
Full discretization of wave equations on evolving surfaces

Dhia Mansour
Universität Tübingen, Germany
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Abstract

A linear wave equation on a moving surface is dis-
cretized in space by evolving surface finite elements
and in time by the implicit midpoint rule. We study
stability and convergence of the fully discrete scheme
in the natural time-dependent norms. Under suitable
assumptions we prove optimal-order error estimates.
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1 Introduction

The numerical study of partial differential equa-
tions on moving surfaces has attracted considerable
attention over the last years.

In [1], the authors considered a wave equation
on a moving surface, which is derived from Hamil-
ton’s principle, and presented a fully discrete vari-
ational integrator that is stable under a CFL con-
dition. To overcome the time step restriction due
to the CFL condition, we investigate in this paper
the implicit midpoint rule for the time discretization.
We prove the unconditional stability of the fully dis-
crete scheme. Furthermore, under suitable regularity
conditions, we show second order of the error mea-
sured in the L2 norm over the time-dependent surface
for displacements and their material derivatives, and
first order for the L2 norm of the error in the surface
gradient of the displacements, uniformly on bounded
time intervals.

2 The wave equation on evolving surfaces

Let Γ(t), t ∈ [0, T ], be a smoothly evolving family
of smooth m-dimensional compact closed hypersur-
faces in Rm+1 without boundary, with unit outward
pointing normal ν. We let v(x(t), t) denote the given
velocity of the surface Γ(t), i.e., ẋ(t) = v(x(t), t).

We consider the linear wave equation on evolving
surfaces (c.f [1])

∂•∂•u+ ∂•u ∇Γ · v −∆Γu = 0 (1)

with given initial data u(0) ∈ H2(Γ0) and ∂•u(0) ∈
H1(Γ0).

We let ∂•u denote the material derivative ∂•u =
∂u
∂t + v · ∇u. The tangential gradient is given by

∇Γu = ∇u−∇u ·ν ν. The Laplace-Beltrami operator
is the tangential divergence of the tangential gradient
∆Γu = ∇Γ · ∇Γu =

∑d+1
j=1(∇Γ)j(∇Γ)ju.

2.1 Weak formulation

A weak form of (1) reads:

d

dt

∫
Γ
∂•uϕ+

∫
Γ
∇Γu · ∇Γϕ =

∫
Γ
∂•u∂•ϕ (2)

for all smooth ϕ :
⋃
t∈[0,T ] Γ(t)× {t} → R.

2.2 The evolving surface finite element method

Following [2], the smooth surface Γ(t) is interpo-
lated at nodes ai(t) ∈ Γ(t) (i = 1, . . . ,m) by a
discrete polygonal surface Γh(t), where h denotes
the grid size. These nodes move with velocity
dai(t)/dt = v(ai(t), t). The discrete surface Γh(t) =⋃
E(t)∈Th(t)E(t) is the union of d-dimensional sim-

plices E(t) that is assumed to form an admissible
triangulation Th(t); see [2] for details. We define for
each t ∈ [0, T ] the finite element space Sh(t) = {φh ∈
C0(Γh(t)) : φh|E linear affine for eachE ∈ Th(t)}.
The moving nodal basis {χi}mi=1 of Sh(t) are deter-
mined by χi(aj(t), t) = δij for all j, so we have

Sh(t) = span{χ1(·, t), . . . , χm(·, t)}.

The discrete velocity Vh of the discrete surface Γh(t)
is the piecewise linear interpolant of v: Vh(x, t) =∑N

j=1 v(aj(t), t)χj(x, t), x ∈ Γh(t). Then the dis-
crete material derivative on Γh(t) is given by ∂•hφh =
∂φh
∂t + Vh · ∇φh. The construction is such that

∂•hχj = 0. (3)

The discrete surface gradient is defined piecewise as
∇Γh

g = ∇g−∇g ·νhνh, where νh denotes the normal
to the discrete surface.

2.3 The spatial semi-discretization

The spatial semi-discretization of the wave equa-
tion reads as follows: Find uh(·, t) ∈ Sh(t) such that
for all temporally smooth φh with φh(·, t) ∈ Sh(t)
and for all t ∈ [0, T ],

d

dt

∫
Γh

∂•hUh φh+

∫
Γh

∇Γh
Uh ·∇Γh

φh =

∫
Γh

∂•hUh∂
•
hφh.

(4)



2.4 The Hamiltonian ODE system

We denote the discrete solution Uh(·, t) =∑m
j=1 qj(t)χj(·, t) ∈ Sh(t) and define q(t) ∈ Rm as

the nodal vector with entries qj(t) = Uh(aj(t), t).
Then by the transport property (3), we have
∂•hUh(·, t) =

∑m
j=1 q̇j(t)χj(·, t) ∈ Sh(t). The evolv-

ing mass matrix M(t) and the stiffness matrix A(t)
are defined by M(t)ij =

∫
Γh(t) χi(t)χj(t), A(t)ij =∫

Γh(t)∇Γh(t)χi(t) · ∇Γh(t)χj(t). The mass matrix is
symmetric and positive definite. The stiffness matrix
is symmetric and only positive semidefinite. Then (4)
can be written as

d

dt
(M(t)q̇(t)) +A(t)q(t) = 0. (5)

By introducing the conjugate momenta p(t) =
M(t)q̇(t), we reformulate (5) in the variable y(t) =
(p(t), q(t))T as Hamilton’s equations (˙ = d

dt)

ẏ(t) = J−1H(t)y(t), (6)

with

J =

(
0 I
−I 0

)
, H(t) =

(
M(t)−1 0

0 A(t)

)
.

3 The implicit midpoint rule

For the numerical integration of the above Hamil-
ton’s equations (6) we consider the implicit midpoint
rule with time step size τ > 0 given by

Yn+ 1
2

= yn +
τ

2
J−1Hn+ 1

2
Yn+ 1

2
(7a)

yn+1 = yn + τJ−1Hn+ 1
2
Yn+ 1

2
(7b)

3.1 Defects and errors

Let ỹn and Ỹn+ 1
2

be reference values that we want

to compare with yn and Yn+ 1
2

respectively. Inserted

into (7) they yield defects in

Ỹn+ 1
2

= ỹn +
τ

2
J−1Hn+ 1

2
Ỹn+ 1

2
+ ∆n+ 1

2
(8a)

ỹn+1 = ỹn + τJ−1Hn+ 1
2
Ỹn+ 1

2
+ δn+1 (8b)

3.2 Stability

We define the symmetric positive definite matrix
Ĥ(t) as

Ĥ(t) =

(
M(t)−1 0

0 A(t) +M(t)

)
,

and therewith the time-dependent energy norm:

‖y‖2t =
〈
y
∣∣∣Ĥ(t)

∣∣∣ y〉 = yTĤ(t)y. (9)

Lemma 3.1 The error is bounded for 0 ≤ tn ≤ T by

‖yn − ỹn‖tn ≤ C
∥∥∥∆ 1

2

∥∥∥
t0

+ C
∥∥∥δn −∆n− 1

2

∥∥∥
tn

+ C

n−1∑
j=1

∥∥∥δj + ∆j+ 1
2
−∆j− 1

2

∥∥∥
tj
.

The constant C is independent of h, τ and n.

4 Error bound for the full discretization

For Uh : Γh → R we define the extension or the
lift onto Γ by U lh(a(x)) = Uh(x), where a(x) ∈ Γ
is the orthogonal projection of x ∈ Γh. We con-
sider the lifts of the fully discrete numerical solu-
tion and its numerical material derivative given by
unh := (Unh )l =

∑m
j=1 q

n
j χ

l
j(tn), ∂•hu

n
h := (∂•hU

n
h )l =∑m

j=1

(
M(tn)−1pn

)
j
χlj(tn), which are lifted finite el-

ement functions defined on the surface Γ(tn). This
will be compared with the solution u(tn) of the wave
equation (1) and its material derivative ∂•u(tn).

We rewrite the error by subtracting and adding the
Ritz map applied to the exact solution,

unh − u(tn) = unh − Ph(tn)u(tn) + Ph(tn)u(tn)− u(tn),

where Ph(t) is the Ritz map defined in [1]. Then we
are able to prove our main result:

Theorem 4.1 Let u be a sufficiently smooth solution
of the wave equation (1) and assume that the discrete
initial data satisfy∥∥u0

h − (Phu)(0)
∥∥
L2(Γ0)

+
∥∥∇Γ0u

0
h −∇Γ0(Phu)(0)

∥∥
L2(Γ0)

+
∥∥∂•hu0

h − ∂•h(Phu)(0)
∥∥
L2(Γ0)

≤ C0h
2.

Then, there exist h0 > 0 and τ0 > 0 such that for
h ≤ h0 and τ ≤ τ0, the following error bound holds
for 0 ≤ tn = nτ ≤ T :

‖unh − u(tn)‖L2(Γn) + h ‖∇Γnu
n
h −∇Γnu(tn)‖L2(Γn)

+ ‖∂•hunh − ∂•u(tn)‖L2(Γn) ≤ C
(
h2 + τ2

)
.

The constant C is independent of h, τ , and n subject
to the stated conditions.
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