (3.20)–(3.23), which is fulfilled by any fields defined
through the representation formulas. The unknown electromagnetic scattered fields Ê, Ĥ are
naturally only defined in the exterior domain Ω = Ω+, but can be understood as the solution
to a transmission problem by extending the fields by zero into the interior domain Ω−. Then,
their tangential jumps reduce to the exterior tangential traces. Inserting the boundary data of
the scattered fields into the representation formulas therefore recovers the scattered fields at
any point, namely it holds that

Ê = −S(s)
(
γT Ĥ

)
+D(s)

(
−γT Ê

)
in Ω, (3.29)

Ĥ = −D(s)
(
γT Ĥ

)
− S(s)

(
−γT Ê

)
in Ω. (3.30)

Our approach will therefore be, as before, to first determine the tangential traces of interest from
the boundary integral equations, and then draw conclusions on the electromagnetic fields in
the domain through the representation formulas. This approach accompanies us throughout
this thesis, in the context of time-harmonic, time-dependent and time-discrete representation
formulas.

The time-harmonic bounds of Lemma 3.3 can be improved when the solution to the trans-
mission problem is zero in one of the domains, a fact that is shown in the next lemma.

Lemma 3.5. Consider the setting of Lemma 3.3 and assume further that the interior tangential traces
of Ê and Ĥ vanish. The jumps then reduce to the boundary data, i.e. γT Ĥ = ϕ̂ and −γT Ê = ψ̂. Under
these assumptions, the bound of Lemma 3.3 is enhanced to

∥∥∥∥( Ê
Ĥ

)∥∥∥∥
H(curl,Ω)2

≤
(
|s|2 + 1
2 Re s

)1/2 ∥∥∥∥(ϕ̂
ψ̂

)∥∥∥∥
XΓ

2
.

Additionally, in terms of the weaker L2-norm we have the bound∥∥∥∥( Ê
Ĥ

)∥∥∥∥
L2(Ω)2

≤
(

1
2 Re s

)1/2 ∥∥∥∥(ϕ̂
ψ̂

)∥∥∥∥
XΓ

2
.

Proof. The proof is strictly simpler than the proof of Lemma 3.3, but some of the necessary steps
are repeated here for the convenience of the reader. Green’s formula implies∫

Ω
s̄
∣∣Ê∣∣2 + s

∣∣Ĥ∣∣2dx =
[
γ+

T Ĥ, γ+
T Ê
]

Γ
≤ ‖ϕ̂‖XΓ

∥∥ψ̂
∥∥

XΓ
. (3.31)

The L2-result is then given by taking the real part, dividing through the constant dependent on
s and applying Young’s inequality on the right-hand side. The bound for the H(curl, Ω) norm
is obtained by repeating the arguments from (3.26) to (3.27), which yields

Re s
|s2|+ 1

(
‖Ê‖2

H(curl,Ω) + ‖Ĥ‖2
H(curl,Ω)

)
= Re s

∫
Ω

∣∣Ê∣∣2 + ∣∣Ĥ∣∣2dx.
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3.3. Time-harmonic Maxwell’s equations

3.3.3. Time-harmonic boundary operators and the Calderón
operator

The composition of the tangential averages with the potential operators defines the electro-
magnetic single and double layer boundary operators, which operate on the trace space XΓ and are
defined as

V(s) = {γT} ◦S(s), K(s) = {γT} ◦D(s).

The Calderón operator is a block operator consisting of these boundary operators and has been
introduced in the present setting by [46] (note the sign correction from [58]):

C(s) =
(
−V(s) K(s)
−K(s) −V(s)

)
= {γT} ◦

(
−S(s) D(s)
−D(s) −S(s)

)
, (3.32)

where the potential block operator on the right is the representation formula (3.18)–(3.19). Con-
sider outgoing solutions of the time-harmonic Maxwell’s equations Ê, Ĥ, thus characterized by
the representation formulas. The composition of the tangential averages with the representa-
tion formulas reveals the jump relations of the Calderón operator (see (3.20)–(3.23)):

C(s)
(

[γT]Ĥ
−[γT]Ê

)
=

(
{γT}Ê
{γT}Ĥ

)
. (3.33)

Since the application of the Calderón operator can be understood as the transition from jumps
to averages, we can immediately draw conclusions on the operator through Lemma 3.3 and
even more directly through Lemma 3.4.

The following bound on the operator norm improves on previously existing time-harmonic
s-explicit bounds of the boundary operators; we refer the reader to [7, Theorem 4.4] and [46,
Lemma 2.3] for bounds of the order O(|s|2) .

Lemma 3.6. For s with positive real part, the Calderón operator is a linear operator family on the trace
space C(s) : XΓ

2 → XΓ
2 and fulfills the bound

‖C(s)‖XΓ
2←XΓ

2 ≤ C2
Γ
|s|2 + 1

Re s
, (3.34)

where the constant is the norm of the tangential average CΓ = ‖{γT}‖XΓ←H(curl,R3\Γ). The identical
bound holds for the electromagnetic single and double layer boundary operators, i.e. on the expression
‖V(s)‖XΓ←XΓ

+ ‖K(s)‖XΓ←XΓ
.

The skew-hermitian pairing [·, ·]Γ is notationally extended from XΓ × XΓ to XΓ
2× XΓ

2 in the
natural way: [(

ϕ
ψ

)
,
(

υ
ξ

)]
Γ
= [ϕ, υ]Γ + [ψ, ξ]Γ.

As was shown in [46, Lemma 3.1], the Calderón operator C(s) is positive with respect to this
extended skew-symmetric pairing [·, ·]Γ. The following lemma repeats this key property and
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Chapter 3. Electromagnetic scattering from GIBCs

gives a slightly improved formulation, with a simplified s-explicit bound and a restructured
proof.

Lemma 3.7 (essentially [46, Lemma 3.1]). The Calderón operator is of positive type, namely for
Re s > 0, the following bound holds

Re
[(

ϕ
ψ

)
, C(s)

(
ϕ
ψ

)]
Γ
≥ 1

c2
Γ

Re s
|s|2 + 1

(∥∥ϕ∥∥2
XΓ

+
∥∥ψ
∥∥2

XΓ

)
(3.35)

for all (ϕ, ψ) ∈ XΓ
2. The constant is the norm of the jump operator associated to the tangential trace,

namely cΓ = ‖[γT]‖XΓ←H(curl,R3\Γ).

Proof. Consider (ϕ̂, ψ̂) ∈ XΓ
2 and let the time-harmonic fields Ê, Ĥ ∈ H(curl, R3 \ Γ) be given

through the representation formula, therefore solving the associated transmission problem of
Lemma 3.3. The result is then given by the following chain of inequalities, taken from the proof
of [59, Lemma 3.5]∥∥∥∥(ϕ̂

ψ̂

)∥∥∥∥2

XΓ×XΓ

=

∥∥∥∥( [γT]Ĥ
−[γT]Ê

)∥∥∥∥2

XΓ×XΓ

by (3.22)–(3.23)

≤ c2
Γ

(∥∥Ĥ
∥∥2

H(curl,R3\Γ) +
∥∥Ê
∥∥2

H(curl,R3\Γ)

)
by def. of cΓ

= c2
Γ
|s|2 + 1

Re s
Re
[(

[γT]Ĥ
−[γT]Ê

)
,
(
{γT}Ê
{γT}Ĥ

)]
Γ

by (3.27)–(3.28)

= c2
Γ
|s|2 + 1

Re s
Re
[(

[γT]Ĥ
−[γT]Ê

)
, C(s)

(
[γT]Ĥ
−[γT]Ê

)]
Γ

by (3.33)

= c2
Γ
|s|2 + 1

Re s
Re
[(

ϕ̂
ψ̂

)
, C(s)

(
ϕ̂
ψ̂

)]
Γ

by (3.22)–(3.23).

3.4. Boundary integral equation for tangential traces under
time-harmonic generalized impedance boundary conditions

The previous results provide a path towards the development of well-posed and stable bound-
ary integral equations for the time-harmonic Maxwell’s equations (3.14)–(3.15) for Re s > 0.
This section is devoted to the derivation of such equations whose solutions fulfill the weak
formulation of the generalized impedance boundary condition (3.13),

[υ, γT Ê]Γ + 〈υ, Z(s)γT Ĥ〉Γ = 〈υ, ĝinc〉Γ for all υ ∈ V Γ, (3.36)

where the electromagnetic impedance Z(s) satisfies the described framework (3.8)–(3.9), and
the data ĝinc on the right-hand side is at least in V Γ

′.
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3.4. Time-harmonic boundary integral equation

Any solution of the time-harmonic Maxwell’s equations formulated on the exterior domain
Ω = Ω+ is trivially extended to the full space R3 \ Γ by extending the fields by zero inside
of the scatterer Ω−. In that sense, such solutions solve an associated transmission problem in
the form of Lemma 3.3. By construction, the inner traces of the extended fields vanish and
consequently the jumps and averages reduce to the outer boundary data.

The representation formulas then only depend on the boundary data, as in (3.29)–(3.30). As
a consequence, the jump conditions of the Calderón operator (3.33) then reduce to

C(s)
(

γT Ĥ
−γT Ê

)
=

1
2

(
γT Ê
γT Ĥ

)
. (3.37)

At this point in the previous chapter, the corresponding identity was modified by a skew-
symmetric block operator, to eliminate one of the traces on the right-hand side. Analogous to
this procedure, we rewrite the above identity by adding a symmetric block operator and arrive
at

Cimp(s)
(

γT Ĥ
−γT Ê

)
=

(
γT Ê

0

)
, Cimp(s) = C(s) +

(
0 − 1

2 Id
− 1

2 Id 0

)
. (3.38)

The following notation for the boundary densities is used in the subsequent sections

ϕ̂ = γT Ĥ, ψ̂ = −γT Ê. (3.39)

Testing both sides with test functions (υ, ξ) ∈ V Γ × XΓ yields[(
υ
ξ

)
, Cimp(s)

(
ϕ̂
ψ̂

)]
Γ
=
[
υ, γT Ê

]
Γ

.

The weak formulation of the boundary integral equation is now given by inserting the bound-
ary condition (3.36) on the right-hand side and rearranging the impedance operator to the left-
hand side.

Time-harmonic boundary integral equation: Let Re s > 0 and furthermore consider ĝinc ∈ V Γ
′.

The boundary data (ϕ̂, ψ̂) ∈ V Γ × XΓ weakly solves the time-harmonic boundary integral equations if
for all (υ, ξ) ∈ V Γ × XΓ it holds that[(

υ
ξ

)
, Cimp(s)

(
ϕ̂
ψ̂

)]
Γ
+ 〈υ, Z(s)ϕ̂〉Γ = 〈υ, ĝinc〉Γ. (3.40)

The left-hand side of the boundary integral equation is notationally compressed by the ana-
lytic operator family A(s) : V Γ × XΓ → V Γ

′ × XΓ
′, namely for all (ϕ, ψ) and (υ, ξ) ∈ V Γ × XΓ,

we define the evaluation of A(s) via〈(
υ
ξ

)
, A(s)

(
ϕ
ψ

)〉
Γ
=

[(
υ
ξ

)
, Cimp(s)

(
ϕ
ψ

)]
Γ
+ 〈υ, Z(s)ϕ〉Γ, (3.41)
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where the anti-duality between V Γ × XΓ and V Γ
′ × XΓ

′ on the left-hand side is denoted by
〈·, ·〉Γ.

With this operator family, the boundary integral equation (3.40) condenses to the following
formulation: find (ϕ̂, ψ̂) ∈ V Γ × XΓ, such that〈(

υ
ξ

)
, A(s)

(
ϕ̂
ψ̂

)〉
Γ
= 〈υ, ĝinc〉Γ for all (υ, ξ) ∈ V Γ × XΓ. (3.42)

Even more compactly, the above expression is rewritten as

A(s)
(

ϕ̂
ψ̂

)
=

(
ĝinc

0

)
. (3.43)

The operator family A(s) associated to the boundary integral equations defined by (3.41)
inherits crucial properties of the Calderón operator C(s) and the impedance operator Z(s) re-
spectively. In particular, the boundedness and positivity from Lemma 3.6–3.7 and (3.8)–(3.9) is
preserved, as described in the following two lemmas.

Lemma 3.8. For Re s ≥ σ > 0, the operator family A(s) : V Γ × XΓ → V Γ
′ × XΓ

′ defined by (3.41)
satisfies the bound

‖A(s)‖V Γ
′×XΓ

′←V Γ×XΓ
≤ Cσ

|s|2

Re s
.

The bounding constant Cσ only depends polynomially on σ−1 and on the boundary Γ via the norm of
the tangential trace operator, as well as the bounding constant of the transfer operator Z(s).

Proof. The stated bound is a direct consequence of the triangle inequality for operator norms,
applied to summands of the boundary integral operator family A(s).

The bound for the Calderón operator C(s) is provided in Lemma 3.6. The required bound
is assumed, with some κ ≤ 1, for the transfer operator in (3.8), which leaves only the identity
operators IdV Γ

′←XΓ
and IdXΓ

′←V Γ
occurring in Cimp. These operators are bounded due to the

continuous embeddings V Γ ⊂ XΓ = XΓ
′ ⊂ V Γ

′.

Lemma 3.9. The operator family A(s) fulfills the following coercivity property: for σ0 ≥ 0, the constant
of (3.9), and for any σ > σ0 there exists a constant cσ > 0 such that for all Re s ≥ σ we have the bound

Re
〈(

ϕ
ψ

)
, A(s)

(
ϕ
ψ

)〉
Γ
≥ cσ

Re s
|s|2

(∥∥ϕ∥∥2
V Γ

+
∥∥ψ
∥∥2

XΓ

)
for all (ϕ, ψ) ∈ V Γ × XΓ. The constant cσ is explicitly given by cσ = min

(
c−2

Γ , c(Z)
σ

)
, where cΓ

denotes the operator norm of the tangential trace operator and c(Z)
σ is the constant from the positivity

of the Calderón operator. Consequently, the constant cσ only depends polynomially on σ−1 and on the
boundary Γ.
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3.4. Time-harmonic boundary integral equation

Proof. The shifted Calderón operator Cimp(s) inherits the coercivity property from C(s), since
the skew-hermitian bilinear form associated with the shift fulfills

Re
[(

ϕ
ψ

)
,
(

0 Id
Id 0

)(
ϕ
ψ

)]
Γ
= Re

(
[ϕ, ψ]Γ + [ψ,ϕ]Γ

)
= 0.

The coercivity of the Calderón operator from Lemma 3.7 and the corresponding property (3.9)
of the transfer operator Z(s) then imply the stated result via

Re
〈(

ϕ
ψ

)
, A(s)

(
ϕ
ψ

)〉
Γ
= Re

[(
ϕ
ψ

)
, C(s)

(
ϕ
ψ

)]
Γ
+ Re〈ϕ, Z(s)ϕ〉Γ

≥ 1
c2

Γ

Re s
|s|2 + 1

(∥∥ϕ∥∥2
XΓ

+
∥∥ψ
∥∥2

XΓ

)
+ c(Z)

σ
Re s
|s|2

∣∣ϕ∣∣2V Γ

≥ cσ
Re s
|s|2

(∥∥ϕ∥∥2
V Γ

+
∥∥ψ
∥∥2

XΓ

)
.

Applying the previous lemmas to the boundary integral equation yields the following result.

Theorem 3.1 (Well-posedness of the time-harmonic boundary integral equation). Consider the
boundary integral equation (3.42) for some fixed Laplace parameter with Re s ≥ σ > σ0 ≥ 0. The
boundary integral equation has a unique solution (ϕ̂, ψ̂) ∈ V Γ × XΓ, which fulfills∥∥∥∥(ϕ̂

ψ̂

)∥∥∥∥
V Γ×XΓ

≤ Cσ
|s|2

Re s

∥∥∥ĝinc
∥∥∥

V Γ
′
. (3.44)

The constant Cσ is the reciprocal of the constant from Lemma 3.9 and as such, only depends polynomially
on the inverse of σ and on the boundary Γ through the norm of the tangential trace operator.

Proof. The bounds of the Lemmas 3.8 and 3.9 provide the conditions for the Lax–Milgram the-
orem, which show that A(s) is invertible and its well-posed inverse fulfills, for Re s ≥ σ > σ0,
the bound ∥∥∥A(s)−1

∥∥∥
V Γ×XΓ←V Γ

′×XΓ
′
≤ Cσ

|s|2

Re s
. (3.45)

Applying this bound to the boundary integral equation yields the stated result.

Remark 3.4.1. In order to give a more concrete bound in terms of the incidental wave, whose dependency
is described in terms of the rather abstract space V Γ

′, we remark the following alternatives.
The norms chosen in Lemma 3.1 and Lemma 3.2 fulfill the property δ1/2‖φ‖L2(Γ) ≤ ‖φ‖V Γ for all
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φ ∈ V Γ. Applying this property yields for any tangential vector field ĝinc ∈ L2(Γ) the estimate∥∥∥ĝinc
∥∥∥

V Γ
′
= sup
‖φ‖VΓ=1

〈φ, ĝinc〉Γ = sup
‖φ‖VΓ=1

(φ, ĝinc)Γ

≤ sup
‖φ‖L2(Γ)≤δ−1/2

(φ, ĝinc)Γ = δ−1/2
∥∥∥ĝinc

∥∥∥
L2(Γ)

.

Since ‖φ‖XΓ ≤ ‖φ‖V Γ for all φ ∈ V Γ we further have, provided that ĝinc is in XΓ, the direct bound∥∥∥ĝinc
∥∥∥

V Γ
′
≤
∥∥∥ĝinc

∥∥∥
XΓ

without any dependence on the small parameter δ. The assumed property ĝinc ∈ XΓ, where ĝinc is
the expression ĝinc = −Ê

inc
T − Z(s)γT Ĥ

inc
, holds for sufficiently regular fields Ê

inc
and Ĥ

inc
, for a

sufficiently smooth boundary Γ and for transfer operators Z(s) in the situations of Lemmas 3.1 and 3.2.

3.4.1. Well-posedness of time-harmonic scattering with generalized impedance
boundary conditions

Combining the above properties yields the following result.

Theorem 3.2 (Well-posedness of the time-harmonic scattering problem). Consider the time-harmonic
scattering problem (3.14)–(3.15) completed with the generalized impedance boundary condition (3.36)
for Re s ≥ σ > σ0 ≥ 0. Let Z(s) satisfy the conditions (3.8)–(3.9) and further let ĝinc ∈ V Γ

′.
(a) The time-harmonic electromagnetic scattering problem has a unique solution (Ê, Ĥ) ∈ H(curl, Ω)2

characterized by the representation formulas (3.29)–(3.30). The corresponding boundary data is iden-
tified by the unique solution to the system of boundary integral equations of Theorem 3.1, through the
identity

(ϕ̂, ψ̂) = (γT Ĥ,−γT Ê) ∈ V Γ × XΓ.

(b) The time-harmonic electromagnetic fields fulfill

‖Ê‖H(curl,Ω) + ‖Ĥ‖H(curl,Ω) ≤ Cσ
|s|3

(Re s)3/2

∥∥∥ĝinc
∥∥∥

V Γ
′
,

where the constant Cσ only depends polynomially on σ−1 and on Γ through norms of tangential trace
operator. In the case of the impedance operators (1.13)–(1.16), the constant is in particular independent
of the small parameter δ (note Remark 3.4.1).

Proof. Theorem 3.1 implies the existence of a unique solution (ϕ̂, ψ̂) ∈ V Γ×XΓ of the boundary
integral equation (3.43), which is bounded by (3.44). Employing the representation formulas
(3.18)–(3.19) yields time-harmonic fields Ê, Ĥ ∈ H(curl, R3 \ Γ), which by Lemma 3.3 solve the
transmission problem (3.20)–(3.23). Furthermore, applying (3.22)–(3.23), which relates (ϕ̂, ψ̂)
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by the fields (Ê, Ĥ), yields

Cimp(s)
(

ϕ̂
ψ̂

)
= C(s)

(
ϕ̂
ψ̂

)
− 1

2

(
ψ̂
ϕ̂

)
=

(
{γT Ê}
{γT Ĥ}

)
− 1

2

(
−[γT Ê]
[γT Ĥ]

)
=

(
γ+

T Ê
γ−T Ĥ

)
. (3.46)

Applying the above identity to the weak formulation of the boundary integral equation (3.40)
and setting the test functions mutually to zero yields[

υ, γ+
T Ê
]

Γ +
〈
υ, Z(s)ϕ̂

〉
Γ =

(
υ, ĝinc)

Γ for all υ ∈ V Γ, (3.47)[
ξ, γ−T Ĥ

]
Γ = 0 for all ξ ∈ XΓ. (3.48)

Moreover, the inner magnetic trace γ−T Ĥ vanishes, since the trace space XΓ coincides with its
own dual. Consequently, the boundary density reduces to ϕ̂ = γ+

T Ĥ, implying by (3.47) that
the pair (Ê, Ĥ)|Ω+ satisfies the generalized impedance boundary condition (3.36). Applying
Green’s formula (3.5) in the interior domain Ω− for the solutions of (3.14)–(3.15) yields∫

Ω−
s̄
∣∣Ê∣∣2 + s

∣∣Ĥ∣∣2 dx = −
∫

Γ
(γ−T Ĥ × ν) · γ−T Ê dx = 0.

Taking the real part on both sides gives Ê|Ω− = Ĥ|Ω− = 0 and consequently γ−T Ê = 0 and
ψ̂ = −γ+

T Ê. This completes the proof of part (a).
As the inner traces have been shown to vanish, we have arrived in the situation of Lemma 3.5,

which yields the stated bound of (b) in combination with the bound of Theorem 3.1.

Remark 3.4.2. Applying the L2-bound of Lemma 3.5 yields the alternative L2-bound

‖Ê‖L2(Ω) + ‖Ĥ‖L2(Ω) ≤ Cσ
|s|2

(Re s)3/2

∥∥∥ĝinc
∥∥∥

V Γ
′
. (3.49)

3.4.2. Bounds for the time-harmonic potential operators away from the boundary

As before, point evaluations fulfill a more favourable dependence on s for large real parts of
the Laplace parameter s than the established bounds of Lemma 3.4.

The following lemma from [59] gives such a result in the electromagnetic context by gen-
eralizing earlier ideas from [7, Theorem 4.4 (c)], which provide similar estimates for smooth
domains. The proof of the following lemma addresses the additional technicalities of Lipschitz
domains.

Lemma 3.10. Consider the electromagnetic single and double layer potential operators S(s),D(s),
evaluated at a point x ∈ R3 \ Γ, away from the boundary with distance d = dist(x, Γ) > 0. For all
σ > 0, there exists a constant Cσ depending only on σ, x and Γ, such that for all Re s ≥ σ the following
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bounds hold

|(S(s)ϕ) (x)| ≤ Cσ |s|2 e−d Re s ‖ϕ‖XΓ
,

|(D(s)ϕ) (x)| ≤ Cσ |s|2 e−d Re s ‖ϕ‖XΓ
,

for any ϕ ∈ XΓ.

Proof. The j-th unit vector in R3 is denoted by ej. Furthermore, consider some point away from
the boundary x ∈ Ω with the distance d = dist(x, Γ) > 0. Rewriting and estimating the integral
yields ∣∣∣∣ej ·

∫
Γ

G(s, x− y)ϕ(y)dy
∣∣∣∣ = ∣∣∣∣∫Γ

G(s, x− y)ej ·ϕ(y)dy
∣∣∣∣

=

∣∣∣∣∫Γ
G(s, x− y)

(
ej × ν

)
· (ϕ(y)× ν)dy

∣∣∣∣
≤ C

∥∥γT
(
G(s, x− ·)ej

)∥∥
XΓ
‖ϕ‖XΓ

≤ C
∥∥G(s, x− ·)ej

∥∥
H(curl,R3\Ω) ‖ϕ‖XΓ

≤ C ‖G(s, x− ·)‖H1(R3\Ω) ‖ϕ‖XΓ
,

where the bound on the tangential trace is the trace theorem from [25, Theorem 4.1]. The
estimation of the second summand is straightforward, as∣∣∣∣∇ ∫Γ

G(s, x− y)divΓ ϕ(y)dy
∣∣∣∣ ≤ ‖∇G(s, x− ·)‖H1/2(Γ) ‖divΓ ϕ(y)‖H−1/2(Γ)

≤ ‖G(s, x− ·)‖H2(R3\Ω) ‖ϕ‖XΓ
.

Applying a partial derivative with respect to a coordinate xi to the first summand of the
single layer operator is bounded by the same argument structure as before, namely it holds
that ∣∣∣∣∂xi ej ·

∫
Γ

G(s, x− y)ϕ(y)dy
∣∣∣∣ = ∣∣∣∣ej ·

∫
Γ

∂xi G(s, x− y)ϕ(y)dy
∣∣∣∣

≤ ‖∂xi G(s, x− ·)‖H1(R3\Ω) ‖ϕ‖XΓ
.

Any linear combination of partial derivatives is therefore bounded by an estimate of the same
structure, which includes the curl operator. Consequently, the double layer potential operator
fulfills the stated bound.

The final part of the above proof immediately generalizes to the following extension for
spatial differential operators. A particularly interesting implication of the following lemma is
that the corresponding (time-harmonic) solution field Ê = −S(s)ϕ̂+D(s)ψ̂ to given traces
ϕ̂, ψ̂ ∈ XΓ, is smooth in every point x ∈ Ω \ Γ.
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3.4. Time-harmonic boundary integral equation

Lemma 3.11. For every positive integer order of differentiation k and for all partial derivatives, namely
for all j = 1, 2, 3, the following bounds hold for x ∈ R3 \ Γ with d = dist(x, Γ) > 0 and Re s ≥ σ > 0:∣∣∣(∂k

xj
S(s)ϕ

)
(x)
∣∣∣ ≤ Cσ |s|2+k e−d Re s ‖ϕ‖XΓ

,∣∣∣(∂k
xj
D(s)ϕ

)
(x)
∣∣∣ ≤ Cσ |s|2+k e−d Re s ‖ϕ‖XΓ

,
for all ϕ ∈ XΓ.

The constant Cσ only depends on k, σ, x and Γ. Any combination of partial derivatives in mixed direc-
tions fulfill a similar bound, where k then denotes the overall order of the spatial differential operator.

Taking the above estimates and integrating over all points Ωd ⊂ Ω with at least a given
distance d away from the boundary Γ, gives a structurally similar result to Lemma 3.4. In
exchange for restricting the domain to Ωd, the s-dependence in the estimates becomes more
favourable for large real parts.

Lemma 3.12. Consider the domain away from the boundary by at least some fixed distance d > 0,
namely Ωd = {x ∈ Ω | dist(x, Γ) > d}. Restricted on this domain, the electromagnetic single and
double layer potential operators S(s),D(s) satisfy the following bounds:

‖S(s)‖H(curl,Ωd)←XΓ
≤ Cσe−d Re s |s|3 ,

‖D(s)‖H(curl,Ωd)←XΓ
≤ Cσe−d Re s |s|3 ,

for Re s ≥ σ > 0. The constant Cσ only depends on d, Γ and σ.

Proof. Let ϕ ∈ XΓ be an arbitrary boundary function of the tangential trace space. Consider
now the square of the H(curl, Ω)-norm of the single layer potential applied to this arbitrary
function

‖(S(s)ϕ)‖2
H(curl,Ωd)

=
∫

Ωd

|(S(s)ϕ) (x)|2+ |(curlS(s)ϕ) (x)|2 dx

≤ Cσ ‖ϕ‖2
XΓ
|s|6

∫
Ωd

e−2 dist(x,Γ)Re sdx,

where the final estimate holds due to the bounds from Lemma 3.11. The integral is bounded in
the proof of Lemma 2.13.

Repeating the arguments for the double layer potential operator yields the analogous result
for D(s) .

Finally, we give a result in terms of the Lp(Γ) norm on the surface, which will be crucial in
the final chapter due to its favourable dependence on s.

Lemma 3.13. Let Γ be smooth and consider x ∈ Ω, some arbitrary point away from the boundary with
at least the distance d = dist(x, Γ) > 0. Then, for all 1 ≤ p < ∞ and ϕ ∈ XΓ ∩ Lp(Γ), we have

|(S(s)ϕ) (x)| ≤ C |s| e−d Re s ‖ϕ‖Lp(Γ) ,

|(D(s)ϕ) (x)| ≤ C |s| e−d Re s ‖ϕ‖Lp(Γ) ,
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where the constant C only depends on the boundary Γ. Point evaluations of the potential operators then
extend by density to continuous linear operators Sx(s) : Lp(Γ)→ C3 and Dx(s) : Lp(Γ)→ C3.

Proof. The bounds are a direct consequence of Hölder’s inequality. To show the bound for the
second integral of the single layer potential operator, we additionally use partial integration on
the surface to rewrite∫

Γ
G(s, x− y)divΓ ϕ(y)dy = −

∫
Γ
(∇ΓG(s, x− y))ϕ(y)dy.

3.5. Time-dependent Maxwell’s equations with generalized
impedance boundary conditions

The frequency-explicit estimates of Section 3.3 have direct implications for their time-dependent
counterparts. Important properties, such as the stability and well-posedness of the problem for-
mulations, naturally carry over via the procedure described in Section 3.1.1, (following [52]).
Employing the inverse Laplace transform on both sides leads to the time-dependent version
of the time-harmonic boundary integral equation (3.38), which forms the starting point of this
section.

The formulation of the time-dependent boundary integral equation is obtained by formally
replacing the Laplace transform variable s by the time differentiation operator ∂t.

Time-dependent boundary integral equation: The time-dependent boundary functions, denoted
by (ϕ, ψ) : [0, T] → V Γ × XΓ with sufficient temporal regularity (to be specified in the subsequent
sections) are said to be solutions of the time-dependent boundary integral equations, if for almost every
t ∈ [0, T] and for all (υ, ξ) ∈ V Γ × XΓ, it holds that[(

υ
ξ

)
, Cimp(∂t)

(
ϕ
ψ

)]
Γ
+ 〈υ, Z(∂t)ϕ〉Γ = 〈υ, ginc〉Γ. (3.50)

The time-dependent right-hand side ginc : [0, T] → V Γ
′ encodes the properties of the time-

dependent incidental waves via (3.4), and is assumed to be of the regularity ginc ∈ Hk
0(0, T; V Γ

′)
for k appropriately large. The definition of this spatio-temporal Hilbert space is provided in
Appendix A and the specific order of k is discussed in the following sections.

This boundary integral equation is notationally compressed as in (3.43) by employing the
time-harmonic operator family A(s) : V Γ × XΓ → V Γ

′ × XΓ
′, which collects the appropriate

terms of the boundary integral equations and has been formally defined by (3.41). In view
of this operator family, the time-dependent boundary integral equation thus reduces to

A(∂t)

(
ϕ
ψ

)
=

(
ginc

0

)
. (3.51)

As the inverse of A(s) is, for Re s > σ0, well-defined and bounded via (3.45), the temporal
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3.5. Time-dependent Maxwell’s equations with GIBCs

convolution operator A−1(∂t) is well-defined by (A.3). Moreover, the composition rule implies
that

A−1(∂t)A(∂t) = A(∂t)A−1(∂t) = Id.

Consequently, the time-dependent unique solution of (3.51) is directly characterized by the
application of a temporal convolution operator through(

ϕ
ψ

)
= A−1(∂t)

(
ginc

0

)
. (3.52)

Furthermore, the time-harmonic bounds imply the regularity properties of the temporal con-
volution operator above, namely applying (A.3) (i.e. [52, Lemma 2.1]) to A−1(∂t) with the
exponent κ = 2, yields the following result.

Theorem 3.3 (Well-posedness of the time-dependent boundary integral equation). Let r ≥ 0
and further consider an incidental time-dependent wave, such that ginc ∈ Hr+3

0 (0, T; V Γ
′). Then, the

temporal boundary integral equation (3.50) has a unique solution (ϕ, ψ) ∈ Hr+1
0 (0, T; V Γ × XΓ), and∥∥∥∥(ϕ

ψ

)∥∥∥∥
Hr+1

0 (0,T;V Γ×XΓ)

≤ CT
∥∥ginc∥∥

Hr+3
0 (0,T;V Γ

′) . (3.53)

The constant CT depends on the final time T (polynomially if σ0 = 0 in (3.9)) and, through norms of
tangential trace operators, on the boundary Γ .

Time-dependent boundary data ϕ, ψ, in particular the solution of the boundary integral
equation from Theorem 3.3, are related to electromagnetic fields in the domain through the
time-dependent representation formulas

E = −S(∂t)ϕ+D(∂t)ψ, (3.54)
H = −D(∂t)ϕ−S(∂t)ψ. (3.55)

We turn our attention towards the well-posedness of the time-dependent scattering problem
under the generalized impedance boundary condition, specifically an analogous time-dependent
result to Theorem 3.2. The following theorem gives precisely such a result, by combining the
time-harmonic preparations with classical techniques surrounding the Laplace transform al-
ready used in the acoustic setting.

Theorem 3.4 (Well-posedness of the time-dependent scattering problem). Consider the time-
dependent Maxwell’s equations (3.1)–(3.2) completed with the generalized impedance boundary condi-
tion (3.13), where the transfer operator Z(s) satisfies the conditions (3.8)–(3.9) with κ ≤ 1 and with
ginc ∈ Hr+3

0 (0, T; V Γ
′) for some arbitrary r ≥ 0.

(a) The time-dependent scattering problem has a unique solution

(E, H) ∈ Hr
0(0, T; H(curl, Ω)2) ∩ Hr+1

0 (0, T; (L2(Ω))2),

which is characterized by the representation formulas (3.54)–(3.55). The corresponding time-dependent
tangential traces are identified by the unique solution of the system of boundary integral equations (3.50)
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Chapter 3. Electromagnetic scattering from GIBCs

through the identity
(ϕ, ψ) = (γT H,−γTE) ∈ Hr+1

0 (0, T; V Γ × XΓ).

(b) The time-dependent electromagnetic solution fields are bounded by the incidental wave via

‖E‖Hr
0(0,T;H(curl,Ω)) + ‖H‖Hr

0(0,T;H(curl,Ω)) ≤ CT‖ginc‖Hr+3
0 (0,T;V Γ

′).

The right-hand side of the above expression further bounds the Hr+1
0 (0, T; (L2(Ω))2) norms of the

scattered fields. As before, the constant CT depends on T (polynomially if σ0 = 0 in (3.9)) and, through
norms of tangential trace operators, on the boundary Γ. In particular, for the impedance operators
(1.13)–(1.16), the constant is independent of the small parameter δ.

Proof. This proof was essentially formulated in [59, Theorem 4.2].
We start by extending the boundary data ginc ∈ Hr

0(0, T; V Γ
′) from the finite interval (0, T) to

a function in Hr(R; V Γ
′) on the whole real line, with finite support on [0, 2T]. Now, consider the

fields (E, H) defined by the time-dependent boundary integral equation (3.51) and the time-
dependent representation formulas (3.54)–(3.55). These fields are of the stated regularity, as
the time-harmonic bounds of Theorem 3.2 provide the necessary conditions for (A.3) with the
exponent κ = 3. Moreover, these fields satisfy the stated bounds for all finite time intervals
(0, T̄) with constants growing at most exponentially with a fixed exponent σ0. Therefore, the
Laplace transform (Ê(s), Ĥ(s)) exists for Re s > σ0, and is the unique solution to the time-
harmonic boundary integral equation (3.43) and the time-harmonic representation formulas
(3.29)–(3.30). The equivalence of the time-harmonic system of boundary integral equations
and the time-harmonic scattering problem described by Theorem 3.2 therefore implies that
(Ê(s), Ĥ(s)) is the unique solution to the time-harmonic scattering problem under the time-
harmonic generalized impedance boundary condition. Applying the inverse Laplace transform
then shows that (E, H) are solutions of the time-dependent Maxwell’s equations (3.1)–(3.2) with
the time-dependent generalized impedance boundary condition (3.13).

Finally, the uniqueness of the time-dependent solution (E, H) is a direct consequence of the
uniqueness result for the time-harmonic scattering problem.

3.6. Semi-discretization in time by Runge–Kutta convolution
quadrature

3.6.1. Convolution quadrature for the scattering problem

Employing the convolution quadrature discretization to the time-dependent boundary integral
equation (3.51) is notationally straightforward and leads to the discrete convolution equation

A(∂τ
t )

(
ϕτ

ψτ

)
=

(
ginc

0

)
. (3.56)

Analogous to the analytic treatment of this boundary integral equation, we apply the discrete
composition rule (B.9) to obtain a direct representation of the semi-discrete solution. This repre-
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sentation is the convolution quadrature semi-discretization of the convolution (3.52) and reads(
ϕτ

ψτ

)
= A−1(∂τ

t )

(
ginc

0

)
.

This identity is extremely useful for the convergence analysis and practical computations, since
it interprets the solution of the discretized boundary integral equation as a mere convolution
quadrature with some analytic operator family. General convolution quadrature approxima-
tion results such as Lemma B.1, are directly applicable for such schemes and yield error bounds.
This argument structure originates from [52]. A particular advantage of this time discretization
is the absence of stability issues.

Time-discrete electromagnetic fields on the whole domain Ω are then computationally acces-
sible by applying the convolution quadrature time discretization to the representation formulas
(3.54)–(3.55):

Eτ = −S(∂τ
t )ϕ

τ +D(∂τ
t )ψ

τ, (3.57)
Hτ = −D(∂τ

t )ϕ
τ −S(∂τ

t )ψ
τ. (3.58)

These fields are characterized directly in terms of the boundary data ginc by again applying
the composition rule, which gives the semi-discrete fields as the convolution quadrature dis-
cretization of the complete operator U(∂t). Specifically, we have(

Eτ

Hτ

)
= U(∂τ

t )ginc of
(

E
H

)
= U(∂t)ginc, (3.59)

where the complete operator is explicitly given by Theorem 3.4 through the composition

U(s) =
(
−S(s) D(s)
−D(s) −S(s)

)
A(s)−1

(
Id
0

)
: V Γ

′ → H(curl, Ω)2.

This operator is bounded by Theorem 3.2, namely for any σ > σ0 ≥ 0 there exists a constant
Cσ, such that for all Re s ≥ σ it holds that

‖U(s)‖H(curl,Ω)2←V Γ
′ ≤ Cσ

|s|3

(Re s)3/2 .

Furthermore, for point evaluations and domains away from the boundary by some fixed dis-
tance d, we obtain alternative bounds. Combining the bounds on the potential operators from
Lemmas 3.10–3.12 with Theorem 3.1 implies for Re s ≥ σ > σ0 ≥ 0

‖U(s)‖(C1(Ωd)3)2←V Γ
′ + ‖U(s)‖H(curl,Ωd)2←V Γ

′ ≤ Cσ |s|5 e−d Re s,

where Ωd denotes again all points in the domain with at least a fixed distance d > 0 away from
the boundary. The first summand is the C1(Ωd)-norm, i.e. the maximum norm on continuously
differentiable functions and their first derivatives on Ωd, the closure of Ωd.
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Chapter 3. Electromagnetic scattering from GIBCs

Remark 3.6.1. Any discrete fields (Eτ, Hτ) fulfilling the discretized representation formulas (3.57)–
(3.58) are, just as their continuous counterparts, divergence-free. This is a consequence of the fact
that the generating functions ∑n≥0 Enζn, ∑n≥0 Hnζn are themselves characterized by time-harmonic
representation formulas for |ζ| < 1.

These bounds are the requirements for Lemma B.1 to give an approximation property of the
convolution quadrature method. Applying this lemma to the operator family U(s) with its
various time-harmonic bounds yields the following result.

Proposition 3.1 (Error bound of the semi-discretization in time). Consider the setting of Theo-
rem 3.4, and further the semi-discretization in time (3.56), discretized by Runge–Kutta convolution
quadrature based on the Radau IIA method with m stages. Let Eτ and Hτ further denote the fields
obtained by the discrete representation formulas (3.57)–(3.58). Let r > 2m + 3 and assume that the
regularity of the incidental wave implies ginc ∈ Cr([0, T], V Γ

′), with ginc vanishing initially together
with its first r− 1 time derivatives.

Under these conditions, the resulting approximations of the semi-discrete electromagnetic fields En =[
(Eτ)n−1]

m and Hn =
[
(Hτ)n−1]

m fulfill the following error bounds at the time tn = nτ ∈ [0, T]:∥∥∥∥( En − E(tn)
Hn − H(tn)

)∥∥∥∥
H(curl,Ω)2

≤ C τm−1/2 M(ginc, tn).

For points away from the boundary, specifically for Ωd = {x ∈ Ω : dist(x, Γ) > d} with d > 0, a
corresponding bound with the full classical order 2m− 1 holds:∥∥∥∥( En − E(tn)

Hn − H(tn)

)∥∥∥∥(
H(curl,Ωd)∩C1(Ωd)3

)2
≤ Cd τ2m−1 M(ginc, tn).

An equivalent bound holds for point evaluations at any point x ∈ Ω. The constant originates from
Lemma B.1 and has the explicit form

M(g, t) = ‖g(r)(0)‖V Γ
′ +

∫ t

0
‖g(r+1)(t′)‖V Γ

′ dt′.

The constants C and Cd in the error bounds depend on the final time T and on the boundary Γ, but
are crucially independent of n, τ and ginc. As indicated by the index, Cd additionally depends on the
distance d. In particular, for the impedance operators (1.13)–(1.16), both C and Cd are independent of
the small parameter δ.

The above described full-order convergence away from the boundary for the Runge–Kutta
convolution quadrature time discretization was originally observed and proved in the con-
text of acoustic scattering from a sound-soft obstacle [14]. In view of this fact, Proposition 3.1
(particularly through Lemmas 3.10–3.12) transports these favourable error bounds to the elec-
tromagnetic scattering with generalized impedance boundary conditions.
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3.7. Full discretization

3.7. Full discretization

To derive fully-discrete schemes, we employ a Galerkin approximation of the boundary inte-
gral equation (3.56) with finite dimensional boundary element spaces V h ⊂ V Γ and Xh ⊂ XΓ.
These subspaces consist of a set of piecewise polynomials operating on a family of triangula-
tions with arbitrary small mesh width h.

Both boundary element spaces V h and Xh are chosen to be the Raviart–Thomas boundary
element space of order k ≥ 0, a polynomial space whose restriction to the unit triangle K̂ as a
reference element reads

RTk(K̂) =
{

x 7→ p1(x) + p2(x)x : p1 ∈ Pk(K̂)2, p2 ∈ Pk(K̂)
}

,

where Pk(K̂) is the polynomial space of degree k on K̂. Details can be found in the original paper
[60]. This definition of Raviart–Thomas elements extends to arbitrary grids by a piecewise pull-
back to the reference element.

For h → 0, boundary element spaces are expected to approximate smooth enough functions
arbitrary well, by means of a rate-specific best-approximation result. Such an estimate is crucial
for our error analysis and provided by Lemma 15 and Theorem 14 of [26], which themselves
originate from the original references [22, Section III.3.3] and [23].

To formulate this result, we use the original notation from [26] and define the trace space
H p
×(Γ) = γT H p+1/2(Ω).

Lemma 3.14. Let the subspaces Xh ⊂ XΓ and V h ⊂ V Γ both be chosen as the Raviart–Thomas elements
of order k, where V Γ denotes the space of Lemma 3.1 or Lemma 3.2. Consider arbitrary boundary
functions of the regularity ξ ∈ XΓ ∩ Hk+1

× (Γ) and υ ∈ V Γ ∩ Hk+1
× (Γ). The best-approximation error

of the Raviart–Thomas space of order k is then bounded by

inf
ξh∈Xh

‖ξh − ξ‖XΓ ≤ Chk+3/2‖ξ‖Hk+1
× (Γ),

inf
υh∈V h

‖υh − υ‖V Γ ≤ Chk+1‖υ‖Hk+1
× (Γ).

Remark 3.7.1. In view of the situation for acoustic generalized impedance boundary conditions (com-
pare e.g. Theorem 2.3), a more natural estimate for the best-approximation property of V Γ-norm would
be the order O(hk+3/2 + δ1/2hk+1). Proving error bounds of this order with the presented techniques
requires the V Γ-norm stability of the projection from XΓ to Xh, which was used to derive the best-
approximation estimate in XΓ. Whether such a result holds is unclear, however to prove such a result
is beyond the scope of the thesis. More details on the projection operators can be found in [23] and the
references therein.

Applying the boundary element discretization to the time-discrete boundary integral equa-
tion (3.56) by restricting the weak formulation to V h × Xh then reads〈(

υh
ξh

)
, A(∂τ

t )

(
ϕτ

h
ψτ

h

)〉
Γ
= 〈υh, ginc〉Γ ∀ (υh, ξh) ∈ (V h × Xh)

m. (3.60)
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This fully discrete scheme is solved by the approximate boundary densities

ϕτ
h =

(
(ϕτ

h)
n)

n≥0 with (ϕτ
h)

n =
(
(ϕτ

h)
n
i
)m

i=1 ∈ V m
h ,

ψτ
h =

(
(ψτ

h)
n)

n≥0 with (ϕτ
h)

n =
(
(ψτ

h)
n
i
)m

i=1 ∈ Xm
h .

These fully discrete densities yield approximations to the electromagnetic fields away from the
boundary through the time-discrete representation formulas

Eτ
h = −S(∂τ

t )ϕ
τ
h +D(∂τ

t )ψ
τ
h , (3.61)

Hτ
h = −D(∂τ

t )ϕ
τ
h −S(∂τ

t )ψ
τ
h . (3.62)

Error bounds for the fully discrete solutions are described in the following theorem, under
regularity assumptions on the exact solution of the boundary integral equation. The assump-
tions taken are presumably stricter than necessary, but are required for the present techniques.

Theorem 3.5 (Error bound of the full discretization). Consider the solutions of the time-dependent
boundary integral equation whose existence and regularity is guaranteed by Theorem 3.4 under the
conditions stated there. In this setting, consider the approximations with the following discretizations:

• Convolution quadrature time discretization based on the Radau IIA Runge–Kutta method with
m ≥ 2 stages employed for the boundary integral equation (3.56) and the discrete representation
formulas (3.57)–(3.58); and

• boundary element space discretization based on Raviart–Thomas elements of order k, applied to
the boundary integral equation (3.51).

Let ginc ∈ Cr([0, T], V Γ
′) for some r > 2m + 3, which vanishes at t = 0 together with its first r − 1

time derivatives. Moreover, the exact solution (ϕ, ψ) of the boundary integral equation (3.51) is assumed
to be in C10([0, T], Hk+1

× (Γ)2), vanishing at t = 0 together with its time derivatives.
Under these conditions, the following error bounds hold for the approximations to the electromagnetic
fields En

h =
[
(Eτ

h)
n−1]

m and Hn
h =

[
(Hτ

h)
n−1]

m in time and space at tn = nτ ∈ [0, T]:∥∥∥∥( En
h − E(tn)

Hn
h − H(tn)

)∥∥∥∥
H(curl,Ω)2

≤ C
(
τm−1/2 + hk+1).

For points away from the boundary, specifically for Ωd = {x ∈ Ω : dist(x, Γ) > d} with d > 0, a
corresponding bound with the full classical order 2m− 1 holds:∥∥∥∥( En

h − E(tn)
Hn

h − H(tn)

)∥∥∥∥(
H(curl,Ωd)∩C1(Ωd)3

)2
≤ Cd

(
τ2m−1 + hk+1).

The constants C and Cd in the error bounds depend on the final time T, on the boundary Γ, on
the incidental waves through ginc and on higher Sobolev norms of the exact solution (ϕ, ψ), but are
crucially independent of h,n and τ. As indicated by the index, Cd additionally depends on the distance
d. In particular, for the impedance operators (1.13)–(1.16), both C and Cd are independent of the small
parameter δ.
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Proof. The proof is separated into three parts (a)–(c), starting from analyzing the time-harmonic
space discretization, extending these results to the time-dependent space discretization and
finally showing the stated bounds for the time-dependent full discretization.

(a) (Discretized time-harmonic boundary integral equation). Consider the time-harmonic bound-
ary integral equation (3.42), for Re s ≥ σ > σ0 ≥ 0. The spatially discrete solution operator
of the time-harmonic boundary integral equation, which maps ĝ 7→ (ϕ̂h, ψ̂h), is denoted by
Lh(s) : V Γ

′ → V h × Xh and defined by the Galerkin approximation in V h × Xh〈(
υh
ξh

)
, A(s)

(
ϕ̂h
ψ̂h

)〉
Γ
= 〈υh, ĝ〉Γ ∀ (υh, ξh) ∈ V h × Xh. (3.63)

By the bound of A(s) in Lemma 3.8, the coercivity estimate of Lemma 3.9 and the Lax–Milgram
Lemma, we obtain the bound

‖Lh(s)‖V h×Xh←V Γ
′ ≤ 1

cσ

|s|2
Re s

. (3.64)

Additionally, consider the Ritz projection associated to the bilinear form on the left-hand side,
denoted by Rh(s) : V Γ × XΓ → V h × Xh. This operator projects (ϕ̂, ψ̂) ∈ V Γ × XΓ on the bound-
ary element functions (ϕ̂h, ψ̂h) ∈ V h × Xh, which fulfill〈(

υh
ξh

)
, A(s)

(
ϕ̂h
ψ̂h

)〉
Γ
=

〈(
υh
ξh

)
, A(s)

(
ϕ̂
ψ̂

)〉
Γ

∀ (υh, ξh) ∈ V h × Xh.

The Lax–Milgram Lemma shows that this problem is well-posed, namely the above system
is uniquely solved by the pair of discrete boundary densities (ϕ̂h, ψ̂h) ∈ V h × Xh. Applying
Céa’s Lemma further yields an estimate of the projection error in terms of the approximation
properties of the underlying boundary element space∥∥∥∥(ϕ̂h

ψ̂h

)
−
(

ϕ̂
ψ̂

)∥∥∥∥
V Γ×XΓ

≤ Cσ

cσ

(
|s|2
Re s

)2

inf
(υh,ξh)∈V h×Xh

∥∥∥∥(υh
ξh

)
−
(

ϕ̂
ψ̂

)∥∥∥∥
V Γ×XΓ

.

The best-approximation on the right-hand side is the subject of Lemma 3.14 and applying the
bounds therein shows that the associated error operator

Eh(s) = Rh(s)− Id

is a bounded operator from Hk+1
× (Γ)2 to V Γ × XΓ with the bound, for Re s ≥ σ > σ0 ≥ 0,

‖Eh(s)‖V Γ×XΓ←Hk+1
× (Γ)2 ≤ C̃σ

|s|4
(Re s)2 hk+1. (3.65)

(b) (Error of the spatial semi-discretization). We turn our attention towards the spatial semi-

89



Chapter 3. Electromagnetic scattering from GIBCs

discretization of the time-dependent boundary integral equation (3.51), which reads〈(
υh
ξh

)
, A(∂t)

(
ϕh
ψh

)〉
Γ
= 〈υh, ginc〉Γ ∀ (υh, ξh) ∈ V h × Xh. (3.66)

The unique solution of the above system is characterized directly by the above discussed op-
erators transferred to the time domain. The time-dependent spatial semi-discretization of the
solution is therefore given by(

ϕh
ψh

)
= Lh(∂t)ginc = Rh(∂t)

(
ϕ
ψ

)
,

where (ϕ, ψ)> = A−1(∂t)(ginc, 0)> is the solution of the fully continuous boundary integral
equation (3.51). We collect the potential operators and their sign structure from the representa-
tion formulas in a block operator, which is denoted by

W(s) =
(
−S(s) D(s)
−D(s) −S(s),

)
and set

Uh(s) = W(s)Lh(s) : V Γ
′ → H(curl, Ω)2. (3.67)

Employing the established bounds of the operators W(s) and Lh(s), specifically the bounds
from Lemma 3.4 and (3.64), implies the bound

‖Uh(s)‖H(curl,Ω)2←V Γ
′ ≤ C̄σ

|s|4
(Re s)2 . (3.68)

The temporal convolution operator Uh(∂t) is therefore well-defined and extends to a bounded
operator via (A.3). Consequently, the spatial semi-discretization of the scattering problem is
characterized by the evaluation of this operator on the right-hand side, namely(

Eh
Hh

)
= Uh(∂t)ginc.

By employing the analogous identity for the fully continuous densities (3.59), its error is rewrit-
ten as (

Eh
Hh

)
−
(

E
H

)
= Uh(∂t)ginc −U(∂t)ginc = W(∂t)

(
ϕh
ψh

)
−W(∂t)

(
ϕ
ψ

)
= W(∂t)(Rh − Id)

(
ϕ
ψ

)
= W(∂t)Eh(∂t)

(
ϕ
ψ

)
.

Using the bounds of Lemma 3.4 for the complete potential operator W(s) and the bound (3.65)
for the error operator Eh(s) in combination with (A.3) (with κ = 2 and κ = 4 respectively)
yields that their time-dependent counterparts extend to well-posed bounded operators on the
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spaces stated there. Further using the embedding H1(0, T; H) ⊂ C([0, T], H), which holds for
any Hilbert space H, we obtain the following error bound for the spatial semi-discretization

max
0≤t≤T

∥∥∥∥(Eh(t)
Hh(t)

)
−
(

E(t)
H(t)

)∥∥∥∥
H(curl,Ω)2

≤ C
∥∥∥∥(Eh

Hh

)
−
(

E
H

)∥∥∥∥
H1

0(0,T;H(curl,Ω)2)

≤ cT

∥∥∥∥Eh(∂t)

(
ϕ
ψ

)∥∥∥∥
H3

0(0,T;V Γ×XΓ)

≤ CT hk+1
∥∥∥∥(ϕ

ψ

)∥∥∥∥
H7

0(0,T;Hk+1
× (Γ)2)

. (3.69)

Repeating the argument with the pointwise bounds away from the boundary given by Lem-
mas 3.10 and 3.11 instead of Lemma 3.4, yields the analogous result

max
0≤t≤T

∥∥∥∥(Eh(t)
Hh(t)

)
−
(

E(t)
H(t)

)∥∥∥∥
C1(Ωd)2

≤ CT hk+1
∥∥∥∥(ϕ

ψ

)∥∥∥∥
H8

0(0,T;Hk+1
× (Γ)2)

. (3.70)

An identical bound holds for any point evaluation x ∈ Ω.

(c) (Error of the full discretization). We decompose the total error into the differences(
En

h
Hn

h

)
−
(

En

Hn

)
+

(
En

Hn

)
−
(

E(tn)
H(tn)

)
.

The second summand of the above expression is the error of the temporal semi-discretization,
bounded by the stated orders in their respective norms in Proposition 3.1. Our focus is therefore
on the first difference, which is rewritten by the operators introduced in the first part of this
proof via

W(∂τ
t )Eh(∂

τ
t )

(
ϕ
ψ

)
=

(
W(∂τ

t )Eh(∂
τ
t )

(
ϕ
ψ

)
−W(∂t)Eh(∂t)

(
ϕ
ψ

))
+ W(∂t)Eh(∂t)

(
ϕ
ψ

)
.

The summand in the last row is the error of the spatial semi-discretization and therefore bounded
in the part (b) by (3.69).

The remaining difference written on the right-hand side is a defect due to the convolution
quadrature method, which is accessible by the general approximation result of Lemma B.1. The
established bounds on W(s)Eh(s) ensure that the approximation property of Lemma B.1 holds
with the constants Mσ ≤ Cσhk+1, κ = 6 and ν = 3.

Choosing q = 2 and r = 10 > 2q− 1+ κ, gives a convergence in time of order min(2q− 1, q+
1− κ + ν) = q− 2 = 0. The error term is therefore shown to be of the overall order O(hk+1) in
the H(curl, Ω)2-norm. Combining the defects yields overall the stated O(τm−1/2 + hk+1) error
bound in the H(curl, Ω)2 norm.

We turn our attention towards the full-order error bound away from the boundary. To derive
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Chapter 3. Electromagnetic scattering from GIBCs

full-order error bounds for points away from the boundary, we rewrite the total error by(
En

h
Hn

h

)
−
(

Eh(tn)
Hh(tn)

)
+

(
Eh(tn)
Hh(tn)

)
−
(

E(tn)
H(tn)

)
.

Contrasting the argument structure before, the second difference is now the error of the spatial
semi-discretization studied in part (b). The remaining first difference is a convolution quadra-
ture defect for the transfer operator Uh(s) of (3.67). For points away from the boundary, this
operator decays exponentially in terms of the real part of s, which leads to favourable conver-
gence properties of the convolution quadrature scheme. In particular, stronger convergence
bounds are obtained by rewriting the remaining error as(

En
h

Hn
h

)
−
(

Eh(tn)
Hh(tn)

)
=
[(
Uh(∂

τ
t )ginc)n−1

]
m
−Uh(∂t)ginc(tn),

which is bounded with regards to the full classical order through Lemma B.1, by employing
the exponentially decaying bounds from Lemmas 3.10–3.12.

Remark 3.7.2. Pursuing the second approach for the H(curl, Ω)2 norm and applying Lemma B.1
results in error bounds with the reduced temporal order O(τm−1).

The proof of the above theorem further implies the following corollary, in which a conver-
gence result is formulated for the boundary densities, namely the boundary data of the numer-
ical solution. The concrete result is given by following the arguments of the previous proof,
where the complete operator (3.67) simplifies to Lh(s).

Corollary 3.1. Consider the setting and assumptions of Theorem 3.5. Then, the following error bounds
hold for the approximations ϕn

h =
[
(ϕτ

h)
n−1]

m and ψn
h =

[
(ψτ

h)
n−1]

m in time and space at tn = nτ ∈
[0, T] ∥∥∥∥(ϕn

h −ϕ(tn)
ψn

h −ψ(tn)

)∥∥∥∥
H−1/2(Γ)×V

≤ C
(
τm + hk+1).

The constant C in the error bounds depend on the final time T, on the boundary Γ, on the incidental
waves through ginc and on higher Sobolev norms of the exact solution (ϕ, ψ), but are crucially indepen-
dent of h,n and τ. In particular, for the impedance operators (1.13)–(1.16), C is independent of the small
parameter δ.

Remark 3.7.3 (Similarities to acoustic scattering). Many key results in the electromagnetic analysis
are reminiscent of the previous acoustic analysis, starting from the settings of the respective transfer
operators (2.8)–(2.9) and (3.8)–(3.9). The well-posedness of the transmission problem for the Helmholtz
problem in Lemma 2.4 is analogous to the corresponding result for the time-harmonic Maxwell’s equa-
tions in Lemma 3.3. Whereas the representation formulas differ in their specific form and their functional
analytic setting, the bounds of the time-harmonic potential operators coincide. As a consequence, the
well-posedness results for the acoustic scattering problems in Theorems 2.1 & 2.2 are structurally analo-
gous to their electromagnetic counterparts in Theorem 3.2 and Theorem 3.4. The structural similarities
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of the boundary integral equations and the time-harmonic bounds of the associated boundary integral
operator families leads to the similarities of the convergence result, which is seen by the analogous proofs
of Theorem 2.3 and Theorem 3.5 respectively.

3.8. Numerical experiments

The numerical experiments and figures presented here are taken from the original paper [59].
The implementation that has been used for these experiments is available under [56]. As before
in the acoustic experiments, we set our first numerical experiment in the exterior of the unit
sphere centered around the origin. Consider the following incoming electric planar wave, a
solution to Maxwell’s equations on R3, which reads

Einc(t, x) = e−c(t−x3−t0)
2
e1, (3.71)

where c = 50, e1 = (1, 0, 0)T and t0 = −2. On the surface of the sphere, the strongly absorbing
generalized impedance boundary condition (1.15) is employed, identified by the transfer op-
erator Z(∂t) = δ∂1/2

t , with δ = 10−1, 10 respectively. The 0-th order Raviart–Thomas element
space is employed as the boundary element space and the convolution quadrature method
based on the Radau IIA Runge–Kutta method with 2 and 3 stages is used as the time dis-
cretization. To estimate the error of the scheme, a reference solution was computed with a
space discretization with 23871 degrees of freedoms and the 3-stage Radau IIA time discretiza-
tion with N = 210 time steps. The convergence plots are then obtained by mutually fixing
various mesh sizes for the 0-th order Raviart–Thomas element space and time step sizes for the
convolution quadrature method based on the 2-stage Radau IIA Runge–Kutta method, which
was conducted for both values of δ to obtain the convergence plots.

Figure 3.2 and 3.3 illustrate the error bounds of Theorem 3.5. To obtain an estimate of the
error, numerical approximations are computed at a simple point P = (2, 0, 0) and compared
with the reference solution Ere f (P, tn).

Figure 3.2 is the temporal convergence plot, where the error for multiple grids corresponding
to decreasing mesh width h is shown with varying time step sizes τ. For large τ we observe
that the temporal error is dominating, where for small τ the error curves flatten out due to the
dominating space convergence error. When the step size is large enough for the temporal error
to dominate, we observe that the slope of the error curves approach the order of convergence
of the theoretical result, as indicated by the reference lines.

Analogously, Figure 3.3 depicts two similar plots, corresponding to the parameters δ = 10−1

(left) and δ = 10 (right), but reversing the roles of the mesh width h and the time step size τ,
thus revealing the spatial convergence properties of the scheme. Even though the predicted
convergence rates of Theorem 3.5 are independent of the small parameter δ, we expect in view
of the acoustic result of Theorem 2.3 the stronger δ-explicit error bound O(hk+3/2 + δ1/2hk+1)
to hold. The numerical results indicate that the dependence on the small δ is favourable for the
presented example, though for h small enough the observed error behaviour is very similar.
This behaviour is predicted by the theory, but might also be explained by the fact that the exact
solution depends on δ.
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Chapter 3. Electromagnetic scattering from GIBCs

We conclude this section by computing the 3D-scattering arising from a torus with a revolv-
ing circle of radius r = 0.2, where the outer centers lie on a circle of radius R = 0.8, which is
illuminated by the planar wave (3.71) with t0 = −1. On the surface of the scatterer, strongly
absorbing boundary conditions corresponding to the impedance operator Z(∂t) = δ∂1/2

t with
δ = 0.1 are employed.

A 0-th order Raviart–Thomas element space with 2688 degrees of freedom is employed
and combined with the convolution quadrature based on the 3-stage Radau IIA method with
N = 100 time steps. Two types of figures are generated from this computation, starting
from Figure 3.1, which visualizes the frequencies sk for k = 1, . . . , mL (L being the amount of
Laplace transform evaluations used in the underlying trapezoidal quadrature rule), at which
the Laplace domain operator Uh(sk) is evaluated during the computation. On the right-hand
side, the condition number of the arising systems Ah(s) is visualized, as the reader follows the
contour depicted on the left plot. Several markers relate the position of the complex frequencies
in the Laplace domain and the condition numbers. Throughout the contour, the condition num-
bers remain mild and enable the effective use of iterative solvers to solve the arising resulting
linear systems. The resulting numerical approximation is then visualized in Figures 3.4–3.5,
which show the absolute value of the approximated total wave Etot on the x2 = 0 plane at
different times.

Figure 3.1.: The left-hand side plot shows a plot of the occurring frequencies for the 3-stage Radau IIA method for
N = 100 and T = 4. On the right-hand side, the condition numbers and the euclidean norms of the
occurring matrices are shown, as they appear when following the integral contour on the left-hand side.
The markers on both plots localize the corresponding spikes of the condition numbers on the integral
contour. The figure and its description are taken from [59, Figure 7.3].
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Figure 3.2.: Convergence plot in time for the fully discrete problem, with δ = 0.1, taken from [59, Figure 7.1].

Figure 3.3.: Space convergence plot of the fully discrete system, with varying layer thickness δ = 10−2 (left), and
δ = 10 (right), taken from [59, Figure 7.2].
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Chapter 3. Electromagnetic scattering from GIBCs

Figure 3.4.: 3D-scattering arising from the boundary condition (1.15) with δ = 0.1, employed at a torus. Shown is
the x2 = 0 plane, through the middle of the scatterer at several times t in the time interval [0.4, 1.4]. The
data was originally generated for [59, Figure 7.4].
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3.8. Numerical experiments

Figure 3.5.: 3D-scattering arising from the boundary condition (1.15) with δ = 0.1, employed at a torus. Shown is
the x2 = 0 plane, through the middle of the scatterer at several times t in the time interval [1.6, 2.6]. The
data was originally generated for [59, Figure 7.4].
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4. Nonlinear electromagnetic scattering

The final class of boundary conditions studied in this thesis is a nonlinear extension of the
previous boundary conditions, where the impedance operator is nonlinear, but fulfills a crucial
monotonicity condition. The traces of the electric and magnetic fields are said to fulfill the
nonlinear boundary condition if

Etot × ν + a(Htot × ν)× ν = 0 on Γ = ∂Ω, (4.1)

where ν denotes again the outer unit normal vector. Note that the rescaling of H with regards
to the physical constant µ is, in this formulation of the boundary condition, assumed to be
incorporated into the nonlinearity a.

The formulation of this boundary condition is very close to the previously covered boundary
condition, yet serious novel challenges arise, in particular in the error analysis of the subse-
quent sections. Throughout this chapter, we restrict the range of nonlinearities to the following
type of power-law

a(x) = |x|α−1 x for all x ∈ R3, (4.2)

for some α ∈ (0, 1]. The above formulation is found in the literature (e.g. [66, 67, 70]) and is
the natural nonlinear extension of the previous boundary condition. In the original paper of
the author [57], this formulation is used to give a complete numerical analysis. This chapter
transports the treatment there to the following (equivalent) inverted formulation

Htot × ν + b(−Etot × ν)× ν = 0 on Γ = ∂Ω, (4.3)

where b denotes the inverse of a, which has the closed form

b(x) = a−1(x) = |x|
1−α

α x for all x ∈ R3. (4.4)

It should be noted that the above transformation only holds for nonlinearities which com-
mute with a rotation around the normal vector, namely the nonlinearity is required to fulfill
b(ν× x) = ν× b(x) for all x, ν ∈ R3. Without such a property, the inverted boundary condi-
tion is generally of a more convoluted form. The derivation of boundary integral equations for
this formulation slightly differs in comparison to the previous chapter.

4.1. Problem setting

We reformulate the electromagnetic nonlinear scattering problem in terms of the scattered
fields E and H. The incidental waves are again denoted by

(
Einc, H inc) and fulfill the same
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conditions as in the previous chapter. As such, they are assumed to be solutions to the time-
dependent Maxwell’s equations on the whole free space R3, with initial support away from the
boundary Γ.

The scattered fields E = Etot − Einc and H = Htot − H inc, which arise due to the nonlinear
boundary condition employed at the surface of the scatterer, then solve the following initial–
boundary value problem of Maxwell’s equations:

∂tE− curl H = 0 in Ω, (4.5)
∂tH + curl E = 0 in Ω, (4.6)

H × ν + ν× b(−E× ν− Einc × ν) = −H inc × ν on Γ. (4.7)

The boundary value problem is completed by vanishing initial conditions.
In order to derive a weak formulation of the boundary condition and subsequently boundary

integral equations, an appropriate functional analytic framework is necessary. Such a setting
of the nonlinear scattering problem must reconcile the properties of the nonlinearity b with the
previously discussed setting of Maxwell’s equations. The following section investigates the
nonlinearity and provides fundamental results for the subsequent analysis.

4.1.1. Functional analytical setting of the nonlinear function b

For α ∈ (0, 1], we repeat the power-law type nonlinearity from the boundary condition orig-
inally discussed in [66] and occuring in the nonlinear evolution equation described in [70],
whose inverse reads

b(x) = |x|
1−α

α x, for x ∈ R3. (4.8)

Several positivity conditions apply to this boundary condition, in particular for arbitrary x ∈
R3, we trivially obtain

x · b(x) = |x|
1+α

α . (4.9)

This identity, completed by a bound from above, provides the necessary foundation for a stabil-
ity estimate of the continuous problem. The error analysis in the subsequent sections requires
stronger pointwise properties, specifically a strong monotonicity condition.

The following Lemma gives such bounds, estimating the differences of b from above and
below.

Lemma 4.1 (Pointwise bounds on b). Consider the nonlinearity b(x) = |x|
α−1

α x for some α ∈ (0, 1].
There exists a constant cα, depending only on α, such that for all u, v ∈ R3, it holds that

(u− v) · (b(u)− b(v)) ≥ cα |u− v|
1+α

α . (4.10)
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Additionally, there exists a positive constant Cα , depending only on α, such that the following bound

|b(u)− b(v)| ≤ Cα (|u|+ |v|)
1−α

α |u− v| , (4.11)

holds for all u, v ∈ R3.

Proof. The strong monotonicity result is found in [69][Lemma 2.3.16]. We continue with the
bound on the difference from above. The Jacobian of the nonlinearity b, in the following de-
noted by Db : R3 → R3×3, is derived from standard integration rules and has the explicit
form

Dbx =
1− α

α
|x|

1−α
α −2 xxt + |x|

1−α
α I3 for x ∈ R3 \ {0},

where I3 ∈ R3×3 denotes the identity matrix. The second bound is then given by applying the
fundamental theorem of calculus, which yields

|b(u)− b(v)| =
∣∣∣∣∫ 1

0

d
dθ

b(v + θ(u− v))dθ

∣∣∣∣ = ∣∣∣∣∫ 1

0
Dbv+θ(u−v)(u− v)dθ

∣∣∣∣
≤ Cα |u− v|

∫ 1

0
|v + θ(u− v)|

1−α
α dθ

≤ Cα |u− v| (|u|+ |v|)
1−α

α .

(4.12)

An alternative inequality to (4.11) is seen by repeating the steps from (4.12) and estimating

|b(u)− b(v)| ≤ Cα |u− v|
∫ 1

0
|v + θ(u− v)|

1−α
α dθ

≤ Cα

(
|v|

1−α
α |u− v|+ |u− v|

1
α

)
.

(4.13)

In addition to the pointwise bounds, we interpret the function b as a nonlinear operator
acting on appropriate Banach spaces. More precisely, we give function spaces on which the
nonlinear operator defined by the composition with b acts, namely the operator u 7→ b ◦ u for
appropriate vector fields on the boundary u : Γ→ R3.

Due to the power-law structure of the nonlinearity, the natural spaces are the Lp space for
p > 1 on the boundary Γ, which are defined by

Lp
T(Γ) = {u ∈ Lp(Γ) | u · ν = 0 } .

The spaces are completed with the associated norm inherited from the full space Lp(Γ) defined
by

‖u‖Lp(Γ) =

(∫
Γ
|u|p

) 1
p

.
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Lemma 4.2 (Setting of b). Consider the nonlinear operator defined by the composition with the non-
linearity b(x) = |x|

1−α
α x for α ∈ (0, 1]. This operator is well-posed and bijective on the spaces

b : L
1+α

α
T (Γ)→ L1+α

T (Γ). (4.14)

Proof. Inserting the closed form of b yields

‖b(u)‖L1+α(Γ) =
∥∥∥|u| 1−α

α u
∥∥∥

L1+α(Γ)
=
∥∥∥|u| 1α ∥∥∥

L1+α(Γ)
= ‖u‖

1
α

L
1+α

α (Γ)
, (4.15)

which in particular shows that the left-hand side is bounded for arbitrary u ∈ L1+α
T (Γ). The

well-posedness of the inverse is seen analogously by repeating the argument for the function

b−1(x) = |x|α−1 x,

which shows that b is a bijection.

As the boundary Γ = ∂Ω of the scatterer is a bounded surface, we have the following chain
of dense inclusions

L1+α
T (Γ) ⊂ L2

T(Γ) ⊂ L
1+α

α
T (Γ). (4.16)

The pivot space L2
T makes the above spaces their respective duals, as the sum of the reciprocal of

their exponents is one. More precisely, the L2-scalar product is a continuous hermitian bilinear

form on L
1+α

α
T (Γ) × L1+α

T (Γ) and makes these spaces their respective dual. This property is
ensured by Hölder’s inequality, which reads for boundary functions u and v in the respective
spaces

(u, v)Γ ≤ ‖u‖L1+α(Γ) ‖v‖L
1+α

α (Γ)
. (4.17)

The nonlinear operator b, understood on these spaces, therefore maps into the dual of its do-
main, where the anti-duality between both spaces takes the explicit form of an extended L2-
pairing.

We combine the proper trace space in the context of Maxwell’s equations discussed in the
previous section with the setting of the nonlinearity b, which yields a suitable setting for the
boundary integral equation corresponding to the nonlinear scattering problem (4.5)–(4.7). For
this purpose, we introduce the dense subspace

V Γ = XΓ ∩ L
1+α

α
T (Γ) ⊂ XΓ,

equipped with the associated norm

‖φ‖V Γ
= ‖φ‖XΓ

+ ‖φ‖
L

1+α
α (Γ)

.
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4.1.2. Weak formulation of the nonlinear boundary condition

Consider some time-independent continuous tangential vector field φ on the boundary Γ. Test-
ing the strong formulation of the boundary condition (4.7) by means of the anti-symmetric
product [·, ·]Γ with φ yields

[φ, γT H]Γ + [φ, b(−γTE− γTEinc)× ν]Γ = −[φ, γT H inc]Γ. (4.18)

The tested nonlinearity reduces to a L2 product, which reveals the weak formulation of the non-
linear boundary condition (4.3): find E, H ∈ L2(0, T; H(curl, Ω)) ∩ H1(0, T; L2(Ω)3), solutions
to the time-dependent Maxwell’s equations with vanishing initial conditions, such that their
tangential traces (γT H, γTE) ∈ L2(0, T; XΓ × V Γ) fulfill for almost every t ∈ (0, T)

[φ, γT H]Γ + (φ, b(−γTE− γTEinc))Γ = [γT H inc, φ]Γ for all φ ∈ V Γ. (4.19)

The above expressions are well-defined under the stated regularity assumptions.

4.1.3. Time-dependent representation formulas and a time-dependent
transmission problem

Analogously to the time-harmonic analysis of the previous chapters, we introduce a time-
dependent transmission problem, which is the starting point for the subsequent stability anal-
ysis. This result rigorously associates electromagnetic fields on the domain to any pair of time-
dependent boundary densities in XΓ with sufficient temporal regularity.

Let k ≥ 2 and consider boundary densities (ϕ, ψ) ∈ Hk
0(0, T; XΓ × XΓ), which are generally

not the tangential traces of solutions to the time-dependent Maxwell’s equations. Associated
temporal electromagnetic fields E, H ∈ Hk−2

0 (0, T; H(curl, R3 \ Γ)) are then obtained by the
time-dependent representation formulas (already formulated in (3.54)–(3.55), but repeated here
due to their central role in this chapter)

E = −S(∂t)ϕ+D(∂t)ψ, (4.20)
H = −D(∂t)ϕ−S(∂t)ψ. (4.21)

The temporal convolution operators are again defined via the Heaviside notation of operational
calculus (1.2) and the time-harmonic potential operators. With these fields (E, H), the following
time-dependent transmission problem holds

∂tE− curl H = 0 in R3 \ Γ, (4.22)

∂tH + curl E = 0 in R3 \ Γ, (4.23)
[γT]H = ϕ , (4.24)
− [γT]E = ψ . (4.25)

The fields E and H solve the time-dependent Maxwell’s equations(4.22)–(4.23) away from the
boundary, by construction of the potential operators. The relations on the boundary (4.24)–
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(4.25) follow from the jump conditions of the potential operators. Moreover, the complete
transmission problem is a consequence of applying the inverse Laplace transform to the analo-
gous time-harmonic transmission problem (3.20)–(3.23).

The time-dependent Calderón operator fulfills temporal jump conditions, which are anal-
ogous to the time-harmonic jump conditions (3.33), which read in the setting of the above
transmission problem

C(∂t)

(
[γT H]
−[γTE]

)
=

(
{γTE}
{γT H}

)
. (4.26)

The time-harmonic coercivity result for the Calderón operator in Lemma 3.7 implies a time
domain coercivity result via the operator-valued Herglotz theorem [16, Lemma 2.2]. With this
result, we obtain a constant cT, only depending polynomially on the inverse of T and Γ, such
that ∫ ∞

0
e−t/T

[(
ϕ
ψ

)
, C(∂t)

(
ϕ
ψ

)]
Γ

dt ≥ cT

∫ ∞

0
e−t/T

(∥∥∥∂−1
t ϕ

∥∥∥2

XΓ
+
∥∥∥∂−1

t ψ
∥∥∥2

XΓ

)
dt, (4.27)

for (ϕ, ψ) ∈ H(0, T; XΓ
2). A positivity result of this type is crucial for the stability analysis of

boundary integral equations derived from the time-dependent Calderón operator.

Consider now the time-dependent electromagnetic fields E, H ∈ L2(0, T; H(curl, Ω)), solu-
tions to the time-dependent Maxwell’s equations with vanishing initial conditions in the exte-
rior domain Ω. Together with the tangential traces

ϕ = γT H, ψ = −γTE, (4.28)

the representation formulas (4.20)–(4.21) and the time-dependent transmission problem (4.22)–
(4.25) holds, when the E and H are completed by zero in the interior domain Ω−.

Under these assumptions, the temporal jump conditions of the time-dependent Calderón
operator (4.26) reduce to

C(∂t)

(
γT H
−γTE

)
=

1
2

(
γTE
γT H

)
. (4.29)

These jump conditions are the familiar starting point of the previous chapters (in the time-
harmonic setting) and originally of [13, 18]. Green’s formula for the electromagnetic fields on
the interior and exterior domains respectively gives, upon inserting (4.22)–(4.23), the crucial
identities

[γT H, γTE]Γ = ±
∫

Ω±
curl H · E− H · curl E dx (4.30)

= ±1
2

∂t

∫
Ω±
|E|2 + |H|2 dx.
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4.2. Maxwell’s equations with the nonlinear boundary condition

In contrast to the treatment in the previous chapter, we subtract a symmetric block operator, to
obtain the following alternative shifted Calderón operator

C−imp(∂t)

(
γT H
−γTE

)
=

(
0

γT H

)
, C−imp(∂t) = C(∂t)−

(
0 − 1

2 I
− 1

2 I 0

)
. (4.31)

The jump conditions are weakly formulated by testing with (η, ξ) ∈ XΓ × V Γ, which yields[(
η
ξ

)
, C−imp(∂t)

(
ϕ
ψ

)]
Γ
= [η, γT H]Γ .

Inserting the weak formulation of the nonlinear boundary condition (4.19) into the right-hand
side and rearranging all terms depending on the unknown scattered wave to the left-hand side
reveals the weak formulation of the boundary integral equation.

Nonlinear boundary integral equation: Find (ϕ, ψ) ∈ L2
0(0, T; XΓ × V Γ), the temporal boundary

densities, such that for all (η, ξ) ∈ XΓ × V Γ it holds that[(
η
ξ

)
, C−imp(∂t)

(
ϕ
ψ

)]
Γ
+ (ξ, b(ψ− γTEinc))Γ = [γT H inc, ξ]Γ. (4.32)

By construction, the boundary data of a solution to the time-dependent nonlinear electromag-
netic scattering problem (4.5)–(4.7) solves the above boundary integral equation. The converse
statement is also true but not as easily seen from the construction. In the subsequent section,
such an equivalence result of the scattering problem and the boundary integral equation is
established, which leads to a stability result of the boundary integral equation.

Remark 4.2.1. For any σ > 0, we find an equivalent boundary integral equation, which has been shifted
in the frequency domain, in the following sense. We denote the (in the Laplace domain) shifted Calderón
operator with C̃imp

−
(s) = C−imp(s + σ). The boundary integral equation (4.32) is then equivalent to the

boundary integral equation[(
η
ξ

)
, C̃imp

−
(∂t)

(
ϕ̃
ψ̃

)]
Γ
+ e−σt(ξ, b(eσtψ̃− γTEinc))Γ = e−σt[γT H inc, ξ]Γ, (4.33)

where solutions of the above system of equations are related to the previous boundary densities via
ϕ̃ = e−σtϕ and ψ̃ = e−σtψ. In that sense, this boundary integral equation is equivalent to (4.32) and
their solutions coincide up to this factor. Numerical discretizations of this system of boundary integral
equations generally differ and lead to slightly different schemes. Moreover, large parts of the subsequent
error analysis (more precisely, the error analysis for multistage methods with more than 2 stages) re-
quire such a positive shift, though numerical experiments indicate that such a shift is not necessary for
practical computations.
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4.2.1. Bounds on the solution of the boundary integral equation

The following result clarifies the connection of the boundary integral equation and the asso-
ciated scattering problem, and concludes with a bound on the exact solution in terms of the
incidental waves. Additionally, the uniqueness of solutions to the boundary integral equation
is shown. An existence result for solutions of the boundary integral equation is beyond the
scope of this thesis, but can be deduced from the well-posedness of the scattering problem,
which can be proven by employing the theory of monotone operators (see [31, Corollary 2.6]).

Proposition 4.1 (Bounds on the exact solution). Consider the time-dependent boundary densities
(ϕ, ψ) ∈ L2

0(0, T; XΓ × V Γ), solutions of the nonlinear boundary integral equation (4.32). Then, there
exist electromagnetic fields, solutions to the time-dependent Maxwell’s equations of regularity

(E, H) ∈ C
(
0, T; L2(Ω)2) ∩ H−1

0
(
0, T; H(curl, Ω)2) ,

which fulfill the weak formulation of the nonlinear boundary condition (4.19). Furthermore, (ϕ, ψ)
coincide with the tangential traces of the electromagnetic fields (E, H) via (4.28). Finally, there exists
no other solution to the boundary integral equation, (ϕ, ψ) is therefore unique.

The above quantities are further bounded by the following estimates. There exists a positive constant
Cα > 0, only depending on the parameter α, such that∫ T

0
‖ϕ‖1+α

L1+α(Γ) + ‖ψ‖
1+α

α

L
1+α

α (Γ)
dt ≤ Cα

∫ T

0

∥∥γT H inc∥∥1+α

L1+α(Γ) +
∥∥γTEinc∥∥ 1+α

α

L
1+α

α (Γ)
dt,

holds, under the assumption that the right-hand side is well-defined. The electromagnetic fields are
bounded by an estimate of the same structure, namely there exists a constant Cα > 0, again only
depending on α, such that for all t ∈ [0, T], it holds that

‖E(t)‖2
L2(Ω) + ‖H(t)‖2

L2(Ω) ≤ Cα

∫ t

0

∥∥γT H inc∥∥1+α

L1+α(Γ) +
∥∥γTEinc∥∥ 1+α

α

L
1+α

α (Γ)
dt′.

Proof. The monotonicity (4.10) of b and the positivity condition (4.27) of the time domain
Calderón operator C(∂t) yield the uniqueness of the solution.

Let (ϕ, ψ) ∈ L2
0(0, T; V Γ × XΓ) be solutions of the boundary integral equation (4.32) and let

E, H ∈ H−2
0 (0, T; H(curl, R3 \ Γ)) be defined by the time-dependent representation formulas.

Consequently, the associated transmission problem (4.22)–(4.25) holds. Furthermore, the jump
conditions of the temporal Calderón operator (4.26) imply for the shifted Calderón operator

C−imp(∂t)

(
ϕ
ψ

)
= C(∂t)

(
ϕ
ψ

)
+

1
2

(
ψ
ϕ

)
=

(
{γTE}
{γT H}

)
+

1
2

(
−[γTE]
[γT H]

)
=

(
γ−T E
γ+

T H

)
. (4.34)

Applying the time-harmonic bounds of the Calderón operator in combination with [52, Lemma
2.1] yields that the tangential traces γ−T Ê and γ+

T Ĥ are at least of the regularity H−2
0 (0, T; XΓ).
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4.2. Maxwell’s equations with the nonlinear boundary condition

Setting the test functions η and ξ mutually to zero reduces the weak formulation (4.32) to[
η, γ−T E

]
Γ = 0, for all η ∈ XΓ, (4.35)

[ξ, γ+
T H]Γ +

(
ξ , b

(
ψ− γTEinc))

Γ = [γT H inc, ξ]Γ, for all ξ ∈ V Γ. (4.36)

By (4.35), we obtain γ−T E = 0, which in particular shows that the electromagnetic fields vanish
in the inner domain, since Green’s formula (4.30) implies, after integration in time, the identity

1
2

∫
Ω−
|E|2 + |H|2 dx = −∂−1

t
[
γ−T H, γ−T E

]
Γ = 0.

The electromagnetic waves E and H therefore vanish in the interior domain Ω−, which shows
that the boundary densities are the boundary data of the outer fields, i.e. (4.24)–(4.25) imply
ϕ = γ+

T H and ψ = −γ+
T E. Inserting these identites into (4.36) reveals that E and H, understood

as fields restricted to the outer domain Ω+, are the scattered fields which fulfill the nonlinear
boundary condition (4.19). Applying Green’s formula on the exterior domain Ω+ and integra-
tion on both sides gives

1
2

∫
Ω+
|E|2 + |H|2 dx = ∂−1

t
[
γ+

T H, γ+
T E
]

Γ = ∂−1
t
[
ψ, γ+

T H
]

Γ .

Testing the reduced boundary integral equation (4.36) with ψ, integration in time and inserting
this identity on the left-hand side shows

1
2

(
‖E‖2

L2(Ω+) + ‖H‖2
L2(Ω+)

)
+
∫ t

0

(
ψ, b

(
ψ− γTEinc))

Γ dt′ =
∫ t

0
[γT H inc, ψ]Γ dt′.

The nonlinear term is bounded from below by employing an intermediate term in combination
with the positivity result (4.9). Further using Hölder’s inequality with the exponents from
(4.17) and the bound (4.15) on b shows(

ψ, b
(
ψ− γTEinc))

Γ =
∥∥ψ− γTEinc∥∥ 1+α

α

L
1+α

α (Γ)
+
(
γTEinc, b

(
ψ− γTEinc))

Γ

≥
∥∥ψ− γTEinc∥∥ 1+α

α

L
1+α

α (Γ)
−
(∥∥γTEinc∥∥

L
1+α

α (Γ)

∥∥ψ− γTEinc∥∥ 1
α

L
1+α

α (Γ)

)
≥
∥∥ψ− γTEinc∥∥ 1+α

α

L
1+α

α (Γ)
−
(

C
∥∥γTEinc∥∥ 1+α

α

L
1+α

α (Γ)

+
1
2

∥∥ψ− γTEinc∥∥ 1+α
α

L
1+α

α (Γ)

)
,

where the last inequality is the consequence of the Young inequality. The remaining term on
the right-hand side is estimated analogously by employing Hölder’s and Young’s inequality,
which for yields for every ε > 0 an inversely proportional C, such that

[γT H inc, ψ]Γ ≤
∥∥γT H inc∥∥

L1+α(Γ) ‖ψ‖L
1+α

α
≤ C

∥∥γT H inc∥∥1+α

L1+α(Γ) + ε ‖ψ‖
1+α

α

L
1+α

α
.
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The term depending on ψ is absorbed to the left-hand side, which gives the estimate(
‖E‖2

L2(Ω+) + ‖H‖2
L2(Ω+)

)
+
∫ t

0
‖ψ‖

1+α
α

L
1+α

α (Γ)
dt′

≤ Cα

∫ t

0

∥∥γTEinc∥∥ 1+α
α

L
1+α

α (Γ)
+
∥∥γT H inc∥∥1+α

L1+α(Γ) dt′.

We turn our attention to the remaining estimate on ϕ. Rearranging (4.35) and using Hölder’s
inequality yields, for arbitrary η ∈ V Γ, the estimate

[η,ϕ]Γ = [γT H inc, η]Γ −
(
η, b

(
ψ− γTEinc))

Γ

≤ ‖η‖
L

1+α
α (Γ)

(∥∥γT H inc∥∥
L1+α(Γ) +

∥∥ψ− γTEinc∥∥ 1
α

L
1+α

α (Γ)

)
.

Since the embedding V Γ ⊂ L
1+α

α (Γ) is dense, we finally obtain the estimate

‖ϕ‖L1+α(Γ) = sup
η∈V Γ

[η, ψ]Γ
‖η‖

L
1+α

α (Γ)

≤
∥∥γT H inc∥∥

L1+α(Γ) +
∥∥ψ− γTEinc∥∥ 1

α

L
1+α

α (Γ)
.

Taking both sides to the power of 1 + α yields that the corresponding terms on ϕ are bounded
in terms of the previously bounded norms of ψ, thus providing the stated result.

4.3. Semi-discretization in time by Runge–Kutta convolution
quadrature

4.3.1. Runge–Kutta convolution quadrature

We refer the reader to Appendix B for the used notation regarding the convolution quadrature
method. A key technique in this section is the use of generating functions. Consider a sequence
Φn ∈ Vm for all n ∈ N, thus a sequence of elements with m components in the Banach space
V. Let σ > 0 be a real value and ρ = e−στ a weight approaching 1 for N → ∞. The generating
function Φ̂ operates on the complex disk with radius ρ and is defined by the power series

Φ̂τ : ζ 7→
∞

∑
n=0

ζnΦn |ζ| ≤ ρ.

Bilinear forms defined on a Banach space V × V are extended to Vm × Vm with the weight
matrix B = diag(b1, ..., bm) through the following expression

u · v = (u, v)b = uTBv =
m

∑
i=1

biui · vi u, v ∈ Vm,

where the dot product · here is to be understood as the bilinear form on the underlying Banach
space V. This definition generalizes the L2-pairing and the anti-symmetric pairing to functions
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4.3. Semi-discretization in time by Runge–Kutta convolution quadrature

evaluated at multiple stages. When the dot product denotes the standard dot product, or more
generally some bilinear form that fulfills a Cauchy–Schwarz type estimate with an associated
norm |·|, we have the following discrete partial integration inequality.

Lemma 4.3 (Discrete partial integration inequality). Let (un)m
i=1 and (vn)m

i=1 be sequences with
finitely many non-zero entries, elementwise in Rm. Consider the Runge–Kutta convolution quadrature
differentiation operator ∂τ

t , based on the m−stage Radau IIA method. Let the parameter ρ = e−τ/T be
defined as before. For any ε > 0, there exists an inversely proportional constant C independent of τ,u
and v, such that

∞

∑
n=0

ρn(∂τ
t u)n · vn ≤

∞

∑
n=0

ερn |un|2 + Cρn |(∂τ
t v)n|2 .

Proof. Parseval’s theorem applied to the left-hand side of the stated bound rewrites the series
with a complex integral over the contour Sρ = {ζ ∈ C : |ζ| = ρ}, which reads

∞

∑
n=0

ρn ((∂τ
t u)n , vn)b =

∫
Sρ

(
∆(ζ)

τ
û, v̂
)

b
dζ

=
1
τ

∫
Sρ

(
∆(ζ)û

)T
B
(

∆(ζ)−1∆(ζ)v̂
)

dζ.

The integrand is rewritten by the associativity of the matrix multiplication to the Cauchy–
Schwarz inequality combined with Youngs inequality to give the estimate

1
τ

∣∣∣∣∫
Sρ

(û)
T (

∆(ζ)TB∆(ζ)−1∆(ζ)v̂
)

dζ

∣∣∣∣
≤
∫

Sρ

∣∣∣∆(ζ)TB∆(ζ)−1
∣∣∣ |û| ∣∣∣∆(ζ)

τ
v̂
∣∣∣dζ

≤
∫

Sρ

∣∣∣∆(ζ)TB∆(ζ)−1
∣∣∣ ( ε̃

2
|û|2 + 1

2ε̃

∣∣∣∣∆(ζ)τ
v̂
∣∣∣∣2
)

dζ,

where the last inequality holds for all ε̃ > 0. The absolute value of the first factor in the inte-
grand denotes the euclidian matrix norm. It remains to show that this term is bounded inde-
pendently from τ. Inserting the explicit form of the Runge–Kutta differentiation symbol (B.5)
and its inverse (seen from (B.4)), and applying the triangly inequality yields∣∣∣∆(ζ)TB∆(ζ)−1

∣∣∣ = ∣∣∣∣(Im − ζ em 1
T
)

A −TB

(
A +

ζ

1− ζ
1bT

)∣∣∣∣
≤ (1 + m1/2)

∣∣∣A −TBA
∣∣∣+

∣∣∣(Im − ζ em 1
T)A −TbbT

∣∣∣
|1− ζ| .

The first summand is constant and therefore bounded. To bound the remaining term, we use
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that cm = 1 implies the identity A −Tb = em, which yields∣∣∣(Im − ζ em 1
T)A −TbbT

∣∣∣
|1− ζ| =

∣∣∣(em − ζ em 1
Tem

)
bT
∣∣∣

|1− ζ| =

∣∣∣(em − ζ em
)

bT
∣∣∣

|1− ζ|

=

∣∣1− ζ
∣∣

|1− ζ|

∣∣∣embT
∣∣∣ = ∣∣∣embT

∣∣∣ .

The stated result is now given by applying the above estimation of the matrix norm to the
integrand from Parseval’s formula, which yields for any ε a constant C > 0, only depending
on the coefficients of the Runge–Kutta methods and inversely proportional to ε, such that

∞

∑
n=0

ρn ((∂τ
t u)n , vn)b ≤

∫
Sρ

ε |û|2 + C
∣∣∣τ−1∆(ζ)v̂

∣∣∣2 dθ

=
∞

∑
n=0

ερn |un|2 + Cρn |(∂τ
t v)n|2 ,

where ε > 0 is arbitrary and C is inversely proportional to ε.

Runge–Kutta convolution quadrature methods based on the Radau IIA methods preserve
the positivity of continuous operators, a result which in particular holds for the discrete differ-
entiation operator ∂τ

t . The following positivity property is the direct consequence of the general
result from the dedicated paper [13, Theorem 3.1] (by setting the parameters in the reference to
σ = 1/(4T), c = 1/2 and α = σ).

Lemma 4.4. Consider the convolution quadrature discretization based on the m-stage Radau IIA method,
with m ≤ 2. Let 〈·, ·〉 denote the anti-duality on V, which is extended to Vm with the weight matrix B.
Then, with ρ = e−nτ/T, it holds that

τ
∞

∑
n=0

ρn 〈 fn, (∂τ
t f )n〉 ≥

τ

4T

∞

∑
n=0

ρn ‖ fn‖2
V ,

for every sequence ( fn)n≥0 in V2 with finitely many non-zero entries. For m > 2, such an estimate is
not known, however, the left-hand side remains positive:

∞

∑
n=0

ρn 〈 fn, (∂τ
t f )n〉 ≥ 0.

The inverse of the discrete differentiation operator (∂τ
t )
−1 is a bounded operator. More pre-

cisely, in the setting of Lemma 4.4 with m = 2, we have

τ

(4T)2

∞

∑
n=0

ρn
∥∥∥((∂τ

t )
−1 f

)
n

∥∥∥2

V
≤ τ

∞

∑
n=0

ρn ‖ fn‖2
V , (4.37)

which will turn out to be a useful inequality in the subsequent sections. The estimate is a
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special case of the Runge–Kutta convolution quadrature coercivity [13, Theorem 3.1] (obtained
for L(s) = 1, R(s) = s−1, with the parameters σ = 1/(4T), c = 1/2 and α = σ2). For general
m > 2, an analogous result still holds when the discrete integration operator (∂τ

t )
−1 is shifted

appropriately in the Laplace domain, as described in the Remarks 4.2.1–4.3.1.

4.3.2. Auxiliary result: Time discrete transmission problem

The following lemma is a discrete variant of the continuous time-dependent transmission prob-
lem (4.22)–(4.25) and relates sequences in the trace space XΓ

2 with discrete fields away from the
boundary through a time-discrete transmission problem.

Lemma 4.5. Let ϕn ∈ XΓ
m and ψn ∈ XΓ

m for n ∈ N denote some sequences with finitely many
non-zero entries in the trace space. Discrete fields Eτ

n, Hτ
n ∈ H(curl, R3 \ Γ)m for all n ∈N are defined

by the discrete representation formula based on the m-stage Radau IIA method:

Eτ = −S(∂τ
t )ϕ+D(∂τ

t )ψ, (4.38)
Hτ = −D(∂τ

t )ϕ−S(∂τ
t )ψ. (4.39)

Then, the following time-discrete transmission problem holds:

∂τ
t Eτ − curl Hτ = 0 in R3 \ Γ, (4.40)

∂τ
t Hτ + curl Eτ = 0 in R3 \ Γ, (4.41)

[γT]Hτ = ϕ, (4.42)
−[γT]Eτ = ψ. (4.43)

Proof. Taking the generating function on both sides of the discrete representation formulas
(4.38)–(4.39) shows that the generating function of the scattered waves Ê

τ
(ζ) and Ĥ

τ
(ζ) ful-

fill the time-harmonic representation formula

Ê
τ
(ζ) = −S

(
∆(ζ)

τ

)
ϕ̂(ζ) +D

(
∆(ζ)

τ

)
ψ̂(ζ).

An analogous formula holds for the generating function Ĥ
τ

associated to the discrete mag-
netic field. The time-harmonic representation formulas (3.29)–(3.30) and the jump conditions
(3.17) of the potential operators S(s) and D(s) consequently yield the following time-harmonic
transmission problem for the generating functions

∆(ζ)
τ

Ê
τ
(ζ)− curl Ĥ

τ
(ζ) = 0 in R3 \ Γ,

∆(ζ)
τ

Ĥ
τ
(ζ) + curl Ê

τ
(ζ) = 0 in R3 \ Γ,

[γT]Ĥ
τ
(ζ) = ϕ̂(ζ) on Γ,

−[γT]Ê
τ
(ζ) = ψ̂(ζ) on Γ.
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The stated time-discrete transmission problem then follows by coefficient comparison.

The stability analysis for the time-continuous scattering problem in Proposition 4.1 was en-
abled through the jump conditions of C(∂t). In the following lemma, we transport these jump
conditions to the time-discrete Calderón operator C(∂τ

t ) and show a related identity with re-
spect to the skew-symmetric pairing on the boundary.

Lemma 4.6. Let C(∂τ
t ) denote the convolution quadrature approximation based on the m-stage Radau

IIA method applied to the time-dependent Calderón operator C(∂t). Let further ϕn ∈ XΓ
m and ψn ∈

XΓ
m for n ∈ N denote arbitrary sequences with finitely many non-zero entries, with associated dis-

crete fields Eτ and Hτ with support on R3 \ Γ, defined via the time-discrete representation formulas
(4.38)–(4.39), such that the time-discrete transmission problem of Lemma 4.5 holds. For these fields, the
Calderón operator fulfills the identity

C(∂τ
t )

(
ϕ
ψ

)
=

(
{γTEτ}
{γT Hτ}

)
. (4.44)

Moreover, for all n ∈N, the following identity holds[(
ϕn
ψn

)
,
(

C(∂τ
t )

(
ϕ
ψ

))n]
Γ
=
∫

R3\Γ
Eτ

n · (∂τ
t Eτ)n + Hτ

n · (∂τ
t Hτ)n dx.

Proof. Applying the time-harmonic jump conditions (3.33) to the generating function of the
time-discrete Calderón operator applied to the sequence (ϕ, ψ)T yields

̂
C(∂τ

t )

(
ϕ
ψ

)
= C

(
∆(ζ)

τ

)(
ϕ̂(ζ)
ψ̂(ζ)

)
=

(
{γT Ê

τ}
{γT Ĥ

τ}

)
.

The first stated identity therefore follows by coefficient comparison. Inserting these time-
discrete jump conditions into the left-hand side of the second stated identity yields[(

ϕn
ψn

)
,
(

C(∂τ
t )

(
ϕτ

ψτ

))n]
Γ
=

[(
[γT]Hτ

n
−[γT]Eτ

n

)
,

(
{γT}Ê

τ
n

{γT}Ĥ
τ
n

)]
Γ

= [γ+
T Hτ

n, γ+
T Eτ

n]Γ − [γ−T Hτ
n, γ−T Eτ

n]Γ,

where the necessary intermediate summands for the final identity are analogous to the time-
harmonic identity (3.28). The statement follows from Green’s formula (4.30) on the interior and
exterior domain by inserting the time-discrete Maxwell’s equations (4.40)–(4.41), which yields

[γ+
T Hτ

n, γ+
T Eτ

n]Γ − [γ−T Hτ
n, γ−T Eτ

n]Γ =
∫

R3\Γ
curl Hτ

n · Eτ
n − Hτ

n · curl Eτ
n dx

=
∫

R3\Γ
(∂τ

t Eτ)n · Eτ
n + Hτ

n · (∂τ
t Hτ)n dx.
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Remark 4.3.1. Combining this result with Lemma 4.4 yields a positivity result in terms of the discrete
fields away from the boundary for m ≤ 2. For m > 2, a positivity result of this type is not achievable
(c.f. [13, Lemma 3.2 (b)]), however, shifting the formulation in the frequency domain by some σ > 0
through C̃(s) = C(s + σ), as described in the shifted boundary integral equation (4.33), gives[(

ϕn
ψn

)
,
(

C̃(∂τ
t )

(
ϕ
ψ

))n]
Γ
=
∫

R3\Γ
Eτ

n · (∂τ
t Eτ)n + σ |Eτ

n|
2

+Hτ
n · (∂τ

t Hτ)n + σ |Hτ
n|

2 dx.

Crucially, employing the second inequality of Lemma 4.4 on the right-hand side gives a coercivity result
for the time-discrete Calderón operator. The subsequent error analysis relies on a positivity result of this
type, though numerical computations indicate that the implementation of such a shift is not necessary
in practice.

4.3.3. Convolution quadrature for the nonlinear boundary integral equation

The application of the Runge–Kutta convolution quadrature method to the temporal Calderón
operator in the boundary integral equation (4.32) yields the following time-discrete boundary
integral equation.

Time-discrete boundary integral equation: Find, for all n ≤ N, the sequence of boundary densities
(ϕn, ψn) = (ϕn

i , ψn
i )

m
i=1 ∈ V Γ

m × XΓ
m, such that for all (η, ξ) ∈ V Γ × XΓ and n ≤ N it holds that[(

η
ξ

)
,
(

Cimp(∂
τ
t )

(
ϕτ

ψτ

))n]
Γ
+
(
ξ, b

(
ψτ

n − γTEinc
n
))

Γ = [γT H inc
n , ξ]Γ. (4.45)

In the above semi-discretization and in the following sections, we use the shorthand notation
Einc

n = Einc(tn), where we denoted Einc(tn) =
(
Einc(tn + ciτ)

)m
i=1. The semi-discrete numerical

solution is then recovered at any point in the domain away from the boundary through the
time-discrete representation formula, discretized by the convolution quadrature method based
on the m-stage Radau IIA method.

With the time-discrete boundary densities ϕτ and ψτ, we therefore obtain the following nu-
merical approximations in the domain

Eτ = −S(∂τ
t )ϕ

τ +D(∂τ
t )ψ

τ, (4.46)
Hτ = −D(∂τ

t )ϕ
τ −S(∂τ

t )ψ
τ. (4.47)

The time-discrete electromagnetic fields Eτ and Hτ obtained via the discrete boundary in-
tegral equation and the representation formulas are equivalent to applying the Runge–Kutta
discretization to the exterior Maxwell’s equations under the nonlinear boundary condition,
which is described in the following proposition. Connections of this type are well-established
in the literature, for example in [52, Theorem 5.2].
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Proposition 4.2. Let Eτ and Hτ be the discrete electromagnetic fields obtained via the representation
formulas (4.46)–(4.47) with the corresponding boundary densities ϕτ and ψτ, solutions of the discrete
boundary integral equations (4.45), discretized via the 2-stage Radau IIA method. These fields are then
the solution to the following discrete scattering problem:

∂τ
t Eτ − curl Hτ = 0 in Ω, (4.48)

∂τ
t Hτ + curl Eτ = 0 in Ω, (4.49)

[φ, γT Hτ]Γ + (φ, b(−γTEτ − γTEinc))Γ = [γT H inc, φ]Γ for all φ ∈ V Γ
′. (4.50)

The discrete solutions of the boundary integral equation are related to the fields via

ϕτ = γT Hτ, ψτ = −γTEτ. (4.51)

Proof. Any fields defined through the time-discrete representation formulas fulfill, as a conse-
quence of Lemma 4.5, the first identities (4.48)–(4.49) in Ω. Furthermore, the boundary densities
are, as described in Lemma 4.5, the jumps of the evaluated fields. It remains to show that the
numerical approximation vanishes in the domain Ω−, inside of the scatterer.
Applying the jump conditions of the Calderón operator yields

C−imp(∂
τ
t )

(
ϕτ

ψτ

)
= Cimp(∂

τ
t )

(
ϕτ

ψτ

)
+

1
2

(
ψτ

ϕτ

)
=

(
{γTEτ}
{γT Hτ}

)
+

1
2

(
−[γTEτ]
[γT Hτ]

)
=

(
γ−T Eτ

γ+
T Hτ

)
,

which is the time-discrete analogue of (4.34). Inserting this identity into the original discrete
boundary integral equation (4.45) yields discrete versions of (4.35)–(4.36)[

η, γ−T Eτ
n
]

Γ = 0, for all η ∈ XΓ, (4.52)

[ξ, γ+
T Hτ

n]Γ +
(
ξ , b

(
ψτ

n − γTEinc
n
))

Γ = [γT H inc
n , ξ]Γ, for all ξ ∈ V Γ. (4.53)

The first identity implies γ−T Eτ
n = 0. Inserting the discretized Maxwell’s equations in (4.48)–

(4.49) into Green’s formula (4.30) for the interior domain yields for all n∫
Ω−

Eτ
n · (∂τ

t Eτ)n + Hτ
n · (∂τ

t Hτ)n dx = −
[
γ−T En, γ−T Hτ

]
Γ = 0.

Applying the coercivity of Lemma 4.4 shows Eτ
|Ω− = Hτ

|Ω− = 0, hence the boundary densities
coincide with the exterior tangential traces as stated.

Remark 4.3.2. By shifting the boundary integral equation (4.32), as described in Remark 4.2.1, an
analogous result to Proposition 4.2 can be derived for m > 2.

4.3.4. Error bounds for the semi-discretization in time

This section is devoted to the derivation of error bounds for the solutions of the semi-discrete
boundary integral equation (4.45). The error analysis builds on the preceding auxiliary results
and is mainly conducted in the exterior domain Ω = Ω+.
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In the following theorem, error bounds with specific convergence rates for the semi-discrete
numerical solution are provided, under assumptions on the regularity of the exact solution
of the boundary integral equation (4.32). The only requirement for the nonlinearity b is the
monotonicity implied through pointwise bounds of Lemma 4.1.

Theorem 4.1. Let (ϕ, ψ) ∈ Hm+5
0 (0, T; V Γ × XΓ) be the solution of the boundary integral equation

(4.32). Consider the semi-discrete boundary densities (ϕτ
n, ψτ

n) ∈ V Γ
m × XΓ

m for all n ≤ N, solution to
the m-stage Radau IIA Runge–Kutta based convolution quadrature semi-discretization of the boundary
integral equation

• (4.32), in the case of m ≤ 2;

• (4.33) with σ = 1/T, in the case of m > 2.

The errors of the m-stage Radau IIA semi-discretization are denoted with eϕ = ϕτ −ϕ and eψ =
ψτ − ψ. These quantities are understood as the sequences whose elements are given by the error of
the approximations in the stages, i.e. en

ϕ =
(
ϕn

i
)m

i=1 −ϕ(tn), where the evaluations at the stages c are
denoted by ϕ(tn) = (ϕ(tn + ciτ))

m
i=1. With this notation, the following error bound holds(

τ
N

∑
n=0

∥∥∥((∂τ
t )
−1 eϕ

)
n

∥∥∥2

XΓ

+
∥∥∥((∂τ

t )
−1 eψ

)
n

∥∥∥2

XΓ

)1/2

≤ Cτm.

The constant C depends on higher Sobolev norms of the exact solution (ϕ, ψ), the boundary Γ and
polynomially on the final time T.

Proof. We restrict our attention to the analysis of the non-shifted scheme (4.45), which there-
fore only holds for m ≤ 2. Repeating the argument structure for the corresponding semi-
discretization of the shifted boundary integral equation (4.33) shows the stated result for m > 2.

Subtracting the boundary integral equation (4.32) from the time-discrete scheme (4.45) yields[(
η
ξ

)
, C−imp(∂

τ
t )

(
ϕτ

ψτ

)
− C−imp(∂t)

(
ϕ
ψ

)]
Γ

+
(
ξ, b

(
ψτ − γTEinc)− b

(
ψ− γTEinc))

Γ = 0.

Testing the above equation with the errors eϕ = ϕτ −ϕ and eψ = ψτ −ψ yields, upon inserting
the monotonicity of b as stated by (4.10), the estimate[(

eϕ

eψ

)
, C−imp(∂

τ
t )

(
ϕτ

ψτ

)
− C−imp(∂t)

(
ϕ
ψ

)]
Γ
≤ 0.

The summand depending on the nonlinearity has therefore been eliminated. Rearranging and
subtracting the appropriate intermediate term yields the following inequality[(

eϕ

eψ

)
, C−imp(∂

τ
t )

(
eϕ

eψ

)]
Γ
≤
[(

eϕ

eψ

)
,
(

C−imp(∂t)− C−imp(∂
τ
t )
)(ϕ

ψ

)]
Γ

. (4.54)
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To employ the discrete jump conditions of the time-discrete Calderón operator, we introduce
the following discrete fields

Eτ
∗ = −S(∂τ

t )ϕ+D(∂τ
t )ψ, (4.55)

Hτ
∗ = −D(∂τ

t )ϕ−S(∂τ
t )ψ. (4.56)

The application of the convolution quadrature approximation result in Lemma B.1 with κ = 2
and ν = 1, where the necessary time-harmonic bounds on the potential operators are provided
by Lemma 3.4, gives a positive constant C > 0, such that

∥∥(Eτ
∗)n − E(tn)

∥∥
H(curl,Ω)

+
∥∥(Hτ

∗)n − H(tn)
∥∥

H(curl,Ω)
≤ Cτm

∥∥∥∥(ϕ
ψ

)∥∥∥∥
Hm+5

0 (0,T;XΓ
2)

. (4.57)

Applying the second identity of Lemma 4.6 to the left-hand side of the transformed error equa-
tion (4.54) gives the identity[(

en
ϕ

en
ψ

)
,
(

C−imp(∂
τ
t )

(
eϕ

eψ

))n]
Γ
=
∫

R3\Γ
(Eτ − Eτ

∗)n · (∂τ
t (Eτ − Eτ

∗))n

+ (Hτ − Hτ
∗)n · (∂τ

t (Hτ − Hτ
∗))n dx.

Summation on both sides and the coercivity of the operator ∂τ
t , which is provided by Lemma 4.4,

implies the following coercivity bound purely in terms of the discrete fields away from the
boundary

∞

∑
n=0

ρn
((

en
ϕ

en
ψ

)
,
(

C−imp(∂
τ
t )

(
eϕ

eψ

))n]
Γ
≥ c

∞

∑
n=0

ρn ‖(Eτ − Eτ
∗)n‖

2
L2(R3\Γ)

+ c
∞

∑
n=0

ρn ‖(Hτ − Hτ
∗)n‖

2
L2(R3\Γ) ,

(4.58)

where ρn = e−nτ/T. In the following, we rewrite the defect terms on the right-hand side of
(4.54), with the intention to absorb the terms depending on the numerical solution on the right-
hand side with the lower bound (4.58) above.

The exact solution of the boundary integral equation is, due to Proposition 4.1, the solution of
the time-dependent scattering problem and, by Lemma 4.5, the jumps of the discrete transmis-
sion problem (4.48)–(4.43) with (Eτ

∗ , Hτ
∗). Consequently, the jumps of the discrete transmission

problem and the boundary data of the continuous problem coincide, namely

γ+
T H = ϕ = (γ+

T Hτ
∗ − γ−T Hτ

∗), (4.59)
−γ+

T E = ψ = −(γ+
T Eτ
∗ − γ−T Eτ

∗). (4.60)

The jump conditions of the time-discrete and the temporal Calderón operators (namely (4.26)
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and (4.44) respectively) imply, together with (4.60), the identity[(
eϕ

eψ

)
,
(

C−imp(∂t)− C−imp(∂
τ
t )
)(ϕ

ψ

)]
Γ
=

[(
eϕ

eψ

)
,
(

0
γ+

T H

)
−
(

γ−T Eτ
∗

γ+
T Hτ

∗

)]
Γ

=

[(
eϕ

eψ

)
,
(

γ+
T (E− Eτ

∗)
γ+

T (H − Hτ
∗)

)]
Γ

.
(4.61)

We continue with the first component on the right-hand side. Rewriting the boundary den-
sities in terms of the fields through Proposition 4.1 and Proposition 4.2 implies, with an addi-
tional intermediate term[

ϕτ −ϕ, γ+
T (E− Eτ

∗)
]

Γ =
[
γ+

T (Hτ − H), γ+
T (E− Eτ

∗)
]

Γ

=
[
γ+

T (Hτ − Hτ
∗), γ+

T (E− Eτ
∗)
]

Γ

+ [γ+
T (Hτ

∗ − H), γ+
T (E− Eτ

∗)].

The above summands are structurally simpler, since the first summand consists of the tangen-
tial traces corresponding to the fields appearing in (4.58) and the second summand is indepen-
dent of the numerical solution and directly bounded via

[γ+
T (Hτ

∗ − H), γ+
T (E− Eτ

∗)] ≤
∥∥γ+

T (Hτ
∗ − H)

∥∥
XΓ

∥∥γ+
T (Eτ

∗ − E)
∥∥

XΓ

≤ ‖Hτ
∗ − H‖H(curl,Ω+) ‖E

τ
∗ − E‖H(curl,Ω+)

≤ Cτ2m
∥∥∥∥(ϕ

ψ

)∥∥∥∥2

Hm+5
0 (0,T;XΓ

2)
.

The remaining first summand is rewritten by combining Green’s formula and the time-discrete
Maxwell’s equations (4.48), which yields[

γ+
T (Hτ − Hτ

∗), γ+
T (E− Eτ

∗)
]

Γ

=
∫

Ω+
curl(Hτ − Hτ

∗) · (E− Eτ
∗)− (Hτ − Hτ

∗) · curl(E− Eτ
∗)dx

≤
∫

Ω+
(∂τ

t Eτ − ∂τ
t Eτ
∗) · (E− Eτ

∗)dx + ‖Hτ − Hτ
∗‖L2(Ω+) ‖E− En

∗‖H(curl,Ω+)

≤
∫

Ω+
(∂τ

t Eτ − ∂τ
t Eτ
∗) · (E− Eτ

∗)dx + Cτm ‖Hτ − Hτ
∗‖L2(Ω+) ,

where the inequalities are given by the Cauchy–Schwarz inequality on the domain Ω and (4.57).
The second summand above is then bounded by applying Young’s inequality and absorbing
the remaining term depending on the numerical solution with (4.58).

We continue with the remaining first summand, where a discrete derivative of the numerical
solution has arisen. Applying the discrete partial integration formula of Lemma 4.3 yields a
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positive constant C for any ε > 0, such that

∞

∑
n=0

ρn
∫

Ω+
(∂τ

t (Eτ − Eτ
∗))n · (E− Eτ

∗)n dx

≤
∞

∑
n=0

ρn
(

ε ‖(Eτ − Eτ
∗)n‖2

L2(Ω+) + C ‖(∂τ
t (E− Eτ

∗))n‖
2
L2(Ω+)

)
,

where we choose ε small enough to absorb the term with (4.58).
To bound the remaining term, we apply the discretized Maxwell’s equation for Eτ

∗ to obtain

‖∂τ
t (E− Eτ

∗)‖L2(Ω+) ≤ ‖∂
τ
t E− ∂tE‖L2(Ω+) + ‖curl(H − Hτ

∗)‖L2(Ω+)

≤ Cτm
∥∥∥∥(ϕ

ψ

)∥∥∥∥
Hm+5

0 (0,T;XΓ
2)

.

This bound completes the estimation of the first component of (4.61).
The remaining component of (4.61) is estimated by repeating the same arguments, starting

from inserting (4.60), which yields[
eψ, γ+

T (H − Hτ
∗)
]

Γ =
[
−γ+

T (Eτ − E) , γ+
T (H − Hτ

∗)
]

Γ

=
[
−γ+

T (Eτ − Eτ
∗) , γ+

T (H − Hτ
∗)
]

Γ

+
[
−γ+

T (Eτ
∗ − E) , γ+

T (H − Hτ
∗)
]

Γ .

The second summand is again independent of the numerical solution and bounded from above
via [

γ+
T (Eτ

∗ − E) , γ+
T (H − Hτ

∗)
]

Γ ≤ ‖E− Eτ
∗‖H(curl,Ω+) ‖H − Hτ

∗‖H(curl,Ω+)

≤ Cτ2m
∥∥∥∥(ϕ

ψ

)∥∥∥∥2

Hm+5
0 (0,T;XΓ

2)
.

Applying Green’s formula (4.30) to the first summand and inserting (4.41) yields[
γ+

T (Eτ
∗ − Eτ) , γ+

T (H − Hτ
∗)
]

Γ

=
∫

Ω+
curl(Eτ

∗ − Eτ) · (H − Hτ
∗)− (Eτ

∗ − Eτ) · curl(H − Hτ
∗)dx

≤
∫

Ω+
(∂τ

t Hτ − ∂τ
t Hτ
∗) · (H − Hτ

∗)dx + ‖Eτ
∗ − Eτ‖L(Ω+) ‖H − Hτ

∗‖H(curl,Ω+) .

The second summand is again bounded from above by employing Young’s inequality, (4.57)
and absorbing the remaining term. Applying the discrete partial integration formula of Lemma 4.3
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shows the estimate

∞

∑
n=0

ρn
∫

Ω+
(∂τ

t Hτ − ∂τ
t Hτ
∗)n · (H − Hτ

∗)n dx

≤
∞

∑
n=0

ρn
(

ε ‖(Hτ − Hτ
∗)n‖2

L2(Ω+) + C ‖(∂τ
t (H − Hτ

∗))n‖
2
L2(Ω+)

)
.

As before, the constant ε is arbitrary small and is chosen small enough, such that the cor-
responding summand can be absorbed to the left-hand side with (4.58). Inserting the time-
discrete Maxwell’s equation once more into the first summand completes the proof by

‖∂τ
t (H − Hτ

∗)‖L2(Ω+) ≤ ‖∂
τ
t H − ∂tH‖L2(Ω+) + ‖curl(E− Eτ

∗)‖L2(Ω+)

≤ Cτm
∥∥∥∥(ϕ

ψ

)∥∥∥∥
Hm+5

0 (0,T;XΓ
2)

.

4.4. Semi-discretization in space by the boundary element method

We turn our attention towards the semi-discretization in space, which restricts the weak for-
mulation to a finite dimensional subspace. As in the previous chapter, we make use of the
Raviart–Thomas boundary element space, whose favourable approximation properties are dis-
cussed in Section 3.7.

In contrast to the previous chapter, we begin with the time-continuous formulation, which
is a suitable setting to present the error analysis for the spatial defects. The time-continuous
spatial semi-discretization reads:
Find ϕh, ψh ∈ L2

0 (Xh × V h), such that for all (ηh, ξh) ∈ Xh × V h, it holds that[(
ηh
ξh

)
, C−imp(∂t)

(
ϕh
ψh

)]
Γ
+
(
ξh, b

(
ψh − γTEinc))

Γ = [γT H inc, ξh]Γ. (4.62)

Let Ih : V Γ → V h (or Ih : XΓ → Xh respectively) denote the interpolation operator of the
underlying boundary element space. The following proposition gives a stability estimate of the
error arising from the spatial semi-discretization, bounding it purely by interpolation errors of
the exact solution.

Remark 4.4.1. In contrast to Chapter 2, both boundary element spaces V h and Xh coincide in practice,
since we choose Raviart–Thomas boundary elements of order k to approximate both traces. Consequently,
we abstain from notationally differentiating between the interpolation operators associated to the bound-
ary element spaces V h and Xh respectively.
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Chapter 4. Nonlinear electromagnetic scattering

4.4.1. Spatial semi-discretization: Quasi-optimality

Proposition 4.3. Let (ϕ, ψ) ∈ H3
0(0, T; V Γ × XΓ) be the solution of the boundary integral equation

(4.32) and ϕh, ψh ∈ L2
0 (V h × Xh) be solutions of the spatially discrete formulation (4.62). For brevity

of notation, we introduce a nonlinear defect, which we set to be

db := b
(

Ihψ− γTEinc
)
− b

(
ψ− γTEinc

)
.

The spatial semi-discretization errors are denoted by eh
ϕ = ϕh − Ihϕ and eh

ψ = ψh − Ihψ. Then, we
have the following stability estimate

∫ T

0

∥∥∥∥∥∂−1
t

(
eh

ϕ

eh
ψ

)∥∥∥∥∥
2

XΓ
2

+
∥∥∥eh

ψ

∥∥∥ 1+α
α

L
1+α

α (Γ)
dt ≤ C

∥∥∥∥( Ihϕ−ϕ
Ihψ−ψ

)∥∥∥∥2

H3
0(0,T;XΓ

2)
+ C

∫ ∞

0
e−t/T ‖db‖1+α

L1+α(Γ) dt.

(4.63)

The constant C only depends on the boundary and polynomially on the final time T.

Proof. Inserting the interpolation into the exact formulation and rearranging yields[(
η
ξ

)
, C−imp(∂t)

(
Ih ϕ
Ih ψ

)]
Γ
+
(
ξ, b

(
Ihψ− γTEinc))

Γ

= [γT H inc, ξ]Γ +

[(
η
ξ

)
, C−imp(∂t)

(
Ih ϕ−ϕ
Ih ψ−ψ

)]
Γ
+ (ξ, db)Γ .

Subtraction from the spatial semi-discretization and testing with the defect equation above
with ηh = eh

ϕ and ξh = eh
ψ provides the error equation[(

eh
ϕ

eh
ψ

)
, C−imp(∂t)

(
eh

ϕ

eh
ψ

)]
Γ

+
(

eh
ψ, b

(
ψh − γTEinc)− b

(
Ih ψ− γTEinc))

Γ
(4.64)

=

[(
eh

ϕ

eh
ψ

)
, C−imp(∂t)

(
Ihϕ−ϕ
Ihψ−ψ

)]
Γ

+
(

eh
ψ, db

)
Γ

. (4.65)

Both the terms occuring on the left-hand side above can be estimated from below. The coer-
civity of the time domain Calderón operator (4.27) yields a positive constant c > 0, depending
only polynomially on the inverse of T and on the boundary Γ, such that

c
∫ ∞

0
e−t/T

∥∥∥∥∥∂−1
t

(
eh

ϕ

eh
ψ

)∥∥∥∥∥
2

XΓ
2

dt ≤
∫ ∞

0
e−t/T

[(
eh

ϕ

eh
ψ

)
, Cimp(∂t)

(
eh

ϕ

eh
ψ

)]
Γ

dt.

Applying the positivity of the nonlinearity (4.10) towards the second summand occuring in the
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error equation yields(
eh

ψ, b
(
ψh − γTEinc)− b

(
Ihψ− γTEinc))

Γ
≥ cα

∥∥∥eh
ψ

∥∥∥ 1+α
α

L
1+α

α (Γ)
.

These positivity estimates provide, in combination with the error equation (4.64), the bound

c
∫ ∞

0
e−t/T

∥∥∥∥∥∂−1
t

(
eh

ϕ

eh
ψ

)∥∥∥∥∥
2

XΓ
2

+ e−t/T
∥∥∥eh

ψ

∥∥∥ 1+α
α

L
1+α

α (Γ)
dt

≤
∫ ∞

0
e−t/T

[(
eh

ϕ

eh
ψ

)
, C−imp(∂t)

(
Ihϕ−ϕ
Ihψ−ψ

)]
Γ

+ e−t/T
(

eh
ψ, db

)
Γ

dt.

(4.66)

The first summand is bounded through partial integration and Young’s inequality, which yields
for any ε > 0 a constant C, such that

∫ ∞

0
e−t/T

[(
eh

ϕ

eh
ψ

)
, C−imp(∂t)

(
Ihϕ−ϕ
Ihψ−ψ

)]
Γ

dt

≤ ε
∫ ∞

0
e−t/T

∥∥∥∥∥∂−1
t

(
eh

ϕ

eh
ψ

)∥∥∥∥∥
2

XΓ
2

dt + C
∫ ∞

0
e−t/T

∥∥∥∥∂tC−imp(∂t)

(
Ihϕ−ϕ
Ihψ−ψ

)∥∥∥∥2

XΓ
2

dt.

Absorbing the first summand by choosing ε small enough and applying (A.3) to the remaining
term yields

∫ ∞

0
e−t/T

∥∥∥∥∂tC−imp(∂t)

(
Ihϕ−ϕ
Ihψ−ψ

)∥∥∥∥2

XΓ
2

dt ≤ C
∫ ∞

0
e−t/T

∥∥∥∥∂3
t

(
Ihϕ−ϕ
Ihψ−ψ

)∥∥∥∥2

XΓ
2

dt.

Choosing ε small enough allows the first summand to be absorbed. Applying Hölder’s in-
equality and Young’s inequality successively to the nonlinear term in (4.66) finally yields(

eh
ψ, db

)
Γ
≤
∥∥∥eh

ψ

∥∥∥
L

1+α
α (Γ)

‖db‖L1+α(Γ) ≤ ε
∥∥∥eh

ψ

∥∥∥ 1+α
α

L
1+α

α (Γ)
+ C ‖db‖1+α

L1+α(Γ) .

The constant C > 0 is only dependent on ε, which is set small enough such that the first
summand can be absorbed on the second summand on the left-hand side of (4.66).

Remark 4.4.2. We note that the previous stability estimate readily extends to a more general class
of projection operators. However, since the approximation properties of the interpolation operators Ih
associated to the Raviart–Thomas boundary element spaces are sufficient in the confines of this chapter,
we restrict the presentation to these interpolation operators.
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4.4.2. Spatial semi-discretization: Error rates

The L1+α(Γ)-norm is bounded by the L2(Γ)- norm, which follows from Hölder’s inequality
with q = 2

1+α and p = 2
1−α , which implies

‖u‖1+α
L1+α(Γ) =

∫
Γ
|u|1+α dx ≤ ‖1‖

L
2

1−α (Γ)

∥∥∥|u|1+α
∥∥∥

L
2

1+α (Γ)
= Cα,Γ ‖u‖1+α

L2(Γ) . (4.67)

For Raviart–Thomas elements of order k and ϕ ∈ Hk+1
× (Γ), we therefore have, from [26, Lemma

15], the interpolation estimate

‖Ihϕ−ϕ‖L1+α(Γ) ≤ ‖Ihϕ−ϕ‖L2(Γ) ≤ Chk+1 ‖ϕ‖Hk+1
× (Γ) . (4.68)

Moreover, an additional interpolation approximation result from [26, Lemma 15] shows

‖Ihϕ−ϕ‖XΓ
≤ Chk+1 ‖ϕ‖Hk+1

× (Γ) . (4.69)

These interpolation estimates are sufficient approximation properties of the underlying bound-
ary element space for the error analysis in this chapter. Inserting the approximation properties
of the Raviart–Thomas boundary element space on the right-hand side of the stability result
gives the following convergence result.

Theorem 4.2. Let (ϕ, ψ) be the solution of the boundary integral equation (4.32), assumed to be of
regularity

(ϕ, ψ) ∈ H3
0

(
0, T; Hk+1

× (Γ)2
)

.

Moreover, let ψ(t), γTEinc ∈ L∞(Γ) for all t ∈ [0, T]. Consider the spatially discrete boundary densities
(ϕh(t), ψh(t)) ∈ V m

h × Xm
h for all t ≥ 0, solutions to the semi-discrete boundary integral equation

(4.62), discretized by Raviart–Thomas boundary elements of order k. These approximations fulfill the
error bounds ∥∥∥∥∂−1

t

(
ϕh −ϕ
ψh −ψ

)∥∥∥∥
L2

0(0,T;XΓ
2)

≤ Ch
1+α

2 (k+1).

The constant C depends on the incidental waves, higher Sobolev norms of the exact solution (ϕ, ψ), the
boundary Γ, polynomially on the final time T and on α.

Proof. The stability analysis of Proposition 4.3 implies bounds for the complete error, a fact that
is seen by using the interpolation as an intermediate term and employing the approximation
result (4.69), which yields∥∥∥∥∂−1

t

(
ϕh −ϕ
ψh −ψ

)∥∥∥∥
L2

0(0,T;XΓ
2)

≤
∥∥∥∥∂−1

t

(
ϕh − Ihϕ
ψh − Ihψ

)∥∥∥∥
L2

0(0,T;XΓ
2)

+ Chk+1.

Consequently, we restrict our attention for the rest of the proof on the remaining summand,
which was estimated in Proposition 4.3. The right-hand side of the stability estimate (4.63) con-
sists of two spatial defects, which are connected to the Calderón operator and the nonlinearity
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b respectively. The first spatial defect is directly bounded via the interpolation error estimate
(4.69) through ∥∥∥∥( Ihϕ−ϕ

Ihψ−ψ

)∥∥∥∥
H3

0(0,T;XΓ×XΓ)

≤ Chk+1
∥∥∥∥(∂3

tϕ
∂3

t ψ

)∥∥∥∥
L2

0(0,T;Hk+1
× (Γ)2)

.

The nonlinear defect term is pointwise bounded by (4.11), which yields the existence of a con-
stant C, depending on α and the incidental electric wave, such that

‖db‖1+α
L1+α(Γ) =

∥∥b
(

Ihψ− γTEinc)− b
(
ψ− γTEinc)∥∥1+α

L1+α(Γ)

≤ C
∫

Γ
(|Ihψ|+ |ψ|)

1−α2
α |Ihψ−ψ|1+α dx

≤ C
(
‖Ihψ‖L∞(Γ) + ‖ψ‖L∞(Γ)

) 1−α2
α ‖Ihψ−ψ‖1+α

L1+α(Γ) .

Applying the approximation result (4.68) for the interpolation operator of the Raviart–Thomas
element space finally implies

‖db‖1+α
L1+α(Γ) ≤ Ch(1+α)(k+1)

(
1 + ‖ψ‖L∞(Γ)

) 1−α2
α ‖ψ‖1+α

Hk+1
× (Γ) .

Combining the stability result (4.63) with these bounds completes the proof.

4.5. Full discretization

Combining the m-stage Radau IIA Runge–Kutta convolution quadrature time discretization
with the k-th order Raviart–Thomas boundary element space discretization yields the following
fully discrete scheme.

Full discretization of the boundary integral equation: Find the sequence of fully discrete boundary
densities (ϕτ,h

n , ψτ,h
n ) ∈ V m

h × Xm
h for n ≤ N, such that for all (ηh, ξh) ∈ V h × Xh, it holds that[(

ηh
ξh

)
,
(

C−imp(∂
τ
t )

(
ϕτ,h

ψτ,h

))n
]

Γ

+
(

ξh, b
(

ψτ,h
n − γTEinc

n

))
Γ
= [γT H inc

n , ξh]Γ. (4.70)

At every time step, this scheme requires the solution of the nonlinear system[(
ηh
ξh

)
, C−imp

(
∆(0)

τ

)(
ϕτ,h

n
ψτ,h

n

)]
Γ
+
(

ξh, b
(

ψτ,h
n − γTEinc

n

))
Γ
=

[
f n,
(

ηh
ξh

)]
Γ

,

where the right-hand side f n is determined by the incidental waves and the history of the
solution, as described in (C.12).

The above system has, for every n ≥ 0, a unique solution. This result is provided by the
Browder–Minty theorem, where the crucial monotonicity is given by Lemma 3.7 (note that the
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eigenvalues of ∆(0) = A −1 have positive real part, see e.g. [14, Lemma 3]) for the Calderón
operator and by (4.10) for the nonlinearity b respectively. More details are found in [18, Theo-
rem 4.4], which gives a proof in the acoustic setting for multistep-based convolution quadrature
methods.

4.5.1. Error bounds for the full discretization

This section is devoted to the derivation of error bounds for the full discretization, by combin-
ing the key ideas used to derive error bounds for the semi-discretizations. In contrast to the
error analysis of the semi-discretization in time, the temporal defects are estimated with terms
that also act on the interior domain Ω−.

Theorem 4.3. The solution of the boundary integral equation (4.32) is assumed to be at least of the
regularity

(ϕ, ψ) ∈ Hm+5
0

(
0, T; H1

×(Γ)
2
)
∩ H3

0

(
0, T; Hk+1

× (Γ)2
)

.

Moreover, let ψ(t), γTEinc ∈ L∞(Γ) for all t ≥ 0. Consider the fully discrete boundary densities
(ϕτ,h

n , ψτ,h
n ) ∈ V m

h × Xm
h for all n ≤ N, solution to the full discretization of the boundary integral

equation (4.70), discretized by

• Runge–Kutta convolution quadrature based on the m-stage Radau IIA method, and

• Raviart–Thomas boundary elements of order k in space.

For m > 2, we assume the full discretization to be applied to the shifted boundary integral equation
(4.33), with σ = 1/T. The errors eϕ = ϕτ

h − Ihϕ and eψ = ψτ
h − Ihψ then fulfill the bounds(

τ
N

∑
n=0

∥∥∥((∂τ
t )
−1 eϕ

)
n

∥∥∥2

XΓ

+
∥∥∥((∂τ

t )
−1 eψ

)
n

∥∥∥2

XΓ

)1/2

≤ C
(

τm + h
1+α

2 (k+1)
)

.

The electromagnetic fields, defined through the discrete representation formulas (4.46)–(4.47), further
fulfill the error bounds(

τ
N

∑
n=0

∥∥∥Eτ,h
n − E(tn)

∥∥∥2

L2(Ω)
+
∥∥∥Hτ,h

n − H(tn)
∥∥∥2

L2(Ω)

)1/2

≤ C
(

τm + h
1+α

2 (k+1)
)

,

where E(tn) = (E(tn + ciτ))
m
i=1 denotes the evaluations at the stages c of the Radau IIA Runge–Kutta

method. The constants depend on the incidental waves, higher Sobolev norms of the exact solution
(ϕ, ψ), the boundary Γ and polynomially on the final time T.

Proof. Whenever clear from the context, we omit the index n ∈ N or respectively the time
point tn, to simplify the notation. The proof here is presented for m ≤ 2, which enables the use
of the direct application of the coercivity property from Lemma 4.4. For m > 2, the proof is
then generalized by recovering the positivity through a shift as described in Remark 4.3.1 and
repeating the arguments precisely as they appear in the following proof.
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4.5. Full discretization

Inserting a projection of the exact solution yields a sequence of defects d = (dn)n≥0, which
are elementwise boundary element functions dn ∈ Xm

h × V m
h for all n ≥ 0, and ensure the per-

turbed boundary integral equation[(
ηh
ξh

)
, C−imp(∂

τ
t )

(
Ihϕ
Ihψ

)]
Γ
+
(
ξh, b

(
Ihψ− γTEinc))

Γ

= [γT H inc, ξh]Γ +

[(
ηh
ξh

)
, d
]

Γ
.

(4.71)

Similarly to the error analysis for the semi-discretization in time, we define fields associated
with the projected exact solutions through the discrete representation formulas via(

Eτ,h
Π

Hτ,h
Π

)
=

(
−S(∂τ

t )Ihϕ+D(∂τ
t )Ihψ

−D(∂τ
t )Ihϕ−S(∂τ

t )Ihψ

)
= W(∂τ

t )

(
Ihϕ
Ihψ

)
. (4.72)

For brevity of notation, we use the notational short hand En,h
Π = (Eτ,h

Π )n, for the sequence
element approximating E at the stages (tn + ciτ)

m
i=1. The discrete transmission problem of

Lemma 4.5 shows (
Ihϕ
Ihψ

)
=

(
γ+

T Hτ,h
Π

−γ+
T Eτ,h

Π

)
−
(

γ−T Hτ,h
Π

−γ−T Eτ,h
Π

)
. (4.73)

These fields are approximations of the exact fields E and H and approximate these fields in a
higher order than the stated error bounds since(

Eτ,h
Π − E

Hτ,h
Π − H

)
= (W(∂τ

t )−W(∂t))

(
Ihϕ
Ihψ

)
+W(∂t)

(
Ihϕ−ϕ
Ihψ−ψ

)
.

Error bounds for these fields are then ensured by the error bound (4.69) of the interpolation
operator and the convolution quadrature method approximation result of Lemma B.2. Using
this result with κ = 2 and ν = 1, where the time-harmonic bounds are provided by Lemma 3.10,
then implies the existence of a constant C, such that∥∥∥En,h

Π − E(tn)
∥∥∥

H(curl,Ω)
+
∥∥∥Hn,h

Π − H(tn)
∥∥∥

H(curl,Ω)

≤ C

(
τm
∥∥∥∥(ϕ

ψ

)∥∥∥∥
Hm+5

0 (0,T;XΓ
2)

+ hk+1
∥∥∥∥(ϕ

ψ

)∥∥∥∥
H3

0(0,T;Hk+1
× (Γ)2)

)
,

(4.74)

where the constant only depends on the surface Γ and polynomially on the final time T. Sub-
tracting the perturbed scheme from the full discretization and testing with the errors en

ϕ and en
ψ

125



Chapter 4. Nonlinear electromagnetic scattering

yields the following error equation[(
en

ϕ

en
ψ

)
,
(

C−imp(∂
τ
t )

(
eϕ

eψ

))n]
Γ

+
(

en
ψ, b

(
ψτ,h

n − γTEinc
n

)
− b

(
Ihψ(tn)− γTEinc

n
))

Γ
=

[(
en

ϕ

en
ψ

)
, dn
]

Γ
.

(4.75)

The second summand with the nonlinearity b is bounded from below through the pointwise
monotonicity estimate of b from Lemma 4.10, which yields(

en
ψ, b

(
ψτ,h

n − γTEinc
n

)
− b

(
Ihψ(tn)− γTEinc

n
))

Γ
≥ cα

∥∥∥en
ψ

∥∥∥ 1+α
α

L
1+α

α (Γ)
.

In order to estimate the tested time-discrete Calderón operator from below, we apply the sec-
ond identity of Lemma 4.6, which reads for the present fields[(

en
ϕ

en
ψ

)
,
(

C−imp(∂
τ
t )

(
eϕ

eψ

))n]
Γ
=
∫

R3\Γ
(Eτ,h − Eτ,h

Π )n ·
(

∂τ
t

(
Eτ,h − Eτ,h

Π

))
n

+
(

Hτ,h − Hτ,h
Π

)
n
·
(

∂τ
t

(
Hτ,h − Hτ,h

Π

))
n

dx.

Employing the coercivity of the discrete operator ∂τ
t , given by Lemma 4.4, now yields an esti-

mate from below.
Taking the weighted sum over the error equation (4.75), where the term corresponding to

the time point tn is weighted by ρn = e−nτ/T, inserting this identity into the left-hand side and
applying Lemma 4.4 yields a positive constant C, such that

N

∑
n=0

ρn
(∥∥∥Eτ,h

n − En,h
Π

∥∥∥2

L2(R3\Γ)
+
∥∥∥Hτ,h

n − Hn,h
Π

∥∥∥2

L2(R3\Γ)
+
∥∥∥en

ψ

∥∥∥ 1+α
α

L
1+α

α (Γ)

)
(4.76)

≤ C
N

∑
n=0

ρn
[(

en
ϕ

en
ψ

)
, dn
]

Γ
.

The term depending on the defect is rewritten by subtracting the exact boundary integral equa-
tion (4.32) from the perturbed equation (4.71), which yields the following decomposition[(

en
ϕ

en
ψ

)
, dn
]

Γ
=

[(
en

ϕ

en
ψ

)
,
(

C−imp(∂
τ
t )

(
Ihϕ
Ihψ

)
− C−imp(∂t)

(
ϕ
ψ

))n]
Γ

(A)

+
(

en
ψ, b

(
Ihψ(tn)− γTEinc

n
)
− b

(
ψ(tn)− γTEinc

n
))

Γ
(B).

The defect naturally consists of a temporal defect, depending on the approximation of the time-
dependent Calderón operator, and a defect depending on the nonlinearity b. These terms are
subsequently estimated successively.
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(A) We begin our investigations with the temporal defect, for which inserting the jump con-
ditions of the discrete Calderón operator (4.44) and the continuous time-dependent Calderón
operator (4.29) imply[(

eϕ

eψ

)
, C−imp(∂

τ
t )

(
Ihϕ
Ihψ

)
− C−imp(∂t)

(
ϕ
ψ

)]
Γ
=

[(
eϕ

eψ

)
,

(
γ−T Eτ,h

Π
γ+

T Hτ,h
Π − γ+

T H

)]
Γ

.

The left argument of the anti-symmetric pairing is splitted by rewriting the numerical approx-
imation and the projected exact solution in terms of the jumps of their respective fields via
(4.42)–(4.43) and (4.73) respectively, which yields[(

ϕτ,h − Ihϕ

ψτ,h − Ihψ

)
,

(
γ−T Eτ,h

Π
γ+

T Hτ,h
Π − γ+

T H

)]
Γ

=

[(
γ+

T (Hτ,h − Hτ,h
Π )

−γ+
T (Eτ,h − Eτ,h

Π )

)
,

(
γ−T Eτ,h

Π
γ+

T Hτ,h
Π − γ+

T H

)]
Γ

(4.77)

−
[(

γ−T (Hτ,h − Hn,h
Π )

−γ−T (Eτ,h − Eτ,h
Π )

)
,

(
γ−T Eτ,h

Π
γ+

T Hτ,h
Π − γ+

T H

)]
Γ

. (4.78)

In the following, we estimate these terms corresponding to errors in the interior and exterior
domains. The only inner trace appearing in the first summand is the inner tangential trace of
the electric field, which is rewritten via the jump condition (4.73) of the discrete transmission
problem, which implies

γ−T Eτ,h
Π = γ+

T Eτ,h
Π + Ihψ =

(
γ+

T Eτ,h
Π − γ+

T E
)
− (ψ− Ihψ) .

Inserting this identity into the first summand (4.77) gives[(
γ+

T (Hτ,h − Hτ,h
Π )

−γ+
T (Eτ,h − Eτ,h

Π )

)
,

(
γ−T Eτ,h

Π
γ+

T Hτ,h
Π − γ+

T H

)]
Γ

=
[
γ+

T (Hτ,h − Hτ,h
Π ), γ+

T (Eτ,h
Π − E)

]
Γ

(i)

−
[
γ+

T (Hτ,h − Hτ,h
Π ), ψ− Ihψ

]
Γ

(ii)

−
[
γ+

T (Eτ,h − Eτ,h
Π ), γ+

T

(
Hτ,h

Π − H
)]

Γ
. (iii)

The following paragraphs are dedicated to the successive estimation of the terms (i)–(iii).

(i) Green’s formula (4.30), in combination with inserting the time-discrete Maxwell’s equa-
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tions (4.40) and the Cauchy–Schwarz inequality, yields[
γ+

T (Hτ,h − Hτ,h
Π ), γ+

T (Eτ,h
Π − E)

]
Γ

=
∫

Ω+
curl(Hτ,h − Hτ,h

Π ) · (Eτ,h
Π − E)− (Hτ,h − Hτ,h

Π ) · curl(Eτ,h
Π − E)dx (4.79)

≤
∫

Ω+

(
∂τ

t Eτ,h − ∂τ
t Eτ,h

Π

)
·
(

Eτ,h
Π − E

)
dx

+
∥∥∥Hτ,h − Hτ,h

Π

∥∥∥
L2(Ω+)

∥∥∥curl Eτ,h
Π − curl E

∥∥∥
L2(Ω+)

.

Summation on both sides, applying the discrete integration bound of Lemma 4.3 to the first
summand and Young’s inequality to the second summand consequently gives for any ε > 0 a
constant C, such that

N

∑
n=0

ρn
[
γ+

T (Hτ,h
n − Hn,h

Π ), γ+
T (En,h

Π − E(tn))
]

Γ

≤
N

∑
n=0

ρn
(

ε
∥∥∥(Eτ,h − Eτ,h

Π

)
n

∥∥∥2

L2(Ω)
+ C

∥∥∥(∂τ
t Eτ,h

Π − ∂τ
t E
)

n

∥∥∥2

L2(Ω)

)
+

N

∑
n=0

ρn
(

ε
∥∥∥(Hτ,h − Hτ,h

Π

)
n

∥∥∥2

L2(Ω)
+ C

∥∥∥(Eτ,h
Π − E

)
n

∥∥∥2

H(curl,Ω)

)
.

By choosing ε > 0 small enough, the terms depending on the numerical solution are absorbed
to the left-hand side (4.76). The error of the intermediate field Eτ,h

Π in the H(curl, Ω) norm
is bounded by (4.74). This leaves the second summand, consisting of the temporal discrete
differentiation, which is bounded from above through∥∥∥(∂τ

t Eτ,h
Π − ∂τ

t E
)

n

∥∥∥
L2(Ω+)

≤
∥∥∥(curl Hτ,h

Π − curl H
)

n

∥∥∥
L2(Ω+)

+ ‖(∂tE− ∂τ
t E)n‖L2(Ω+)

≤ C(τm + hk+1),

where the bound is obtained by (4.74) and Lemma B.2 ( with κ = 1 and ν = 0) respectively.

(ii) The discrete partial integration inequality of Lemma 4.3 yields, in combination with
∂τ

t (∂
τ
t )
−1 = Id (which holds due to (B.9)), the estimate

N

∑
n=0

ρn
[
γ+

T (Hτ,h
n − Hn,h

Π ), ψ(tn)− Ihψ(tn)
]

Γ

≤
N

∑
n=0

ρn
(

ε
∥∥∥((∂τ

t )
−1 γ+

T (Hτ,h − Hτ,h
Π )
)

n

∥∥∥2

XΓ

+ C ‖(∂τ
t (ψ− Ihψ))n‖

2
XΓ

)
. (4.80)

Applying the trace theorem to the first summand, which depends on the numerical solution,
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yields ∥∥∥((∂τ
t )
−1 γ+

T (Hτ,h − Hτ,h
Π )
)

n

∥∥∥2

XΓ

≤
∥∥∥((∂τ

t )
−1 Hτ,h − (∂τ

t )
−1 Hτ,h

Π

)
n

∥∥∥2

H(curl,Ω+)

=
∫

Ω+

∣∣∣((∂τ
t )
−1 Hτ,h − (∂τ

t )
−1 Hτ,h

Π

)
n

∣∣∣2 + ∣∣∣En
h − En,h

Π

∣∣∣2 dx.

The first summand is bounded by (4.37), which yields a constant C, such that

∞

∑
n=0

ρn
∫

Ω+

∣∣∣((∂τ
t )
−1 Hτ,h − (∂τ

t )
−1 Hτ,h

Π

)
n

∣∣∣2 dx ≤ C
∞

∑
n=0

ρn
∥∥∥Hτ,h

n − Hn,h
Π

∥∥∥2

L2(Ω+)
,

where the constant C only depends polynomially on the final time T. Consequently, the first
summand of (4.80) can be absorbed to the left-hand side of (4.76) by choosing ε small enough.

The remaining second summand of (4.80) is rewritten by splitting the temporal discrete dif-
ferentiation operator into ∂τ

t = ∂t − (∂t − ∂τ
t ), for which the first resulting term is directly

bounded through the approximation result of the interpolation operator. Applying Lemma B.2
to the remaining summand then gives, for all n, the chain if inequalities

‖(∂τ
t (ψ− Ihψ))n‖XΓ

≤ C ‖∂t (ψ− Ihψ)‖2
XΓ

+ C ‖((∂t − ∂τ
t ) (ψ− Ihψ))n‖XΓ

≤ Ch(k+1) ‖ψ‖H2
0(0,T;Hk+1

× ) + Cτm ∥∥∂m+3
t ψ− Ih∂m+3

t ψ
∥∥2

L2
0(0,T;XΓ)

≤ Ch(k+1) ‖ψ‖H2
0(0,T;Hk+1

× ) + Cτmh ‖ψ‖2
L2

0(0,T;H1
×(Γ))

.

(4.81)

In order to estimate the first summand, we further used the continuous embedding H1(0, T) ⊂
C(0, T). The final bound on the interpolation in the second summand is provided by [26,
Lemma 15] with s = 1.

(iii) We repeat the argument structure of (i) for the final term, starting from Green’s formula
and the Cauchy–Schwarz inequality, which yields[

γ+
T

(
Eτ,h − Eτ,h

Π

)
, γ+

T

(
Hτ,h

Π − H
)]

Γ

=
∫

Ω+
curl

(
Eτ,h − Eτ,h

Π

)
·
(

Hτ,h
Π − H

)
−
(

Eτ,h − Eτ,h
Π

)
· curl

(
Hτ,h

Π − H
)

dx (4.82)

≤
∫

Ω+
−
(

∂τ
t Hτ,h − ∂τ

t Hτ,h
Π

)
·
(

Hτ,h
Π − H

)
dx

+
∥∥∥Eτ,h − Eτ,h

Π

∥∥∥
L2(Ω+)

∥∥∥curl Hτ,h
Π − curl H

∥∥∥
L2(Ω+)

.

The discrete integration inequality of Lemma 4.3, applied to the first summand, in combination
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with Young’s inequality applied to the second summand yields

N

∑
n=0

ρn
[
γ+

T

(
Eτ,h

n − En,h
Π

)
, γ+

T

(
Hn,h

Π − H(tn)
)]

Γ

≤
N

∑
n=0

ρn
(

ε
∥∥∥Hτ,h

n − Hn,h
Π

∥∥∥2

L2(Ω+)
+ C

∥∥∥(∂τ
t Hτ,h

Π − ∂τ
t H
)

n

∥∥∥2

L2(Ω+)

)
+ ρn

(
ε
∥∥∥Eτ,h

n − En,h
Π

∥∥∥2

L2(Ω+)
+ C

∥∥∥Hn,h
Π − H(tn)

∥∥∥2

H(curl,Ω+)

)
,

where only the terms multiplied by ε > 0 depend on the numerical solution, which are ab-
sorbed to the left-hand side (4.76). The second summand in the final line is directly estimated
by (4.74). Again, the only remaining term is the discretely differentiated temporal defect, which
is rewritten by (4.41) and consequently bounded from above through∥∥∥(∂τ

t Hτ,h
Π − ∂τ

t H
)

n

∥∥∥
L2(Ω+)

≤
∥∥∥curl En,h

Π − curl E(tn)
∥∥∥

L2(Ω+)
+ ‖(∂tH − ∂τ

t H)n‖L2(Ω+)

≤ C(τm + hk+1).

This completes the estimation of the terms collecting the outer traces from (4.77).
Consequently, we turn our attention to the second summand (4.78), mostly associated to

tangential traces of the inner domain Ω−. The only remaining term depending on outer traces
is rewritten in view of γ−T H = 0, which implies

γ+
T Hτ,h

Π − γ+
T H = γ−T Hτ,h

Π + Ihϕ−ϕ =
(

γ−T Hτ,h
Π − γ−T H

)
− (ϕ− Ihϕ) .

Analogously to before, we insert this identity into the right-hand side of (4.78), which gives
with γ−T E = 0, the decomposition[(

γ−T (Hτ,h − Hτ,h
Π )

−γ−T (Eτ,h − Eτ,h
Π )

)
,

(
γ−T Eτ,h

Π
γ+

T Hτ,h
Π − γ+

T H

)]
Γ

=
[
γ−T (Hτ,h − Hτ,h

Π ), γ−T

(
Eτ,h

Π − E
)]

Γ
(iv)

+
[
γ−T (Eτ,h − Eτ,h

Π ), γ−T

(
Hτ,h

Π − H
)]

Γ
(v)

+
[
γ−T (Eτ,h − Eτ,h

Π ),ϕ− Ihϕ
]

Γ
. (vi)

These terms are structurally identical to (i)–(iii) and are therefore bounded with the stated
bound by repeating the arguments from above. We shortly sketch connections between these
terms.
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(iv) This term is analogous to the term (i), since Green’s formula implies[
γ−T (Hτ,h − Hn,h

Π ), γ−T

(
Eτ,h

Π − E
)]

Γ

= −
∫

Ω−
curl(Hτ,h − Hτ,h

Π ) · (Eτ,h
Π − E)− (Hτ,h − Hτ,h

Π ) · curl(Eτ,h
Π − E)dx.

The integrand on the right-hand side is identical to the integrand in (4.79). Repeating the exact
same arguments as before therefore gives an appropriate estimate for the above term.

(v) The connection of this term to (iii) is readily apparent and using Green’s formula gives[
γ−T (Eτ,h − Eτ,h

Π ), γ−T

(
Hτ,h

Π − H
)]

Γ

= −
∫

Ω−
curl

(
Eτ,h − Eτ,h

Π

)
·
(

Hτ,h
Π − H

)
−
(

Eτ,h − Eτ,h
Π

)
· curl

(
Hτ,h

Π − H
)

dx.

This integral is, aside from the domain, identical to (4.82). Employing the same arguments as
before consequently shows the required estimate.

(vi) The estimation of this term is analogous to (ii), but we repeat some of the steps taken
there for the completeness of the proof. Applying the discrete partial integration inequality of
Lemma 4.3 yields again

N

∑
n=0

ρn
[
γ−T (Eτ,h

n − En,h
Π ),ϕ(tn)− Ihϕ(tn)

]
Γ

≤
N

∑
n=0

ρn
(

ε
∥∥∥((∂τ

t )
−1 γ−T (Eτ,h − Eτ,h

Π )
)

n

∥∥∥2

XΓ

+ C ‖(∂τ
t (ϕ− Ihϕ))n‖

2
XΓ

)
.

(4.83)

The chain of inequalities from (4.81) directly bounds the second summand.
Applying the trace theorem to the first summand of (4.83), implies∥∥∥((∂τ

t )
−1 γ+

T (Eτ,h − Eτ,h
Π )
)

n

∥∥∥2

XΓ

≤
∥∥∥((∂τ

t )
−1 Eτ,h − (∂τ

t )
−1 Eτ,h

Π

)
n

∥∥∥2

H(curl,Ω+)

=
∫

Ω+

∣∣∣((∂τ
t )
−1 Eτ,h − (∂τ

t )
−1 Eτ,h

Π

)
n

∣∣∣2 + ∣∣∣Hn
h − Hn,h

Π

∣∣∣2 dx.

Moreover, applying (4.37) gives the estimate

∞

∑
n=0

ρn
∫

Ω+

∣∣∣((∂τ
t )
−1 Eτ,h − (∂τ

t )
−1 Eτ,h

Π

)
n

∣∣∣2 dx ≤ C
∞

∑
n=0

ρn
∥∥∥Eτ,h

n − En,h
Π

∥∥∥2

L2(Ω+)
,

where the constant C only depends polynomially on the final time T. This term is then absorbed
to the left-hand side of (4.76) by choosing ε in (4.80) small enough.

131



Chapter 4. Nonlinear electromagnetic scattering

(B) For an efficient notation, we introduce the following shorthand notation for the defect
associated to the nonlinearity

db = b
(

Ihψ− γTEinc)− b
(
ψ− γTEinc) .

We continue by repeating the arguments presented in the context of the error analysis for the
spatial semi-discretization, starting from applying Hölder’s inequality and Young’s inequality,
which yields for any ε > 0 a constant C, such that(

ψτ,h − Ihψ, db

)
Γ
≤
∥∥∥ψτ,h − Ihψ

∥∥∥
L

1+α
α (Γ)

‖db‖L1+α(Γ)

≤ ε
∥∥∥ψτ,h − Ihψ

∥∥∥ 1+α
α

L
1+α

α (Γ)
+ C ‖db‖1+α

L1+α(Γ) .

The first term is the error in the numerical solution and pointwise absorbed to the left-hand
side of (4.76). By employing the pointwise estimate on the nonlinearity (4.11), the remaining
defect yields a constant C, depending on α and the incidental electric wave, such that

‖db‖1+α
L1+α(Γ) =

∥∥b
(

Ihψ− γTEinc)− b
(
ψ− γTEinc)∥∥1+α

L1+α(Γ)

≤ C
∫

Γ
(|Ihψ|+ |ψ|)

1−α2
α |Ihψ−ψ|1+α dx

≤ C
(
‖Ihψ‖L∞(Γ) + ‖ψ‖L∞(Γ)

) 1−α2
α ‖Ihψ−ψ‖1+α

L1+α(Γ) .

Finally applying the approximation properties of the interpolation operator based on Raviart–
Thomas elements yields

‖db‖1+α
L1+α(Γ) ≤ Ch(1+α)(k+1)

(
1 + ‖ψ‖L∞(Γ)

) 1−α2
α ‖ψ‖1+α

Hk+1
× (Γ) .

All defects have now been estimated in the stated order, which gives the presented error
bounds.

4.5.2. Pointwise error bounds

In view of the pointwise error bounds of previous chapters, we expect the evaluation of the
approximation to the scattered wave at any fixed point x ∈ Ω to converge to the exact solu-
tion. Due to the nonlinear component of the boundary integral equation, the previously used
techniques are not directly applicable.

To give such a result for point evaluations in the nonlinear setting, we derive additional error
bounds for the magnetic trace ψτ,h and a slightly transformed electric trace ϕ̃τ,h, in terms of the
norms corresponding to the spaces L

1+α
α (Γ) and L1+α(Γ). Pointwise error estimates are then

obtained by employing the corresponding time-harmonic bounds of Lemma 3.13.
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Theorem 4.4. Let Γ be smooth and further let the assumptions of Theorem 4.3 hold. Consider the
boundary densities (ϕ̃τ,h, ψ̃

τ,h
), derived from the solutions of the full discretization of the boundary

integral equation (4.70), through the expressions

ϕ̃τ,h = b(ψτ,h − γTEinc)× ν + γT H inc, ψ̃
τ,h

= ψτ,h.

These fully discrete approximations fulfill, under the stated conditions, the following error bound(
τ

N

∑
n=0

∥∥∥ϕ̃τ,h
n −ϕ(tn)

∥∥∥2

L1+α(Γ)
+
∥∥∥ψ̃

τ,h
n −ψ(tn)

∥∥∥2

L
1+α

α (Γ)

) 1
2

≤ C
(

τm 2α
1+α + hα(k+1)

)
.

Electromagnetic fields associated to the boundary densities (ϕ̃τ,h, ψ̃
τ,h
), defined through the discrete

representation formulas (4.46)–(4.47), are denoted again by Eτ,h and Hτ,h.

The error of the approximation to the scattered fields at the point x ∈ Ω is, under the stated conditions,
bounded by(

τ
N

∑
n=0

∣∣∣Eτ,h
n (x)− E(x, tn)

∣∣∣2 + ∣∣∣Hτ,h
n (x)− H(x, tn)

∣∣∣2)1/2

≤ C
τ

(
τm 2α

1+α + hα(k+1)
)

,

where the constant C depends in both cases on the exact solution and its derivatives, on Γ, x, α and
polynomially on the final time T. The specific expression on the right-hand side of the error bound
requires the mild mesh size restriction h2(1+α)(k+1) ≤ Cτ, though more convoluted error rates can be
derived without such an assumption.

Proof. The stated error bound for ψ̃
τ,h
n with regards to the L

1+α
α (Γ)- norm is directly implied by

Theorem 4.3, which yields in combination with Hölder’s inequality(
τ

N

∑
n=0

∥∥∥ψ̃
τ,h
n −ψ(tn)

∥∥∥2

L
1+α

α (Γ)

) 1
2

≤ T
1−α
1+α

(
τ

N

∑
n=0

∥∥∥ψτ,h
n −ψ(tn)

∥∥∥ 1+α
α

L
1+α

α (Γ)

) α
1+α

≤ C
(

τ2m + h(1+α)(k+1)
) α

1+α
.

(4.84)

We turn our attention towards the stated error bounds of ϕ̃τ,h. Using the pointwise estimate
(4.13) then yields ∣∣∣ϕ̃τ,h −ϕ

∣∣∣ = ∣∣∣b(ψτ,h − γTEinc)− b(ψ− γTEinc)
∣∣∣

≤ C
∣∣∣ψτ,h −ψ

∣∣∣ ∣∣∣ψ− γTEinc
∣∣∣ 1−α

α
+ C

∣∣∣ψτ,h −ψ
∣∣∣ 1

α
,

where the above estimate is understood pointwise in time and space. Inserting this inequality
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in the L1+α-norm of the corresponding error term yields∥∥∥ϕ̃τ,h −ϕ
∥∥∥1+α

L1+α(Γ)
≤ C

∥∥∥ψτ,h −ψ
∥∥∥1+α

L1+α(Γ)

∥∥ψ− γTEinc∥∥ 1−α
α

L∞(Γ)

+ C
∥∥∥ψτ,h −ψ

∥∥∥ 1+α
α

L
1+α

α (Γ)
.

The L∞-norm of the exact solution is independent of h and τ and assumed to be finite. There-
fore, we obtain the estimate(

τ
N

∑
n=0

∥∥∥ϕ̃τ,h
n −ϕ(tn)

∥∥∥2

L1+α(Γ)

) 1
2

≤ C

(
τ

N

∑
n=0

∥∥∥ψτ,h
n −ψ(tn)

∥∥∥2

L1+α(Γ)

) 1
2

+ C

(
τ

N

∑
n=0

∥∥∥ψτ,h
n −ψ(tn)

∥∥∥ 2
α

L
1+α

α (Γ)

) 1
2

.

(4.85)

The first sum on the right-hand side is bounded by (4.84). We note the basic inequality

x
2

1+α + y
2

1+α ≤ (x + y)
2

1+α for all x, y ≥ 0,

which is seen for example by Minkowski’s inequality with p = 1+α
2 < 1. Using this estimate

repeatedly shows

τ
2

1+α

N

∑
n=0

∥∥∥ψτ,h
n −ψ(tn)

∥∥∥ 2
α

L
1+α

α (Γ)
≤
(

τ
N

∑
n=0

∥∥∥ψτ,h
n −ψ(tn)

∥∥∥ 1+α
α

L
1+α

α (Γ)

) 2
1+α

≤ C
(

τ
4

1+α m + h2(k+1)
)

.

Dividing through the additional powers of τ on the left-hand side and taking the square root
on both sides yields(

τ
N

∑
n=0

∥∥∥ψτ,h
n −ψ(tn)

∥∥∥ 2
α

L
1+α

α (Γ)

) 1
2

≤ Cτ
α−1

2(1+α)

(
τ

2
1+α m + h(k+1)

)
≤ C

(
τ

2α
1+α m + hα(k+1)

)
,

where the final estimate holds due to h2(1+α)(k+1) ≤ Cτ, the stated mild mesh width restriction,
since then

τ
α−1

2(1+α)

(
τ

2−2α
1+α m + h(1−α)(k+1)

)
≤
(

τ3/2
) 1−α

1+α
+ τ

α−1
2(1+α) h(1−α)(k+1) ≤ C.
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Overall, we obtain the following additional combined error bounds for the boundary densities:(
τ

N

∑
n=0

∥∥∥ψτ,h
n −ψ(tn)

∥∥∥2

L
1+α

α (Γ)
+
∥∥∥ϕ̃τ,h

n −ϕ(tn)
∥∥∥2

L1+α(Γ)

) 1
2

≤ C
(

τm 2α
1+α + hα(k+1)

)
. (4.86)

We turn our attention towards pointwise error bounds, which are consequence of the time-
harmonic bounds of Lemma 3.13 for the potential operators. Formulated for the combined
block potential operator (4.72) in the present setting, this bound reads

‖Wx(s)‖
C3×C3←L1+α(Γ)×L

1+α
α (Γ)

≤ C |s| .

The stated pointwise error bound now follows from applying [14, Lemma 5.2] to the represen-
tation formula and using the error bound (4.86).

Remark 4.5.1 (Comparison with the original formulation). In the original paper [57], the presented
treatment is applied to the equivalent of the boundary condition (1.17), based on the nonlinearity a(x) =
|x|α−1 x, rather than the analysis here, which is based on the equivalent inverted boundary condition
(1.19). Analogously to the present analysis, the full discretization in the original paper has the following
form. The sequence of boundary densities (ϕτ,h

+ , ψ̃
τ,h
+ ) ∈ V m

h × Xm
h for n ≤ N is the time-discrete

approximation to the solutions of the boundary integral equations, if for all (ηh, ξh) ∈ V h × Xh it holds
that [(

ηh
ξh

)
, Cimp(∂

τ
t )

(
ϕτ,h
+

ψτ,h
+

)]
Γ

+
(

ηh, a
(

ϕτ,h
+ + γT H inc

))
Γ
= [γTEinc, ηh]Γ. (4.87)

The solution of this full discretization fulfills similar approximation properties as the presented numerical
approximations. Consider the setting and the assumptions of Theorem 4.3. Then, [57, Theorem 2] gives
the error estimates(

τ
N

∑
n=0

∥∥∥((∂τ
t )
−1
(

ϕτ,h
+ −ϕ

))
n

∥∥∥2

XΓ

+
∥∥∥((∂τ

t )
−1
(

ψτ,h
+ −ψ

))
n

∥∥∥2

XΓ

)1/2

(4.88)

≤ C
(

τm + hα(k+1)
)

. (4.89)

The dependencies applying to the constant in the error bounds of Theorem 4.3 also apply to the constant
C. Moreover, analogous pointwise bounds follow for alternative boundary densities (ϕ̃τ,h

+ , ψ̃
τ,h
+ ), deriven

from the fully discrete solution ϕτ,h
+ and defined through

ϕ̃τ,h
+ = ϕτ,h

+ , ψ̃
τ,h
+ = a(ϕτ,h

+ + γT H inc)× ν + γTEinc.

Fully discrete electromagnetic fields Eτ,h and Hτ,h, are associated again, defined through the discrete
representation formulas (4.46)–(4.47) with ϕ̃τ,h

+ and ψ̃
τ,h
+ . By [57, Theorem 3], these numerical solutions
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then fulfill, for any x ∈ Ω away from the boundary, the error bound(
τ

N

∑
n=0

∣∣∣Eτ,h
n (x)− E(x, tn)

∣∣∣2 + ∣∣∣Hτ,h
n (x)− H(x, tn)

∣∣∣2)1/2

≤ Cτ−1
(

τm + hα(k+1)
) 2α

1+α
.

where the constant C depends on the same parameters as before. For the concrete form of the error bound
to hold, the mild mesh size restriction h4α(k+1) ≤ Cτ (which is more restrictive than the mesh size
restriction from Theorem 4.4) was assumed.

4.5.3. Unconditional estimates on the numerical solution

The transformed fully discrete boundary densities (ϕ̃τ,h, ψ̃
τ,h
) of the previous section further

fulfill an unconditional stability bound, which bounds it in terms of the incidental waves with-
out any assumptions on the exact solution. A particular remarkable property of this result is,
that it does not rely on a positive shift for m > 2, since it only requires the weaker positivity
result of Lemma 4.4.

Proposition 4.4. Consider the fully discrete boundary densities (ϕτ,h
n , ψτ,h

n ) ∈ V m
h ×Xm

h for all n ≤ N,
solution to the full discretization of the boundary integral equation (4.70), discretized by

• Runge–Kutta convolution quadrature based on the m-stage Radau IIA method, and

• Raviart–Thomas boundary elements of order k in space.

Consider again the transformed fully-discrete boundary densities

ϕ̃τ,h = b(ψτ,h − γTEinc)× ν + γT H inc, ψ̃
τ,h

= ψτ,h,

which by Theorem 4.4 approximate the exact solutions (ϕ, ψ) of the boundary integral equation (4.32)
in the case of sufficient regularity of the exact solution. Without any assumptions on the exact solution
(ϕ, ψ), these numerical approximations are bounded by

N

∑
n=0

∥∥∥ϕ̃τ,h
n

∥∥∥1+α

L1+α(Γ)
+
∥∥∥ψ̃

τ,h
n

∥∥∥ 1+α
α

L
1+α

α (Γ)
≤ Cα

N

∑
n=0

∥∥∥γTEinc
n

∥∥∥ 1+α
α

L
1+α

α (Γ)
+
∥∥γT H inc

n
∥∥1+α

L1+α(Γ) ,

where the constant Cα depends only on α.

Proof. We start with the full discretization (4.70), test it with the numerical solution for all n ≥ 0
and take the weighted sum with ρ = e−τ/T, which yields

∞

∑
n=0

ρn
([(

ϕτ,h
n

ψτ,h
n

)
,
(

C−imp(∂
τ
t )

(
ϕτ

h
ψτ

h

))n]
Γ
+
(

ψτ,h
n , b

(
ψτ,h

n − γTEinc
n

))
Γ

)
=

∞

∑
n=0

ρn[γT H inc
n , ψτ

n]Γ.
(4.90)
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The positivity of the time-discrete operator C−imp(∂
τ
t ), seen as a direct consequence of the second

identity of Lemma 4.4 applied to the second identity of Lemma 4.6, implies

∞

∑
n=0

ρn

[(
ϕτ,h

n
ψτ,h

n

)
,
(

Cimp(∂
τ
t )

(
ϕτ,h

n
ψτ,h

n

))n
]

Γ

≥ 0.

Neglecting the first summand of (4.90) therefore reduces the left-hand side to the summation
of the expression(

ψτ,h
n , b

(
ψτ,h

n − γTEinc
n

))
Γ
=
∥∥∥ψτ,h

n − γTEinc
n

∥∥∥ 1+α
α

L
1+α

α (Γ)
+
(

γTEinc
n , b

(
ψτ,h

n − γTEinc
n

))
Γ

≥
∥∥∥ψτ,h

n − γTEinc
n

∥∥∥ 1+α
α

L
1+α

α (Γ)
−
∥∥γTEinc

n
∥∥ 1+α

α

L
1+α

α (Γ)

∥∥∥ψτ,h
n − γTEinc

n

∥∥∥
L

1+α
α (Γ)

≥ 2
3

∥∥∥ψτ,h
n − γTEinc

n

∥∥∥ 1+α
α

L
1+α

α (Γ)
− Cα

∥∥γTEinc
n
∥∥ 1+α

α

L
1+α

α (Γ)
,

where the final estimate is obtained by the generalized Young’s inequality. Rearranging this
bound and inserting it into the left-hand side of (4.90) yields

2
3

∞

∑
n=0

ρn
∥∥∥ψτ,h

n − γTEinc
n

∥∥∥1+α

L1+α(Γ)
≤ C

∞

∑
n=0

ρn ∥∥γTEinc
n
∥∥ 1+α

α

L
1+α

α (Γ)

+
∞

∑
n=0

ρn[γT H inc
n , ψτ

n]Γ.

We continue by estimating the second summand on the right-hand side by subsequently ap-
plying the Hölderlin inequality and Young’s inequality, which yields for all n ∈N the estimate

[γT H inc
n , ψτ,h

n ]Γ ≤
∥∥γT H inc

n
∥∥

L1+α(Γ)

(∥∥∥ψτ,h
n − γTEinc

n

∥∥∥
L

1+α
α (Γ)

+
∥∥γTEinc

n
∥∥

L
1+α

α (Γ)

)
≤ C

(∥∥γT H inc
n
∥∥1+α

L1+α(Γ) +
∥∥γTEinc

n
∥∥

L
1+α

α (Γ)

)
+

1
3

∥∥∥ψτ,h
n − γTEinc

n

∥∥∥ 1+α
α

L
1+α

α (Γ)
.

The bound for the numerical solution ψτ,h
n is now given by absorption and the triangle inequal-

ity. Furthermore, applying the bound (4.14) of the nonlinearity b shows the estimate∥∥∥ϕ̃τ,h
n

∥∥∥
L1+α(Γ)

≤
∥∥∥ψτ,h

n − γTEinc
n

∥∥∥
L

1+α
α (Γ)

+
∥∥γT H inc

n
∥∥

L1+α(Γ) .

The stated bound is then given by setting the incidental wave (γTEinc
n , γT H inc

n ) to zero for all
n > N, outside of the observed time interval.
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4.6. Numerical experiments

Consider the setting of the numerical experiments in [57], which is repeated in the following.
The Galerkin discretizations of the electromagnetic boundary integral operators have been re-
alized with the boundary element library Bempp [65]. Let the domain Ω be the complement
of two unit cubes, which are shifted from the origin in such a way, that a gap of length l = 0.5
separates them. An incoming electric planar wave is initially away from the boundary and
interacts with the scatterers. The incoming wave is given by the closed form of the previous
chapter (i.e. (3.71)), namely by the expression

Einc(t, x) = e−c(t−x3−t0)
2
e1,

with the parameters c = 100, e1 = (1, 0, 0)T and t0 = −2. We enforce the nonlinear boundary
condition with multiple parameters α, to present several types of numerical experiments.

Semi-discretization convergence plots in Figure 4.1 and Figure 4.2

We consider the semi-discrete convergence rates in time and space. The errors are estimated
by fixing the semi-discretization in time and space in the full discretization (4.70) respectively,
and comparing the approximations with appropriate reference solutions. All convergence plots
have been computed with α = 1/2.

Figure 4.1 shows the time discretization error obtained when fixing a 0-th order Raviart–
Thomas elements space-discretization with 252 degrees of freedom in space. A reference so-
lution is computed with the convolution quadrature method based on the 3-stage Radau IIA
Runge-Kutta method with N = 362 time steps. Using the convolution quadrature method
based on the 1- and 2-stage Radau IIA Runge-Kutta method, we compute the numerical solu-
tion with Nj = 16 · round(2j/2) time steps (rounded, for j = 0, ..., 8) and compare the approxi-
mations with the reference solution at the final time T = 2 in the origin P = (0, 0, 0).

The predicted orders of O(τ) and O(τ2) are only asymptotically achieved, possibly due to
the low regularity of the scatterers, which in particular also contain corners. Nevertheless, the
two-stage Radau IIA method outperforms the implicit Euler, even for moderately small step
sizes τ. The restrictive order reductions of Theorem 4.4 are not observed.

Conversely, Figure 4.2 shows semi-discrete spatial errors, that have been computed by fix-
ing a convolution quadrature time discretization based on the 3-stage Radau IIA Runge-Kutta
method with N = 32 time steps. A reference solution has been computed by additionally
employing a 0-th order Raviart–Thomas elements space-discretization with 11088 degrees of
freedom (which corresponds to the mesh width h = 2−4) and using the proposed fully discrete
boundary integral equation (4.70).

Two types of numerical approximations are compared with this reference solution. The left
plot, with the additional numbering I, shows the spatial error of the original formulation of [57],
namely the boundary integral equation (4.87). Several grids, corresponding to the mesh widths
hj = 2−j/2 for j = 0, ..., 6, are used to compute numerical approximations, which are compared
to the reference solution on the whole time interval [0, 3]. The maximal error (with regards
to the time t), is computed again in the origin P = (0, 0, 0). On the right plot of Figure 4.2,
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marked with the additional numbering II, an identical error plot is shown for the fully discrete
boundary integral equation (4.70) analyzed in this chapter.

Both methods exhibit similar convergence properties, despite the predicted differences of the
spatial convergence rates, which areO(h1/2) (from [57] as described in Remark 4.5.1) for the left
plot and O(h3/4) (due to Theorem 4.2) for the right plot respectively. Overall, the numerical
evidence indicates that the error behaves in the order of O(h), which is the rate of the best-
approximation error of the 0-th order Raviart–Thomas boundary element space.

Full discretization convergence plots in Figure 4.4 and Figure 4.3

The full discretization error plots are taken from the original paper [57] and were therefore com-
puted with the fully discrete boundary integral equation (4.87). Both numerical formulations
((4.70) and (4.87)) seem to exhibit the same convergence properties in practice, as indicated in
Figure 4.2 (compare also the acoustic experiments Figures 2.1–2.2 and Figures 2.3–2.4).
The nonlinear boundary condition is again used with the parameter α = 0.5. We observe the
interaction of the incoming wave with the scatterers until the final time T = 3. Instead of
mutually fixing the semi-discretizations and computing two reference solutions, a single ref-
erence solution based on a 0-th order Raviart–Thomas boundary element discretization with
6228 degrees of freedom, which corresponds to the mesh width h = 2−7/2, was used in combi-
nation with N = 256 time steps using the 3-stage Radau IIA based Runge–Kutta convolution
quadrature method.

Varying the mesh width and time step size reveals the convergence properties of the scheme,
by comparing the resulting solutions with a reference solution in the origin P = (0, 0, 0).

The convergence plots in Figure 4.4 and Figure 4.3 are obtained by mutually fixing the time
step size τ, or the mesh width h respectively.

The error bound of [57, Theorem 2], reformulated in (4.88), predicts a convergence rate of at
least O(τ2 + h1/2), although the order reductions from Theorem 4.4 could apply and reduce
the overall convergence rates in space and time. The exact solution is further unlikely to fulfill
the assumptions of [57, Theorem 2], due to the low regularity of the scatterers (which contain
corners).

Nevertheless, the empirical space convergence rate in Figure 4.4 is higher than the order
of the error bounds O(h1/2) and more accurately described by O(h). The rapid increase in
accuracy for the final data points (also in the second plot of Figure 4.2) might be explained by
the close proximity to the reference solution.

For τ → 0, the empirical time convergence rate in Figure 4.3 approaches O(τ2). The rapid
decay of the error in the final data point might be explained by the close proximity to the
reference solution.

Altogether, the proposed full discretizations show good convergence properties, despite the
obstacles of the covered problem. In the process of computing the numerical solution, several
underlying approximations are made during the implementation, such as the quadrature and
compression of the boundary element matrices, the iterative solution of the resulting linear sys-
tems, Newton’s method in each time step and the underlying trapezoidal rule approximating
the convolution quadrature weights (C.10). The convergence plots show that these factors can
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be controlled in a way that the overall convergence properties of the method are preserved.

Visualization of the wave

This chapter, and with it the main part of this thesis, concludes with Figures 4.5–4.7, which
visualize several waves corresponding to different values of α. All images were created using
the full discretization (4.70), which was proposed in this chapter. The structure of the plot and
the specific time points is taken from the original paper [57, Figure 3], which used the fully
discrete boundary integral equation (4.87).

As the time discretization, the convolution quadrature method based on the 3-stage Radau
IIA Runge–Kutta method is employed with N = 256 time steps, up to the final time T = 3.
A 0-th order Raviart–Thomas boundary element space with 1620 degrees of freedom, which
corresponds to the mesh width h = 2−5/2, was used as the space discretization.

To visualize the 3D-scattering, we plot the absolute value of the electric field Eτ,h on the
x2 = 0.5 plane, which cuts through the middle of the scatterer, at several time points.
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Figure 4.1.: Semi-discrete time convergence plot at time T = 2 for α = 1/2, obtained by fixing a 0th order Raviart–
Thomas boundary element discretization with 252 degrees of freedom.

Figure 4.2.: Semi-discrete space convergence plot for α = 1/2, obtained by fixing a 3-stage Radau IIA based Runge–
Kutta convolution quadrature method time discretization with N = 32 time steps. The larger gap
between the 4-th and the 5-th data point is caused by the mesh generator embedded in the Bempp
library.
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Chapter 4. Nonlinear electromagnetic scattering

Figure 4.3.: Time convergence plot of the fully discrete system with α = 1/2, for 0th order Raviart–Thomas bound-
ary elements and the 2-stage Radau IIA based Runge–Kutta convolution quadrature method. The Figure
originally appeared in [57, Figure 2].

Figure 4.4.: Space convergence plot of the fully discrete system with α = 1/2, for 0th order Raviart–Thomas bound-
ary elements and the 2-stage Radau IIA based Runge–Kutta convolution quadrature method. The Figure
originally appeared in [57, Figure 1].
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4.6. Numerical experiments

α = 0.25

Figure 4.5.: 3D-scattering arising for the parameter α = 0.25, with N = 256 time steps on the time interval [0, 3], us-
ing the 3-stage Radau IIA method with the mesh width h = 2−5/2, corresponding to 0-th order Raviart–
Thomas boundary element space with 1620 degrees of freedom.
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α = 0.5

Figure 4.6.: 3D-scattering arising for the parameter α = 0.5, with N = 256 time steps on the time interval [0, 3], using
the 3-stage Radau IIA method with the mesh width h = 2−5/2, corresponding to 0-th order Raviart–
Thomas boundary element space with 1620 degrees of freedom.
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α = 0.75

Figure 4.7.: 3D-scattering arising for the parameter α = 0.75, with N = 256 time steps on the time interval [0, 3], us-
ing the 3-stage Radau IIA method with the mesh width h = 2−5/2, corresponding to 0-th order Raviart–
Thomas boundary element space with 1620 degrees of freedom.
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A. Temporal Sobolev spaces and operational calculus

The following two appendices describe the notation and fundamental results for continuous
and discrete convolutional operators. The structure and large passages in these sections are
taken from [59, Section 2.2 & Section 5.1] and are not original results of this thesis. We repeat
these sections here for the convenience of the reader, to keep the thesis largely self-contained.

A. Temporal Sobolev spaces and operational calculus

We introduce the Heaviside notation of operational calculus and associated temporal Sobolev
spaces. Let K(s) : X → X ′ be an analytic family of bounded linear operators, defined for all s
in a complex half space C+, where X is a Hilbert space.

The analytic operator family K(s) is assumed to be polynomially bounded (with respect to
the frequency s) for all Re s ≥ σ0 > 0, in the following sense. There exists a real κ, a positive
ν ≥ 0 and, for every σ > σ0, there exists a constant Mσ < ∞, such that

‖K(s)‖X ′←X ≤ Mσ
|s|κ

(Re s)ν for Re s ≥ σ ≥ σ0. (A.1)

Under this condition, K(s) is guaranteed to be the Laplace transform of a distribution of finite
order of differentiation with support on the nonnegative real half-line t ≥ 0. Hence, for a
sufficiently regular function g : R → X, which vanishes on the negative real half-axis, we use
the Heaviside notation of operational calculus, which denotes

K(∂t)g = (L−1K) ∗ g,

for the convolution of the inverse Laplace transform of K(s) with g. This notation defines a
wide class of temporal differential operators and is motivated by the fact that for Id(s) = s, we
have Id(∂t)g = ∂tg, which is the time derivative of g.

The composition of two time-dependent operators defined via the Heaviside notation car-
ries through to the Laplace domain. Specifically, for two operator families K(s) : X → Y and
L(s) : Y → Z on compatible Hilbert spaces, we have the composition rule

K(∂t)L(∂t)g = (KL) (∂t)g, (A.2)

where g : [0, T]→ X is again vanishing on the negative real half-line and sufficiently regular.
Operators defined by the notation of operational calculus require a temporal functional ana-

lytic framework, which is provided by temporal Sobolev spaces. Consider the space Hr(R, X)
with real order r, the Sobolev space of order r of X-valued functions on R. Restricting the
Hilbert space on functions which vanish on the negative axis yields the definition

Hr
0(0, T; X) = {g|(0,T) : g ∈ Hr(R, X) with g = 0 on (−∞, 0)}.

For the integer order r ≥ 0, the norm ‖∂r
t g‖L2(0,T;X) is equivalent to the original norm on

Hr
0(0, T; X). For r > 1/2, we have the continuous embedding Hr

0(0, T; X ′) ⊂ C([0, T]; X ′).
The following identity from [52, Lemma 2.1] clarifies the connection of the Heaviside nota-
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tion with the setting of temporal Sobolev spaces. Let the analytic family K(s) fulfill the poly-
nomial bound (A.1) in a half-plane Re s > 0, then K(∂t) extends by density to a bounded linear
operator

K(∂t) : Hr+κ
0 (0, T; X)→ Hr

0(0, T; X ′) (A.3)

for arbitrary real r. The framework of temporal Sobolev spaces therefore provides an appro-
priate setting for the Heaviside notation of operational calculus. Moreover, choosing σ = 1/T
in the Plancherel formula (see [52, Lemma 2.1]), shows that the norm of the operator fulfills the
bound

‖K(∂t)‖Hr
0(0,T;X ′)←Hr+µ

0 (0,T;X)
≤ eM1/T,

where M1/T is the constant from (A.1).

B. The convolution quadrature method

The prevalence of temporal convolutions K(∂t)g throughout the thesis, as defined via (1.2),
requires a well understood discretization. Runge–Kutta convolution quadrature methods are
used throughout the thesis to approximate temporal convolutions ; cf. (1.2). Let us first recall an
m-stage implicit Runge–Kutta discretization of the initial value problem y′ = f (t, y), y(0) = y0;
see [44]. For the time step size τ > 0, the approximations yn to y(tn) at time tn = nτ, and the
internal stages Yni approximating y(tn + ciτ), are obtained from

Yni = yn + τ
m

∑
j=1

aij f (tn + cjh, Ynj), i = 1, . . . , m,

yn+1 = yn + τ
m

∑
j=1

bj f (tn + cjh, Ynj).

The method is determined by its coefficients, stored in the Butcher-tableau

A = (aij)
m
i,j=1, b = (b1, . . . , bm)

T, and c = (c1, . . . , cm)
T.

The stability function of the Runge–Kutta method is given by the expression R(z) = 1 +
zbT(Im − zA )−1

1, where 1 = (1, 1, . . . , 1)T ∈ Rm. We always assume that A is invertible.
Runge–Kutta methods can be used to construct convolution quadrature methods. Such

methods were first introduced in [53] in the context of parabolic problems and were studied
for wave propagation problems in [14] and subsequently, e.g., in [11, 13, 17, 18]. Runge–Kutta
convolution quadrature was studied for the numerical solution of exterior Maxwell problems
in [7, 28] and in the context of an eddy current problem with an impedance boundary condition
in [45]. For wave problems, Runge–Kutta convolution quadrature methods such as those based
on the Radau IIA methods (see [44, Section IV.5]), often enjoy more favourable properties than
their BDF-based counterparts, which are more dissipative and cannot exceed order 2 but are
easier to understand and slightly easier to implement.

To construct the convolution quadrature weights, we use the Runge–Kutta differentiation sym-
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bol
∆(ζ) =

(
A +

ζ

1− ζ
1bT

)−1
∈ Cm×m, ζ ∈ C with |ζ| < 1. (B.4)

This expression is well-defined for |ζ| < 1 if R(∞) = 1− bTA −1
1 satisfies |R(∞)| ≤ 1. In fact,

the Sherman–Morrison formula yields for Radau IIA methods

∆(ζ) = A −1 − ζ

1− R(∞)ζ
A −1

1bTA −1 = A −1(Im − ζ1eT
m), (B.5)

with eT
m = (0, ..., 1) ∈ Rm and Im ∈ Rm×m denoting the identity matrix. This is well-defined for

|ζ| < 1 if R(∞) = 1− bTA −1
1 satisfies |R(∞)| ≤ 1, which is seen from the Sherman–Woodbury

formula. Moreover, for A-stable Runge–Kutta methods (e.g. the Radau IIA methods), the
eigenvalues of the matrices ∆(ζ) have positive real part for |ζ| < 1 [14, Lemma 3].

To formulate the Runge–Kutta convolution quadrature for K(∂t)g, we replace the complex
argument s in K(s) by the matrix ∆(ζ)/τ and use the power series expansion

K
(∆(ζ)

τ

)
=

∞

∑
n=0

Wn(K)ζn. (B.6)

The operators Wn(K) : Xm → Ym are used as the convolution quadrature weights. For the
discrete convolution of these operators with an appropriate sequence g = (gn) with gn =
(gn

i )
m
i=1 ∈ Xm, we use the notation

(
K(∂τ

t )g
)n

=
n

∑
j=0

Wn−j(K)g j ∈ Ym. (B.7)

Given a function g : [0, T] → X, we extend the notation for vectors to the evaluations at the
nodes c through

gn = g(tn) =
(

g(tn + ciτ)
)m

i=1.

When convenient, the index n is also denoted as a subindex. The i-th component of the vector(
K(∂τ

t )g
)n is then an approximation to

(
K(∂t)g

)
(tn + ciτ); see [13, Theorem 4.2].

If cm = 1, as is the case with Radau IIA methods, the continuous convolution at tn is approx-
imated by the m-th, i.e. last component of the m-vector (B.7) for n− 1:(

K(∂t)g
)
(tn) ≈

[(
K(∂τ

t )g
)n−1

]
m
∈ Y . (B.8)

An essential property is that the continuous composition rule (A.2) is preserved under this
discretization: for two such operator families K(s) and L(s) that map to compatible spaces, we
have

K(∂τ
t )L(∂τ

t )g = (KL)(∂τ
t )g. (B.9)

The following error bound for Runge–Kutta convolution quadrature from [14], here directly
stated for the Radau IIA methods [44, Section IV.5] and in a Banach space setting, will be the
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basis for the temporal error bounds, especially in Chapter 2 and Chapter 3.

Lemma B.1 ([14, Theorem 3]). Let K(s) : X → Y , Re s > σ0 ≥ 0, be an analytic family of linear
operators between Banach spaces X and Y satisfying the bound (A.1) with exponents κ and ν. Consider
the Runge–Kutta convolution quadrature based on the Radau IIA method with m stages. Let 1 ≤ q ≤ m
(the most interesting case is q = m) and r > max(2q− 1 + κ, 2q− 1, q + 1). Let g ∈ Cr([0, T], X)
satisfy g(0) = g′(0) = ... = g(r−1)(0) = 0. Then, the following error bound holds at tn = nτ ∈ [0, T]:∥∥∥[(K(∂τ

t )g
)n−1

]
m
− (K(∂t)g)(tn)

∥∥∥
Y

≤ C M1/T τmin(2q−1,q+1−κ+ν)

(
‖g(r)(0)‖X +

∫ t

0
‖g(r+1)(t′)‖X dt′

)
.

The constant C is independent of τ and g and Mσ of (A.1), but depends on the exponents κ and ν in
(A.1) and on the final time T.

The proof of this approximation result generalizes to the following error bounds for the
stages, which is the fundamental approximation result used in Chapter 4.

Lemma B.2 ([13, Theorem 4.2]). Let K satisfy (3.8) and consider the Runge–Kutta convolution
quadrature based on the Radau IIA method with m stages. Let r > max(m + 1 + κ, m + 1) and
g ∈ Cr([0, T], V) satisfy g(0) = g′(0) = ... = g(r−1)(0) = 0. Then, there exists a τ0 > 0, such that
for 0 < τ ≤ τ0 and tn = nτ ∈ [0, T] the following error bound holds:∥∥(K(∂τ

t )g)n − K(∂t)g(tn)
∥∥

≤ CM1/Tτmin(m+1,m+1−κ+ν)

(∥∥∥g(r)(0)
∥∥∥+ ∫ t

0

∥∥∥g(r+1)(λ)
∥∥∥dλ

)
,

where K(∂t)g(tn) = (K(∂t)g(tn + ciτ))
m
i=1. The constant C is again independent of τ and g and Mσ

of (A.1), but depends on the exponents κ and ν in (A.1) and on the final time T.

C. Implementation of the convolution quadrature method

In the following, we describe some aspects regarding the practical implementation of time-
discrete boundary integral equations, to realize these numerical solutions. The implementation
that has been used for all experiments in this thesis is available under [56].

We give a description of the implementation of a discretization of a forward convolution
K(∂τ

t )Φ, whose efficient computation yields effective algorithms to compute boundary densi-
ties and fields which solve linear temporal scattering problems, as described in Chapter 2 and
in Chapter 3.

The convolution quadrature weights are approximated by discretizing their Cauchy-integral
representation with the trapezoidal rule, as already described in the original work [51]. This
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gives the following approximation to the weights

Wn(K) ≈ ρ−n

L

L−1

∑
l=0

K

(
∆(ρ ζ−l

L )

τ

)
ζnl

L , for 0 ≤ n ≤ N, (C.10)

where ζL = e2πi/L.
The parameters ρ and L are chosen during the implementation and arise from the underlying

contour integral and the respective trapezoidal rule of the convolution quadrature weights.
Whereas L can simply be chosen large enough (with increasing computational cost), the choice
of ρ must strike a balance between truncation errors and round-off errors of the approximation
of the quadrature weights. For ρ → 1, the quadrature error of the underlying trapezoidal
rule deteriorates as the integral contour approaches the stability region of the underlying time
stepping method. Conversely for ρ → 0, the finite precision arithmetic leads to a catastrophic
cancellation on the right-hand side of (C.10) for large n, accumulating large round-off errors in
the process. Effective choices for the parameters are provided already in the original paper [50]
and are given by L = 2N and ρ = ε

1
2N , where ε denotes the machine precision.

For the computations in Chapter 2 and Chapter 3, these parameter choices have been used.
To evaluate the analytic operator family K(∆(ζ)/τ), for the matrix valued characteristic func-

tion ∆(ζ) ∈ Cm×m at a point ζ ∈ C inside of the unit circle, it is convenient to diagonalize the
characteristic function by

T−1K (∆(ζ)) T = K
(

T−1∆(ζ)T
)

, for invertible T ∈ Cm×m,

which reduces the evaluation K(∆(ζ)/τ) to evaluating K(·) at the eigenvalues of ∆(ζ). Insert-
ing these approximations to the quadrature weights into (B.7) then gives the scheme

(K(∂τ
t )g)n ≈ ρ−n

L

L−1

∑
l=0

ζ ln
L K

(
∆(ρ ζ−l

L )

τ

)[
N

∑
j=0

ρjg jζ
−jl
L

]
. (C.11)

The sums above are realized efficiently by the fast fourier transform (FFT), which leaves the
main computational burden at the evaluations of the Laplace domain operators K(·) at mL
scalar frequencies sk ∈ C for k = 1, . . . , mL (i.e. the eigenvalues of K(∆(ρ ζ−k

L )/τ)) with pos-
itive real part. With respect to the amount of time steps N, the algorithm therefore has the
complexity O(N log(N)), though in practise the main part of the computation is often taken
by the assembly of the boundary element matrices, which scales with O(N).

Due to symmetry of the time-harmonic operators with regards to the Laplace parameter s,
only half of the Laplace domain evaluations have to be computed. For sufficiently smooth finite
signals g, the amount of necessary Laplace transforms can further be decreased. More details
on these improvements are found in [19].

Setting, for instance, either K(s) = Ah(s)−1 or K(s) = Uh(s) then gives numerical algorithms
to approximate the boundary densities (ϕ, ψ) or the electromagnetic fields E, H, respectively.

To realize the evaluations of the Laplace transforms, time-harmonic solvers, for which es-
tablished libraries such as Bempp [68] exist, can be employed. The assembled matrices of the
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boundary element method are used only once, which avoids the need to store a large amount
of quadrature weights in memory (which would be referred to as a memory tail). Furthermore,
the evaluation and application of the Laplace transforms (corresponding to the solution of a
time-harmonic scattering problem in our application) are completely decoupled and can con-
sequently be solved in parallel without the need for any communication between the processes.
For further aspects of this approach in the context of wave equations we refer the reader to [10]
and [19].

For nonlinear convolution equations such as (4.70), this approach is not directly admissible,
since the solution can not be written as a direct forward application of a convolution opera-
tor. A discrete nonlinear convolution equation such as K(∂τ

t )φ
τ + a(φτ) = g is solved in a

time-stepping manner, by rewriting it for all n ≤ N by

W0(K)φn + a(φn) = gn −
n−1

∑
j=0

Wn−j(K)φj in Ym. (C.12)

Here, we denote gn =
(

g(tn + ciτ)
)m

i=1 and similarly φn ≈
(
φ(tn + ciτ)

)m
i=1, where φ is the

assumed solution of the analogous continuous convolution equation. By setting a = 0, the
above formulation is also admissible for linear convolution equations. Solving this system in
the linear case for all n ≤ N instead of directly applying (C.11) with the inverse of K has the
advantage of only needing to invert K at the single frequency ∆(0)

τ . Preconditioning the linear
system W0(K) further reduces the amount of time necessary to solve the arising linear systems
during the time integration procedure.

In general, with the nontrivial nonlinearity a, the nonlinear system is solved iteratively with
Newton’s method in each time step. Directly computing the convolution on the right-hand side
via (C.11) would lead to a computational effort that scales at least quadratically. To manage the
convolution on the right-hand side in an efficient way, the method proposed in [43] is used,
which reduces the computational effort of the method with respect to the amount of time steps
N, to almost linear growth, more specificallyO(N log(N)2). A good description of the method
and a formulation as a recursive algorithm is given in [69, Section 4.1].

The algorithm described in these references takes the explicit form of a time-stepping scheme,
which is described in the following, without a derivation. Analogous to the notation for con-
tinuous functions, we use the shorthand notation bn = (bmn+i)

m
i=1 and φn = (φmn+i)

m
i=1 for the

vectors b and φ.
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Algorithm 1: Solving the discrete convolution equation (C.12)
Input: K, a, g, N

Output: φ

1 Initialize φ ∈ XmN , bn = g(tn + ciτ)
m
i=1 for n = 0, ..., N − 1 ;

2 for n← 1 to N do

3 Solve W0(K)φn−1 + a(φn−1) = bn−1; // by Newton’s method

4 l ← gcd(2n, n) ;

5 φloc ← [(φj)
nm
j=nm−lm+1, 0, ..., 0] ∈ X2lm ;

6 (bj)
nm+lm
j=nm+1 ← (bj)

nm+lm
j=nm+1 −

(
(K(∂τ

t )φloc)j
)2lm

j=lm+1; // by (C.11)

7 return φ;

We note that the somewhat unintuitive solution for φn−1 in the n-th time step stems from
(B.8), by which φn−1 already includes an approximation for φ(tn). To compute the solution of
the nonlinear discrete convolution equation described in Chapter 4, the parameters L = 4N and
ρN =

√
ε were used to compute the right-hand side of Line 6 via (C.11). The additional eval-

uations of the Laplace transforms are computationally expensive, but ensure the convergence
of the method. The evaluations of the Laplace tansform K(s) necessary for the convolutions in
Algorithm 1 can be reused. Consequently, 2mL (which corresponds to 8mN in the used imple-
mentation) evaluations are sufficient to execute Algorithm 1, as long as all Laplace transform
evaluations can be stored in memory during the execution of the program.
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[61] S. Rytov. Calcul du skin-effect par la méthode des perturbations. J. Phys. USSR, 2(3):233–
242, 1940.

[62] S. A. Sauter and M. Schanz. Convolution quadrature for the wave equation with
impedance boundary conditions. J. Comput. Phys., 334:442–459, 2017.

[63] S. A. Sauter and C. Schwab. Boundary element methods. Springer-Verlag, New York,
2011.

[64] F.-J. Sayas. Retarded potentials and time domain boundary integral equations: A road map, vol-
ume 50 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2016.

[65] M. W. Scroggs, T. Betcke, E. Burman, W. Śmigaj, and E. van ’t Wout. Software frameworks
for integral equations in electromagnetic scattering based on Calderón identities. Comput.
Math. Appl., 74(11):2897–2914, 2017.
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