
Numerical solution of
ordinary differential equations

Ernst Hairer and Christian Lubich

Université de Genève and Universität Tübingen

1 Introduction: Euler methods

Ordinary differential equations are ubiquitous in
science and engineering: in geometry and me-
chanics from the first examples onwards (New-
ton, Leibniz, Euler, Lagrange), in chemical re-
action kinetics, molecular dynamics, electronic
circuits, population dynamics, and many more
application areas. They also arise, after semi-
discretization in space, in the numerical treat-
ment of time-dependent partial differential equa-
tions, which are even more impressively om-
nipresent in our technologically developed and fi-
nancially controlled world.

The standard initial value problem is to deter-
mine a vector-valued function y : [t0, T] → Rd

with a given initial value y(t0) = y0 ∈ Rd such
that the derivative y′(t) depends on the current
solution value y(t) at every t ∈ [t0, T] in a pre-
scribed way:

y′(t) = f(t, y(t)) for t0 ≤ t ≤ T, y(t0) = y0.

Here, the given function f is defined on an open
subset of R×Rd containing (t0, y0) and takes val-
ues in Rd. If f is continuously differentiable then
there exists a unique solution at least locally on
some open interval containing t0. In many appli-
cations, t represents time, and it will be conve-
nient to refer to t as time in what follows.

In spite of ingenious efforts of mathematicians
throughout the 18th and 19th century, in most
cases the solution of a differential equation cannot
be given in closed form by functions that can be
evaluated directly on a computer. This even ap-
plies to linear differential equations y′ = Ay with
a square matrix A, for which y(t) = e(t−t0)Ay0,
as computing the matrix exponential is a noto-
riously tricky problem. One therefore must rely
on numerical methods that are able to approxi-
mate the solution of a differential equation to any
desired accuracy.

1.1 The explicit Euler method

The ancestor of all the advanced numerical meth-
ods in use today was formed by Leonhard Euler
in 1768. On writing down the first terms in the
Taylor expansion of the solution at t0 and using
the prescribed initial value and the differential
equation at t = t0, it is noted that y(t0 + h) =
y(t0) + hy′(t0) + · · · = y0 + hf(t0, y0) + · · · .
Choosing a small step size h > 0 and neglecting
the higher-order terms represented by the dots,
an approximation y1 to y(t1) at the later time
t1 = t0 + h is obtained by setting

y1 = y0 + hf(t0, y0).

The next idea is to take y1 as the starting value
for a further step, which then yields an ap-
proximation to the solution at t2 = t1 + h as
y2 = y1 + hf(t1, y1). Continuing in this way,
in the (n + 1)st step we take yn ≈ y(tn) as the
starting value for computing an approximation at
tn+1 = tn + h as

yn+1 = yn + hf(tn, yn),

and after a sufficient number of steps we reach
the final time T . The computational cost of the
method lies in the evaluations of the function f .
The step size need not be the same in each step
and could be replaced by hn in the formula, so
that tn+1 = tn + hn.

It is immediate that the quality of the approx-
imation yn depends on two aspects: the error
made by truncating the Taylor expansion and the
error introduced by continuing from approximate
solution values. These two aspects are captured
in the notions of consistency and stability, respec-
tively, and are fundamental to all numerical meth-
ods for ordinary differential equations.

1.2 The implicit Euler method and
stiff differential equations

A minor-looking change in the method, already
considered by Euler in 1768, makes a big differ-
ence: taking as the argument of f the new value
instead of the previous one yields

yn+1 = yn + hf(tn+1, yn+1),

from which yn+1 is now determined implicitly. In
general, the new solution approximation needs to

1

2

be computed iteratively, typically by a modified
Newton method such as y

(k+1)
n+1 = y

(k)
n+1 + ∆y

(k)
n+1,

where the increment is computed by solving a lin-
ear system of equations

(I − hJn)∆y
(k)
n+1 = −r

(k)
n+1

with an approximation Jn to the Jacobian matrix
∂yf(tn, yn) and the residual r

(k)
n+1 = y

(k)
n+1 − yn −

hf(tn+1, y
(k)
n+1). The computational cost per step

has increased dramatically: whereas the explicit
Euler method requires a single function evalua-
tion we now need to compute the Jacobian and
then solve a linear system and evaluate f on each
Newton iteration.

Why it may nevertheless be preferable to per-
form the computation using the implicit rather
than the explicit Euler method is evident for the
scalar linear example, made famous by Germund
Dahlquist in 1963,

y′ = λy,

where the coefficient λ is large and negative (or
complex with large negative real part). Here the
exact solution y(t) = e(t−t0)λy0 decays to zero as
time increases, and so does the numerical solution
given by the implicit Euler method for every step
size h > 0:

yimpl
n = (1− hλ)−ny0.

In contrast, the explicit Euler method yields

yexpl
n = (1 + hλ)ny0,

which decays to zero for growing n only when h is
so small that |1 + hλ| < 1. This imposes a severe
step size restriction when λ is a negative number
of large absolute value (just think of λ = −1010).
For larger step sizes the numerical solution suf-
fers an instability that is manifested in wild os-
cillations of increasing amplitude. The problem
is that the explicit Euler method and the differ-
ential equation have completely different stability
behaviors unless the step size is chosen extremely
small (see Figure 1).

Such behavior is not restricted to the simple
scalar example considered above, but extends to
linear systems of differential equations in which

.5 1.0 1.5
0

1

2

explicit Euler
h = 0.038

h = 0.041

implicit Euler, h = 0.5

Figure 1: Exact solution (solid), implicit Euler solu-

tion (dashed), and two explicit Euler solutions (oscil-

lating) for the problem y′ = −50(y− cos t), y(0) = 0.

the matrix has some eigenvalues with large neg-
ative real part, and to classes of nonlinear differ-
ential equations with a Jacobian matrix ∂yf hav-
ing this property. The explicit and implicit Euler
methods also give rise to very different behaviors
for nonlinear differential equations in which the
function f(t, y) has a large (local) Lipschitz con-
stant L with respect to y, while for some inner
product the inequality

〈f(t, y)− f(t, z), y − z〉 ≤ `‖y − z‖2

holds for all t and y, z with a moderate constant
` ¿ L (called a one-sided Lipschitz constant).

Differential equations for which the numerical
solution using the implicit Euler method is more
efficient than that using the explicit Euler method
are called stiff differential equations. They in-
clude important applications in the description
of processes with multiple time scales (e.g., fast
and slow chemical reactions) and in spatial semi-
discretizations of time-dependent partial differen-
tial equations. For example, for the heat equa-
tion, stable numerical solutions are obtained with
the explicit Euler method only when temporal
step sizes are bounded by the square of the spa-
tial grid size, whereas the implicit Euler method
is unconditionally stable.

3

1.3 The symplectic Euler method
and Hamiltonian systems

An important class of differential equations where
neither the explicit nor the implicit Euler method
is appropriate is Hamiltonian differential equa-
tions

p′ = −∇qH(p, q), q′ = +∇pH(p, q),

which are fundamental to many branches of
physics. Here, the real-valued Hamilton function
H, defined on a domain of Rd+d, represents the
total energy and q(t) ∈ Rd and p(t) ∈ Rd repre-
sent the positions and momenta, respectively, of
a conservative system at time t. The total energy
is conserved:

H(p(t), q(t)) = Const.

along any solution (p(t), q(t)) of the Hamiltonian
system. It turns out that a partitioned method
obtained by applying the explicit Euler method
to the position variables and the implicit Eu-
ler method to the momentum variables (or vice
versa) behaves much better than either Euler
method applied to the system as a whole. The
symplectic Euler method reads

pn+1 = pn − h∇qH(pn+1, qn)
qn+1 = qn + h∇pH(pn+1, qn).

For a separable Hamiltonian H(p, q) = T (p) +
V (q) the method is explicit.

Figure 2 illustrates the qualitative behavior of
the three Euler methods applied to the differential
equations of the mathematical pendulum,

p′ = − sin q, q′ = p,

which are Hamiltonian with H(p, q) = 1
2p2−cos q.

The energy of the implicit Euler solution de-
creases, while that of the explicit Euler solution
increases. The symplectic Euler method nearly
conserves the energy over extremely long times.

2 Basic notions

In this section we describe some of the mecha-
nisms that lead to the different behaviors of the
various methods.

−π−π ππ q

p

explicit

impl.

sympl.

Figure 2: Pendulum equation: Euler polygons with

step size h = 0.3; initial value p(0) = 0 and q(0) = 1.7

for explicit Euler, q(0) = 1.5 for symplectic Euler,

and q(0) = 1.3 for implicit Euler. The solid lines are

solution curves for the differential equations.

2.1 Local error

For the explicit Euler method, the error after one
step of the method starting from the exact solu-
tion, called the local error, is given as

dn+1 =
(
y(tn) + hf(tn, y(tn))

)
− y(tn + h).

By estimating the remainder term in the Taylor
expansion of y(tn+h) at tn, we can bound dn+1 by

‖dn+1‖ ≤ Ch2 with C = 1
2 max

t0≤t≤T
‖y′′(t)‖,

provided that the solution is twice continuously
differentiable, which is the case if f is continu-
ously differentiable.

2.2 Error propagation

Since the method advances in each step with the
computed values yn instead of the exact solution
values y(tn), it is important to know how errors,
once introduced, are propagated by the method.
Consider explicit Euler steps starting from differ-
ent starting values,

un+1 = un + hf(tn, un),
vn+1 = vn + hf(tn, vn).

When f is (locally) Lipschitz continuous with
Lipschitz constant L, the difference is controlled
by the stability estimate

‖un+1 − vn+1‖ ≤ (1 + hL)‖un − vn‖.

4

y0

t0 t1 t2 t3 · · · tn

exact solution

numerical method

yn

y(tn)

y1

y2

y3

Figure 3: Lady Windermere’s fan.

2.3 Lady Windermere’s fan

The above estimates can be combined to study
the error accumulation, as illustrated by the fan
of Figure 3 (named by Gerhard Wanner in the
1980s after a play by Oscar Wilde). Each ar-
row from left to right represents a step of the
numerical method, with different starting values.
The fat vertical bars represent the local errors,
whose propagation by the numerical method is
controlled using repeatedly the stability estimate
from step to step: the global error

en = yn − y(tn)

is the sum of the propagated local errors (rep-
resented as the distances between two adjacent
arrow heads ending at tn in Figure 3). The con-
tribution of the first local error d1 to the global
error en is bounded by (1+hL)n−1‖d1‖, as is seen
by applying the stability estimate n−1 times fol-
lowing the numerical solutions starting from y1

and y(t1). The contribution of the second local
error d2 is bounded by (1 + hL)n−2‖d2‖, and so
on. Since the local errors are bounded by Ch2,
the global error is thus bounded by

‖en‖ ≤
n−1∑
j=0

(1 + hL)jCh2

=
(1 + hL)n − 1
1 + hL− 1

Ch2 ≤ enhL − 1
L

Ch.

With M = (e(T−t0)L − 1)C/L, the global error
satisfies

‖en‖ ≤ Mh for tn ≤ T.

The numerical method thus converges to the ex-
act solution as h → 0 with nh fixed, but only at
first order, that is, with an error bound propor-
tional to h. We will later turn to higher-order
numerical methods, with an error bound propor-
tional to hp with p > 1.

2.4 Stiff differential equations

The above error bound becomes meaningless for
stiff problems, where L is large. The implicit
Euler method admits an analogous error analy-
sis in which only the one-sided Lipschitz constant
` appears in the stability estimate: provided that
h` < 1,

‖un+1 − vn+1‖ ≤
1

1− h`
‖un − vn‖

holds for the results of two Euler steps starting
from un and vn. For stiff problems with ` ¿ L
this is much more favorable than the stability es-
timate of the explicit Euler method in terms of L.
It leads to an error bound ‖en‖ ≤ mh in which
m is essentially of the same form as M above,
but with the Lipschitz constant L replaced by the
one-sided Lipschitz constant `.

The above arguments explain the convergence
behavior of the explicit and implicit Euler meth-
ods and their fundamentally different behavior for
large classes of stiff differential equations. They
do not explain the favorable behavior of the sym-
plectic Euler method for Hamiltonian systems.
This requires another concept, backward analy-
sis, which is treated next.

2.5 Backward analysis

Much insight into numerical methods is obtained
by interpreting the numerical result after a step as
the (almost) exact solution of a modified differen-
tial equation. Properties of the numerical method
can then be inferred from properties of a differ-
ential equation. For each of the Euler methods
applied to y′ = f(y) an asymptotic expansion

f̃(ỹ) = f(ỹ) + hf2(ỹ) + h2f3(ỹ) + · · ·

can be uniquely constructed recursively such that,
up to arbitrarily high powers of h,

y1 = ỹ(t1),

5

where ỹ(t) is the solution of the modified differ-
ential equation ỹ′ = f̃(ỹ) with initial value y0.
The remarkable feature is that when the sym-
plectic Euler method is applied to a Hamiltonian
system, then the modified differential equation is
again Hamiltonian. The modified Hamilton func-
tion has an asymptotic expansion

H̃ = H + hH2 + h2H3 + · · · .

The symplectic Euler method therefore conserves
the modified energy H̃ (up to arbitrarily high
powers of h), which is close to the original en-
ergy H. This conservation of the modified energy
prevents the linearly growing drift in the energy
that is present along numerical solutions of the
explicit and implicit Euler methods. For these
two methods the modified differential equation is
no longer Hamiltonian.

3 Nonstiff problems

3.1 Higher-order methods

A method is said to have order p if the local er-
ror (recall that this is the error after one step
of the method starting from the exact solution)
is bounded by Chp+1, where h is the step size
and C depends only on bounds of derivatives of
the solution y(t) and of the function f . Like for
the Euler method in Section 2.1, the order is de-
termined by comparing the Taylor expansions of
the exact and the numerical solution, which for a
method of order p should agree up to and includ-
ing the hp term.

A drawback of the Euler methods is that they
are only of order 1. There are different ways to in-
crease the order: using additional, auxiliary func-
tion evaluations in passing from yn to yn+1 (one-
step methods); using previously computed solu-
tion values yn−1, yn−2, . . . and/or their function
values (multistep methods); or using both (gen-
eral linear methods). For nonstiff initial value
problems the most widely used methods are ex-
plicit Runge–Kutta methods of orders up to 8, in
the class of one-step methods, and Adams-type
multistep methods up to order 12. For very strin-
gent accuracy requirements of 10 or 100 digits,
high-order extrapolation methods or high-order
Taylor series expansions of the solution (when

higher derivatives of f are available with au-
tomatic differentiation software) are sometimes
used.

3.2 Explicit Runge–Kutta methods

Two ideas underlie Runge–Kutta methods: first,
the integral in

y(t0 + h) = y(t0) + h

∫ 1

0

y′(t0 + θh) dθ,

with y′(t) = f(t, y(t)), is approximated by a
quadrature formula with weights bi and nodes ci,

y1 = y0 + h

s∑
i=1

biY
′
i , Y ′

i = f(t0 + cih, Yi).

Second, the internal stage values Yi ≈ y(t0 + cih)
are determined by another quadrature formula for
the integral from 0 to ci:

Yi = y0 + h

s∑
j=1

aijY
′
j , i = 1, . . . , s,

with the same function values Y ′
j as for y1. If

the coefficients satisfy aij = 0 for j ≥ i, then
the above sum actually extends only from j = 1
to i − 1, and hence Y1, Y

′
1 , Y2, Y

′
2 , . . . , Ys, Y

′
s can

be computed explicitly one after the other. The
methods are named after Carl Runge, who in 1895
proposed two- and three-stage methods of this
type, and after Wilhelm Kutta, who in 1901 pro-
posed what is now known as the classical Runge–
Kutta method of order 4, which extends the Simp-
son quadrature rule from integrals to differential
equations:

ci aij

bj
≡

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6

Using Lady Windermere’s fan as in Section 2,
one finds that the global error yn − y(tn) of a pth-
order Runge–Kutta method over a bounded time
interval is O(hp).

The order conditions of general Runge–Kutta
methods were elegantly derived by John Butcher

6

in 1964 using a tree model for the derivatives of
f and their concatenations by the chain rule, as
they appear in the Taylor expansions of the ex-
act and the numerical solutions. This enabled
the construction of even higher-order methods,
among which excellently constructed methods of
orders 5 and 8 by Dormand and Prince (from
1980) have found widespread use. These meth-
ods are equipped with lower-order error indica-
tors from embedded formulas that use the same
function evaluations. These error indicators are
used for an adaptive selection of the step size that
is intended to keep the local error close to a given
error tolerance in each time step.

3.3 Extrapolation methods

A systematic, if sub-optimal construction of ex-
plicit Runge–Kutta methods of arbitrarily high
order is provided by Richardson extrapolation of
the results of the explicit Euler method obtained
with different step sizes. This technique makes
use of an asymptotic expansion of the error,

y(t, h)− y(t) = e1(t)h + e2(t)h2 + · · · ,

where y(t, h) is the explicit Euler approximation
at t obtained with step size h. At t = t0 + H,
the error expansion coefficients up to order p can
be eliminated by evaluating at h = 0 (extrapo-
lating) the interpolation polynomial through the
Euler values y(t0 + H,hj) for j = 1, . . . , p corre-
sponding to different step sizes hj = H/j. This
gives a method of order p, which formally falls
into the general class of Runge–Kutta methods.
Instead of using the explicit Euler method as ba-
sic method, it is preferable to take Gragg’s method
(from 1964) which uses the explicit midpoint rule

yn+1 = yn−1 + 2hf(tn, yn), n ≥ 1,

and an explicit Euler starting step to compute y1.
This method has an error expansion in powers of
h2 (instead of h above) at even n, and with the
elimination of each error coefficient one therefore
gains a power of h2. Extrapolation methods have
built-in error indicators that can be used for order
and step-size control.

3.4 Adams methods

The methods introduced by Astronomer Royal
John Couch Adams in 1855 were the first of high
order that use only function evaluations, and in
their current variable-order, variable step-size im-
plementations they are among the most efficient
methods for general nonstiff initial value prob-
lems.

When k function values fn−j = f(tn−j , yn−j)
(j = 0, . . . , k − 1) have already been computed,
the integrand in

y(tn+1) = y(tn) + h

∫ 1

0

f(tn + θh, y(tn + θh)) dθ

is approximated by the interpolation polynomial
P (t) through (tn−j , fn−j), j = 0, . . . , k−1, yield-
ing the explicit Adams method of order k,

yn+1 = yn + h

∫ 1

0

P (tn + θh) dθ,

which, upon inserting the Newton interpolation
formula, becomes (for constant step size h)

yn+1 = yn + hfn + h

k−1∑
i=1

γi∇ifn,

with the backward differences ∇fn = fn − fn−1,
∇ifn = ∇i−1fn−∇i−1fn−1, and with coefficients
(γi) = (1

2 , 5
12 , 3

8 , 251
720 , . . .). The method thus cor-

rects the explicit Euler method by adding differ-
ences of previous function values.

Especially for higher orders, the accuracy of the
approximation suffers from the fact that the in-
terpolation polynomial is used outside the inter-
val of interpolation. This is avoided if the, as yet,
unknown value (tn+1, fn+1) is added to the inter-
polation points. Let P ∗(t) denote the correspond-
ing interpolation polynomial, which is now used
to replace the integrand f(t, y(t)). This yields the
implicit Adams method of order k+1, which takes
the form

yn+1 = yn + hfn+1 + h

k∑
i=1

γ∗i ∇ifn+1,

with (γ∗i) = (− 1
2 ,− 1

12 ,− 1
24 ,− 19

720 , . . .). The equa-
tion for yn+1 is solved approximately by one or at
most two fixed point iterations, taking the result

7

from the explicit Adams method as the starting
iterate (the predictor) and inserting its function
value on the right-hand side of the implicit Adams
method (the corrector).

In a variable-order, variable step-size imple-
mentation, the required starting values are built
up by starting with the methods of increasing
order 1, 2, 3, . . . one after the other. Strategies
for increasing or decreasing the order are based
on monitoring the backward difference terms.
Changing the step size is computationally more
expensive, since it requires a recalculation of all
method coefficients. It is facilitated by passing in-
formation from one step to the next by the Nord-
sieck vector, which collects the values of the in-
terpolation polynomial and all its derivatives at
tn scaled by powers of the step size.

3.5 Linear multistep methods

Both explicit and implicit Adams methods (with
constant step size) belong to the class of linear
multistep methods

k∑
j=0

αjyn+j = h

k∑
j=0

βjfn+j

with fi = f(ti, yi) and αk 6= 0. This class also
includes important methods for stiff problems,
in particular the backward differentiation formu-
las (BDF) to be described in the next section.
The theoretical study of linear multistep meth-
ods was initiated by Germund Dahlquist in 1956.
He showed that for such methods

consistency + stability ⇐⇒ convergence,

which together with the contemporaneous Lax
equivalence theorem for discretizations of partial
differential equations forms a basic principle of
numerical analysis. What this means here is de-
scribed in more detail below.

In contrast to one-step methods, having high
order does not by itself guarantee that a multistep
method converges as h → 0. In fact, choosing the
method coefficients in such a way that the order
is maximized for a given k leads to a method that
produces wild oscillations, which increase in mag-
nitude with decreasing step size. One requires
in addition a stability condition, which can be

phrased as saying that all solutions to the lin-
ear difference equation

∑k
j=0 αjyn+j = 0 stay

bounded as n →∞, or equivalently:
All roots of the polynomial

∑k
j=0 αjζ

j are in
the complex unit disk, and those on the unit circle
are simple.

If this stability condition is satisfied and the
method is of order p, then the error satisfies
yn − y(tn) = O(hp) on bounded time intervals,
provided that the error in the starting values is
O(hp).

Dahlquist also proved order barriers: the order
of a stable k-step method cannot exceed k + 2 if
k is even, k + 1 if k is odd, and k if the method
is explicit (βk = 0).

3.6 General linear methods

Predictor-corrector Adams methods fall neither
into the class of multistep methods, since they
use the predictor as an internal stage, nor into
the class of Runge–Kutta methods, since they use
previous function values. Linear multistep meth-
ods and Runge–Kutta methods are extreme cases
of a more general class of methods

un+1 = Sun + hΦ(tn, un, h)

where un is a vector (usually of dimension a
multiple of the dimension of the differential
equation) from which the solution approxima-
tion yn ≈ y(tn) can be obtained by a lin-
ear mapping, S is a square matrix, and Φ de-
pends on function values of f . (For example,
for predictor-corrector methods we would have
un = (yn, ypred

n , yn−1, . . . , yn−k+1) in this frame-
work.)

More general methods like these have been
studied since the mid-1960s with the objective of
looking for the “greatest good as a mean between
extremes” (in the words of Aristotle and John
Butcher). They include a number of methods of
potential interest for both nonstiff and stiff prob-
lems, such as two-step Runge–Kutta methods
or general linear methods with inherent Runge–
Kutta stability, but as of now do not appear to
have found their way into applications via com-
petitive software.

8

4 Stiff problems

We have seen in the introduction that for im-
portant classes of differential equations, called
stiff equations, the implicit Euler method yields
a drastic improvement over the explicit Euler
method. Are there higher-order methods with
similarly good properties?

4.1 BDF methods

The k-step implicit Adams methods, though nat-
urally extending the implicit Euler method, per-
form disappointingly on stiff problems for k > 1.
Multistep methods from another extension of the
implicit Euler method, based on numerical differ-
entiation rather than integration, turn out to be
better for stiff problems. Suppose that k solution
approximations yn−k+1, . . . , yn have already been
computed, and consider the interpolation polyno-
mial u(t) passing through yn+1−j at tn+1−j for
j = 0, . . . , k, including the as yet unknown ap-
proximation yn+1. We then require the colloca-
tion condition

u′(t) = f(t, u(t)) at t = tn+1,

or equivalently, in the case of a constant step
size h,

k∑
j=1

1
j
∇jyn+1 = hfn+1.

This backward differentiation formula (BDF) is
an implicit linear multistep method of order k,
which is found to be unstable for k > 6. Methods
for smaller k, however, up to k ≤ 5, are currently
the most widely used methods for stiff problems,
which are implemented in numerous computer
codes. The usefulness of these methods was first
observed by Curtiss and Hirschfelder (1952), who
also coined the notion of stiff differential equa-
tions. Bill Gear’s BDF code DIFSUB from 1971
was the first widely used code for stiff problems.
It brought BDF methods (“Gear’s method”) to
the attention of practitioners in many fields.

4.2 A-stability and related notions

Which properties make BDF methods successful
for stiff problems? In 1963, Dahlquist systemat-
ically studied the behavior of multistep methods

on the scalar linear differential equation

y′ = λy with λ ∈ C, Re λ ≤ 0,

whose use as a test equation can be justified by
linearization of the differential equation and diag-
onalization of the Jacobian matrix. The behavior
of a numerical method on this deceivingly sim-
ple scalar linear differential equation gives much
insight into its usefulness for more general stiff
problems, as is shown by both numerical experi-
ence and theory.

Clearly, the exact solution y(t) = etλy0 remains
bounded for t → +∞ when Re λ ≤ 0. Following
Dahlquist, a method is called A-stable if for ev-
ery λ ∈ C with Re λ ≤ 0, the numerical solution
yn stays bounded as n → ∞ for every step size
h > 0 and every choice of starting values. The
implicit Euler method and the second-order BDF
method are A-stable, but the BDF methods of
higher order are not. Dahlquist’s second order
barrier states that the order of an A-stable linear
multistep method cannot exceed 2. This funda-
mental, if negative theoretical result has led to
much work aimed at circumventing the barrier
by using other methods or weaker notions of sta-
bility.

The stability region S is the set of all com-
plex z = hλ, such that every numerical solu-
tion of the method applied to y′ = λy with
step size h stays bounded. The stability re-
gions of explicit and implicit k-step Adams meth-
ods with k > 1 are bounded, which leads to
step size restrictions when λ has large absolute
value. The BDF methods up to order 6 are
A(α)-stable, that is, the stability region contains
an unbounded sector | arg(−z)| ≤ α with α =
90◦, 90◦, 86◦, 73◦, 51◦, 17◦ for k = 1, . . . , 6, respec-
tively. The higher-order BDF methods therefore
perform well for differential equations where the
Jacobian has large eigenvalues near the negative
real half-axis, but behave poorly when there are
large eigenvalues near the imaginary axis.

4.3 Implicit Runge–Kutta methods

It turns out that there is no order barrier for A-
stable Runge–Kutta methods.

Explicit Runge–Kutta methods cannot be A-
stable, because application of such a method to

9

the linear test equation yields yn+1 = P (hλ)yn,
where P is a polynomial of degree s, the num-
ber of stages. The stability region of such a
method is necessarily bounded, since |P (z)| → ∞
as |z| → ∞.

On the other hand, an implicit Runge–Kutta
method has

yn+1 = R(hλ)yn

with a rational function R(z), called the stabil-
ity function of the method, which is an approxi-
mation to the exponential at the origin, R(z) =
ez +O(zp+1) as z → 0. The method is A-stable if
|R(z)| ≤ 1 for Re z ≤ 0. The subtle interplay be-
tween order and stability is clarified by the theory
of order stars, developed by Wanner, Hairer and
Nørsett in 1978. In particular, this theory shows
that among the Padé approximations Rk,j(z) to
the exponential (the rational approximations of
numerator degree k and denominator degree j
of highest possible order p = j + k), precisely
those with k ≤ j ≤ k + 2 are A-stable. Optimal-
order implicit Runge–Kutta methods having the
diagonal Padé approximations Rs,s as stability
function are the collocation methods based on
the Gauss quadrature nodes, while those having
the sub-diagonal Padé approximations Rs−1,s are
the collocation methods based on the right-hand
Radau quadrature nodes. We turn to these im-
portant implicit Runge–Kutta methods next.

4.4 Gauss and Radau methods

A collocation method based on the nodes 0 ≤ c1 <
· · · < cs ≤ 1 determines a polynomial u(t) of
degree at most s such that u(t0) = y0 and the
differential equation is satisfied at the s points
t0 + cih:

u′(t) = f(t, u(t)) at t = t0 + cih, i = 1, . . . , s.

The solution approximation at the end-point is
then

y1 = u(t0 + h),

which is taken as the starting value for the next
step. As has been shown by Ken Wright (in 1970),
such a collocation method is equivalent to an im-
plicit Runge–Kutta method, the order of which
is equal to the order of the underlying interpola-
tory quadrature with nodes ci. The highest order

p = 2s is thus obtained with Gauss nodes. Nev-
ertheless, Gauss methods have found little use in
stiff initial value problems (as opposed to bound-
ary value problems, see Section 6). The reason
for this is that the stability function here satis-
fies |R(z)| → 1 as z → −∞, whereas ez → 0 as
z → −∞.

The desired damping property at infinity is
obtained for the sub-diagonal Padé approxima-
tion. This is the stability function for the col-
location method at Radau points, which are the
nodes of the quadrature of order p = 2s− 1 with
cs = 1. Let us collect the basic properties: the s-
stage Radau method is an implicit Runge–Kutta
method of order p = 2s−1; it is A-stable and has
R(∞) = 0.

The Radau methods have some more remark-
able features: they are nonlinearly stable with the
so-called algebraic stability property; their last in-
ternal stage equals the starting value for the next
step (this property is useful for very stiff and for
differential-algebraic equations); and their inter-
nal stages all have order s.

The last property does indeed hold for every
collocation method with s nodes. It is impor-
tant because of the phenomenon of order reduc-
tion: in the application of an implicit Runge–
Kutta method to stiff problems, the method may
have only the stage order, or stage order +1, with
stiffness-independent error constants, instead of
the full classical order p that is obtained with
nonstiff problems.

The implementation of Radau methods by
Hairer and Wanner (from 1991) is known for
its robustness in dealing with stiff problems and
differential-algebraic equations of the type My′ =
f(t, y) with a singular matrix M .

4.5 Linearly implicit methods

BDF and implicit Runge–Kutta methods are fully
implicit, and the resulting systems of nonlinear
equations need to be solved by variants of New-
ton’s method. To reduce the computational cost
while retaining favorable linear stability prop-
erties, linearly implicit methods have been pro-
posed, such as the linearly implicit Euler method,
in which only a single iteration of Newton’s

10

method is done in each step:

(I − hJn)(yn+1 − yn) = hfn,

where Jn ≈ ∂yf(tn, yn). Thus just one linear sys-
tem of equations is solved in each time step. The
method is identical to the implicit Euler method
for linear problems and therefore inherits its A-
stability. Higher-order linearly implicit methods
can be obtained by Richardson extrapolation of
the linearly implicit Euler method, or they are
specially constructed Rosenbrock methods. Like
explicit Runge-Kutta methods these methods de-
termine the solution approximation as

y1 = y0 + h

s∑
i=1

biY
′
i , Yi = y0 + h

i−1∑
j=1

aijY
′
j ,

but compute the derivative stages consecutively
by solving s linear systems of equations (written
here for an autonomous problem, f(t, y) = f(y),
and J = ∂yf(y0)):

(I − γhJ)Y ′
i = f(Yi) + hJ

i−1∑
j=1

γijY
′
j .

Such methods are easy to implement and have
gained popularity in the numerical integration
of spatial semi-discretizations of partial differen-
tial equations. For large problems, the domi-
nating numerical cost is in the solution of the
systems of linear equations, using either direct
sparse solvers or iterative methods such as pre-
conditioned Krylov subspace methods.

4.6 Exponential integrators

While it appears an obvious idea to use the expo-
nential of the Jacobian in a numerical method,
this has for a long time been considered im-
practical, and particularly so for large problems.
This attitude changed, however, in the mid-1990s
when it was realized that Krylov subspace meth-
ods for approximating a matrix exponential times
a vector, eγhJv, show superlinear convergence,
whereas there is generally only linear convergence
for solving linear systems (I − γhJ)x = v. Un-
less a good preconditioner for the linear system
is available, computing the action of the matrix

exponential is therefore computationally less ex-
pensive than solving a corresponding linear sys-
tem. This fact led to a revival of methods using
the exponential or related functions like ϕ(z) =
(ez − 1)/z, such as the exponential Euler method

yn+1 = yn + hϕ(hJn)fn.

The method is exact for linear f(y) = Jy + c. It
differs from the linearly implicit Euler method in
that the entire function ϕ(z) replaces the ratio-
nal function 1/(1 − z). Higher-order exponential
methods of one-step and multistep type have also
been constructed. Exponential integrators have
proven useful for large-scale problems in physics
and for nonlinear parabolic equations, as well as
for highly oscillatory problems like those consid-
ered in Section 5.6.

4.7 Chebyshev methods

For moderately stiff problems one can avoid nu-
merical linear algebra altogether by using explicit
Runge-Kutta methods of low order (2 or 4) and
high stage number, which are constructed to have
a large stability domain covering a strip near the
negative real semi-axis. The stability function of
such methods is a high-degree polynomial related
to Chebyshev polynomials. The stage number is
chosen adaptively to include the product of the
step size with the dominating eigenvalues of the
Jacobian in the stability domain. With s stages,
one can cover intervals on the negative real axis
of a length proportional to s2. The quadratic
growth of the stability interval with the stage
number makes these methods suitable for prob-
lems with large negative real eigenvalues of the
Jacobian, such as spatial semidiscretizations of
parabolic partial differential equations.

5 Structure-preserving methods

The methods discussed so far are designed for
general differential equations, and a distinction
was drawn only between nonstiff and stiff prob-
lems. There are, however, important classes of
differential equations with a special, often geo-
metric structure, whose preservation in the nu-
merical discretization leads to substantially bet-
ter methods, especially when integrating over

11

long times. The most prominent of these are
Hamiltonian systems, which are all-important in
physics. Their flow has the geometric property of
being symplectic.

In respecting the phase space geometry under
discretization and analyzing its effect on the long-
time behavior of a numerical method, there is a
shift of viewpoint from concentrating on the ap-
proximation of a single solution trajectory to con-
sidering the numerical method as a discrete dy-
namical system that approximates the flow of a
differential equation.

While many differential equations have inter-
esting structures to preserve under discretization
— and much work has been done in devising and
analyzing appropriate numerical methods for do-
ing so — we will restrict our attention to Hamil-
tonian systems here. Their numerical treatment
has been an active research area for the past two
decades.

5.1 Symplectic methods

The time-t flow of a differential equation y′ =
f(y) is the map ϕt that associates with an initial
value y0 at time 0 the solution value at time t:
ϕt(y0) = y(t). Consider a Hamiltonian system

p′ = −∇qH(p, q), q′ = ∇pH(p, q),

or equivalently, for y = (p, q),

y′ = J−1∇H(y) with J =
(

0 I
−I 0

)
.

The flow ϕt of a Hamiltonian system is symplec-
tic, that is, the derivative Dϕt with respect to the
initial value satisfies

Dϕt(y)T J Dϕt(y) = J

for all y and t for which ϕt(y) exists. This is a
quadratic relation formally similar to orthogonal-
ity, with J in place of the identity matrix I, but it
is related to the preservation of areas rather than
lengths in phase space.

A numerical one-step method yn+1 = Φh(yn)
is called symplectic if the numerical flow Φh is a
symplectic map:

DΦh(y)T J DΦh(y) = J.

Such methods exist: the “symplectic Euler
method” of Section 1.3 is indeed symplectic.
Great interest in symplectic methods was spurred
when, in 1988, Lasagni, Sanz-Serna and Suris
independently characterized symplectic Runge–
Kutta methods as those whose coefficients satisfy
the condition

biaij + bjaji − bibj = 0.

Gauss methods (see Section 4.4) were already
known to satisfy this condition, and were thus
found to be symplectic. Soon after these discov-
eries it was realized that a numerical method is
symplectic if and only if the modified differen-
tial equation of backward analysis (Section 2.5)
is again Hamiltonian. This made it possible to
prove rigorously the almost-conservation of en-
ergy over times that are exponentially long in the
inverse step size, as well as further favorable long-
time properties such as the almost-preservation
of KAM (Kolmogorov–Arnold–Moser) tori of per-
turbed integrable systems over exponentially long
times.

5.2 The Störmer–Verlet method

By the time symplecticity was entering the field of
numerical analysis, scientists in molecular simula-
tion had been doing symplectic computations for
more than twenty years without knowing it: the
standard integrator of molecular dynamics, the
method used successfully ever since Luc Verlet in-
troduced it to the field in 1967, is symplectic. For
a Hamiltonian H(p, q) = 1

2pTM−1p + V (q) with
a symmetric positive definite mass matrix M , the
method is explicit and given by the formulas

pn+1/2 = pn −
h

2
∇V (qn)

qn+1 = qn + hM−1pn+1/2

pn+1 = pn+1/2 −
h

2
∇V (qn+1).

Such a method was also formulated by the as-
tronomer Störmer in 1907, and in fact can even
be traced back to Newton’s Principia from 1687,
where it was used as a theoretical tool in the
proof of the preservation of angular momentum
in the two-body problem (Kepler’s second law),
which is indeed preserved by this method. Given

12

that there are already sufficiently many Newton
methods in numerical analysis, it is fair to refer to
the method as the Störmer–Verlet method (Verlet
method and leapfrog method are also often-used
names). As will be discussed in the next three
subsections, the symplecticity of this method can
be understood in various ways by relating the
method to different classes of methods that have
proven useful in a variety of applications.

5.3 Composition methods

Let us denote the one-step map (pn, qn) 7→
(pn+1, qn+1) of the Störmer–Verlet method by
ΦSV

h , that of the symplectic Euler method of Sec-
tion 1.3 by ΦSE

h , and that of the adjoint symplec-
tic Euler method by ΦSE∗

h , where instead of the
argument (pn+1, qn) one uses (pn, qn+1). Then,
the second-order Störmer–Verlet method can be
interpreted as the composition of the first-order
symplectic Euler methods with halved step size:

ΦSV
h = ΦSE∗

h/2 ◦ ΦSE
h/2.

Since the composition of symplectic maps is
symplectic, this shows the symplecticity of the
Störmer–Verlet method. We further note that
the method is time-reversible (or symmetric):
Φ−h ◦ Φh = id, or equivalently Φh = Φ∗h with
the adjoint method Φ∗h := Φ−1

−h. This is known
to be another favorable property for conservative
systems.

Moreover, from first-order methods we have ob-
tained a second-order method. More generally,
starting from a low-order method Φh, methods
of arbitrary order can be constructed by suitable
compositions

Φcsh ◦ · · · ◦Φc1h or Φ∗bsh ◦Φash ◦ · · · ◦Φ∗b1h ◦Φa1h.

Systematic approaches to high-order composi-
tions were first given by Suzuki and Yoshida in
1990. Whenever the base method is symplectic,
then so is the composed method. The coefficients
can be chosen such that the resulting method is
symmetric.

5.4 Splitting methods

Splitting the Hamiltonian H(p, q) = T (p) + V (q)
into its kinetic energy T (p) = 1

2pTM−1p and po-
tential energy V (q), we have that the flows ϕT

t

and ϕV
t of the systems with Hamiltonians T and

V , respectively, are obtained by solving the trivial
differential equations

ϕT
t :

{
p′ = 0
q′ = M−1p

ϕV
t :

{
p′ = −∇V (q)
q′ = 0 .

We then note that the Störmer–Verlet method
can be interpreted as a composition of the exact
flows of the split differential equations:

ΦSV
h = ϕT

h/2 ◦ ϕV
h ◦ ϕT

h/2.

Since the flows ϕT
h/2 and ϕV

h are symplectic, so is
their composition.

Splitting the vector field of a differential equa-
tion and composing the flows of the subsystems is
a structure-preserving approach that yields meth-
ods of arbitrary order and is useful in the time
integration of a variety of ordinary and partial
differential equations, such as linear and nonlin-
ear Schrödinger equations.

5.5 Variational integrators

For the Hamiltonian H(p, q) = 1
2pTM−1p+V (q),

the Hamilton equations of motion ṗ = −∇V (q),
q̇ = M−1p can be combined to give the second-
order differential equation

Mq̈ = −∇V (q),

which can be interpreted as the Euler-Lagrange
equations for minimizing the action integral∫ tN

t0

L(q(t), q̇(t)) dt with L(q, q̇) = 1

2
q̇TMq̇−V (q)

over all paths q(t) with fixed end-points. In the
Störmer-Verlet method, eliminating the momenta
yields the second-order difference equations

M(qn+1 − 2qn + qn−1) = −h2∇V (qn),

which are the discrete Euler-Lagrange equations
for minimizing the discretized action integral

N−1∑
n=0

h

2

(
L

(
qn,

qn+1 − qn

h

)
+ L

(
qn+1,

qn+1 − qn

h

))
,

which results from a trapezoidal rule approxi-
mation to the action integral and piecewise lin-
ear approximation to q(t). The Störmer–Verlet

13

method can thus be interpreted as resulting from
the direct discretization of the Hamilton varia-
tional principle. Such an interpretation can in
fact be given for every symplectic method. Con-
versely, symplectic methods can be constructed
by minimizing a discrete action integral. In par-
ticular, approximating the action integral by a
quadrature formula and the positions q(t) by a
piecewise polynomial leads to a symplectic par-
titioned Runge–Kutta method, which in general
uses different Runge–Kutta formulas for positions
and momenta. With Gauss quadrature one rein-
terprets in this way the Gauss methods of Sec-
tion 4.4, and with higher-order Lobatto quadra-
ture formulas one obtains higher-order relatives
of the Störmer–Verlet method.

5.6 Oscillatory problems

Highly oscillatory solution behavior in Hamilto-
nian systems typically arises when the potential
is a multiscale sum V = V [slow] + V [fast], where
the Hessian of V [fast] has positive eigenvalues that
are large compared with those of V [slow]. (Here
we assume M = I for simplicity.) With standard
methods such as the Störmer–Verlet method, very
small time steps would be required, for reasons
of both accuracy and stability. Various numeri-
cal methods have been devised with the aim to
overcome such a limitation. Here we just de-
scribe one such method, a multiple time-stepping
method that reduces the computational work sig-
nificantly when the slow force f [slow] = −∇V [slow]

is far more expensive to evaluate than the fast
force f [fast] = −∇V [fast]. A basic principle is to
rely on averages instead of pointwise force eval-
uations. In the averaged-force method, the force
fn = −∇V (qn) in the Störmer–Verlet method is
replaced with an averaged force fn as follows: we
freeze the slow force at qn and consider the aux-
iliary differential equation

ü = f [slow](qn) + f [fast](u)

with initial values u(0) = qn, u̇(0) = 0. We then
define the averaged force as

fn =
∫ 1

−1

(1− |θ|)
(
f [slow](qn) + f [fast](u(θh))

)
dθ,

which equals fn = 1
h2

(
u(h) − 2u(0) + u(−h)

)
.

The value u(h) is computed approximately with

smaller time steps, noting u(h) = u(−h).
The argument of f [slow] might preferably be re-

placed with an averaged value qn, in order to mit-
igate the adverse effect of possible step size res-
onances that appear when the product of h with
an eigenfrequency of the Hessian is close to an
integral multiple of π.

If the fast potential is quadratic, V [fast](q) =
1
2qTAq, the auxiliary differential equation can be
solved exactly in terms of trigonometric functions
of the matrix h2A. The resulting method can
then be viewed as an exponential integrator as
considered in Section 4.6.

6 Boundary value problems

In a two-point boundary value problem, the dif-
ferential equation is coupled with boundary con-
ditions of the same dimension:

y′(t) = f(t, y(t)), a ≤ t ≤ b,

r(y(a), y(b)) = 0.

As an important class of examples, such problems
arise as the Euler–Lagrange equations of varia-
tional problems, typically with separated bound-
ary conditions ra(y(a)) = 0, rb(y(b)) = 0.

6.1 The sensitivity matrix

The problem of existence and uniqueness of a so-
lution is more subtle than for initial value prob-
lems. For a linear boundary value problem

y′(t) = C(t)y(t) + g(t), a ≤ t ≤ b,

Ay(a) + By(b) = q,

a unique solution exists if and only if the sen-
sitivity matrix E = A + B U(b, a) is invertible,
where U(t, s) is the propagation matrix yielding
v(t) = U(t, s)v(s) for every solution of the linear
differential equation v′(t) = C(t)v(t).

A solution of a nonlinear boundary value prob-
lem is locally unique if the linearization along this
solution has an invertible sensitivity matrix.

6.2 Shooting

Just as Newton’s method replaces a nonlinear sys-
tem of equations with a sequence of linear sys-
tems, the shooting method replaces a boundary

14

value problem with a sequence of initial value
problems. The objective is to find an initial value
x such that the solution of the differential equa-
tion with this initial value, denoted y(t; x), satis-
fies the boundary conditions:

F (x) := r(x, y(b; x)) = 0.

Newton’s method is now applied to this nonlinear
system of equations: starting from an initial guess
x0, one iterates

xk+1 = xk +∆xk with DF (xk)∆xk = −F (xk).

Here, the derivative matrix DF (xk) turns out to
be the sensitivity matrix Ek of the linearization of
the boundary value problem along y(t; xk). In the
kth iteration, one solves numerically the initial
value problem with initial value xk together with
its linearization

(Y k)′(t) = ∂yf(t, y(t; xk)) Y k(t), Y k(a) = I.

6.3 Multiple shooting

The conceptual elegance of the shooting method
— that it reduces everything to the solution of
initial value problems over the whole interval —
can easily turn into its computational obstruc-
tion. Newton’s method may be very sensitive to
the choice of the initial value x0. The norms of the
matrices E−1 and U(b, a), which determine the ef-
fect of perturbations in the boundary value prob-
lem and the initial value problem, respectively,
are unrelated and may differ widely.

The problem can be avoided by subdividing the
interval a = t0 < t1 < · · · < tN = b, shooting on
every subinterval, and requiring continuity of the
solution at the nodes tn. With y(t; tn, xn) denot-
ing the solution of the differential equation that
starts at tn with initial value xn, this approach
leads to a larger nonlinear system with the conti-
nuity conditions

Fn(xn−1, xn) = y(tn; tn−1, xn−1)− xn = 0

for n = 1, . . . , N together with the boundary con-
ditions

F0(x0, xN) := r(x0, xN) = 0.

Newton’s method is now applied to this system
of equations. In each iteration, one solves initial

value problems on the subintervals together with
their linearization, and then a linear system with
a large sparse matrix is solved for the increments
in (x0, . . . , xN).

6.4 Collocation

In the collocation approach to the boundary value
problem, one determines an approximation u(t)
that is a continuous, piecewise polynomial of de-
gree at most s, and that satisfies the boundary
conditions and the differential equation at a fi-
nite number of collocation points tn,i = tn−1 +
ci(tn − tn−1) (for n = 1, . . . , N and i = 1, . . . , s):

u′(t) = f(t, u(t)) at t = tn,i

r(u(a), u(b)) = 0.

The method can be interpreted, and imple-
mented, as a multiple shooting method in which
a single step with a collocation method for initial
value problems, as considered in Section 4.4, is
made to approximate the solution in each subin-
terval. The most common choice, as first imple-
mented by Ascher, Christiansen and Russell in
1979, is collocation at Gauss nodes, which has
good stability properties in the forward and back-
ward directions. The order of approximation at
the grid points tn is p = 2s. Moreover, if the
boundary value problem results from a variational
problem, then Gauss collocation can be inter-
preted as a direct discretization of the variational
problem (see Section 5.5).

7 Summary

The numerical solution of ordinary differential
equations is an area driven both by applications
and theory, with efficient computer codes along-
side beautiful theorems, both relying on insight
and knowledge of the researchers that are active
in this field. It is an area that interacts with
neighboring fields in computational mathemat-
ics (numerical linear algebra, the numerical so-
lution of partial differential equations and opti-
mization), with the theory of differential equa-
tions and dynamical systems, and time and again
with the application areas in science and engi-
neering where numerical methods for differential
equations are used.

15

Further Reading

1. Ascher, U.M., Mattheij, R.M.M. and Rus-
sell, R.D. 1995 Numerical solution of bound-
ary value problems for ordinary differential equa-
tions. SIAM, Philadelphia.

2. Ascher, U.M. and Petzold, L.R. 1998 Computer
methods for ordinary differential equations and
differential-algebraic equations, SIAM, Philadel-
phia.

3. Butcher, J.C. 2008 Numerical methods for or-
dinary differential equations, second revised ed.,
Wiley, Chichester.

4. Crouzeix, M. and Mignot, A.L. 1989 Analyse
numérique des équations différentielles, 2e éd.
révisée et augmentée. Masson, Paris.

5. Deuflhard, P. and Bornemann, F. 2002 Scientific
computing with ordinary differential equations,
Springer, New York.

6. Gear, C.W. 1971 Numerical initial value prob-
lems in ordinary differential equations, Prentice-
Hall, Englewood Cliffs, NJ.

7. Hairer, E., Nørsett, S.P. and Wanner, G. 1993
Solving ordinary differential equations. I: Nons-
tiff problems. 2nd revised ed., Springer, Berlin.

8. Hairer, E. and Wanner, G. 1996 Solving ordinary
differential equations. II: Stiff and differential-
algebraic problems. 2nd revised ed., Springer,
Berlin.

9. Hairer, E., Lubich, C. and Wanner, G. 2006
Geometric numerical integration. Structure-
preserving algorithms for ordinary differential
equations. 2nd revised ed., Springer, Berlin.

10. Henrici, P. 1962 Discrete variable methods in or-
dinary differential equations, Wiley, New York.

11. Iserles, A. 2009 A first course in the numerical
analysis of differential equations. Second edi-
tion, Cambridge Univ. Press, Cambridge.

12. Leimkuhler, B. and Reich, S. 2004 Simulating
Hamiltonian dynamics, Cambridge Univ. Press,
Cambridge.

Biographies of contributors

Ernst Hairer, born in 1949, Dr. phil. at Univ.
Innsbruck in 1972, since 1985 Professor of Nu-
merical Mathematics at Université de Genève.

Christian Lubich, born in 1959, Dr. rer. nat. at
Univ. Innsbruck in 1983, since 1994 Professor of
Numerical Mathematics at Universität Tübingen.

