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Introduction

Parabolic partial differential equations on evolving surfaces and their coupling to surface evolu-
tion equations model a wide range of real-life phenomena in physics and biology. The combined
geometric and time-dependent nature of such problems attracted interest to their numerical
analysis along the past years.

Evolving surface problems with a given wvelocity pose multiple hurdles within their numerical
analysis: since the surface on which they hold is curved, the analysis of spatial semi-discretisation
requires the study of errors related to geometric approximations; on the other hand the strong
time-dependent nature of these problems renders this field also interesting from the aspect of
time discretisations.

The starting point of the numerical analysis is the fundamental paper of Dziuk [Dzi88|
analysing surface finite elements for elliptic partial differential equations on surfaces. This was
later extended to various parabolic problems on stationary surfaces [DE07b]. The theory of
partial differential equations on a closed evolving surface with a given velocity and the study of
the evolving surface finite element method was started by Dziuk and Elliott [DE0Ta|. A great
number of papers dealing with various evolving surface problems and their evolving surface finite
element discretisation have been surveyed in [DDE05, DE13al|. Further references can be found
later on in the text.

Further possible numerical approaches are level set methods, see [Set99] and [OF03], or the
unstructured finite element methods, see [BBLO18|, and the references therein.

The analysis of high-order time discretisations of evolving surface problems with a given
velocity was started by Dziuk, Lubich and Mansour [DLM12|, which deals with time discreti-
sation using algebraically stable implicit Runge-Kutta methods, and by Lubich, Mansour and
Venkataraman |[LMV13|, dealing with time discretisations by backward differentiation formulae.
In both papers — and also for the results presented in this thesis — energy estimates for the
matrix—vector formulation play a crucial role in the stability analysis.

In Chapter 1 some recent results are collected in the case of evolving surface problems with
a given velocity. Various optimal-order error bounds for semi- and full discretisations, using
evolving surface finite elements and implicit Runge-Kutta methods or backward differentiation
formulae, of linear parabolic problems are presented. In Section 1.8 we give optimal-order error
bounds for non-linear problems.

The sections of the chapter collect results from the papers [KP18a, Kov17, KP18b, Kov1§|
and |KP16], see Appendices A-E.

The development of numerical algorithms for surface evolution also goes back to a paper of Dziuk
[Dzi90|, which deals with a numerical algorithm for the mean curvature flow. In contrast to
problems on an evolving surface with a given velocity, the numerical analysis of surface evolution
equations or problems coupling surface evolution to diffusion on the surface, i.e. where the surface
velocity depends on the solution of the problem on the surface, is far less explored.
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Chapter 2 collects — to the best of our knowledge — the first error estimates of semi- and full
discretisation of such solution-driven problems on surfaces of dimension two.

For evolving curves there are recent papers [PS17a] and [PS17b] on the finite element analysis
of curve evolution (curve shortening flow and elastic flow) coupled to diffusion on the curve, while
[BDS17] studies a fully discrete scheme. Surface evolutions under Navier—Stokes equations and
Willmore flow have recently been considered in [BGN15a, BGN15b, BGN16].

The convergence of the evolving surface finite element method for mean curvature flow of
closed surfaces is not understood, and has, as yet, remained an open problem since Dziuk’s
formulation of such an algorithm in his paper [Dzi90].

The sections of the chapter collect results from the papers [KLLP17] and [KL18|, see Appen-
dices F and G.



1. Numerical methods for parabolic problems
on evolving surfaces

In this chapter, convergence results on full and semi-discretisations of parabolic problems on
evolving surfaces are collected.

Parabolic partial differential equations (PDEs) on evolving surfaces arise in a wide variety of
applications in physics and biology. We refer to the papers [DE13a, DE07a, DE0O7b]| collecting
many of these models, and also to the references therein.

The focus here is mostly on optimal-order error estimates for full discretisations using the
evolving surface finite element method combined with high-order time integrators. In most
cases, the error bounds are shown by combining stability bounds, obtained by energy techniques,
cf. [LO95, AL15], and consistency estimates, obtained using the geometric error estimates and
error bounds for a suitable Ritz map.

This chapter is organised as follows. The first four sections are of preliminary nature: Sec-
tion 1.1 collects basic notions for linear evolving surface problems, Section 1.2 briefly describes
the evolving surface finite element method, while Section 1.3 describes the used time discreti-
sation methods. Finally Section 1.4 gives a brief literature overview on convergence results for
time-dependent problems on evolving surfaces. In Section 1.5 we present error bounds for the
arbitrary Lagrangian Eulerian evolving surface finite elements, and an algorithm for computing
such maps. Section 1.6 gives semi-discrete error estimates in maximum norm. Section 1.7 collects
error estimates using high-order basis functions. In Section 1.8 error bounds are presented for
non-linear problems.

1.1. Parabolic problems on evolving surfaces: preliminaries and
notation

Research of the theory and, especially, of the numerical analysis of parabolic partial differential
equations on evolving surfaces was started by the paper of Dziuk and Elliott [DE07a], which
in turn finds its roots in the fundamental paper of Dziuk [Dzi88]. We collect here the basic
definitions and notations. Although most of them became quite standard in the literature,
cf. [DE07a, DE13b, DE13a], it is worth to recall them below, allowing a clear and self-contained
presentation of our results.

We consider an evolving closed surface T'(t) C R™*! (m = 2,3) for 0 <t < T, given by

L(t) = {X(p,t) | p € I},
of a sufficiently regular (non-degenerate and at least C2) function X : T? x [0, T] — R™*! where
I'% is a closed smooth initial surface, and X(-,0) = Id. Sometimes it is convenient to use the
surface representation through a sufficiently regular (at least C2) signed distance function d (see
e.g. [DEOT7al). The surface is then given by

T(t) = {x € R™! | d(z,t) = 0}.

1



Numerical methods for parabolic problems on evolving surfaces

The surface moves with a given smooth wvelocity v : UycomT'(t) x {t} — R™*! which satisfies
the ordinary differential equation (ODE), for all p € T'?,

d
with X (p,0) = p. Note that with a known velocity field v, any point x = X (p,t) on I'(¢) at time
t and for fixed p € T” can be obtained by integrating the ODE (1.1) from 0 to t.

The material derivative of a function u is given by

d

0%u(-,t) = T

(X('7t)7t)' (12)
We denote the unit outward normal by v = vpy). The tangential gradient for a function wu is
given by Vrpyu = Vu — (Vu - v)v. By Vr) - v we denote the tangential divergence of the
velocity v, while the Laplace-Beltrami operator applied to u is denoted by Argyu, and is given
by V() - Vr@u. An important tool is Green’s formula on closed surfaces, for smooth functions
u,: I(t) = R,

/ Vrwu - Veg e = —/ (Apgu)ep.
I'(t) I'(t)

We use Sobolev spaces on surfaces: For a smooth surface I' we define

zﬂm:{mraR‘Am2<m}
H'(T) = {ne L’(T) | ry € L),

and analogously for higher order versions H*(I") for k € N. See for instance [DE07a] or [DE13b]
for these notions.

The simplest model problem is the heat equation on a closed evolving surface, derived in
|[DEO07a|, which reads:

O*u+uVpy) v —Argpu = f on I'(t),

1.3
u(-,0) = u’ on T'(0), (1:3)

where f(-,t) : I'(t) = R is a given inhomogeneity for all 0 <t < T

The variational formulation of this problem reads as: Find u € H'(I'(t)) with a time-
continuous material derivative 9®u € L?(T'(t)) such that, for all test functions ¢ € HY(T'(t))
with 0°p =0

d

— ugo—l—/ Vripu -V (,0:/ fo, (1.4)
dt Jre v T

with the initial value u(-,0) = u®.

Existence and uniqueness results for (1.4), with suitable initial values ug, were obtained by
Dziuk and Elliott [DE07a, Theorem 4.4].

1.2. The evolving surface finite element method

A starting point to surface finite elements is the fundamental paper of Dziuk [Dzi88|, while the
evolving surface finite element method was later developed by Dziuk and Elliott [DE07a|. Here
we give a brief introduction to the evolving surface finite element method.



The evolving surface finite element method

The surface T'(¢) is approximated by a family of admissible triangulations denoted by 7 (t),
with h denoting the maximum diameter. The notion of admissible triangulations, cf. [DE0T7a,
Section 5.1|, includes quasi-uniformity and shape regularity. The vertices (z; (t))jvz1 of the dis-
crete surface I'y(t), given by its elements as

= |J E.

E#)eTh(t)

are sitting on the exact surface I'(¢) for all 0 <t < 7.
The continuous, piecewise linear evolving surface finite element basis functions ¢;(-,t) :
In(t) >R (5 =1,2,...,N) satisfy the property

¢j($k,t): ik for all j,k‘:1,2,...,N.
For every t € [0, T the finite element space Sy (t), spanned by the basis functions ¢;, is given by

Sp(t) = span{¢1(-,t),¢2(-,t), .. .,(bN(-,t)}.

The discrete tangential gradient of a function uy, € Si,(t) on the discrete surface 'y, (t) is given

by
Vi, un = Vup — (Vup - vp)vp,

understood in a piecewise sense, with v, = vr, () denoting the outward unit normal to Th(t).

The velocity of the discrete surface I',(t), denoted by V}, is given by the interpolation of v
using the basis functions: V, = Z;VZI v(xj(t),t)¢;(-,t). Then the discrete material derivative is
given by

Ohpn = Opn + Vi - Vo (pn € Sh(?t)).

The key transport property derived in [DE07a, Proposition 5.4], is
Orpr =0 for k=1,2,...,N. (1.5)

Therefore, the discrete material derivative of a temporally smooth surface finite element function
up(-,t) = Z;VZI uj(t)p;i(-,t) € Sp(t) is simply given by

N
Oun(-,t) =Y ()i (-,t) € Sh(t).
j=1

Semi-discrete problem and matrix—vector formulation

The semi-discrete problem then reads: Find the finite element function wy(-,t) € Si(t) with a
time-continuous discrete material derivative dpuy (-, t) € Sy(t) such that, for all p,(-,t) € Sk(t)
with dppn(-,t) =0,

d

— Uup, h-i—/ \Y% up - V h:/
at Jouy " Sy O Ta@¥

freon. (1.6)
Tr(t)

The initial value uy(-,0) and the inhomogeneity f;, are taken as suitable approximations of u°
and f, respectively.

The above semi-discrete problem translates to a matrix—vector formulation presented below.
Apart form the obvious role in numerical computations, the matrix—vector formulation plays a
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central role in the stability analysis for many problems, see [DLM12, LMV13, KP18a, KP16| and
an even more crucial role in [KLLP17, KL18|, see the appendices as well.
The time-dependent mass matrix M(t) and stiffness matrix A(t) are defined by

M(t)|x; = i On,
T (t) (,k=1,2,...,N). (1.7)

A(t)|gj = / V% - V., @k
In(t)
The right-hand side vector is simply given by
()
We obtain the following ODE system for the vector of nodal values u(t) = (u; (t));vzl € RY,

collecting the nodal values of up(-,t) = Eévzl uj(t)p;(-,t) € Sp(t):

d

= (M(t)u(t)) +A(bu(t) = b(t),

u(0) = u’.

(1.8)

Concerning notation, we will apply the convention to use small boldface letters to denote
vectors in RN or R3N collecting nodal values of discretised functions on the surface denoted by
the same letter, and boldface capitals for matrices over the discrete spaces.

Lift

In the following we recall the lift operator, which was introduced in [Dzi88] and further investi-
gated in [DE07a, DE13b]|. The lift operator maps a finite element function on the discrete surface
onto a function on the smooth surface.

The lift of a continuous function 7y, : 'y (t) — R is defined as

Uﬁ(va - nh(xut)7 S Fh(t)u
where for every = € T')(t) the point y = y(z,t) € I'(t) is uniquely defined via the equation
=y +v(yt)d,i).

For vector valued functions the lift is meant componentwise. By n~¢ we mean the function whose
lift is n. We also have the lifted finite element space

Sn(t) == {h, | on € Sh(t)}.

1.3. Time discretisation methods

We now briefly describe the time discretisation methods used in this thesis. Instead of the linear
problem (1.8) we consider a more general problem, which accommodates all subsequent problems
of this chapter:
d
S (M@u®) + A u@)u) = £, u(),
u(0) = u’.
For example in (1.8) we have A(t,u) = A(¢) and the non-linearity takes the form f(¢,u(?)) =
b(t).

(1.9)



Time discretisation methods

Implicit Runge—Kutta methods

An s-stage implicit Runge-Kutta method applied to the ODE system (1.9), with constant' step
size T, determines the approximations u” = u(t,) and the internal stages u™:

S
Mpiu™ = Muu® + 7Y a0, for =125, (1.10a)
j=1
S .
M, ™ = Myu® +7 ) b, (1.10Db)
=1

where the internal stages satisfy
u" + A(t, + ¢, u")u™ = f(t, + ¢, u™) for i=1,2,...,s, (1.10c)

with My; = M(t, + ¢;7) and M,,.1 = M(t,11), where t, = n7. Note that ™ is not a time
derivative, only a suggestive notation.

The method is determined by its coefficient matrix Q = (a;5); ;—; and its vector of weights
b = (bi){—y, with the nodes ¢; = > %_, a;;. We will always consider Runge-Kutta methods that
have the following important properties:
e The method has stage order ¢ > 1 and classical order p > q + 1.
e The coefficient matrix (b is invertible.
e The method is algebraically stable, i.e. the weights b; are positive and the following matrix is
positive semi-definite:

(biaij — bjaji — bibj)ij:l' (111)

e The method is stiffly accurate, i.e. the coefficients satisfy
bj = agj, and cs=1, for j=1,2,...,s. (1.12)

Algebraically stable Runge-Kutta methods are known to be A-stable. For the numerical
solution of parabolic problems, an important class of methods — which also satisfy the above
properties — are the Radau IIA methods. For more details we refer to [HW96, Chapter IV .].

From now on, under implicit Runge-Kutta method we always mean (unless stated otherwise)
a method which satisfies the above conditions.

Backward differentiation formulae

A k-step backward differentiation formula (BDF method) applied to the ODE system (1.9), with
constant step size 7, determines the approximations u” =~ u(t,):

k
1 ,
- SiM(t,—j)u"7 + A(ty, u")u" = f(t,,u"), (n>k), (1.13)
- E :
j=0

where the coefficients of the method are given by §(() = Z?:o §;¢7 = Zle %(1 — ()%, while the
starting values u’, u!,..., u*~! are assumed to be given. They can be precomputed in a way as
is usual for multistep methods: using lower-order methods with smaller step sizes, or using an

implicit Runge-Kutta method of the same order.

!This assumption is only made for simplicity. Most of our results hold for variable step sizes, cf. appendices.
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The method is known to be O-stable for & < 6 and have order k, furthermore, being A(«a)-
stable with angles 90°,90°,86.03°,73.35°,51.84°,17.84°, respectively. For more details we refer
to [HW96, Chapter V.|.

We also consider linearly implicit BDF methods, which applied to the ODE system (1.9)
determine the approximations u” = u(ty), by solving the linear system of equations:

k
1 _
=5 GM (b U 4 Al WU = E(, T, (0> k), (1.14)

T “
Jj=0

where the extrapolated vector ™ is defined by

The coefficients are given by the same function 6(¢) as for the fully implicit case, and v(¢) =
Zf;é 7;¢7 = (1 —(1—=¢)¥)/¢. In general for (1.9), the linearly implicit method requires to solve
a linear system with the matrix doM(t,) + TA(tn, "), while the fully implicit method (1.13)
requires to solve a non-linear system, in each time step.

The classical order k is retained by the linearly implicit variant using the above coefficients
v;, cf. [AL15, ALL17|.

1.4. A short review on convergence results

Numerous convergence results have been obtained for discretisations of time-dependent evolving
surface problems, here we shortly (and non comprehensively) review the earliest results.

The first H! norm semi-discrete error estimate was shown by [DE07a]. Dziuk and Elliott
also showed an optimal L? norm semi-discrete error estimate in [DE13b], while a fully discrete
convergence result, using the backward Euler method, was shown in [DE12]. Results have been
collected (up to 2012) in the excellent review article [DE13a].

Convergence results (of classical order) of time discretisations were obtained for algebraically
stable Runge-Kutta methods in [DLM12], and for backward differentiation formulae in [LMV13].

Semi- and full discretisation of wave equations have been studied in [LM15, Man15|. A unified
presentation of the evolving surface finite element method and time discretisations for parabolic
problems and wave equations can be found in [Manl3|.

The numerical analysis of first order hyperbolic problems started from [DKM13].

1.5. The arbitrary Lagrangian Eulerian evolving surface finite el-
ements: convergence and algorithms

Dziuk and Elliott already remarked in Section 7.2 of [DE07a] that “A drawback of our method
is the possibility of degenerating grids. The prescribed velocity may lead to the effect, that the
triangulation T, (t) is distorted”, i.e. the surface evolution can yield a mesh which is not admis-
sible, since there are triangles with very small angles. Even bad surface resolution may occur.
These effects may deteriorate the approximation properties of the evolving surface finite element
method. As observed in Figure 1.1: although the initial mesh (left) is quasi-uniform and the
surface evolution is also not complicated (the figure shows snapshots at times t = 0, 0.2, 0.6,
see also [ES12|), the meshes at later times (middle and right) do not preserve these good mesh
properties. Small angles, quite bad surface resolution and unnecessarily fine elements occur.
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Figure 1.1: Normal evolution of a closed surface at time t = 0,0.2,0.6; see also in [ES12]

To resolve this problem, Elliott and Styles |ES12| proposed an arbitrary Lagrangian Eule-
rian (ALE) evolving surface finite element method, which in contrast to the (pure Lagrangian)
evolving surface finite element method, uses an additional tangential velocity leading to a surface
evolution which preserves the good properties of the initial mesh. Various numerical experiments
have been presented in [ES12] where smaller numerical errors are achieved using this approach.

The idea of arbitrary Lagrangian Eulerian maps has been previously investigated for moving
domains, see for example [FN99, FN04| and [BKN13b, BKN13a|, and the references therein.
These papers construct nice meshes, assuming that a suitable movement of the boundary is
given.

Semi-discrete optimal-order convergence results for evolving surfaces have been first proved
in [EV15], together with error bounds for the fully discrete schemes using first and second-order
BDF methods.

In [KP18a] fully discrete convergence results using high-order time discretisation methods
have been shown by extending the convergence results of [DLM12] for the Runge-Kutta dis-
cretisations, and the results of [LMV13] for the backward differentiation formulae to the ALE
case. Stability and convergence of these high-order time discretisations are shown, and therefore
we establish optimal-order convergence results for full discretisations of linear evolving surface
parabolic PDEs when these time integrators are coupled with the ALE evolving surface finite
element method as a space discretisation.

For evolving domains and surfaces Elliott and Fritz [EF17, EF16] constructed meshes with
very good properties using different techniques via the DeTurck trick.

The ALE evolving surface finite element method

Let us first introduce some further notations related to the arbitrary Lagrangian Eulerian ap-
proach. We assume that the surface T'(¢) is also given by the sufficiently smooth function
XA TO % [0,T) — R™FL:

L(t) = {X*(p,1) | p € I°}.

The two parametrisations X and X have the same image for all ¢, although they might differ
pointwise. The parametrisation X is assumed to retain the good quality of the initial mesh.
The corresponding ALE surface velocity w : UyepomI'(2) x {t} — R™*1 is then given, for all
p eIV by
d

T XA, 1) = w(XA(p,1),0). (1.15)

We have that the difference w — v of the ALE velocity w and the surface velocity v (from (1.1))
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is a tangential vector field. The ALE material derivative of a function w is given by

d
8Au(’v t) = 7U(XA('7 t)a t)
dt
The arbitrary Lagrangian Eulerian weak formulation for the linear evolving surface problem
(1.3) reads as: Find the unknown function u(-,t) € HY(I'(t)) with a time-continuous ALE
material derivative 04u(-,t) € L2(T'(t)) such that, for all ¢(-,t) € H(T(t)) with 94¢(-,t) =0,

d
up + Vp(t)u : Vp(t)@ + /

“ wlw-0)Vrge= [ fo. (110
T'(t) r(t) T(t) (t)

where the initial value is the same as for (1.6).

The triangulation T'y(¢) is obtained in a slightly different way than described in Section 1.2.
The initial surface is approximated by I';(0), with nodes (x?)é-v:l, then the nodes (:Cj(t))évzl are
obtained by solving the ODE (1.15) for the nodes, with initial values x?. The corresponding
finite elements, discrete material derivatives, etc. are defined analogously as in Section 1.2, for
more details we refer to [ES12; EV15, KP18a]. The analogous transport property holds in the
ALE setting as well.

The ALE semi-discrete problem then reads as: Find the finite element function up(-,t) €
Sk(t) with a time-continuous discrete material derivative d7‘up,(-,t) € Sp(t) such that, for all

on(-t) € Sp(t) with dfon(-,t) =0,

d
— Uppn + V) Uh - VT,6)Ph +/ u (Wi = Vi) - Vo, (en = fnén, (1.17)
dt Jr, @) Th(t) T (1) T (t)

where the discrete ALE and surface velocity are interpolations of their continuous counterparts,
and are, respectively, given by

N N
Vi(-st) = Z’U(Iﬁj(t),t)qu(-,t), and  Wy(,t) = Zw(‘rj(t)at)qu('at)‘
j=1 Jj=1
The matrix—vector formulation reads:

d

” (M(t)u(t)> + A(Hu(t) + B(H)u(t) = b(t),

(1.18)

where A; M and b are given as before, and the non-symmetric time-dependent matrix B(t) is
given by

B(t)|kj = /F o ¢j(Wh — Vi) - Vo, () 0k (j,k=1,2,...,N).
h

Error estimates

The error between the lifted fully discrete numerical solution (uﬁ)g and the exact solution (-, t,)
of the evolving surface PDE (1.3) obtained by combining ALE evolving surface finite elements
and Runge-Kutta method satisfies the following optimal-order error estimates.

Theorem 1.1 (Theorem 5.7 of [KP18a|, Appendix A). Consider the arbitrary Lagrangian Eu-
lerian evolving surface finite element method, using linear finite elements, as the space discreti-
sation of the parabolic problem (1.3) with time discretisation by an s-stage implicit Runge—Kutta
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method. Let u be a sufficiently smooth solution of the problem, and assume that the initial value
satisfies

Ju(-,0) = (up) |l 2(roy < Coh®.
Then there exists hg > 0 and 19 > 0 such that, for h < hg and 7 < 19, the following error
estimate holds for t, =nt <T:

D=

[u(-s tn) = (W) 20ty + h<TZ [V, (u( ) — (u3)") HQLQ(F(HO < O(r9H +1?).

J
J=1

The constant C > 0 is independent of h, 7 and n, but depends on the final time T and on the

solution u.

Assuming that we have more regularity, namely the following conditions (of Theorem 5.4 of
[KP18a]) are additionally satisfied, for the nodal values of the exact solution u(t),

b % ) wona ) 7 o) <
‘M(t)_lcfl;_ll (AmME)) - i,;ll (A@m) j;ll (M) ‘A@) <

with some C' > 0, for all k; > 1 and k > q+ 1 with k:1+-~+kj+l;:<p+ 1, then in the error
estimate we have the classical order p instead of g+ 1.

For BDF methods we have the analogous optimal-order error bounds.

Theorem 1.2 (Theorem 5.8 of [KP18a|, Appendix A). Consider the arbitrary Lagrangian Eu-
lerian evolving surface finite element method, using linear finite elements, as the space discreti-
sation of the parabolic problem (1.3) with time discretisation by a k-step backward difference
formula of order k < 5. Let u be o sufficiently smooth solution of the problem, and assume that
the starting values are satisfying
iNe 2
ohax (- ti) = (up) [l L2 o)) < Coh”
Then there exists hg > 0 and 19 > 0 such that, for h < hg and 7 < 79, the following error
estimate holds for t, =nt <T:

=

(-, tn) = (up) Il 2ren)) + h<72 Ve, (ul-s t5) — (ui)g)H%Q(F(tj))) s <ot +n?).
j=k
The constant C > 0 is independent of h, 7 and n, but depends on the final time T and on the
solution u.

Both theorems are shown using energy techniques, which are used to show stability of the
numerical methods. For stiffly accurate algebraically stable implicit Runge-Kutta methods (hav-
ing the Radau ITA methods in mind) we use techniques of [LO95], which were first extended to
evolving surface problems in [DLM12|. Similarly, energy techniques are used to show stability for
k-step BDF methods up to order five, by combining the G-stability theory of Dahlquist [Dah78|
and the multiplier techniques of Nevanlinna and Odeh [NOS81|. The stability analysis requires
careful estimates (boundedness, perturbation errors, etc.) for the newly arising non-symmetric
term, which is due the ALE formulation.

The above error bounds for BDF methods of order kK = 1 and 2 were first shown by Elliott
and Venkataraman [EV15|. The proof techniques therein are different than the ones described
above.
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Computing arbitrary Lagrangian Eulerian maps for evolving surfaces

As the references in the introduction of Section 1.5 show, the theory of ALE evolving surface
finite elements was developed intensively, however the numerical computation of ALE maps for
closed evolving surfaces has received less attention.

The ALE maps used in the experiments of [ES12, EV15, KP18a] were slightly unrealistic,
obtained analytically from an a priori knowledge on the surface and its evolution, using deep
understanding and structure of the signed distance function. No general ideas on the computation
of ALE maps for evolving surfaces have been proposed in these papers.

In [Kovl7| an algorithm is proposed to compute an arbitrary Lagrangian Eulerian map for
closed evolving surfaces, with a focus on evolving surface finite elements, which does not use
such a priori knowledge, in the following sense: the algorithm uses the distance function at each
time step, but it does not use its structure or any other special properties of it.

The algorithm in [Kov17| finds the ALE map by treating the problem as a constrained system
with an additional velocity, i.e. the vector field of the ODE (1.1) is extended by an additional
velocity field, which aims at preserving the good properties of the mesh and in the meantime a
constraint is introduced to keep the nodes of the mesh on the surface. The additional velocity
law is determined based on a mechanical system, using a spring analogy.

In the various numerical experiments in [Kov17] it is illustrated that this algorithm provides
an evolving surface mesh of good quality, without any a priori knowledge on the surface or its
evolution. It is also demonstrated that the additional cost of the ALE computations are marginal
compared to the numerical solution of the PDE.

Furthermore, we also discuss and test possible extensions of the algorithm. For example, a
slight modification of the proposed ALE velocity provides surface meshes with angle conditions
(i.e. acute or non-obtuse triangulations), as explored in Section 5.3 of [Kov17|, which are cru-
cial for discrete maximum principles for surfaces PDEs, see [FMSV16, FMSV17a, FMSV17b,
KKK17].

1.6. Maximum norm stability and error estimates

In [KP18b] semi-discrete convergence results in the L and W1 norms are shown for parabolic
PDEs on two dimensional evolving surfaces. Error estimates in these norms are of particular
interest for the numerical analysis of non-linear evolving surface problems where the velocity is
not given explicitly, but depends on the solution w. Semi- and fully discrete error bounds for
such problems are shown recently, for references and further details we refer to Chapter 2. Such
estimates are also important for the numerical analysis of control problems on evolving surfaces,
see, e.g. [HK16].

The obtained convergence bounds are optimal in terms of the powers of h (the mesh size),
however they contain a non-optimal logarithmic factor. We expect that estimates with optimal
logarithmic factors, or even without them for certain norms, can be obtained by extending the
corresponding Euclidean theory, see [Hav84, RS82, Sch98|, or [STW98].

Semi-discrete convergence estimates

The error between the semi-discrete solution uy(-,t) € Si(t) and the solution u(-,t) of problem
(1.3) satisfies the following error bounds in the L and W1 norms.

Theorem 1.3 (Theorem 6.1 of [KP18b|, Appendix D). Let I'(t) be a smooth two dimensional
evolving surface. Letu be a sufficiently smooth solution of the problem (1.3), and let up(t) € Sp(t)
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be the solution of the semi-discrete problem (1.6) using linear basis functions. Then there exists
ho > 0 sufficiently small such that for all h < hg we have the estimate

(1) = Ctan e, ) o+ Bl Ve () = Qs 0)) [ oy < CH2 log bl
where the constant C > 0 is independent of t and h, but depends on the final time T and on u.

The proof of this theorem relies on three main results: (i) Nitsche’s weighted norm technique
[Nit77] is extended to evolving surfaces, together with its basic properties, which is then used
to prove L> and W1 norm error bounds for a time-dependent Ritz map. (ii) Since the Ritz
map is time-dependent it does not commute with the material derivative. We therefore need the
analogous error bounds for the material derivatives of the Ritz map. In both cases we first show
the weighted norm error bounds, which in turn yield the L>® and W1* norm error bounds.
(iii) The weak finite element maximum principle (for Euclidean domains) of Schatz, Thomée
and Wahlbin [STWS80], is extended to parabolic evolving surface PDEs. This leads to the semi-
discrete error bounds of Theorem 1.3. The proof of the maximum principle uses an argument
using an adjoint parabolic problem and estimates for the discrete Green’s function, and avoids
the semigroup argument used in [STW80].

1.7. High-order evolving surface finite elements

High-order ewvolving surface finite element discretisations are of natural interest, especially in
combination with time integrators of high-order, see Section 1.3. Many spatially discrete results
are available for elliptic problems on stationary surfaces, we give a brief overview here: The
high-order surface finite element method was developed by Demlow [Dem09]. Further important
results for higher order surface (and bulk) finite elements were shown in [ER13]. High-order
discontinuous Galerkin methods were studied in [ADM*15]. A high-order variant of unfitted
(also called trace or cut) finite element method was analysed in [GR16].

The extensions of H' and L? norm convergence results for evolving surface problems discre-
tised with high-order evolving surface finite elements are studied in [Kov18|. We study conver-
gence of semi-discretisations, and also convergence for fully discrete schemes using an implicit
Runge—Kutta, or a BDF method as a time integrator. We note here, that later the same semi-
discrete results have been also obtained using a general abstract framework, but with the same
techniques, see Elliott and Ranner [ER17].

It was pointed out by Grande and Reusken |[GR16|, that the approach of [Dem09| requires
explicit knowledge of the exact signed distance function to the surface I'. However, in our case
the signed distance function is only used in the analysis and for computations on the initial time
level. The computations only require triangulation of the initial surface given by its elements
and nodes, the latter being integrated by solving the ODE (1.1) with the given velocity of the
surface.

In this section we only consider the linear parabolic PDE (1.3) on evolving surfaces, however
we strongly believe that our techniques and results carry over to other cases, such as to the
Cahn—Hilliard equation [ER15], to wave equations [LM15, Manl13|, to ALE methods [EV15],
|[KP18a] (Section 1.5), to non-linear problems [KP16]| (Section 1.8) and to evolving versions of
the bulk—surface problems studied in [ER13]. This observation is strongly supported by the
findings of |[KLLP17, KL18|, see Chapter 2.

High-order evolving surface finite elements

Here we only give a very brief introduction to the high-order evolving surface finite element
method. More details are given in [Kov18], where we follow [Dem09] and [Dzi88, DE07a|, while

11
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carefully treating the time-dependence.

First, the smooth initial surface I'(0) is approximated by an interpolating discrete surface of
order k, denoted by '} (0). The discrete surface '} (¢) is then obtained by evolving the high-order
interpolation surface Fﬁ(O) in time by the a priori known surface velocity v, via the ODE (1.1).
The precise details of this construction can be found in Section 3 of [Kov18]. We use continuous
piecewise polynomial basis functions of degree k (meaning that on every triangle their pull-back
to the reference triangle is the usual Lagrangian basis function of degree k). The basis functions
spanning the high-order finite element space S}]f(t) have the exact same general properties as for
the linear case, such as the transport property (1.5), lift, etc., see Section 1.1.

The semi-discrete problem on S ,’f(t) and the matrix—vector formulation are formally the same
as those in (1.6) and (1.8), respectively, cf. [Kov18|.

Error estimates

The error between the semi-discrete solution up (-, t) € SF(t) and the solution u(-,t) satisfies the
optimal-order convergence bound, which is a higher order extension of Theorem 4.4 in [DE13b].

Theorem 1.4 (Theorem 4.1 of [Kov18|, Appendix C). Consider the evolving surface finite ele-
ment method of order k as space discretisation of the parabolic problem (1.3). Let the solution u
be sufficiently smooth, and assume that the initial value for (1.6) satisfies

(-, 0) = (un (- 0) [l 200y < Cob* .

Then there exist hg > 0 such that for mesh size h < hg, the following error estimate holds, for
t<T:

Hu('vt) - (uh(" t))zHL2(F(t)) + h(\/[) HVF(S) (u(v 8) - (uh('a 8))Z) Hi2(F(s))dS>§ < ChFtL.

The constant C > 0 is independent of h and t, but depends on T and on the solution u.

The error between the fully discrete numerical solution uj, obtained from a BDF method of
order p < 5, and the solution u(-,t,) satisfies the following optimal-order error bounds.

Theorem 1.5 (Theorem 4.4 of [Kov18|, Appendix C). Consider the evolving surface finite ele-
ment method of order k as space discretisation of the parabolic problem (1.3), coupled to the time
discretisation by a p-step backward difference formula with p < 5. Let u be a sufficiently smooth
solution of the problem, and assume that the starting values are satisfying

. i \{ k+1
o nax (i) = (up) [l L2y < Coh™™ .

Then there exists hg > 0 and 19 > 0 such that, for h < hy and 7 < 79, the following error
estimate holds for t, =nt <T:

n 1
n j 2 2
Ju(,tn) = (ui) 20y + h<TZ | Ve (-, t) = (u3)") HLQ(F(tj))) * < O(rP+ AR,
Jj=p
The constant C > 0 is independent of h, T and n, but depends on T and on the solution u.

For algebraically stable implicit Runge-Kutta methods (which satisfies all the other condi-
tions of Section 1.3) we have the following optimal-order error estimates.



Error analysis for full discretisations of non-linear parabolic problems

Theorem 1.6 (|[Kov18|, Appendix C). Consider the evolving surface finite element method of
order k as space discretisation of the parabolic problem (1.3), coupled to the time discretisation by
an s-stage implicit Runge—Kutta method. Let u be a sufficiently smooth solution of the problem,
and assume that the starting value satisfies

[, 0) = (up) [l 210y < Coh™ .

Then there exists hg > 0 and 79 > 0 such that, for h < hg and 7 < 79, the following error
estimate holds for t, =nt <1T:

N|—=

s ta) = @) 2y + (7 D0 Ve, (s t5) = ()) [Faqee, ) * < O+ BEFL).

=1

The constant C > 0 is independent of h, T and n, but depends on T and on the solution u.

Assuming that we have more reqularity, analogously as in Theorem 1.1, or see (8.3) in
[DLM12], we then have the classical order p instead of ¢ + 1.

In order to show optimal-order error estimates of the semi-discretisation, high-order variants
of three groups of errors need to be analysed: (i) Geometric errors, resulting from the appropriate
approximation of the smooth surface. Many of these results carry over from [Dem09] by careful
investigation of time-dependence, while others are extended from [Man13] and [DLM12, LMV13].
(ii) High-order perturbation errors of the bilinear forms, which are shown by carefully using the
core ideas of the analogous results in [DE13b]. (iii) High-order estimates for the errors of a Ritz
map, and also for its material derivatives. These error bounds rely on the non-trivial combination
of the mentioned geometric error bounds and on the Aubin—Nitsche duality argument.

The fully discrete error bounds are shown using the stability results from [LMV13] (for
BDF methods) and [DLM12] (for Runge-Kutta methods), in combination with the semi-discrete
residual bounds, which rely on the three points mentioned above.

The results of these theorems are illustrated by numerical experiments, obtained from our
Matlab implementation.

1.8. Error analysis for full discretisations of non-linear parabolic
problems

Many biological and physical processes are modelled by non-linear parabolic problems on evolv-
ing surfaces. Apart from general quasi-linear problems on moving surfaces, see e.g. Example 3.5
in [DEQ7b], more specific applications are the non-linear models: diffusion induced grain bound-
ary motion [CFP97, FCEO1, Han89, DES01, ES12|; Allen-Cahn and Cahn-Hilliard equations
on evolving surfaces [CENC96, EG96, ES10, Che02[; tumour growth [CGG01, BEM11, ES12];
pattern formation models based on reaction—diffusion equations [MB14]; cell motility [ESV12];
image processing [JYS04|; Ginzburg-Landau model for superconductivity [DJ04].

A great number of non-linear problems with numerical experiments were presented in the
literature, see for example the above references, in particular we refer to [DE07a, DE07b, DE13a,
ES12, DESO01, ESV12].

Although the literature is very rich in non-linear models and numerical experiments with
them, much less is known about convergence estimates for non-linear (evolving) surface PDEs.
Elliott and Ranner [ER15] give semi-discrete optimal-order error bounds for the Cahn—Hilliard
equation. In |[KP16] fully discrete convergence results are shown for a large class of quasi-
linear and semi-linear parabolic problems on evolving surfaces. We use the evolving surface
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finite element method for the spatial discretisation, while in time we either use an algebraically
stable implicit Runge-Kutta method, or an implicit or linearly implicit backward differentiation
formula.

Abstract formulation of quasi-linear problems on evolving surfaces

We consider the following quasi-linear problem:

0%u + qu(t) U — Vp(t) : (A(U)VF(t)u> = f on F(t),

) (1.19)
u(.,0) =u on I'(0),

where the function A: R — R is
bounded and Lipschitz continuous, satisfying A(s) > o > 0. (1.20)

The results of this section can be generalized to the case of a matrix valued diffusion coefficient
Az, t,u) : T,T'(t) — T,I'(t), (where T,I'(t) denotes the tangent plane to I'(¢) at ). The proofs
are analogous to the ones presented in [KP16], although they require some extra care, and are
more technical and lengthy as well.

This problem can be written as the general abstract parabolic problem

%((u, 0)) + (Al o) = (f)e, forall e V().
with initial value u(-,0) = u°. This equation is cast in the following abstract framework, which
is a suitable combination of [AES15, Section 2.3| and [LO95, Section 1|: Let H(t) and V (¢) be
real and separable Hilbert spaces (with norms || - ||z, || - [lv (), respectively) such that V (t) is
densely, continuously and time-uniformly embedded into H(¢), and the norm of the dual space
of V(t) is denoted by || - [[y/4)r- The dual space of H(t) is identified with itself, and the duality
(-,-)¢ between V(t)" and V(t) coincides on H(t) x V (t) with the scalar product on H(t) denoted
by (-, )¢, for all t € [0, T7.
The operator A(u) : V(t) — V(t)" is uniformly elliptic with a > 0, i.e.

(A(uw)w, wys > anH%/(t), for all w eV (t), (1.21)
and uniformly bounded with M > 0, i.e.
[(Au)v,w)e| < MJollygllwllye, foral v,we V(). (1.22)

Here uniformity is understood as uniformly in v € V(¢) and in ¢ € [0, T]. We further assume that
there is a subset S(t) C V(t) such that the following Lipschitz—type estimate holds: for every
d > 0 there exists L = L(0, (S(¢))o<t<r) such that

[ (Awr) — A(w2))ully ), < Sllwr —w2llv e + Lllws — w2l ), (1.23)

for all uw € S(t) and wy,wy € V(t), for 0 <t < T.

The above conditions were also used to prove error estimates using energy techniques in
[LO95|, or more recently in [AL15].

The weak problem corresponding to (1.19) can be formulated by choosing the setting: V(t) =
HY(I'(t)) and H(t) = L*(T'(t)), and the operator, for v, w € V (),

(A(uw)v,w)e = . )A(U)Vr(t)v - Vpgyw.
t
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Furthermore, we use the following subspace of V(t), for r > 0,
S(t)=8(t,r) = {ue H*T(1) | lulwzeoqry <7}

It is shown in Proposition 2.1 of [KP16] that the above operator A(u) for u(-,t) € S(¢,r)
satisfies (1.21), (1.22) and (1.23).
The weak formulation of the quasi-linear problem (1.19) reads as: Find u(-,t) € HY(I'(t))
with time-continuous 9®u(-,t) € L?(T'(t)) such that, for o(-,t) € HY(T'(t)) with 0°¢(-,t) = 0,
d
— up + A(w)Vrgyu - Vrgye = fe, (1.24)
dt Jre 0 0

with the initial value u(-,0) = u®.

Semi-discrete problem and matrix—vector form

The semi-discrete formulation is written in the evolving surface finite element framework from
Section 1.2, and it reads as: Find wp(-,t) € Si(t) with a time-continuous discrete material
derivative Opup(-,t) € Sp(t) such that, for all ¢p(-,t) € Sp(t) with dppn(-,t) =0,

d
- upph + A(up)Vr,wun - Vi, ) Pn = / fens (1.25)
dt Jr, @) T (t) Th(t)

with the initial value uy(-,0) being a sufficiently good approximation of uY.
The corresponding ODE system for the vector of nodal values u(t) = (uj(t))é\f:l € RV,
collecting the nodal values of up(+,t), reads

d
T (M(t)u(t)) + A(u(t))u(t) = b(t), (1.26)

The mass matrix and the right-hand side vector are both given as before, see (1.7), while the
state-dependent stiffness matrix is given, for uy(-,t) = Zj\;l uj(t)p;(-,t) with u(t) = (u;(t)), by

A(u(t))lr; = - A(un)Vr,w¢; - Vr,oek (0 k=1,2,...,N). (1.27)
h

This matrix—vector formulation fits into the framework of (1.9).

Error estimates

We obtain fully discrete approximations uj upon applying an implicit Runge-Kutta or implicit
or linearly implicit BDF method (see Section 1.3) to the non-linear ODE system (1.26), which
satisfies the optimal-order error estimates.

Theorem 1.7 (Theorem 5.2 of [KP16|, Appendix E). Consider the evolving surface finite element
method as space discretisation of the quasi-linear parabolic problem (1.19), coupled to the time
discretisation by an s-stage implicit Runge—Kutta method. Let u be a sufficiently smooth solution
of the problem, which satisfies u(-,t) € S(r,t) for 0 <t < T, and assume that the initial value is
approximated as

lu(-, 0) = (1)l 2(p(oy) < Coh®.
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Then there exists hg > 0 and 19 > 0, such that for h < hg and 7 < 79, the following error
estimate holds for t, =nr <1T:

[NIES

s ta) = (i)l gaqrenyy + (7 z; IV (o t5) = @)Y e, y) < CFTH 02
J

The constant C > 0 is independent of h, 7 and n, but depends on o, M and L, from (1.21), (1.22)
and (1.23), on T and on the solution u.

Theorem 1.8 (Theorem 5.3 of [KP16|, Appendix E). Consider the evolving surface finite element
method as space discretisation of the quasi-linear parabolic problem (1.19), coupled to the time
discretisation by a k-step implicit or linearly tmplicit backward difference formula of order k < 5.
Let u be a sufficiently smooth solution of the problem, which satisfies u(-,t) € S(r,t) for 0 <t <
T, and assume that the starting values are satisfying
i) — (uh)* 1) < Coh?.
OglglgakX_IHU(a i) — (up) L2 ry) < Co

Then there exists hg > 0 and 19 > 0 such that, for h < hg and T < 19, the following error
estimate holds for t, =nt <T:

n ) 1
st = @) 2y + A (m D2 Ve (o 8) = @) [, ) < O+ 12).
j=k

The constant C' > 0 is independent of h, T and n, but depends on o, M and L, from (1.21), (1.22)
and (1.23), on T and on the solution u.

These error estimates are shown using stability results for stiffly accurate algebraically stable
implicit Runge-Kutta methods, and for implicit or linearly implicit p-step BDF methods up to
order five, see Lemma 4.1 and 4.2 of [KP16|. These stability estimates rely on energy estimates,
developed in [LO95| for Runge-Kutta methods, and in [AL15] for BDF methods using G-stability
[Dah78] and the multiplier technique [NO81|, and used previously in a linear evolving surface
setting in [DLM12] and [LMV13], respectively.

A key tool is a generalized Ritz map for quasi-linear operators, together with its error esti-
mates, shown by extending an argument of Wheeler [Whe73] from the Euclidean case to evolving
surfaces, see Section 3 of [KP16]. Further important points of the analysis are the regularity the-
ory of this Ritz map, and the geometric estimates due to surface approximation. Together, they
yield optimal-order error bounds for the semi-discrete residual. In combination with the stability
bounds this proves the above theorems.

Semilinear problems

These results can be readily extended to semilinear parabolic problems, where the function f(-,)
is replaced by f(t,u), satisfying a local Lipschitz condition (similar to (1.23)): for every § > 0
there exists L = L(d,r) such that

1f(t,w1) — f(t,w2)llyey < Ollwr —wellye) + Lilwr —wal|gey (0<t<T)

holds for arbitrary wy,wa € V (t) with [Jw1ly(), [|wally ) < 7, uniformly in ¢. Such a condition
can be satisfied by using the same S set as for quasi-linear problems. For more details we refer
to Section VI of [KP16], Appendix E.



2. Surface evolution coupled to parabolic prob-
lems on the surface

In this chapter, convergence results on full and semi-discretisations of (two-dimensional) surface
evolution coupled to a parabolic problem on the surface are collected.

Geometric partial differential equations, such as mean curvature flow (MCF) or Willmore
flow, are of great interest on their own, for numerical works see [Dzi90|, and [DDE05| and the
references therein. Many models in biology and biophysics lead to coupled surface evolution
— surface PDE problems (solution-driven problems), where the equations for surface evolution
often contain terms related to the mean curvature of the surface. For such problems we refer to
[DDEO05, Dzi90, BEM11, ES12, CGGO1], and the references therein.

Recently, many papers appeared on the numerical analysis of problems coupling curve-
shortening flow (the one-dimensional, graph case of MCF) with diffusion on the curve, see
[PS17a, BDS17| for semi- and fully discrete error bounds, and see [PS17b| for a coupling with
elastic flow.

Approximations to the curve shortening flow and the mean curvature flow were developed
in [EF17] based on the DeTurck trick. Problems coupling Navier-Stokes equations and surface
evolutions under Willmore flow have recently been considered in [BGN15a, BGN15b, BGN16].

This chapter studies numerical methods and presents error estimates for a regularised or dy-
namic velocity law coupled to a diffusion process on the surface. Similarly to the previous chapter,
the error bounds are shown by combining stability bounds (obtained via energy techniques) and
consistency estimates.

This chapter is organised as follows. Section 2.1 formulates the coupled solution-driven
problems, either with a regularised elliptic velocity law or with a dynamic velocity law, and
recalls some basic notions. Section 2.2 describes the evolving surface finite element method
used in this context. Sections 2.3 and 2.4 collects semi-discrete and fully discrete error bounds,
respectively, for both the regularised and dynamic velocity laws.

2.1. Evolving surfaces driven by diffusion on the surface

Most of the notions of Section 1.1 transfer without modifications to the case where the surface
velocity is not given a priori. However, in the notation we need to account for the parametrisation
dependence. In order to indicate this, in this chapter we will denote the surface by

with the parametrisation X : I'0 x [0, 7] — R3. The velocity v : R x [0, T] — R3? still solves the
ODE (1.1), the definition of the material derivative also remains the same.

The outer normal vector is denoted by vp(x), while Hp(x) denotes the mean curvature. We
denote by V(x)u the tangential gradient of u, by Ap(x)u the Laplace-Beltrami operator applied
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to u. Their definitions remain the same as in Section 1.1, but the dependence on X is made clear
using the notation above. For more details on these notions we refer to [KLLP17, KL18].
We are interested in two large classes of coupled surface motion.

(i) A surface PDE is coupled to an elliptically regularized velocity law:
0*u+uVpx) v —Apxyu = f(u, Vrxu),

(2.1)
v — alArxyv + BHrx)(2)vrx) (@) = g(u, Vrx)w)vrx),
considered together with the collection of ordinary differential equations
d
—X(p,t) =v(X(p,t),t)  (peT?). (2-2)

dt

Here, f : R xR?* = R and g : R x R® — R are given continuously differentiable functions,
and a > 0 and 8 > 0 are fixed parameters. Both functions are assumed to be locally Lipschitz
continuous in their first argument and globally in the second. Initial values are specified for u
and X.

The weak formulation reads: Find the functions u(-,t) € WH(['(X(-,t))) with a time-
continuous 9*u(-,t) € L?(T'(X(-,t))) and v(-,t) € WH(T(X(-,t)))? such that for all test func-
tions ¢(-,t) € HY(T(X(-,t))) with 0°p = 0 and ¥(-,t) € H}(T'(X(-,1)))?,

W et | J
— up + \Y u-V = fu,V u)p,
dt F(X)SD () r(x) r(Xx)¥ %) ( I'(X) )p

/ v-Y+a [ Vpxyv- Ve + »3/ Vrx)X - Ve = / 9(u, Vrxyu) vrixy - ¥,
I'(X) I'(Xx) I'(X) I'(X)
2.3)

alongside the collection of ordinary differential equations (2.2) for the positions determining the
surface I'(X). Here the term Vpx)X is read as Vp(x) Idp(x), see [Dzi90].

(ii) A surface PDE coupled to a dynamic velocity law:
0*u+uVpx) v — Apxyu = f(u, Vrxu),

X (2.4)
0*v +vVp(x) - v — @Apx)v = g(u, Vpx)u)vpx),

considered together with the collection of ordinary differential equations (2.2). Here f and g
satisfy the same as above, and o > 0. Initial values are specified for u,v and X.

The weak formulation reads: Find the functions u(-,t) € Wh(I'(X(-,t))) with a time-
continuous 9%u(-,t) € L*(T(X(-,t))) and v(-,t) € Wh(T(X(-,t)))? with a time-continuous
0%v(-,t) € L*(I'(X(-,t)))? such that for all test functions o(-,t) € HY(T'(X(-,t))) with 0%p = 0
and (-, t) € HYT(X(-,1)))? with 9% = 0,

d

a /- u +/ Vr(xu Vr(x )90—/ f(u, Vrou)e,
1 (2.5)
— v - ¢+a/ VF(X v- V) = / g(u, Vp X)U)VF(X 1,
dt Jr(x)

alongside the collection of ordlnary differential equations (2.2) for the positions determining the
surface T'(X).

Throughout this chapter we assume that, for given initial data, the problem (2.1) or (2.4),
with the ODE (2.2), has an

exact solution (u,v, X)) that is sufficiently smooth (say, in the Sobolev class H’“H)7

2.6
and that the flow map X (-,t) : Iy — I'(t) € R? is non-degenerate for 0 < t < T, (26)

so that T'(t) is a regular surface.



Ewvolving surface finite elements for surface evolution

2.2. Evolving surface finite elements for surface evolution

Following Section 2.3 of [KLLP17], we describe the surface finite element discretisation applied
to our problems, which is based on [Dzi88, Dem09, Kov18|. By x(t) € R*N we denote a vector
collecting the evolving nodes z;(t) with z;(0) = x?, j=1,2,...,N, where the nodes (x?)évzl
define F%, an admissible triangulation of the initial surface I'?, similarly as in Section 1.7. We
use continuous piecewise polynomial basis functions of degree k, which span the finite element
space

Sn[x] = span{¢1[x], da2[x], ..., on[x]}.
The basis functions have the usual properties (cf. [KLLP17, Section2.3]): their pull-backs to

the reference element are the usual Lagrangian basis functions, ¢;[x(t)](zx(t)) = djr (J,k =
1,...,N), etc., see Section 1.2.
We set
N

Xn(pn,t) = Y w;(1) $5[x(0)(pn),  pu €T,
j=1

which is the interpolation of X(-,t), and has the properties that X (p;,t) = z;(t) for j =
1,...,N, that X;(pp,0) = py, for all p, € T, and

Lp[x(t)] = D(Xa(-,1)).
The discrete velocity vy (z,t) € R? at a point © = Xj,(pp,t) € T(Xp(+,t)) is given by
O Xn(pn:t) = vn(Xn(pn,t), ).
A key property of the basis functions is the transport property [DE0T7al:
d
= (BB Xapn, 1)) = 0.

Therefore, the discrete velocity is simply
N
on(z,t) =D _vi(t) ¢i[x(0)](x)  for z € Tp(x(t)),  with v;(t) = i;(t).
j=1

The discrete material derivative is defined analogously to the time continuous case, see (1.2).

Semi-discrete problems

The finite element semi-discretisation of the problem (2.3) reads as follows: Find the unknown
nodal vector x(t) € R and the unknown finite element functions uy(-,t) € Sp[x(t)] with a
time-continuous fup (-, t) € Sp[x(t)] and vi(-,t) € Sp[x(¢)]® such that, for all (-, t) € Sp[x(t)]
with d%¢p = 0 and all ¢y (-,t) € Spx(t)]?,

d
T | wwen Vi xth - Ve, xen = [ f(un, Vi, xus) @n,
Thx] Tpx] Lpx]
/ (/R +Oé/ VI xVh * VI, x Yh (2.7)
Th[x] T'p[x]

T8 Vi,xXn - Vi, p¥n = / 9(un, Vo, (x)Uh) Vr,x) - Vhs
Tp[x] Ty [x]

19



20

Surface evolution coupled to parabolic problems on the surface

and
0: Xn(ph,t) = va(Xn(pn, 1), 1), pn € T, (2.8)

The initial values for u;, and the nodal vector x are taken as the exact initial data at the nodes
mg of the triangulation of the given initial surface I'V:

2;(0) = a3,

uj(O):u(:c?,O), (j=1,...,N).

The finite element semi-discretisation of the problem (2.5) reads as follows: Find the unknown
nodal vector x(t) € R3" and the unknown finite element functions uy(-,t) € Sp[x(t)] with a
time-continuous Ofuy (-, t) € Sp[x(t)] and vi(-,t) € Sp[x(t)]® with a time-continuous d3vp(-,t) €
Sp[x(t)] such that, for all p,(-,t) € Sk[x(t)] with 9%, = 0 and all ¥y (-,t) € Sp[x(¢)]® with
O, =0,

d
| anen | Vipqun - Vi g en = J(un, Vr, xqun) ©n,
Talx] Trlx] Th[x]

d (2.9)

1 Up - Ph + Vr, XV * VI, x]Ph = / 9(un, Vr, [x]Uh) Vrylx] * Yho
Ip[x] I [x] Tplx]
with the ODE (2.8). The initial values are taken as the exact initial data at the nodes w? of the
triangulation of the given initial surface I'0:

2;(0) = 29

5 ui(0) = u(w?,O), and  v;(0) = v(x?,0), (j=1,...,N).

]7

Matrix—vector formulation

The column vectors u € RY and v € R3V collecting the nodal values of the functions uy and vy,
respectively, and the surface nodal vector x € R3" (omitting the argument t), satisfy a system
of differential algebraic equations (DAE).

We define the mass matrix M(x) € RV*Y and stiffness matrix A(x) € R¥*YN on the surface
determined by the nodal vector x:

M(x)|jx = ¢ [xlor[x],
L Gok=1,...,N).
A(x)]k = [Vrh[x]¢j (] - Vi, x 9k[X];

Fh X}
We further let (with the identity matrix I3 € R3*3)
MPl(x)=I5oM(x) and APl(x)=IoA(x),

and then define
K(x) = MB(x) + aAP(x). (2.10)

When no confusion can arise, we write in the following M(x) for MBl(x), A(x) for APl(x). The
right-hand side vectors f(x,u) € RY and g(x,u) € R3*V are given by

t‘(x,u)\j:/F [ ]f(uhvvl“h[x]uh)(bj[x]a

g(x, u)|3(j—1)+¢ :/r [ ]g(uhvth[x}uh) (vrux) , @41%],
h|X



Convergence of finite elements for surface evolution

From (2.7)-(2.8) we then obtain the following coupled DAE system for the nodal values u, v
and x:

%(M(X)u) + A(x)u = f(x,u),
K(x)v + BA()x = g(x,u), @11)

From (2.9)-(2.8) we then obtain the following coupled DAE system for the nodal values u, v
and x:

4
dt
4
dt

<M(x)u) + A(x)u = f(x,u),

(M(X)V) + A(x)v = g(x,u), (2.12)

X=V.

Lifts

An arbitrary finite element function wy, on the discrete surface I'p[x], with nodal values wj, is
related to the finite element function wj, on the interpolated surface I'y[x*] (here the vector x*(t)
collects the nodes of the interpolation surface parametrised by Zévzl X(m?,t)d)j [x°](-,t)) with
the same nodal values:

N
Wy =Y wid,[x"].
j=1

The lift between the interpolated surface I', [x*] and the exact surface I'(X) is defined exactly
as before, via the distance function, described in Section 1.2.

The composite lift operator L from finite element functions on I',[x] to functions on I'(X)
via I',[x*] is given by

In particular for the lifted position function we introduce the notation

zh(z,t) = XE(q,t) e Tp[x(t)]  for == X(qt) e T(X(-1)).

2.3. Convergence of finite elements for surface evolution

The finite element semi-discretisation of a surface PDE on a solution-driven surface as specified
in (2.1) satisfy the following error bounds, for finite elements of polynomial degree k > 2.

Theorem 2.1 (Theorem 3.1 and Proposition 10.1 of [KLLP17|, Appendix F). Consider the
space discretisation (2.7)-(2.8) of the coupled problem (2.1)-(2.2), using evolving surface finite
elements of polynomial degree k > 2. We assume quasi-uniform admaissible triangulations of the
initial surface and initial values chosen by finite element interpolation of the initial data for u.
Suppose that the problem admits an ezact solution (u,v, X) satisfying (2.6).

Then, there exists hg > 0 such that for oll mesh widths h < hg the following error bounds
hold over the exact surface I'(t) = I'(X (-, t)) for 0 <t < T':

i 2
(I o0) = DB+ [ Tk 8) = o)y ) < €,
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¢ 1/2
</0 Hvilzl('ws) - U(', 5)”%{1(1—\(8))3 ds) < Chk>

Hxﬁ(,t) - idF(t)HHl(r(t)):s < Ch*.

The constant C > 0 is independent of t and h, but depends on bounds of the H*T! norms of the
solution (u,v,X), on the local and global Lipschitz constants of f and g, on the reqularization
parameter a > 0, on B > 0 and on the length T of the time interval.

and

Let us note the following things. The last error bound is equivalent to
1X5 (1) = X ()| roys < CRE.

Moreover, in the case of a function g in (2.1) that only depends on the solution, i.e. that g = g(u),
we obtain an error bound for the velocity that is pointwise in time:

Hvlg('ﬂf) - U('yt)HHl(r(t))s < ChF.

Furthermore, note that for ¢ = 0 the above result gives optimal-order convergence estimates
for a regularised mean curvature flow. Convergence results for mean curvature flow are of great
interest since the inspiring paper of Dziuk [Dzi90].

By the stability bound of Proposition 10.1 of [KLLP17| and the appropriate defect bounds
(analogously to [KLLP17, Section 8|, Appendix F), Theorem 2.1 extends to the coupled problem
with a dynamic velocity law.

Theorem 2.2 (Section 8 of [KLLP17]|, Appendix F). Consider the space discretisation (2.9)-
(2.8) of the coupled problem (2.4)—(2.2), using evolving surface finite elements of polynomial
degree k > 2. We assume quasi-uniform admissible triangulations of the initial surface and
initial values chosen by finite element interpolation of the initial data for u and v. Suppose that
the problem admits an exact solution (u,v, X) satisfying (2.6).

Then, there exists hg > 0 such that for all mesh widths h < hqg the following error bounds
hold over the exact surface T'(t) = T(X(-,t)) for 0 <t < T

(nuﬁc,t)u( . / k(. <~,s>||i,1<r<s>)ds) <o,

and

¢ 2
<||U}€(-,t) - U(~7t)”2L2(p(t))3 —l-/o Hvﬁ(j s) — v('75)||%{1(r(8))3 d5> < Chk,
H«Tﬁ t) — 1dF HHl(I‘(t))3 < Ch*.

The constant C > 0 is independent of t and h, but depends on bounds of the H**! norms of the
solution (u,v, X), on the local and global Lipschitz constants of f and g, on the parameter o > 0
and on the length T of the time interval.

Along the proof of both theorems a key issue is to ensure the smallness of the position error
of the surfaces in the W1* norm. An H'! norm error bound in the proofs together with an
inverse estimate yield an O(h*~1) error bound in the W' norm, which is small only for surface
finite elements of at least degree two, which is why we impose the condition k£ > 2 in the above
result.



Linearly implicit full discretisation of surface evolution

The error bounds are proved by clearly separating the issues of consistency and stability.

The main issue in the proofs is to show stability in the form of an h-independent bound of
the error in terms of the defects. The stability analysis is done in the matrix—vector formulation.
Similarly to the previous chapter, it uses energy estimates and some technical lemmas relating
different surfaces, for instance transport formulae that relate the mass and stiffness matrices and
the coupling terms for different nodal vectors, see [KLLP17, Section 4]. No geometric estimates
enter in the stability proofs.

The consistency error is the estimates of the defect, which arises on inserting the interpolation
of the exact solution into the discretised equation. The defect bounds involve geometric estimates
that were obtained for the time-dependent case and for higher order finite elements k£ > 2 in
|[Kov18|, see Section 1.7.

2.4. Linearly implicit full discretisation of surface evolution

Linearly implicit BDF methods

We apply a p-step linearly implicit BDF method for p < 5, as a time discretisation to the DAE
system (2.11). For a step size 7 > 0, and with ¢, = n7 < T, we determine the approximations
u” to u(t,), v" to v(t,) and x™ to x(t,) by the fully discrete system of linear equations

p
LS oM )u + AR u" = £, @),
T
K&)' + BAR )K" = g(X", &), n>p, (2.13)
1 p
=D 0%
7=0

where the extrapolated position vector X" is defined by

= nyjxnflfj, n = p. (2.14)

The starting values x°, x!,...,xP~! are assumed to be given. They can be precomputed in a way

as is usual for multistep methods: using lower-order methods with smaller step sizes, or using
an implicit Runge-Kutta method of the same order.

The coefficients are given by 6(¢) = ?:0 6;¢0 =50, 2(1 — )% and v(¢) = E] 07] =
(1—(1—=¢)P)/C, see Section 1.3. This classical order p is retained by the linearly implicit variant
using the above coefficients v;; cf. [AL15, ALL17.

—1

Similarly, linearly implicit BDF discretisation of the DAE system (2.12) reads as

p
= — Y EME ) + AR = (X T,

j 0
p
Z &)+ AR = g(® T, n>p (2.15)
1 p
n_ _ §.xI
v ; X,

The starting values x*,v* for i = 0,...,p — 1 are assumed to be given.
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Fully discrete convergence bounds

Stability of BDF methods for linear parabolic problems on given evolving surfaces are well
understood in [LMV13], see also Chapter 1. The combination of the stability bounds in [LMV13]
for the surface PDE combined with stability results obtained in [KL18], together with appropriate
defect bounds, yield error bounds for full discretisations of coupled surface-evolution equations.

Theorem 2.3 (Theorem 9.1 of [KL18|, Appendix G). Consider the evolving surface finite ele-
ment / BDF linearly implicit full discretisation (2.13) of the coupled problem (2.1)—(2.2), using
finite elements of polynomial degree k > 2 and BDF methods of order p < 5. We assume
quasi-uniform admissible triangulations of the initial surface and initial values chosen by finite
element interpolation of the initial data for uw. Suppose that the problem admits an exact solution
(u,v, X) satisfying (2.6) and of class CPY1([0,T], W), Suppose further that the starting values
are sufficiently accurate.

Then, there exist hg > 0, 79 > 0 and cg > 0 such that for all mesh widths h < hg and step
sizes T < 1o satisfying the mild stepsize restriction P < coh, the following error bounds hold over
the exact surface I'(t,) = T'(X (-, t,)) uniformly for 0 <t, =nt < T:

n . 1/2
1@)E = e ta)ll 2o + (TZ ()"~ u<-7tj>u%p<r<tj>>> < C(hF+77),
Jj=p

(h* +77),

(i) = v tn) L o)y <
< C(hF + 7).

C
()™ = idp) |,y < C
The constant C > 0 is independent of h and T and n with nt < T, but depends on bounds of
higher derivatives of the solution (u,v,X), and on the length T of the time interval.

The error estimate for the surface PDE coupled to a dynamic velocity law is also obtained
by stability for the surface PDE from [LMV13] and Proposition 8.1 in [KL18|, with appropriate
defect bounds shown similarly to [KL18, Section 6].

Theorem 2.4 (Theorem 8.1 of [KL18], Appendix G). Consider the evolving surface finite ele-
ment / BDF linearly implicit full discretisation (2.15) of the coupled problem (2.4)—(2.2), using
finite elements of polynomial degree k > 2 and BDF methods of order p < 5. We assume quasi-
uniform admissible triangulations of the initial surface and initial values chosen by finite element
interpolation of the initial data for u and v. Suppose that the problem admits an exact solution
(u,v, X) satisfying (2.6) and of class CPTL([0, T], W), Suppose further that the starting values
are sufficiently accurate.

Then, there exist hg > 0, 19 > 0 and co > 0 such that for all mesh widths h < hg and step
sizes T < 1o satisfying the mild stepsize restriction TP < coh, the following error bounds hold over
the exact surface I'(t,) = T'(X (-, tn)) uniformly for 0 <t, =nt <T:

n . 1/2
13)" = )l ooy + <TZ )" mr%l(r(tm) < Ok +7),
Jj=p

n ) 1/2
N = o ta)llaqeye + (TZ ()"~ v(‘atj)H%ﬂ(r(tj)f) < Ok 4 77),
Jj=p

1(@i)™ = idrge,) |l raays < C(F +77).

The constant C' > 0 is independent of h and T and n with nt < T, but depends on bounds of
higher derivatives of the solution (u,v, X), and on the length T of the time interval.



Linearly implicit full discretisation of surface evolution

The key step of the proofs of the fully discrete theorems is again stability and the W1 > norm
control of the position error of the surfaces. Similarly to the results in the previous chapter, it is
shown using energy techniques and the same technical lemmas relating different surfaces. In the
dynamic case we again use the G-stability of Dahlquist [Dah78] and the multiplier techniques of
Nevanlinna and Odeh [NO81].

In [KL18] mean curvature flow is used in a numerical experiment to study the effect of the
regularising parameter o > 0.
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A linear evolving surface partial differential equation is first discretized in space by an arbitrary Lagrangian
Eulerian (ALE) evolving surface finite element method, and then in time either by a Runge—Kutta method,
or by a backward difference formula. The ALE technique allows one to maintain the mesh regularity
during the time integration, which is not possible in the original evolving surface finite element method.
Stability and high order convergence of the full discretizations is shown, for algebraically stable and stiffly
accurate Runge—Kutta methods, and for backward differentiation formulas of order less than 6. Numerical
experiments are included, supporting the theoretical results.

Keywords: full discretizations; evolving surfaces; ESFEM; ALE; Runge—Kutta methods; BDF.

1. Introduction

There are various approaches to solve parabolic problems on evolving surfaces. A starting point of
the finite element approximation of (elliptic) surface partial differential equations (PDEs) is the paper
of Dziuk (1988). Later this theory was extended to general parabolic equations on stationary surfaces
by Dziuk & Elliott (2007b). They introduced the evolving surface finite element method (ESFEM) to
discretize parabolic PDEs on moving surfaces and have shown H!-error estimates, cf. Dziuk & Elliott
(2007a). They gave optimal order error estimates in the L2-norm (see Dziuk & Elliott (2013b). There is
a review by Dziuk & Elliott (2013a), which also serves as a rich source of details and references.

Dziuk and Elliott also studied fully discrete methods (see, e.g., Dziuk & Elliott (2012)). The numerical
analysis of convergence of full discretizations with higher order time integrators was first studied by Dziuk
et al. (2012). They proved optimal order convergence for the case of algebraically stable implicit Runge—
Kutta (R—K) methods, and Lubich ez al. (2013) proved optimal convergence for backward differentiation
formulas (BDFs).

The ESFEM approach and convergence results were later extended to wave equations on evolving sur-
faces by Lubich & Mansour (2015) and Mansour (2015). A unified presentation of ESFEM for parabolic
problems and wave equations is given in Mansour (2013).

These results are for the Lagrangian case.

As it was pointed out by Dziuk and Elliott, ‘A drawback of our method is the possibility of
degenerating grids. The prescribed velocity may lead to the effect, that the triangulation I7,(¢) is

© The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

Downl oaded from https://academ c. oup. confingjna/article-abstract/38/1/460/ 3098317
by Universitaet Tuebingen user
on 31 January 2018



FULL CONVERGENCE OF BDF AND RUNGE-KUTTA METHODS WITH ALE FINITE ELEMENTS 461

distorted.”! To resolve this problem Elliott & Styles (2012) proposed an arbitrary Lagrangian Euler-
ian (ALE) ESFEM approach, which in contrast to the (pure Lagrangian) ESFEM method, allows the
nodes of the triangulation to move with a velocity that may not be equal to the surface (or mate-
rial) velocity. They presented numerous examples where smaller errors can be achieved using a better
mesh.

ALE-FEM for moving domains were investigated by Formaggia & Nobile (1999). They also suggest
some possible ways to define the new mesh if the movement of the boundary is given. Bonito et al.
(2013a,a) proved stability and optimal order a-priori error estimates for discontinuous Galerkin time
discrete Runge—Kutta—Radau methods of high order.

This article extends the convergence results and techniques of Dziuk er al. (2012) for the R-K
discretizations and of Lubich et al. (2013) for the BDFs (both shown for the Lagrangian case), to the
ALE framework.

Elliott & Styles (2012) proposed a fully discrete ALE-ESFEM algorithm to solve parabolic problems
on evolving surfaces. Elliott & Venkataraman (2015) proved convergence results for this type of scheme
and in addition prove convergence of fully discrete ALE-ESFEM with second-order BDFs. They also give
numerous numerical experiments. The primary consideration of the present work is to prove convergence
of ALE-ESFEM with higher-order time discretizations. We use different techniques to achieve this, and
thus give a new proof for the convergence of the fully discrete method suggested by Elliott & Styles
(2012).

We prove stability and convergence of these higher-order time discretizations classes, and also their
convergence as a full discretization for evolving surface linear parabolic PDEs when coupled with the
ALE-ESFEM as a space discretization. The stability results do not require a time step restriction by
powers of the mesh size, i.e., no CFL-type condition is required.

First, the stability of stiffly accurate algebraically stable implicit R—-K methods (having the Radau
IIA methods in mind) is shown using energy estimates and the algebraic stability as a key property,
using some of the basic ideas that appeared in Lubich & Ostermann (1995) for quasilinear parabolic
problems.

Secondly, we show stability for the k-step BDFs up to order five. Because of the lack of A-stability
of the BDF methods of order greater than two, our proof requires a different technique than Elliott &
Venkataraman (2015), namely, we used G-stability results of Dahlquist (1978), and multiplier techniques
of Nevanlinna & Odeh (1981). Therefore, we handle all BDF (k = 1,2, ...,5) methods at once.

For the fully discrete convergence results, in both cases, the study of the error of a generalized Ritz
map, and also for the error in its material derivatives, plays an important role.

In the presentation we focus on the main differences compared to the previous results, and put less
emphasis on those parts where minor modifications of the cited proofs are sufficient. In most cases the
Lagrangian proof can be repeated in the ALE case, and these are therefore omitted.

Our convergence estimates for BDF 1 and BDF 2 match the ones achieved with a different technique
in Elliott & Venkataraman (2015).

This article is organized as follows. In Section 2 we formulate the considered evolving surface
parabolic problem and describe the concept of ALE methods together with other basic notions. The
ALE weak formulation of the problem is also given. In Section 3 we define the mesh approximating
our moving surface and derive the semidiscrete version of the ALE weak form, which is equivalent
to a system of ODEs. Then we recall some properties of the evolving matrices and some estimates of

' Quoted from Dziuk & Elliott (2007a), Section 7.2.
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bilinear forms. We also prove the analogous estimate for the new term appearing in the ALE formu-
lation. The definition of the used generalized Ritz map is also given here. In Section 4 we prove the
stability of high order R—K methods applied to the ALE-ESFEM semidiscrete problem and the same
results for the BDF methods. Section 5 contains the main results of this article: convergence of the
fully discrete methods, ALE-ESFEM together with R—K or BDF method, having a high order conver-
gence both in time. Finally, in Section 6 we present numerical experiments to illustrate our theoretical
results.

2. The ALE approach for evolving surface PDEs

In the following we consider a smooth evolving closed hypersurface I'(tf) ¢ R™!, 0 < ¢t < T, with
m < 3, which moves with a given smooth velocity v. Let 9°u = 0,u + v - Vru denote the material
derivative of u, where V[ is the tangential gradient given by Vru = Vu — Vu - nn, with unit normal n.
We denote by A = V- V- the Laplace—Beltrami operator.

We consider the following linear problem derived by Dziuk & Elliott (2007a):

{8'14()6, 4+ ux,)Vrg -vix,t) — Arqux,t) = f(x,t)  on I'(1), o0

u(x,0) = ug(x) on I'(0).

Basic and detailed references on evolving surface PDEs are Dziuk & Elliott (2007a,2013a,b) and Mansour
(2013). We are working in the same framework as these references.

For simplicity reasons we set in all sections f =0, since the extension of our results to the
inhomogeneous case are straightforward.

An important tool is the Green’s formula (on closed surfaces), which takes the form

/ Vrz-Vr¢p = — / (Arz)¢.
r r

We use Sobolev spaces on surfaces: For a smooth surface I” we define
H'(I')={n e L*(I') | Vrn € L*(I')"*"},

and analogously H*(I") for k € N (Dziuk & Elliott, 2007a, Section 2.1). Finally, G; denotes the space-
time manifold, i.e., Gr := U, (£) x {t}. We assume that G C R™*? is a smooth hypersurface (with
boundary Gy = (F(O) X {O}) u (F(T) X {T})).

The weak formulation of this problem reads as

DEFINITION 2.1 (weak solution, Dziuk & Elliott (2007a) Definition 4.1) A function u € H'(Gy) is called
a weak solution of (2.1), if for almost every ¢ € [0, T]

d
—_— uy +/ Vp(,)u . VF([)(;O =/ ua'go (22)
dr Jrg rao ra

holds for every ¢ € H'(Gy) and u(.,0) = uy.
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For suitable u, existence and uniqueness results for (2.2) were obtained by Dziuk & Elliott (2007a,
Theorem 4.4) and in a more abstract framework in Alphonse et al. (2015, Theorem 3.6) (both works
consider inhomogeneous problems).

2.1 The ALE map and ALE velocity

We assume that foreacht € [0,T],T > 0, I'"(t) C R"*!is aclosed surface. We call a subset """ C R"+!
a closed surface, if I' is an oriented compact submanifold of codimension 1 without boundary. Moreover
we assume m = 1,2 or 3 and that I € C*, evolving smoothly (cf. Dziuk & Elliott (2013a)). We assume
that there exists a smooth map n: Gy — R™*! such that for each ¢ the restriction

n(.,0): I'(t) - R

is the smooth normal field on I"().

Now we shortly recall the surface description by diffeomorphic parametrization also used by Dziuk
& Elliott (2007a) and by Bonito et al. (2013a). Another important representation of the surface is based
on a signed distance function. For this we refer to Dziuk & Elliott (2007a).

We assume that there exists a smooth map @ : I"'(0) x [0,7] — R"*! which we call a dynamical
system or diffeomorphic parametrization, satisfying that

@, I'(0) — I'(0), D,(y) :=P(y.1)
is a diffeomorphism for every ¢ € [0, T]. (®,) is called the flow of @. We observe:

e IfF:U C R" — TI'(0) is a smooth parametrization of I"(0), then F, := &, o F is a smooth
parametrization of I (), hence the name diffeomorphic parametrization.

« If we interpret I"(0) x [0, T] C R™*? as a hypersurface, then @ gives rise to a diffeomorphism
G: 10 x [0,T1—> Gr, BG.0) = (&,(),1)

The dynamical system @ defines a (special) vector field v and (special) time derivative 9* as follows:
First, consider the differential equation (for @)

HP(.,0)=v(®(.,0,1),  &(.,0)=Id. (2.3)

The unique vector field v is called the velocity of the surface evolution, or the material velocity. We
assume that the material velocity is the same velocity as in problem (2.1). It has the normal component
vN. Secondly, the derivative 8* is defined as follows (see, e.g., Dziuk & Elliott (2007a), Section 2.2 or
Bonito ef al. (2013a), Section 1): for smooth f: Gr — R and x € I'(¢), such that y € I"(0) for which
@,(y) = x, the material derivative is defined as

3f(x, 1) = 4 fod. (2.4)
Sl
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Suppose that f has a smooth extension f onto an open neighbourhood of I"(z), then by the chain rule the
following identity for the material derivative holds:

8 () = % v 1) - VFGr D),
(x,1)

which is clearly independent of the extension by (2.4). In Section 2.3 Dziuk & Elliott (2013a) has shown
how to use the oriented distance function to construct an extension f.

REMARK 2.2 An evolving surface I" () generally posseses many different dynamical systems. Consider,
for example, the (constant) evolving surface I'(t) = I'(0) = §™ C R™"! with the two (different)
dynamical systems @ (x,#) = x and ¥ (x,t) = «a(t)x, where «: [0, T] — O(m + 1) is a smooth curve in
the orthogonal matrices.
DEFINITION 2.3 Let A # & be any other dynamical system for I"(¢). It is called an ALE map. The
associated velocity will be denoted by w, which we refer as the ALE velocity and finally 8 denotes the
ALE material derivative.
One can show that forall € [0,7T] and x € I'(¢)

v(x,1) — w(x,t) is atangential vector. 2.5)
The formula for the differentiation of a parameter-dependent surface integral played a decisive role in the
analysis of evolving surface problems. In the following lemma we will state its ALE version, together

with the connection between the material derivative and the ALE material derivative.

LEmMA 2.4 Let I'(¢) be an evolving surface and f be a function defined in G7 such that all the following
quantities exist.

(a) (Leibniz formula Dziuk & Elliott (2007a)/ Reynolds transport identity Bonito ez al. (2013a)) There
holds

d
G [or= ] aesvngw 2.6)
dr Jrao ro

(b) There also holds

Y =0F+(w—v) Vruf. (2.7)
Proof. At first we prove (b): consider an extension f of f. Use the chain rule for 3“f and 3°f and note
the identity (cf. (2.5))

W) =v(,0) - V(1) = w(, 1) —v(, 1) - Virf(,1).
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To prove (a) use the original Leibniz formula from Dziuk & Elliott (2007a):

%/;f:/ra'f—l-fva.

Now use (b) and Greens identity for surfaces to complete the proof. U

2.2 Weak formulation

Now we have everything at our hands to derive the ALE version of the weak form of the evolving surface
PDE (2.1).

LEMMA 2.5 (ALE weak solution) The ALE weak solution for an evolving surface PDE is a function
u € H'(Gy), if for almost every ¢ € [0, T

d
- | up +/ Vil Vipe +/ uw —v) - Vppe = / ude
dt Jre ro ro ro

holds for every ¢ € H'(Gr) and u(.,0) = uy. If u solves equation (2.2) then u is an ALE weak solution.

Proof. We start by substituting the material derivative by the ALE material derivative in (2.2), using the
relation (2.7), connecting the different material derivatives (cf. (2.5)), i.e., by putting

39 =0"+(v—wVre

into (2.2), and rearranging the terms, we get the desired formulation. ]

3. Semidiscretization: ALE-ESFEM

This section is devoted to the spatial semidiscretization of the parabolic moving surface PDE with the
ALE version of the ESFEM. The ESFEM was developed by Dziuk & Elliott (2007a). In the original case
the nodes were moving only with the material velocity along the surface, which could lead to degenerated
meshes. One can maintain the good properties of the initial mesh by having additional tangential velocity.

The ALE-ESFEM discretization will lead to a system of ordinary differential equations (ODEs) with
time-dependent matrices. We will prove the basic properties of those matrices, which will be one of our
main tools to prove the stability of time discretizations and convergence of full discretizations. We will
also recall the lifting operator and its properties introduced by Dziuk & Elliott (2007a), which enables us
to compare functions from the discrete and continuous surface.

3.1 Basic notations
First, the initial surface I"(0) is approximated by a triangulated one denoted by 77,(0), which is given as

no= {J Eo.

E0)eT;,(0)
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Leta;(0), (i = 1,2,...,N)denote the initial nodes lying on the initial continuous surface. Now the nodes
are evolved with respect to the ALE map A, i.e., a;(t) := .A(a,-(O), t). Obviously they remain on the
continuous surface I"(¢) for all . Therefore the smooth surface I"(¢) is approximated by the triangulated
one denoted by 17,(¢), which is given as

no:= |J Eo.

EWMET}0)

We always assume that the (evolving) simplices E(f) form an admissible triangulation 7,(f) with A
denoting the maximum diameter. Admissible triangulations were introduced in Dziuk & Elliott (2007a,
Section 5.1): every E(t) € T,(¢) satisfies that the inner radius o, is bounded from below by ¢ with ¢ > 0,
and I7,(¢) is not a global double covering of I"(¢).

The discrete tangential gradient on the discrete surface I'7,(¢) is given by

Vrof = Vf = Vf -mn, = Pr,(Vf),

understood in an element-wise sense, with n, denoting the normal to I7,(¢) and Pr), :=1 — n,,n,{.
For every t € [0, T] we define the finite element subspace

Siu(t) = {¢h e C(I7;,(1)) | ¢én|E 1s linear, for all E € 7;(t)}.

The piecewise linear moving basis functions x; are defined by y;(a;(¢),t) = §; foralli,j =1,2,...,N,
and hence

Su(0) = span{ ), (., 1), xa (05 os v (-, D}
We continue with the definition of the interpolated velocities on the discrete surface I7,(¢):

N N

Vi) =) (@ 0,0(,0, Wi, =Y wa®),0x(.,0 3.1)

j=1 j=1

are the discrete velocity and the discrete ALE velocity, respectively. The discrete material derivative and
its ALE version is given by

Odn =0+ Vi - Véu, 3 'dn = 0,y + Wy - Ve,

where 9,¢;,(x, fy) and V¢, (x, 1) is meant in the following sense: Denote by G, := U[E[(m I,(t) x {t} C
R™+2 the discrete time space manifold, and for simplicity assume that the coefficients of ¢, : G, — R w.r.
to the standard finite element basis are smooth in 7. Assume that x is lying in the interior of E(ty) C I},(%)
and denote by E () the evolution of E(#). Finally set £ := Ure[O,T] E(t) x {t}. For the restricted function
¢n|E exists a smooth extension Q_Sh on a (m + 2)-dimensional neighborhood of £. We set 9,¢;, = 8,(/3;, and
Vo, = V. A straightforward calculation shows that d; ¢, is well defined.

In the ALE setting the key transport property is the following:

M'x=0 for k=12,...,N. 3.2)
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It can be shown as its non-ALE version (see Dziuk & Elliott (2007a, Proposition 5.4)).
The spatially discrete ALE problem for evolving surfaces is formulated in

PROBLEM 3.1 (Semidiscretization in space) Find U, € S;,(¢) such that

d

— Uit +/ Vo Un - Vi,o®n
dr Jr,0 Iy

+/ Uy(Wy, = Vi) - Vi, on = / Und; dn» (Von, € Su(1)), (3.3)
I, (0
with the initial condition U,(.,0) = U}? € S,,(0) is a sufficient approximation of u.

3.2 The ODE system
The ODE form of the above problem can be derived by setting

N
Un(.0) =Y a0 x(..0) (3.4)

=1
and testing by ¢, = x, fork = 1,2,..., N in (3.3) and using the transport property for evolving surfaces
(3.2).

ProposiTION 3.2 (ODE system for evolving surfaces) The spatially semidiscrete problem is equivalent
to the ODE system for the vector () = («;(?)) € RY, representing U, ( ., 1),

d
{dr (M) +ADa() +BOa) =0 35)

a(0) = ao,

where M (t) and A(¢) are the evolving mass and stiffness matrices defined by

M@)y = / Xj Xk Ay = / Vo X+ V,mXks
Iy (1) Iy ()

and the evolving matrix B(¢) is given by

By = f XiWi = Vi) - Vo X (3.6)
Iy (1)

The proof of this proposition is analogous to the corresponding one in Dziuk ez al. (2012, Section 3).

REMARK 3.3 In the original ESFEM setting there was no direct involvement of velocities, but in the
ALE formulation there is. We remark here that since the normal components of the continuous ALE
and material velocity are equal, during computations one can work only with the difference of the two
discrete velocities. We keep the above formulation to leave the presentation plain and simple.
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3.3 Lifting process

In the following we define the so called lift operator, which was introduced by Dziuk (1988) and further
investigated by Dziuk & Elliott (2007a, 2013b). The lift operator can be interpreted as a geometric
projection: it projects a finite element function n,: I,(f) — R on the discrete surface [},(¢) onto a
function n,: I" () — R on the smooth surface I"(r). Therefore it is crucial for our error estimates.

We assume that there exists an open bounded set U (t) C R™*! such that dU(t) = I"(¢). The oriented
distance function d is defined as

dist(x, I’ (1)), R™ N\ U(p),
R™ x [0.T] > R, d(r.y = 1 Gstl ®). xeR™A\U@)

—dist(x, ' (1)), xe€ U®).
For i > 0 wedefine N'(1),, := {x € R™"" | dist(x, I' (1)) < u}. Clearly N(1),, is an open neighbourhood
of I'(¢). Gilbarg & Trudinger (1983) in Lemma 14.16 have shown the following important regularity
result about d.

LEMMA 3.4 Let U(t) C R™! be bounded and I" () € C* for k > 2. Then there exists a positive constant
p depending on U such thatd € CK(N'(1),,).

In Gilbarg & Trudinger (1983, Lemma 14.16) itis also mentioned that 1 ~! bounds the principal curvatures
of I'(1).

In the following we recall the lift operator from Dziuk (1988, equation (2)). For eachx € I'(t), there
exists a unique p = p(x,t) € I'(¢) such that [x — p| = dist(x, F(t)), then x and p are related by the
important equation:

x =p+np,Hdx,1). (3.7

We assume that I5,(t) C N(¢). The lift operator £ maps a continuous function 7;,: I;, — R onto a
function L(n,): I' — R as follows: for every x € I,(¢) exists via equation (3.7) a unique p = p(x,1).
We set pointwise

5(7711)(17» t) = 77;[,(17, t) = 7711()5, t)~

L(n,): I' = Ris continuous. If 1, has weak derivatives then £(1,) also has weak derivatives.
Finally, we have the lifted finite element space

Sp@) == {on = ¢} | dn € Su(®)}.

3.4 Properties of the evolving matrices

Clearly the evolving stiffness matrix is symmetric, positive semi-definite, and the mass matrix is sym-
metric, positive definite. Through the paper we will work with the norm and semi-norm introduced by
Dziuk et al. (2012):

2Dy = ||Zh||L2(rh(z)) and [z(D]aw) = ||V1“,,Zh||L2(rh(;)) (3.8)

for arbitrary z(1) € RY, where Z,(.,1) = Y, () x; (.. 1).

J
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A very important lemma in our analysis is the following.

LEMMA 3.5 (Dziuk et al. (2012) Lemma 4.1 and Lubich ez al. (2013) Lemma 2.2) There are constants
W, k (independent of h, but depending on ||V - w1001 ())) such that

ZT(M(S) - M(t))y < (@7 = Dlzlye ylne (3.9)
(M) = MT@0)y < (@ = Dlzly-10) [y ly-10) (3.10)
(A —AD)y < (@7 = Dlzlaw yla (3.11)

forall y,z € R¥ and s,t € [0, T].

We will use this lemma with s close to ¢ (usually, # = s + kt for some positive integer k independent

of the time step 7). Hence, (¢*“™” — 1) < 2uu(s — ) holds. In particular for y = z we have
|2l < (14200t = 9)12l31 (3.12)
22, < (1426t — 9))123,- (3.13)

The following technical lemma will play a crucial role in this article, while handling the nonsymmetric
term.

LeEmMA 3.6 Lety,z € RY and t € [0, T] be arbitrary, then

|(B(1)zly)| < calzlmmYlaw-

where the constant ¢ 4 > 0 depends only on the velocity difference w — v.

Proof. Using the definition of the matrix B(z) (see (3.6)) we can write

[(B()zly)| =

/ Zy(Wy = Vi) - VY| = Wy — Vh||L°°(Fh(t))/ ARNGR AL
Iy, Ty

For a first-order finite element function ¢, € S, (¢) it holds ||@y |z (r,) = |¢;(p)| for an appropriate node
p € I,(t). Hence using (3.1) we can estimate as

IWh = VillLoe (o < (m+ Dlw — vllzeo(r - (3.14)

Now apply the Cauchy—Schwarz inequality and using the equivalence of norms over the discrete and
continuous surface (cf. Dziuk & Elliott (2007a), Lemma 5.2) to obtain the stated result. O
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3.5 Interpolation estimates

Letl,: C(I"(t)) — S.(t) be the lifted Lagrange interpolation operator, where C(I"(t)) denotes the space
of continuous functions on I7(#); cf. Dziuk & Elliott (2007a) for further details on the interpolation
operator. The following interpolation estimate holds.

LEMMA 3.7 Form < 3 and p € {2, oo} there exists a constant ¢ > 0 independent of 4 and ¢ such that for
ue W (I®)):

2()192
lu — Ll ray + RNV = L) ooy < > (IVRullrey + AV rullaray)-

Proof. Since m < 3 and I"(¢) is smooth and compact, a Sobolev embedding theorem (cf. Aubin (1998,
Theorem 2.20)), implies W>?(I"(t)) C C(I(t)). Hence I,u is well defined.

The estimate for the case p = 2 is stated in Dziuk & Elliott (2007a, Lemma 5.3). On the reference
element an interpolation estimate for the case p = oo was shown in Strang & Fix (1973, Theorem 3.1).
Using the estimates appearing in the proof of Dziuk (1988, Lemma 3) and combining these with standard
estimates of the reference element technique, we obtain the stated result. O

3.6 Discrete geometric estimates

We recall some notions using the lifting process from Dziuk (1988), Dziuk & Elliott (2007a) and Mansour
(2013) using the notation of the last reference. By §, we denote the quotient between the continuous and
discrete surface measures, dA and dA,,, defined as §,dA;, = dA. Further, we recall that

Pr = (8,/ — n,n,)x and Prh = ((S,/ — nh’,»nh‘,«)N

=1 ij=1

are the projections onto the tangent spaces of I" and [},. Finally H (H; = dyn,) is the (extended)
Weingarten map. For these quantities we recall some results from Dziuk & Elliott (2007a, 2013b) and
Mansour (2013), having the exact same proofs for the ALE case.

LEMMA 3.8 Assume that I},(z) and I"(¢) satisfy the above, and I"(¢) is C* in time, then we have the
estimates

2 2
ldllzoe(r,) < ch”, In —nyllzee(r,) < ch, 1T = 8ullzoor,y < ch”,

1@ dllor < ch?, Il Pr — Pr, Pr Pr, ||y, < ch?,
where (8;*)® denotes the ¢th discrete ALE material derivative.

Proof. The first three inequalities have been proven in Dziuk & Elliott (2013b, Lemma 5.4). The fourth
inequality for £ > 1 is presented in Mansour (2013, Lemma 6.1). The last inequality has been shown in
Dziuk & Elliott (2007a, Lemma 4.1). U
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3.7 Bilinear forms and their properties

We use the time dependent bilinear forms defined as in Dziuk & Elliott (2013b, Section 3.3): for
z,¢ € H'(I"(t)) and their discrete analogs for Z;, ¢, € S, (2):

a(z,¢) = / Vrz-Vro, an(Zn, Pn) = Z /Evrhzh - Vr,én,
() E€T)
m(z,¢) = / 29, my(Zp, $n) = / Zyn,
ram Iy(0)
gwiz,0) = (Vr-w)zp, 8nWis Zy, n) = / (Vr, - Wi Zygn,
r Iy (1)
b(w;z,0) = BwW)Vrz-Vro, (Wi Zy, n) = Z / By(Wi)Vr,Zy - Vi, b,
I EeTj, E

where the discrete tangential gradients are understood in a piecewise sense and with the matrices

Bw); = 6;(Vr-w) — ((VF)in + (VF)jWi)’ (ij=12,...,m),

By(Wi)i = 8;(Vr - Wi) = (V)iW); + (Vi)i(Wa)i),  (j = 1,2,...,m).
Following Dziuk & Elliott (2013b), the ALE velocity of lifted material points is defined as follows:
Denote by Ly: I,(0) — I'(0) the Lift for the initial surface and denote by L£': I},(t) — I'(¢) the lift

at time ¢, cf. equation (3.7). In a straightforward way, the ALE dynamical system .A on I"(r) defines a
discrete ALE dynamical system A, on I},(r). A, can be interpreted as the interpolation of A. It holds

dA,
dr

O, 1) = Wi (A (x. 1), 1).
Define
AL: Ty [0,T] — R™, (xo,1) > z:f(A,,(co—l(xo),;)).

Obviously it holds A/, (I, 1) = I'(t). We note that A} is just curved element wise smooth. Analogous to
equation (2.3), we define the corresponding velocity I' () — R”*!, x > wy,(x, ) via

d
wi (A}, (xo, 1), 1) :=EAf,(x0,t). (3.15)
Again, as in Section 2.1, the map
Al: Iy % [0.7] — Gr

is bijective and now, analogous to equation (2.4), we define the corresponding discrete ALE material
derivative for the function on the smooth surface as

d —~
R (x, 1) := 5|~ foA.
Tlaly=1een
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472 B. KOVACS AND C. A. POWER GUERRA

If f denotes an extension of f on an open neighborhood of G, then we have

9 _
1 (x,1) = 8—’; +w(x, 1) - VF(x, 1).
(1)

LEmMA 3.9 There exists an 4 independent constant ¢ > 0 such that the following estimate holds
Iw = willosgy) < ch®.

Proof. The proof has been done in Dziuk & Elliott (2013b, Lemma 5.6). For the convenience of the
reader we recap the main arguments. Applying the chain rule at the right-hand side of (3.15) leads to

Wi (. 1) = Lw(x, 1) — d((ﬁf)*1 ), t) (’H(x, NLw(x 1) + %(x, r))
ad
~n(x, t)(g((ﬁ)’l(x), 1) + 01 - Lw(x, z)).

Since wy, (x, 1) - n(x, 1) = w(x, 1) -n(x, ) and Z—rr‘(x, 1) -n(x,t) = 0, it follows that multiplying the equation
above by n(x, ) yields M((D)‘l(x), t) = w(x, 1) - n(x,1). The claim now follows by Lemma 3.8 and

ot

Lemma 3.7. g
With the definition of wy, the following semi-discrete transport lemma holds:

LEMMA 3.10 (Dziuk & Elliott (2013b) Lemma 4.2, Elliott & Venkataraman (2015) Lemma 3.8) For
Zns Qs 07 z0, 07 @n € SL(t) C HY(I") we have:

d

am(zh, on) = m(ahAZh, ©n) + m(zy, 3;:4%) + gWns zn, 01),
d

3G = a(@; zn, on) + a(zn, 97 @n) + bWy z0, 9.

Versions of this lemma with continuous non-ALE material derivatives or discrete bilinear forms are also
true, see e.g., (Mansour, 2013, Lemma 6.4).
We will need the following estimates between the continuous and discrete bilinear forms.

Lemma 3.11 (Dziuk & Elliott (2013b), Elliott & Venkataraman (2015)) For arbitrary Z;,, ¢, € S, (¢), with
corresponding lifts z;,, ¢, € S{l () we have the bound

|m(zn, o) — mu(Z, )| < PNzl 2 l0nll 2
’a(ZhJﬂh) - ah(Zh,fﬁh)‘ =< Ch2||§0h||L2(r(t))||VF<Ph||L2(F(r)),
|8 W3 2 0) — 88 (Wi Zos )| < ezl o 1012
’m(Zh, W —=v) - Vrey) — my(Zy, (W, — V) - Vrhth)‘ < Ch2||zh||L2(F(t)) IVronll2ray)-
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Proof. For the first three inequalities we refer to Dziuk & Elliott (2013b, Lemma 5.5). For the last
inequality observe that

\m(zh, W =) - Vi@n) — my(Z, Wy — Vi) - Vi )

< |, (00 =v) = W= V) - Vrgn)

o+ |G, W)= Vi) Vegn) = mi(Zay Wy = Vi) Vi)

s

< PNzl 2rop IV renll 2 ey + ‘m(Zh, Wy = V) - Vo) — my(Zy, (Wi, — Vi) - Vi, 1)

where we have used Lemma 3.7 for the last inequality. The inequality

m(zy, (Wi = V) - V) — my(Zy, Wy, — Vi) - Vi i) < ch*llzall 2oy IV r@nll 20

follows from Elliott & Venkataraman (2015, Lemma B.3). O

3.8 The Ritz map

We use nearly the same Ritz map introduced in Lubich & Mansour (2015, Definition 8.1), but for the
parabolic case a much simpler version suffices:

DEFINITION 3.12 For a given z € H'(I"(t)) there is a unique 73;,z € S,(¢) such that for all ¢, € S,(¢),
with the corresponding lift ¢, = ¢}1, we have

a; Pz d) = a* (2 1), (3.16)

where a* :=a+m arld aj = aj, + my, to make the forms a and a,, positive definite. Then P,z € Sfl (1) is
defined as the lift of Pz, i.e., Prz = (Pr2)".

REMARK 3.13 The Ritz map in (3.16) is a simplified version of the Ritz map considered in Mansour
(2013, Definition 7.1) and Lubich & Mansour (2015, Definition 8.1). The Ritz map in the first reference
is actually a more general one then (3.16), since for the choice { = 0 there, we obtain our Ritz map (see
the proof below).

A different Ritz projection has been used in Dziuk & Elliott (2013b) and in Elliott & Venkataraman
(2015, Appendix C). In these works a Ritz projection is defined via

a(Puz, o) = a(z, 1), Yo € Sp(t) and / PuzdA = zdA =0.
ING)

ING)

More recently Elliott & Ranner (2015, Section 3.6) defined a different Ritz map via

0Pz ) = ae. ). Vo € Sy(t) and Bz dAy = / ZdA.
1,0 ro
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474 B. KOVACS AND C. A. POWER GUERRA
LEMMA 3.14 The Ritz map satisfies the bounds, for 0 < ¢ < T and & < h, with a sufficiently small A,

2
lz — PhZ”LZ(r(t)) +h|IVr(z = PhZ)”LZ(r(r)) <ch ||Z||H2(F(t))’

14

||(a/;4)(e)(z - PhZ)||L2(r(t)) + Al Vr ((3;:4)(8) (z— th))”LZ(F(t)) = Clhz Z ||(3A)U)Z||H2(1‘(1))7
j=0

where the constants ¢ and ¢, are independent of 4 and ¢ € [0, T].

Proof. Mansour (2013) has defined a Ritz map as follows. For given . eH'(I'(t)) he defined
Py H'(I'(t)) — S;(¢) via the equation

ay(Puz. ¢n) = a*@. @) +m(&. (v —v) - Vr}) Ve € S (1),

where v, plays no role in our setting. Nevertheless, since the proof includes the case ¢ = 0 our claim
follows from Mansour (2013, Theorem 7.2 and 7.3). O

4. Stability
4.1 Stability of implicit R—K methods

We consider an s-stage implicit R—K method for the time discretization of the ODE system (3.5), coming
from the ALE-ESFEM space discretization of the parabolic evolving surface PDE.

In the following we extend the stability result for R—K methods of Dziuk ez al. (2012), Lemma 7.1,
to the case of ALE-ESFEM. Apart from the properties of the ALE-ESFEM, the proof is based on the
energy estimation techniques of Lubich & Ostermann (1995, Theorem 1.1).

For the convenience of the reader, we recall the method: for simplicity, we assume equidistant time
steps 1, := nt, with step size 7. Our results can be straightforwardly extended to the case of nonuniform
time steps. The s-stage implicit R—K method, defined by the given Butcher tableau.

(ci) (azj)
(i)

applied to the system (3.5):

E(M(t)o:(t)) + A(a(r) + B(Ha(r) =0

dt
a0 =a (U} =" a0,(-.0)

reads as

Mooty = Myot, + 7 ) ay, for i=1,2,...,s (4.1a)
j=1

MrH»larH»l = Mnan +7 Z bidni’ (41b)

i=1

Downl oaded from https://academ c. oup. confingjna/article-abstract/38/1/460/ 3098317
by Universitaet Tuebingen user
on 31 January 2018
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where the internal stages satisfy

0 = G + Bpittn + ApniOtni for i=1,2,...,s 4.1¢)

with A,; := A(t, + ¢;t), B,; == B(t, + ¢;t), M,,; := M(t, + ¢;t) and M, := M(¢,.,). Here &,; is not a
derivative but a suggestive notation.

We recall that U, (.,t) = Zj\’:l a;(t) x;(.,t) for the semidiscrete case from Section 3.2 and for the

fully discrete case we define U; = Z;V:] i Xi (s ).
ASSUMPTION 4.1 We assume that

e The method has stage order ¢ > 1 and classical order p > g + 1.
* The coefficient matrix (a;) is invertible; the inverse will be denoted by upper indices (a).

* The method is algebraically stable,i.e.,b; > O forj = 1,2,...,s and the following matrix is positive
semi-definite:

(biay — bja; — bib))’ (4.2)

ij=1"
e The method is stiffly accurate, i.e., forj = 1,2, ..., s it holds
b; = ay, and ¢, = 1. 4.3)

Instead of (3.5), let us consider the following perturbed equation:

d (MOa(@) + AN (1) + BOE(E) = M(0)r(t),
dr (4.4)
&(0) = &.

The substitution of the true solution & () of the perturbed problem into the R—K method yields the defects

A, and 8,;, by setting e, = &, — & (ty), Epi = ot — @(t, + ¢;7) and E,; = &,y — &(t, + ¢;7), again E,; is
not a derivative. Then by subtraction the following error equations hold:

MniEni = M,le,, + 7 Z a,»jE,,j — Ani for = 1, 2, N (453.)

j=1

M)1+len+l = Mnen +7 Z biE)li - (SIH»I’ (45b)

i=1
where the internal stages satisfy:

Eni +Am’Eni + Bm'Eni = —Mm'l"m' for i= 1, 2, v, S, (45C)

with r,; := r(t, + ¢;7).
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Similar to Dziuk et al. (2012, Lemma 7.1) or Mansour (2013, Lemma 3.1), we present a stability
estimate (such that the choice of 7 is independent of /) for the above class of R—K methods. Since the
method (4.1) and the error equation (4.5) both involve only matrices and vectors, we first establish this
stability estimate in terms of nodal error vectors with corresponding time-dependent norms (3.8). Using
(3.8) this estimate can be translated into L>- and H'-norms of the corresponding finite element error
functions. This result will be related to the norms of U, through the error, later in Theorems 5.2 and 5.4.

LEmmA 4.2 For an s-stage implicit R-K method satisfying Assumption 4.1, there exists a 7y > 0,
depending only on the constants u and «, such that for T < 1y and ¢, = nt < T, that the error e, is
bounded by

n n—1 s n
2 2 2 2 2
lealyy, + 7Y el < C[|€0|M0 +TY Y Ml + T/,
k=1 k=1

k=1 i=1
s

n—1
7 )02 (1M Auly, + M Al )

k=0 i=1

where [|w||7, = w'(A(r) + M())"'w. The constant C is independent of %, 7 and n, but depends on
W, k, T and on the norm of the difference of the velocities. The constant 7, depends on the ALE velocity
(see Lemma 3.5).

Proof. (a) By using (4.5a)—(4.5¢) and algebraic stability (4.2) the following inequality holds for the ALE
setting:

lenilyy,,, < (L4 2uD)lenlyy, +27 Y bi (ElM, ) IMyEy + Au)

i=1

+TlEaly,,, + (U + 307w/ (4.6)
n n+1
We want to estimate the second term on the right-hand side of (4.6). Obviously the equation
(E.‘nian:Lll |MniEni + Am’) = <Eni|My;1 |MniEni + Am’)
+ (EulM, ) — M MyE, + Ay) (4.7)
holds. The second term on the right-hand side of (4.7) can be estimated by (cf. (Mansour, 2013, Lemma 3.1,
(3.14))):
(Ml = My Wi+ A0) = Clenly, + I, + 1400, | (4.8)
j=1

(b) We have to modify the estimation of the first term on the right-hand side of (4.7). Using the definition
of internal stages (4.5c), we have

(E.‘Ill.lMy;1|M"l.E”i + Ani) = - |Eni|/2‘,ni - (MnirniIEni + M,;lAni>
— (EnilAulM,; Ay = (BuiEi | Eni + M, Ay 4.9)
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The last term can be estimated by Lemma 3.6 as

| <BniEm'|Em' + M;,l Ani) | f | (Bm'Em' |Eni) | + | (BniEni |M,;1 Ani) |
=< C|E,ilm,;|Enila,; + ClEyilm, |M,;1Am' 4,

1
= ClEuly,, + 71Eul,, + ClEuly, + CIM Al . (4.10)

While the other terms can be estimated by the following inequality (shown in Lemma 3.1 in Mansour
(2013)):

- |Eni|im- + (Mot | i + My A | + [Eil Al M, A |
< —%|Em|§m. + %|E,,,»|§4m. +C(IM;  Auilyy, + 1M AL ). (4.11)
We continue to estimate the right-hand side of (4.9) with (4.10), (4.11) and arrive to
(EnilM,  IMyEy + Aw) < —%|Eni|§,li + C(1Euliy,, + 1My Auliy, + 1M, Aul} ). (4.12)

(c) Now we return to the main inequality (4.6), consider equation (4.9) and plug in the inequalities (4.8)
and (4.12) to get

.l 5 R
2 2 2 2 2 2
el = lealiy, + 57 2 bilEL, < Cr[|en|M,, + Y B[, + IMyryl,
i=1 j=1
s
—1 2 -1 2
+ Z(anj A"le,,j + |Mnj Anlenj) +

j=1

‘Sn+l/r|i/]’:+11]. (413)
(d) Next we estimate |Enj|ﬁ4nj, in Mansour (2013, Lemma 3.1) one can find the estimate:

1Enliy, = Cleall, +7 2 ay (Bl Ea) + 1M Al ). (4.14)

ni

j=1
We have to estimate (E,,j|E,,,~), with equation (4.5¢) we get
<Enj|Eni> = - (Enlenj|Eni> - (Mnjrnleni> - <anEn'|Eni>- (415)

The following inequalities can be shown easily using Young’s-inequality (¢ will be chosen later) and
Cauchy—Schwarz inequality:

—{E\AylE) < Co)(El3, +Eal},).

1
- (anEnj|Eni) = 8|Enj|12v1nj + @C(K”Em |fim‘

1
— My En) = CQuai) (= IMogrll + e (1Euly, + 1Ealy,))-
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Using the above three inequalities to estimate (4.15), we get

(EylE) < C(M,K)(8|Em-|§4m + COIEL, + 1y, + C@) My, ) (4.16)

*,11]
Using this for a sufficiently small ¢ (independent of ) we can proceed by estimating (4.14) further as
Bl = Cleall, +7 D as(1Eald, + IMyryl,,) + 1M Al ).
j=1
(e) Now for a sufficiently small T we can use the above inequality to estimate (4.13) to

l s s
2 2 2 2 2
lentiliy,, — lealiy, + 57 > bilE; < Cr[|en|M,, + Y IMyirillZ,
i=1

i=1

- -1 2 -1 2 2
* ;(|Mni Ani|Mni + 1M, A"ilAni) + BHH/T‘M,;ll }
Summing up over n and applying a discrete Gronwall inequality yields the desired result. (]

4.2 Stability of BDFs

We apply a BDF as a temporal discretization to the ODE system (3.5), coming from the ALE-ESFEM
space discretization of the parabolic evolving surface PDE.

In the following we extend the stability result for BDF methods of Lubich ef al. (2013, Lemma 4.1)
to the case of ALE-ESFEM. Apart from the properties of the ALE-ESFEM, the proof is based on the
G-stability theory of Dahlquist (1978) and the multiplier technique of Nevanlinna & Odeh (1981). We
will prove that the fully discrete method is stable for the k-step BDF methods up to order five. Again the
stability holds without a CFL-type condition.

We recall the k-step BDF method, applied to the ODE system (3.5), with step size 7 > 0 and given
starting values o, g, ..., 0, _1:

k
1
- (SjM(tnff)anfj +A(tn)an + B(tn)an = 0’ (l’l = k)’ (417)
T 2 : .
Jj=0

where the coefficients of the method is given by §(¢) = Z;‘:l 8¢ = Z/Z:1 %(1 — ¢)*, while the initial
values are «g, &y, . . ., 0. Again U, and « is related through (3.4). The method is known to be 0-stable
for k < 6 (but not A-stable for k > 3) and have order k; for more details we refer to Hairer & Wanner
(1996, Chapter V.).

Instead of (3.5), let us consider again the perturbed problem

g(M(t)éz(t)) + A(t)a(t) + B)a(t) = M(t)r(r)
dr (4.18)
a(0) = ag.
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By substituting the true solution ¢ () of the perturbed problem into the BDF method (4.17), we obtain

1 ¢ 3 3 _
=D M +AWIE + B)E = —d,, (1= k).
j=0

Then by introducing the error ¢, = o, — &(t,), multiplying by 7, and by subtraction we have the error
equation

k
> 8M,_je;+ TAwe, + TBue, =Td,  (n = k). (4.19)

j=0
We recall two important preliminary results.

LEMMA 4.3 (Dahlquist (1978)) Let §(¢) and p(Z) be polynomials of degree at most k (at least one of
them of exact degree k) that have no common divisor. Let { . | . ) be an inner product on RY with associated
norm || . |. If

§
Reﬁ > 0, for [¢] <1,
n(g)
then there exists a symmetric positive definite matrix G = (g;) € R¥** and real y, . . ., ¥« such that for

allvo,...,vk GRN

2

k k k k
Z//Livk—i> = Zgij(vi lvi) — Zgij(vi—l [vi-1) + H Z Yivi
i=0

k
< Z 8iVi—i
i=0 ij=1 ij=1 i=0
holds.
Together with this result, the case (£ (¢) = 1 — n¢ will play an important role:

Lemma 4.4 (Nevanlinna & Odeh (1981)) If & < 5, then there exists 0 < 5 < 1 such that for
8(¢) =Y 1A =0,

5(%)

Re >
1 —n¢

0, for |¢] < 1.

The smallest possible values of 7 is found to be n = 0, 0, 0.0836, 0.2878, 0.8160 for k = 1,2,...,5,
respectively.

We now state and prove the analogous stability result for the BDF methods. Again using (3.8), this
estimate can be translated into L?- and H'-norms of the corresponding finite element error functions, see
later in Theorem 5.5.
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LEMMA 4.5 For a k-step BDF method with k < 5, there exists a 7y > 0, depending only on the constants
w and «, such that for t < 7y and 7, = nt < T, that the error ¢, is bounded by

n n
2 2 2 2
lealiy, + 7D leily, = CT Yl +C max e,
Jj=k Jj=k

where [|w|?, = w'(A(t) + M(1))~'w. The constant C is independent of 4, 7 and n, but depends on
W, k, T and on the norm of the difference of the velocities. The constant 7, depends on the ALE velocity
(see Lemma 3.5).

Proof. Our proof follows the one of Lemma 4.1 in Lubich et al. (2013).
(a) The starting point of the proof is the following reformulation of the error equation (4.19)

k k

Mn Z Sjen—j + TAnen + tBnen = tdn + Z SZ(MVI - Mnfj)en—j

j=0 j=1
and using a modified energy estimate. We multiply both sides by e, —ne,_;, forn > k41, which gives us:

In + IIn = IIIn + I‘/n - ‘/m

where
k
I, = ( Z 8jen—j|Mn|en - 77€n71>,
j=0
1, = (e,|Aule, — ne,—1),
11, = ©(d,|e, — ne,-1),

k
]Vn = Z(enﬁfan - Mnfjlen - 7]&1*1)7

j=1

V, = T<€n|B,,|€,1 - nen—l>-

(b) The estimates of 1, I1,,, 11, and IV, are the same as in the proof of Lubich er al. (2013, Lemma4.1).
For the convenience of the reader, we repeat them:

In = |En|20,n - |Enfl|§;ﬂ’
2—n
Iln/T Z T|en|,24n - CT}|€»171|3\"_1,
1 1—n
[/t =< g Id,llZ, + > (eleals, + leali,)

+ (1 - T’])C(|€n,1|i + |en71|12|4n7])7

|IVn|/T S C(|En|20,n + |Enfl|%;4’n)-

n—1
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We note that during the estimation of III, we used Young’s inequality with sufficiently small (r
independent) €.

The nonsymmetric term V,, is estimated using Lemma 3.6 and Young’s inequality (with sufficiently
small ¢, independent of 7):

IVal < Ctlenlu, (lenla, + nlenila, ;)

= Ctleqlm,lela, + Cntleqln,len1la,_,

IA

Cl 2 2 Cl 2 2 2
T g'e"|Mn + €T|en|An + T g|€”|Mn + en flenfllA’Fr

(c) Combining all estimates, choosing a sufficiently small ¢ (independently of 7), and summing up
gives, for T < g and fork > n+ 1:

n—1 n

T n
Elg, + (1 =mg Y lely < Ce Y 1B+ Ct Y0 ldIz, + Crtleddi,,  (4.20)

j=k+1 Jj=k Jj=k+1

k
where E, = (€, ..., €,x41) and the |E,[% = > et 8iilen ki1 IMylen i)

(d) To achieve the stated result we have to estimate the extra term |e; |12V1k + Tlex |jk. For that we take
the inner product of the error equation for n = k with ¢, to obtain

k
Solexly, + leli, = T(diler) = Y §(Mijers|er) + tller | Bi | ex)l.

j=1
Then the use of Lemma 3.6 and Young’s inequality (again with sufficiently small ¢) and (3.9) yields

2

2 2 2
lenly, + Tlecly, < Clldil?, +C max leily,.

Similarly as in Lubich et al. (2013, Lemma 4.1), using the discrete Gronwall inequality for (4.20) and
the above estimate concludes the result. 0

5. Error bounds for the fully discrete solutions

We start by connecting the stability results of the previous section with the continuous solution of the
parabolic problem. Then using the Ritz map of u we will show the convergence of the error which —
together with the stability results —leads us to our main results. We will prove that the full discretizations,
ALE-ESFEM coupled with R—K or BDF methods converges. The convergence does not require a bound
on 7 in terms of /.

5.1 Bound of the semidiscrete residual

Before turning to the fully discrete problem we show error bounds for the semidiscretization.
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482 B. KOVACS AND C. A. POWER GUERRA

Since the stability analysis only uses the matrix-vector formulation (4.4), (4.18), but not the semi-
discrete weak form, we follow Lubich et al. (2013, Section 5), using the Ritz map to define the finite
element residual,

N

Ry(.t) = Y ri(0)x(-1) € Si(0),

j=1

by duality pointwise in time, as follows. Let

/ RuCa0)gy =L@ forall ¢, € S,(0), 5.1)
Iy

where, for a fixed ¢ € [0, T'], the linear functional L, : S,(t) — R is defined as follows: for a given finite
element function

N
¢ =) cixi( 1) € Si(1)

j=1

define the temporal extension ¢, (s) € S,(s) as the finite element function with the same nodal values

N
on(s) =Y cixi(o9) €Sils) (s €[0,T)).

Jj=1

Then, 97 ¢, (s) = 0 for all 5, by the transport property (3.2) of the basis functions.
We now define

d ~ ~
L) = @ Prul., )gn (., 1) +/ Vi, (Pa) (1) - Vi, 0n(.5 1)

dt Jr,0 0

+ / But) (e D Wy = V) (o) - Visn(a )
Iy

and determine the residual R, (.,?) by (5.1).
The above construction yields the following linear ODE system with the vector r(t) = (r;(?)) € RN:

d - - ~
$(M(t)a(t)) +A@®a() + B®)a() = M(0)r(1),
which is the perturbed ODE system (4.4) and (4.18).
We show second order error bounds for the residual R;, using the bounds on the Ritz map.

THEOREM 5.1 (Bound of the semidiscrete residual) Let u, the solution of the parabolic problem, be
smooth. Then there exists a constant C > 0 and s, > 0, such that for all # < hy and ¢ € [0, T'], the finite
element residual R, of the Ritz map is bounded by

2
IRAC DLyt 1y < O,
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where the constant C is independent of / and #, but depends on T and on the solution u. The H, '-norm
of R, is defined as

(R ), ) 12100

sup
0y, €8y, (1) ll&nll i1 (I, (1)

”Rh(-» t)”Hh_l(Fh(f)) =

Proof. (a) We start by applying the discrete ALE transport property to the residual equation (5.1) and
using the definition of L,, for P,u € S, (¢):

my, (Ry, ¢n) = mh(afﬁhu, on) + an(Pyu, on) + gh(Wh;ﬁhuv op) + my(Pyit, (Wy, — V) - Vi, @n)-

(b) We continue by the transport property with discrete ALE material derivatives from Lemma 3.10,
but for the ALE weak form (from Lemma 2.5)

0 = m(3;*u, o)) + a(u, g}) + gwy; u, @) + m(u, (w —v) - Vrgh).

(c) Subtraction of the two equations, and using the definition of the Ritz map (3.16), we obtain the
following expression for the residual:

my(Ry, ) = mh(afﬁhu, o) — m(3; u, @)
+ 81 (Wi o, g4) — gOwii u, )
- (mh(jshu, o) — m(u, 90;11))
+m(Pat, Wy, — V) - Viyn) — mu, (w = v) - Vrg).

(d) We estimate these pairs separately, we show the basic idea by using the nonsymmetric term: We
aim to use Lemma 3.8 and the error estimate for the Ritz map, Lemma 3.14; namely, we estimate as

my(Pytts Wy — Vi) - Vi, 04) — m(Pyu, (w —v) - Vgl
+ m(Pyu — u, (W —v) - Vr@p) < CR @)l -

The other pairs can be estimated in the same way: by Lemma 3.11 and the errors in the Ritz map (in fact
they can be bounded by Ch*[|@pl;2r())- O

5.2  Error bounds

The direct application of the stability lemma for R—K methods and BDF methods (Lemma 4.2 and Lemma
4.5, respectively) gives error estimates between the projection P,u(.,,) and the fully discrete solution
U; (ALE-ESFEM combined with a temporal discretization), i.e.,

N
Up =Y o xi(o1a) € Si0),

j=1

where the vectors «” are generated, either by an s-stage implicit R—K method (4.1) or by a BDF method
of order k (4.17).
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5.2.1 Implicit R—K methods. Now we can prove the analogous error estimation result from (Dziuk
etal.,2012, Theorem 8.1) and Mansour (2013, Theorem 5.1).

THEOREM 5.2 Consider the ALE-ESFEM as space discretization of the parabolic problem (2.1) with time
discretization by an s-stage implicit R—K method satisfying Assumption 4.1. Assume that the solution u
and the surface I"(¢) is smooth. Then there exists 7o > 0, independent of £, but depending on the ALE
velocity (see Lemma 3.5), such that for T < 1, for the error E} = U} — Pju(., t,) the following estimate
holds fort, = nt < T

n 1

J (|2 2
VE N2y + (7 20 VR L)
j=1

n—1 s

+1
< O +C(r o Y IRt e ) CIE

k=0 i=1
where the constant C is independent of 4 and 7, but depends on 7', and we have

T 9+2 q+1

ﬂhq / Z ||(3A)(D(Ph”)( t)”LZ(I’/,(t)) + Z ||Vrh(z)(3A)(£)(/PhM)( f)||L2(Fh(t>)

REMARK 5.3 Later on in the proofs we will use the existence of high order material derivatives of 73;,14 This
follows as a combination of the assumed regularity of the evolution of I"(¢) and the assumed regularity
of the exact solution u.

The version with the classical order p from (Dziuk et al., 2012, Theorem 8.2), or Mansour (2013,
Theorem 5.2) also holds in the ALE case, if the stronger regularity conditions are satisfied:

o & (aomo) - S (aomey )dml (Moaw)| <y,
M(1)
’M(z)- o S (Aom@ ) - dkkll_l, (Mm@ )dH1 (Mwao)| <y,

Ar)
forallk_,«zlandkzq—i—lwithk]+-~-+k_,«+k§p+l.

THEOREM 5.4 Consider the ALE-ESFEM as space discretization of the parabolic problem (2.1), with time
discretization by an s-stage implicit R-K method satisfying Assumption 4.1 with p > g + 1. Assuming
the above regularity conditions. There exists 7y > 0 independent of /, but depending on the ALE velocity
(see Lemma 3.5), such that for T < 7, for the error E; = U} — P,u(.,t,), the following estimate holds
fort, =nt <T:

Bl

n
J (2
12y + (7 20 VR Bl 0)
j=1

n—1 s 1

2
= Gr+ (T Y IRt 4 D)+ CIE e

k=0 i=1
where the constant C is independent of / and 7, but depends on 7" and y.
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Proof of Theorem 5.2 and 5.4. The proofs of the above two theorems are a combination of our previous
results, especially the stability lemma (Lemma 4.2) and the relation [|M,7,|l.,, = [R.(., )]l B ()
(cf. Mansour (2013, (5.5))). Otherwise they are the same as the proof in Dziuk et al. (2012, Section 8) or
(see Mansour (2013, Theorem 5.1-5.2)). The & and 7 independency holds since the used stability lemma
is also independent of them. U

5.2.2  Backward differentiation formulas. We prove the analogous result of Lubich et al. (2013,
Theorem 5.1) and Mansour (2013, Theorem 5.3).

THEOREM 5.5 Consider the ALE-ESFEM as space discretization of the parabolic problem (2.1) with
time discretization by a k-step backward difference formula of order k < 5. Assume that the solution u
and the surface I"(¢) is smooth. Then there exists 7o > 0, independent of £, but depending on the ALE
velocity (see Lemma 3.5), such that for T < 1, for the error E} = U} — Pju(., t,) the following estimate
holds fort, = nt < T

n 1
Jy2 2
12 + (7 D2 1002 10

j=1
1

n
gk 2 2 i
= Chut™ + (7-' Z ”Rh("tj)”H;'(rh(rj))) + Coi?jil NEG 221 10
Jj=1 o

where the constant C is independent of & and , but depends on 7', and we have

T k+1

Br :f D@ P ()l 20y A
0 =1

Proof. The proof of this theorem relays on the corresponding 4 and T independent stability result, i.e.,
Lemma 4.5. Otherwise we follow the proof of Lubich et al. (2013, Theorem 5.1), or Mansour (2013,
Theorem 5.3). O

REMARK 5.6 The quantities B;f ,and Eﬁk from Theorem 5.2 and Theorem 5.5 require existence of higher
order discrete ALE material derivatives of the Ritz projection of u and, further, that they are bounded
w.r. to the L? resp. H' norm. The existence of higher order material derivatives can be seen as follows:
Rewrite equation (3.16) as a matrix vector equation for the coefficients of Pju. Discrete ALE material
derivatives corresponds to usual time derivatives for the coefficients of P,u. Hence if we assume that the
ALE dynamical system is smooth and that the exact solution is smooth, then it follows that higher order
discrete ALE material derivatives of u exists. The boundedness of them follows from Lemma 3.14.

5.3 Error of the full ALE discretizations

We compare the lifted fully discrete numerical solution uj, := (U,’,’)’ with the exact solution u(., t,,) of the
evolving surface PDE (2.1), where U} = Z;V:l o % (- t,), where the vectors o” are generated by the R—-K
(4.1) or the BDF method (4.17).

Now we state and prove the main results of this article.
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486 B. KOVACS AND C. A. POWER GUERRA

THEOREM 5.7 (ALE-ESFEM and R-K) Consider the ALE-ESFEM as space discretization of the para-
bolic problem (2.1) with time discretization by an s-stage implicit R—K method satisfying Assumption
4.1. Let u be a smooth solution of the problem, as in Theorem 5.2 and 5.4, and assume that the initial
value is approximated as

||142 — (Pow) (, O)lr2¢r 0y < Coh’.

Then there exists iy > 0 and 7y, > 0, such that for 2 < hy and 7 < 1, the following error estimate holds
fort, =nt <T:

n 1
j 2 2 1 2
Ity = st 2 + (7 D 1V, = vr<,j)u<.,tj>||L2(r(,j))) < C(e" + 1?).

Jj=1

The constant C is independent of s, t and n, but depends on 7" and on the solution u.
Assuming that we have more regularity: conditions of Theorem 5.4 are additionally satisfied, then
we have p instead of ¢ + 1.

THEOREM 5.8 (ALE-ESFEM and BDF) Consider the ALE-ESFEM as space discretization of the
parabolic problem (2.1) with time discretization by a k-step backward difference formula of order & < 5.
Let u be a smooth solution of the problem (as in Theorem 5.5) and assume that the starting values are
satisfying

max ||t — (Pou) (., 1)]],2 < Coh?.
[max lu), — (Put) ., t)12¢r o)) < Co

Then there exists iy > 0 and 7y, > 0, such that for & < hy and T < 7, the following error estimate holds
fort, =nt <T:

n 1
n i 2
i, = otz +h(T D2 190t = VeI g, ) = O + 1),

j=1

The constant C is independent of /2, t and n, but depends on 7 and on the smooth solution u.

Proof of Theorem 5.7-5.8. The global error is decomposed into two parts:

= uCty) = () = P (o) + (P 1) = u 1),

and the terms are estimated by previous results.

The first term is estimated by a combination of the theorems and lemmas from the previous sections,
in particular the convergence results for R-K or BDF methods: Theorem 5.2, 5.4 or 5.5, respectively,
together with the residual bound Theorem 5.1, and the errors for the Ritz map and for its material
derivatives (Lemma 3.14).

The second part is estimated again by the error estimates for the Ritz map (Lemma 3.14).

The h and T independency holds, since all our previous results are shown to be independent of these
quantities and therefore this property is preserved. The constant 7, depends on the ALE velocity (see
Lemma 3.5). O
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6. Numerical experiments

We present numerical experiments for an evolving surface parabolic problem discretized by the original
and the ALE evolving surface finite elements coupled with various time discretizations. The fully discrete
methods were implemented in Matlab and DUNE Dedner et al. (2010), while the initial triangulations
were generated using DistMesh from Persson & Strang (2004).

The ESFEM and the ALE-ESFEM case were integrated by identical codes, except the involvement
of the nonsymmetric B matrix and the evolution of the surface. The ODE system giving the surface
movement (see (6.1) below) was solved by the same time discretization method as the PDE problem
itself (with the same step size), while in one experiment the ALE map is given (see (6.2)).

To illustrate our theoretical results, we choose two problems which were intensively investigated
in the literature before; see Dziuk et al. (2012); Lubich et al. (2013); Elliott & Venkataraman (2015)
and Barreira et al. (2011). Specially for ALE experiments, see Elliott & Styles (2012) and Elliott &
Venkataraman (2015). For all experiments the material velocity equals the normal velocity.

Observed order of convergence: With the aid of the first experiment, we will present experimental order
of convergences (EOCs). We choose a problem which was presented before in, e.g., Dziuk et al. (2012).
Namely, the surface is given by

re={xelk|a®)'xj+x+x3—1=0},

where a(t) = 1 4+ 0.25sin(2x¢t). The problem is considered over the time interval [0, 1]. The right-hand
side f was computed as to have u(x, t) = e~%x,x, as the true solution of the problem (2.1).

The normal velocity is given by the above distance function (cf. Dziuk & Elliott (2007a, Section 2.)).
The ALE velocity is chosen to be

0.257 cos(2mt)

)= o
Wil D = T 25 snan

wy(x,1) =0, wi(x,1) = 0.

Discretization in space is always done with ALE-ESFEM. Discretization in time is done with BDF
1 and BDF 3. Let (7;(t))k=12..... and (7x)x=12..., be a series of triangulations and time steps. We choose
2hy =~ hy_, and for BDF 1 41, = t,_; with initial step 7; = 0.1. For BDF 3 we choose VA7, = 7, with
initial step t; = 0.01. By ¢; we denote the error corresponding to the mesh 7;(¢) and stepsize 7. Then
the EOCs are given as

Eoc, = /e (k=2,3,....n)
k ln(2) ) ISR I .

In Tables 1 and 2, we report on the EOCs, for the ALE-ESFEM with backward Euler method (BDF 1)
and BDF 3, respectively, corresponding to the norm and seminorm

012y . n
L*(L7) : lfélnagv g, — uCos ) l22(r gy

N 12
LY (o3 1m0 = 4680 2r)
n=1

The results for BDF 1 have already independently been reported in Elliott & Venkataraman (2015).
The non-ALE data for the same example can be found in Dziuk ef al. (2012) and Mansour (2013).
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TABLE 1 Errors and EOCs for BDF 1 in the L*(L?) and
L?*(H") norms for the ALE case

Level dof L>®(L?) EOCs L*(H") EOCs

1 126  0.02455766 — 0.05203599 —

2 516 0.00753037 1.7053 0.01689990 1.6224
3 2070 0.00201268 1.9036 0.00583376 1.5345
4 8208 0.00051164 1.9759 0.00282697 1.0451
5 32682 0.00012858 1.9923 0.00141542 0.9980

TABLE 2 Errors and EOCs for BDF 3 in the L*(L?*) and
L*(H") norms for the ALE case

Level  dof L>(L%) EOCs L*(HY) EOCs

126  0.00917003 — 0.02266929 —
516 0.00246862 1.8932 0.00977487 1.2136
2070 0.00061587 2.0030 0.00442116 1.1447
8208 0.00015516 1.9889 0.00210023 1.0739
32682 0.00003929 1.9815 0.00098204 1.0967

(O I SO I S

Comparison of ALE and non-ALE methods: We consider the evolving surface parabolic PDE (2.1) over
the closed surface I"(¢) given by the zero level set of the distance function

X
L(1)?

A0 =3+ 8 +KOG(£) —K@2 ie, T'()i={xe R | d@n =0},

Here the functions G, L and K are given as

@)
200/’
L(t) = 1 + 0.2 sin(47 1),
K(t) = 0.1 +0.05sin(27 7).

G(s) = 200s (s _

The velocity v is the normal velocity of the surface defined by the differential equation (formulated for
the nodes):

d —d,d(a;, 1) Vd(a;t)
—a; = Vn, h Vi — 2 2 =" 6.1
a = M Y T Wa@ YT Vda ] b

The right-hand side f is chosen as to have the function u(x, #) = e~x,x, to be the true solution of (2.1).
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Finally, we give the applied ALE movement (from Elliott & Styles (2012) and Elliott & Venkataraman
(2015)):

K@® K(1) L()

X0)’ (ai(®)2 = (@)=,  (ai(0)s = (ao(1))3 — (6.2)

(ai() = (@) X0)’ 70y

hence d(a;(t),t) = 0 forevery t € [0,T], fori =1,2,...,N.
The discrete surfaces evolved with normal and ALE velocities are shown in Fig. 1, for time r =
0, 0.2, 0.4, 0.6.

FiG. 1. Meshes with 376 nodes. Left: normal movement, with Radau ITA method (s = 3). Right: ALE movement.
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In the following we compare the ALE and non-ALE methods with three spatial refinements and
integrate the evolving surface PDE with various time discretizations, with a time step 7, until 7 = 0.6.
Weset e, (.,1) :=uy(.,T) —u(.,T) (T = nt), and compute the following norm and seminorm of it

lenls = ”eh(-’T)”Lz([’(T))’ lenla := ||vFeh(~’T)||L2(F(T))'

The following plots show the above error norms at time 7 = 0.6 (left M-norm, right A-seminorm) plotted
against the time step size t (on logarithmic scale) and different error curves are representing different
spatial discretizations.

In the experiments we used three different time discretizations. The convergence in time can be seen
(note the reference line). For sufficiently small time steps t the spatial error is dominating, in agreement
with the theoretical results. The figures show that the errors in the ALE-ESFEM are significantly smaller
than for the non-ALE case.

Figures 2 and 3 show the errors obtained by the backward Euler method coupled with the two different
spatial discretizations.

The following plots (Figs 4 and 5) show the same norms, but they are made by the five order Radau
ITA method (s = 3) as a time integrator.

The last two figures (Figs 6 and 7) show the results obtained by the three step BDF method.

In the case of BDF methods with non-ALE-ESFEM, for bigger values of t, the surface itself (but not
the PDE) is evolved with smaller time steps due to difficulties within the time integration of the surface.
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Computing arbitrary Lagrangian Eulerian maps
for evolving surfaces

Balazs Kovécs*

Abstract

The good mesh quality of a discretized closed evolving surface is often
compromised during time evolution. In recent years this phenomenon has
been theoretically addressed in a few ways, one of them uses arbitrary
Lagrangian Eulerian (ALE) maps. However, the numerical computation
of such maps still remained an unsolved problem in the literature. An ap-
proach, using differential algebraic problems, is proposed here to numer-
ically compute an arbitrary Lagrangian Eulerian map, which preserves
the mesh properties over time. The ALE velocity is obtained by find-
ing an equilibrium of a simple spring system, based on the connectivity
of the nodes in the mesh. We also consider the algorithmic question of
constructing acute surface meshes. We present various numerical experi-
ments illustrating the good properties of the obtained meshes and the low
computational cost of the proposed approach.

Keywords: arbitrary Lagrangian Eulerian map, evolving surfaces, evolving
surface PDE, evolving surface finite elements
AMS: 65M50, 34A09, 35R01

1 Introduction

Partial differential equations on evolving surfaces with a given velocity v have
been discretized using a huge variety of methods. Probably one of the most
popular is the evolving surface finite element method developed by Dziuk and
Elliott in [DEO7].

As it was pointed out by Dziuk and Elliott early on, in Section 7.2 of [DEOQT]:
”A drawback of our method is the possibility of degenerating grids. The pre-
scribed velocity may lead to the effect, that the triangulation T'y,(t) is distorted”.
The same issue occurs for problems in moving domains.

In recent years this problem has been theoretically addressed in a few ways:

e Spatial discretizations using arbitrary Lagrangian Fulerian (ALE) maps
for moving domains have been studied many times in the literature, see
for instance [FN99, FN04] and [BKN13b, BKN13a], and the references
therein.

e The ALE version of the evolving surface finite element method has been
proposed by Elliott and Styles in [ES12], where a better triangulation is

*e-mail: kovacs@na.uni-tuebingen.de, Address: Mathematisches Institut, Universitat
Tibingen, Auf der Morgenstelle 10, 72076 Tibingen, Germany



obtained using an ALE map, i.e., allowing the nodes of the mesh to evolve
with a velocity having an additional tangential component compared to
the (pure normal) surface velocity.

e Elliott and Fritz [EF16a, EF16b] constructed meshes with very good prop-
erties using the quite technical DeTurck trick.

We propose here to compute an arbitrary Lagrangian Eulerian map for closed
evolving surfaces, with a focus on evolving surface finite elements, by integrating
a differential algebraic equation (DAE) system for the nodes. We use a not nec-
essarily tangential ALE velocity to achieve good mesh quality, while enforcing
the points to stay on the surface.

To our knowledge there is no such ALE algorithm for evolving surfaces avail-
able in the literature, in contrast with the many papers on the theory of numer-
ical methods involving ALE maps for both closed evolving surfaces and moving
domains.

Many experiments with evolving surface finite elements have been presented
in the above references, especially see [ES12, EV15, KPG17], where smaller
discretization errors have been obtained by solving evolving surface problems
on ALE meshes. The ALE maps used in these experiments were unrealistic,
obtained analytically from an a priori knowledge on the surface and its evolution,
using deep understanding and structure of the signed distance function (which
defines the surface). No general ideas on the computation of ALE maps for
evolving surfaces have been proposed in these papers. Numerical analysis of
the ALE evolving surface finite element method has been studied in [EV15] and
[KPG17].

Standard mesh generation algorithms (see e.g. [FG00, TWMS85], and the
references therein) could be used in each timestep to generate a mesh of good
quality. This would require to compute a map — between the old and the new
mesh — after each remeshing process. From a theoretical point of view this
seems a minor issue, however from the implementation side this is undesirable,
since in most cases this is a nontrivial and costly task, and hence, should be
avoided. The same is true for non-ALE methods, since there it is usual that
nodes disappear and/or new nodes are added to the mesh (see, e.g., [EF16a,
Figure 14]).

In the present paper we propose a general algorithm to compute a suitable
ALE map, without any a priori knowledge, for meshes of closed evolving surfaces.

The approach is based on the following idea: Usually, the surface evolution is
given by an ODE system with a surface velocity. We use an additional tangential
velocity for a possibly degenerated mesh to improve grid quality. In general
such tangential velocities are not straightforward to construct, therefore we use
a not necessarily tangential ALE velocity and introduce a constraint to keep
the nodes on the surface. Altogether this is finally formulated as a DAE system
for the nodes. The ALE velocity is based on a spring system, where the nodes
are connected along the edges by springs. Then the algorithm approximates
the equilibrium point of this spring system. The numerical solution of the
DAE system gives the new mesh. We use implicit Runge-Kutta methods (in
particular Radau ITA methods), and a more efficient splitting method, combined
with explicit Runge-Kutta methods, to integrate the system in time.



The computation of the arbitrary Lagrangian Eulerian mesh here is free of
any a priori knowledge in the following sense: the algorithm uses the distance
function at each time, but it does not use its structure or any other special
properties of it, unlike the ALE maps from the literature.

This approach for closed evolving surfaces can be used as a tool in the
computation of ALE meshes for moving domains: In [FN99, Section 2.4] arbi-
trary Lagrangian Eulerian maps for moving domains are obtained by solving a
parabolic problem, or the corresponding stationary problem, while in [FLM95]
an elastodynamic equation system is used for the same purpose. However, for
these approaches the evolution of the boundary still needs to be known a pri-
ori. The problem of numerically finding such a boundary evolution has not
been solved in these papers. In fact, to determine such a boundary evolution is
equivalent to finding an ALE map for a lower dimensional closed surface, which
is the same problem as we consider in this paper. Hence, the algorithm pro-
posed here can also serve as a tool to compute boundary evolutions, which can
be used together with the well understood classical ALE methods for moving
domains, for instance the ones proposed in [FLM95, FN99).

We give some further details on possible extensions of the proposed algo-
rithm: to handle other mesh properties (e.g., acuteness), an adaptive version,
and a local version as well.

We present various numerical experiments illustrating the validity of the
differential algebraic model, and also the performance of the proposed algorithm
compared to the ALE maps given in the literature. We also report on errors
and computational times in the case of evolving surface PDEs.

2 Evolving surfaces, ALE maps and PDEs

As our main motivation lies in the numerical solution of parabolic PDEs on
evolving surfaces we shortly recap the setting of [DE07]. We will also use this
setting as an illustrative background to the proposed algorithm.

Let I'(t) ¢ R™*1 0 <t < T, be a smooth evolving closed hypersurface.
Further, let the evolution of the surface be given by the smooth velocity v,
usually assumed to be normal. Let 0°u = 0;u + v - Vu denote the material
derivative of w, the tangential gradient is denoted by Vr and given by Viu =
Vu — Vu - vv, with unit outward normal v. We denote by Ar = Vr - Vr the
Laplace—Beltrami operator.

We consider the following linear evolving surface PDE:

0°u+uVpy -v—Appu=f  onI(t), 1)
u(-,0) =ug onI(0).

Basic and detailed references on evolving surface PDEs and on the evolving sur-
face finite element method (ESFEM) are [DE07, DE13a, DE13b] and [Man13].
The ALE version of the evolving surface finite element method has been pro-
posed in the paper [ES12], which also contains a detailed description and many
experiments. While numerical analysis of full discretizations can be found in
[EV15] and [KPG17], the former is more concerned about spatial discretiza-
tions and BDF methods of order 1 and 2, while the latter is more focused on
high-order BDF and Runge-Kutta time discretizations.



It is important to note that we aim at the numerical solution of the PDE (1)
using the evolving surface finite element method developed by Dziuk and Elliott
[DE07], the surface is discretized using a triangular mesh. The description of
representation of evolving surfaces and that of discrete surfaces can be found in
the following subsections.

2.1 Surface representations

Evolving surfaces are usually described in two ways, which have different ad-
vantages, hence we will use both of them for various purposes.

Distance function representation. Based on a signed distance function
the evolving m-dimensional closed surface I'(t) C R™*! is given by

T(t) = {x € R™! | d(z,t) = 0},

with a function d : R™*1 x [0, 7] — R (whose regularity depends on the smooth-
ness of the surface), cf. [Dzi88, DEQ7].
Diffeomorphic parametrization. The surface can also be described by a
diffeomorphic parametrization, cf. [KLLP17] and [DEQT].
We consider the evolving m-dimensional closed surface I'(t) C R™*! as the
image
I'(t) ={X(p.t) [ p € T(0)}

of a sufficiently regular vector-valued function X : I'(0) x [0, T] — R™*! where
I'(0) = I'Y is the smooth closed initial surface, and X (p,0) = p. It is convenient
to think of X (p,t) as the position at time ¢ of a moving particle with label p,
and of I'(¢) as a collection of such particles. The parametrisation also satisfies
the ODE system, for a point p € T'(0),

atX(pa t) = ’U(X(p, t)at)v (2)

where v(-,t) € R™T! is the velocity of the surface (using the distance function
given by v = Vv with v = Vd/|Vd| and V = —9,d/|Vd|). Note that for a
known velocity field v, the position X (p,t) at time ¢ of the particle with label p
is usually obtained by solving the ordinary differential equation (2) from 0 to ¢
for a fixed p.

We assume that the surface does not develop topological changes due to
the evolution. This assumption seems to be restrictive, yet reasonable. Since,
the evolving surface finite element setting is in the focus, which already cannot
handle such topological changes, cf. [DEQ7].

2.2 Surface approximation

The smooth initial surface I'(0) is approximated by a triangulated surface I';(0),
i.e., an admissible family of triangulations 7, (0) of maximal element diameter h;
see [DEO07] for the notion of an admissible triangulation, which includes quasi-
uniformity. Let x;(0), (j =1,2,...,N) denote the nodes of I';(0) lying on the
initial smooth surface I'(0). The nodes will be evolved in time with the given
normal velocity v, by solving the ODE

%xj(t):v(xj(t),t) (j=1,2,...,N), (3)



which is simply (2) for the nodes (z;). Obviously, the nodes remain on the
surface I'(t) for all times, i.e., d(z;(t),t) = 0 for j = 1,2,..., N and for all
te 0,7

Therefore, the smooth surface I'(¢) is also approximated by a discrete surface
I'n(t), whose elements also form a triangulation 75(¢). We have

= |J E@.

E()€Th(t)

The assumption on quasi-uniformity over time, i.e., there is a fixed ¢ > 0
(independent of t) such that for any triangle E(t) € Tp(t) the radius of the
inscribed circle o g satisfies

hew .,
OE(t)
for all ¢t € [0,T], is generally not always satisfied during time evolution.

As an example to degenerating surface evolution, from [ES12], we evolved
a surface using the ODE (3). As observed in Figure 1: however the initial
mesh (left) is quasi-uniform and the surface evolution is also not complicated,
the meshes at later times (middle and right) do not preserve the good mesh
qualities. Both quite bad surface resolution and unnecessarily fine elements
occur.

Figure 1: Normal evolution of a closed surface at time ¢t = 0,0.2, 0.6; see also in
[ES12]

3 Computing ALE maps as general constrained
problems

We now propose an approach which will be used to determine a suitable ALE
map for evolving surfaces, to maintain mesh quality during the surface evolution.
In fact, we directly compute the new positions of the nodes.

We consider another parametrization of I'(t), with good mesh properties,
and which is different from X in (2), called an arbitrary Lagrangian Eulerian
map. The corresponding ODE system is

0 X (p,t) = v(X(p, 1), 1) + w(X(p, 1), 1), (4)

with the pure tangential velocity w.
For evolving surface problems the surface velocity v is usually assumed to
be known. However, such pure tangential ALE velocities are not given, and



also not easy to obtain, in general. Therefore, we allow velocities (still denoted
by) w which improve mesh quality, but have small non-tangential components,
hence may lead points away from the surface. To compensate this, a constraint
is introduced in order to keep the smooth surface I'(t) unaltered. Therefore,
the set of ODEs (4) is modified into the following differential algebraic equation
(DAE) system (of index 2) with Lagrange multiplier A, for p € I'(0),

X (p.t) = v(X(p,1),t) + w(X; X (p, 1), 1) = D(X(p,1)) " A(p, 1), 5)
d(X(p,t),t) = 0,

where D(X) = 0d(-,t)/0X. The first argument X in w indicates that the
additional velocity may (and usually does) depend on the whole surface. As it
causes no confusion we will drop this argument later on.

The analogous differential algebraic equation system for the nodes of the
surface approximation mesh I'y(t), which are collected into the vector x(t) =
(;(t))Y.;, and with Lagrange multiplier () € RY, reads as

d
3¢ X() = v(x(t), ) + w(x(?),t) — D(x(t))" (1), (©)
d(X(t)at) =0,

with initial value x(0) = (x](O));Vzl The constraint d(x(t),t) = 0 is meant
pointwise, i.e., as d(z;(t),t) = 0 for j = 1,2,..., N, while the matrix D(x) =
dd(-,t)/ 9x. Concerning notation: we will apply the convention to use boldface
letters to denote vectors in R3YN or RN collecting nodal values of discretized
variables.

Naturally, the DAE system is independent of the choice of the ALE velocity
w, if there is some (physical, biological or modeling) knowledge on the gen-
eral type of the surface evolution a user can propose a suitable ALE velocity
accordingly.

In the next sections we will propose a very intuitive way to define the ALE
velocity w, and we will also discuss numerical methods for the solution of the
DAE system.

3.1 A spring system based arbitrary ALE velocity

We use here a simple idea to determine the velocity w: let us assume that the
nodes of the mesh are connected by springs following the edges of the elements,
i.e., the topology of the spring system is determined by the triangulation I'y,(¢).

This system defines a force function F', which we use to define the ALE
velocity by setting

w(x,t) = kF(x), with a spring constant k chosen later. (7

The force function F' is computed based on the connectivity (described by the
elements), and by the forces over the edges based on a length function ¢, (the
desired length of springs). The net force F;(x) at a node x; is given by, for
j=1,2,...,N,
Fix)= Y flo), (8)
e€{(z;,)}



where the set {(x;,-)} collects all the edges e = (z;, (x;)¢) having z; as one of
their nodes, while (x;)¢ simply denotes the other node across the edge e, see
Figure 2. Then f(e) is the force along the edge e, given by

: : xj — (5)°
fle) = (£,(e) —le|) ve, with unit vector v, = —2—-22_
() = (&(e) = el ;= ()]

and current length |e|.

{(z5,)}

()¢ e s
. >

Ve

Figure 2: A typical node z; on an edge e, the set of edges {(z;,-)}, etc. used to
define Fj(x)

We propose to use the following length function, which cuts off the extremely
small and large edge lengths, therefore leading to equidistribution:

pme+(1*p)Me, if|6| meeJF(l*p)Mea
ép(e) = (1 _p)me +pM., if |6| < (1 - p)me + pMe,
le], otherwise,
where  (me = min le], M, = m3x|e|, p € (0,1/2)).
(9)

Other length functions can also be used, for instance the C* version of ¢,
(i.e. smoothed cutoff), or more complicated functions, such as the analogue of £,
with more steps. Force functions based on inverse edge length are also possible
to use.

The same force function (8) has been used by Strang and Persson in DistMesh
[PS04]. However, constrained systems are not appearing there, and our length
function has significant differences compared to the one used in DistMesh. They
have not used their approach to compute ALE maps. In particular compared
to DistMesh, we do not add or delete nodes (which is essential in DistMesh for
the meshing), furthermore we compute the ideal spring length in a different way
(DistMesh having a rule which fits better with the possibility to delete nodes
and also with the startup of their process).

As Strang and Persson encourage their users to ”/[...] modify the code ac-
cording to their needs”, we indeed adapt DistMesh to suit our purposes: the
force function is computed using their modified code.

3.2 The DAE system
By plugging in the velocity rule (7) into the DAE system (6) we obtain

Cx(t) = v(x(1), 1) + KE(x(1) ~ Dee(1) M),

d(x(t),t) = 0.



with the spring constant k, which has to be chosen by the user based on the
problem at hand. The numerical approximation of this system immediately
gives the position of the nodes under the ALE map.

In the following we will propose some numerical methods for the time inte-
gration.

3.2.1 Runge—Kutta solution of the DAE system

For a given stepsize 7 > 0, an s-stage implicit Runge-Kutta method, see [HW96,
Section VII.4], applied to the DAE system (10) determines solution approxima-
tions x"*! and approximations to the Lagrange multiplier A", as well as the
internal stages X,,;, A,; by the equations

Xnv', :Xn+72aij-/—"(xnjaAnj)a i:1,27...75, (11)
j=1

Ani:)\n‘i’TZaijenj; i:1727"'757 (12)
7j=1

X=X Y B F (X, Ag), and A= A2 Y bk, (13)

i=1 i=1
where, for i = 1,2,...,s,

and d(XnZ, tni) 0. (15)

First the system (11), (14), (15) is solved, using a simplified Newton iteration,
then one can compute £,,; from (12), and finally obtain x"*', A"*! from (13).
The method is determined by its Butcher-tableau, i.e., the coefficient matrix
?2: (aijgf’j:1 and its vector of weights b = (b;)7_1, and ¢; = Z§=1 a;; (i =
32,0, 8).

In the following we will use the Radau ITA methods, which are s-stage
Runge-Kutta methods of classical order 2s — 1. More details on index 2 DAEs
in general, as well as on their Runge-Kutta approximations can be found in
[HLRO6], or [HW96, Chapter VIL].

3.2.2 Splitting methods for the constrained system

We propose to solve the DAE (10) using a splitting method, in order to decrease
computational time. This is supported by making the following observations:
The implicit Runge-Kutta solution of the DAE system is usually expensive.
The normal movement is a pointwise nonstiff ODE system, without constraint
(if integrated exactly), hence usually can be solved very cheaply. Also there
are some examples where the normal velocity is not explicitly given, the surface
evolution is defined by a direct mapping of a reference surface, i.e., we cannot
use the system (10), see for example the surface [DKM13, Test Problem 2],
[LMV13, equation (6.1)].

The most straightforward way is to split the differential algebraic problem
(10) in a way that one of the subproblems is the original ODE system (3). The



main benefit is that this subproblem automatically satisfies the constraint up
to a small error.
The Lie splitted DAE system, over the time interval [t,, t,+1], reads as

d v v d w w w
T X (0 =v(x"(),1), 3 X (1) = BF( (1)) = D" (£)TA(),
d(x*(t), tn41) = 0,
x"(tn) = x(tn), x"(tn) = x"(tn+1),
(16)
and finally, setting x(t,41) = Xx“(tnt1), and where F is a function is de-

fined in (8), while the constraint is still meant coordinatewise and D(x) =
Ad(-,tn+1)/ 0x. In fact, this order of subproblems allows us to drop the con-
straint from the v-system, as the second system will eliminate the small errors
mentioned above.

In order to decrease computational time, we solve the v-system using the
explicit Euler method. We do not require a high-order method here, as the
mesh quality depends only on the second step. For the time integration of the
w-system we use the classical 4-stage Runge-Kutta method and then projecting
back to the surface. Due to the stiffness of the problem, it is approximated
through several substeps over interval [t,,t,+1]. We choose this method, since
being explicit, it is very cheap, having only four right-hand side evaluations per
step, but still have high-order.

We make some general remarks on the methods described above.

Remark 3.1. If a parabolic PDE is numerically solved on the discrete surface
Tp(t,) then the matrices are assembled on the improved mesh, using the ALE
scheme, cf. [EV15, (4.3) and (4.4)] or [KPG17, (3.5) and (3.6)]. The tangential
vector appearing in the formulas for ALE ESFEM can be computed from the
obtained nodes and from the normal velocity.

The algorithm clearly uses the surface velocity v in the exact same way as for
the purely Lagrangian ESFEM algorithms: only to evolve the surface. However,
the distance function is used as the constraint (being an inexpensive pointwise
operation), which is avoided by the standard ESFEM method.

It is usual to use the same time discretization method for the surface evolu-
tion as for the time integration of the parabolic PDE on the surface. This time
discretization scheme could be also used to solve the DAE or the splitted system.

Remark 3.2. Higher order splitting methods, or splittings where the order of
subproblems is reversed would not improve the mesh quality. Since, the mesh
quality only depends on the sufficiently good numerical solution of w-system,
while the v-system takes care of the surface evolution. For example, a reversed
Lie splitting would first construct a good mesh, then evolve it over time in the
normal direction, which can still lead to mesh distortions.

4 Possible extensions

We now briefly describe some further extensions to the above approach. They
are rather straightforward to implement, except the one using an approximative
distance function (such approximative distance functions are studied, e.g., in
[Cha07, HDD™"] and the references therein). However, thoroughly comparing



and reporting on these extensions would expand the paper enormously, therefore
we will here restrict our numerical experiments to the case described above.

4.1 Construction of acute or nonobtuse surface meshes

In a couple of recent works discrete maximum principles (DMPs) and invariant
regions have been studied for surface PDEs discretized by surface finite ele-
ments, see [FMSV16, FMSV17] and [KKK17]. It is well known that acute or
nonobtuse meshes are required for DMPs even for flat domains, and also for tri-
angulated surface meshes. In general the meshes generated by usual algorithms
(for instance DistMesh [PS04], the grid generators of DUNE [BBD'16], etc.)
do not necessarily satisfy these angle conditions.

The force function proposed here can be modified in such a way that the
resulting mesh is acute or nonobtuse during evolution. In practice, the function
F should be obtained not only based on the length function (9), but also on an
angle function, which does not allow angles approaching a prescribed tolerance
aror, given by the user. This can be viewed as three cords added to a triangle
at each angle, which does not allow the angles to expand above the specified
angle aTor,.

4.2 Approximating the distance function

The usage of the distance function could also be completely avoided in the
splitting scheme. By using a modified distance function d(-,¢,+1), which is an
approximation of d(-,¢,+1) based on the nodes obtained from the v-system.
Such an approximation can be obtained by a suitable interpolation process over
the nodes x¥(¢,,4+1). For instance by a spline interpolation over the nodes, this
problem appears to be well studied in the computer science literature, see for
example [HDD™, Cha07] and the references therein.

This approach can be useful also in cases where the surface evolution is
coupled to the problem on the surface, such as [Dzi90], or [KLLP17].

We note here that in the case of such a modified algorithm the nodes x(¢,,+1)
no longer stay on the exact surface for all times. Therefore, the spatial con-
vergence results of [EV15, KPG17] do not hold. However, in order to show
convergence results the approach of [KLLP17] — using three surfaces: the exact
surface, its interpolation and the discrete surface — can be used in this case.

4.3 Adaptivity

A cheap adaptive method can be obtained by using some mesh quality test dur-
ing the time integration of the autonomous w-system of the splitting approach.
In this case the following algorithm could be realized — assuming a fast imple-
mentation of the mesh quality tester. First test the mesh quality, if it is good
accept it; else perform a timestep solving the w-system in (16), and then repeat.
In such a case the numerical solution of the DAE system is avoided for already
good meshes, whereas the computational overhead due to the mesh quality test
is negligable.

Later on we will give some possible mesh quality measures, but it can be
anything suitable specified by the user, cf. [Knu01, Fie00].
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4.4 A local version of the constrained problem

To further decrease computational cost of the Runge-Kutta or the splitting
method one may use an ALE map only locally. Since in most cases the evolution
of the discrete surface distorts the mesh only locally, one could integrate the
constrained system only on those patches which consist of ill shaped triangles,
(e.g., those with too small or large angles), and additionally a few layers of
neighbouring elements. The rest of the nodes are only evolved by the surface
velocity.

5 Numerical experiments

5.1 ALE map tests

Now we will present some numerical experiments validating the choice of the
ALE velocity (7) based on the spring system, and also illustrating the good
qualities of the DAE model (10). We also compared the Runge-Kutta and the
splitting approach to the pure normal evolution of the surface and also to the
ALE maps given in the literature. These examples have been used many times
previously, see for instance [ES12, EV15, KPG17] and the references therein.
Through these ALE maps, which we call literature ALE maps, it will be also
clarified further what was meant under a priori knowledge in the introduction.

5.1.1 A dumbbell-shaped surface [ES12]

Let the closed surface I'(¢) be given by the zero level set of the distance function

2
d@J%zﬁ+ﬁ+KﬁVG(J%J—K@V, i, T(t)={reR?|d(zt) =0}
(17)
Here the functions G, L and K are given by
199
G(s) = 200s (s - %),

L(t) = 1+ 0.2sin(4nt),
K(t) = 0.1 4 0.05sin(27t).

The normal velocity v describes the surface evolution at the nodes by the ODEs:

d
3¢ &9 (0) = v(z;(2), 1) (18)

for j =1,2,..., N. The surface velocity v in z;(¢) is given by

— 9, d(z;(1), 1) Vd(z;(t), 1)

v(z;(t),t) = Viv;, where V,= , V= -—2o 2 (19
00 =1, 1= Wy .01 W00 Y
Finally, the literature ALE map is given by
K(t) K(t) L(t

(@i(t)1 = (%‘(0))1[((0)7 (zi(t))2 = (xi(o))2m, (zi(t))s = (xi(O))sL(O))a
(20)

11



for every t € [0,T] and for ¢ = 1,2,..., N, as suggested in [ES12]. This map
clearly uses a priori knowledge on the structure of the distance function (17).

To illustrate the good qualities of the DAE model (10) we evolve the surface
(17) with all four methods. In Figure 3 we can observe the evolutions of the
discrete initial surface I',(0) over [0,0.6]. It can be nicely observed that the
quality of meshes obtained by both DAE approaches are very similar, however
the splitting approach is much faster.

Firstly, plotted on the left-hand side, the purely normal surface evolution
obtained by solving the ODE system (18). We have used here the explicit Euler
method, with step size 7 = 0.001. Although, this method is clearly not the best
choice, we used it in order to illustrate the performance of the proposed ALE
algorithms.

Secondly, plotted second from the left, the ALE map (20) proposed in the
literature, cf. [ES12], based on the structure of the distance function (17).

Thirdly, plotted third from the left, the Runge—Kutta solution of the DAE
system (10), using the Radau ITA method with s = 3 stages, with a stepsize
7 =0.001, and k = 500, p = 0.4 in (9).

Finally, plotted on the right-hand side, the ALE map obtained by the split-
ting method. The evolution and the ALE map is computed exactly as described
in Section 3.2.2. The wv-system is solved by the explicit Euler method, with
7 = 0.01, while the w-system is solved using the classical Runge-Kutta method
of order four with 25 substeps, and again p = 0.4

It can be nicely observed visually that both ALE approaches provide meshes
of similar quality as the literature ALE map.

12
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Figure 3: Surface evolution of (17) using pure normal movement (18) (first
from left); literature ALE map (20) (second); Runge-Kutta ALE map (third);
splitting ALE map (fourth), times ¢ = 0,0.2,0.4,0.6 (from top to bottom).
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Figure 4: Mesh quality measures plotted against time

In Figure 4 we plotted the evolution of four mesh quality measures (cf. [Fie00])
for all four surface evolutions (described above) against time.
In the top left the maximal ratio of element size and the radius of the in-
scribed circle,
r(t) = max hew
E(t)eTn(t) OB(t)
can be observed, where hg is the maximal edge length and o is the radius of
the inscribed circle of a triangle E € Tp(t). The same mesh quality measure
is also used in [EF16a]. The plots on the right-hand side show minimum and
maximum angles (min(t) and amax(t), top and bottom, respectively) of the
mesh, i.e.

Qmin(t) = min minag, and Qmax(t) = max maxag,
EcTn(t) Ee€Ty(t)
where ap contains the three angles of the triangle £ € T,(t). Finally, the
bottom left plot shows the maximal skewness (also called equiangular skew)

5(t) = maxp)eT, () SE(t), Where s is the skewness of a triangle E' € Tj(t), and
it is defined as

maxag — 60° 60° —minag
120° ’ 60°

}e [0,1].

The skewness (or equiangular skew) measures how irregular the triangle E is,
see [ANS]. For example, for a regular triangle sg = 0 and for highly irregular
ones sg tends to one. Usually, a mesh is considered good with skewness less
than 0.5, while non-acceptable if its skewness exceeds 0.8.

SE zmax{
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In Figure 4 it can be clearly observed that all three ALE maps (literature
and DAE solved by Runge-Kutta or splitting method) provide significantly
better meshes as the purely normal evolution. Also, both ALE maps from the
numerical solutions of the DAE system provide slightly better meshes then the
one suggested in the literature.

5.1.2 Surface with four holes [EV15]
Let the closed surface I'(¢) be given by the zero level set of the distance function

i +G(aB)+K (4G 3 )-1 e, T()={zeR®|d(x1) =0}

L(ty
(21)

K(t)?

d(z,t) =

Here the functions G, L and K are given by

G(s) = 31.25s(s — 0.36)(s — 0.95),
L(t) = 1+ 0.3sin(4rt),
K(t) = 0.1 4 0.01sin(27t).

The normal velocity v describes the surface evolution at the nodes by the ODEs:

d
3¢ & (1) = v(z;(1), 1), (22)

for j = 1,2,..., N, where the surface velocity at z,(¢) is again given by the
formula (19).
Finally, the ALE map from the literature is given by

K(t L(t
(@0 = @Oh g ()2 = @O, @B = @O0 g
(23)
for every t € [0,T] and for i =1,2,..., N, as suggested in [EV15].
In Figure 5, the surface I'(0) (cf. (21)) is evolved over [0,1] again by all
four methods, exactly as for Figure 3. Again, the poor meshes of the normal
movement can be nicely observed (collapsing triangles with almost zero angles),

in contrast with the quasi-regular meshes obtained by the ALE maps.
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Figure 5: Surface evolution of (21) using.pure normal movement (22) (first from
left); literature ALE map (23) (second); Runge-Kutta ALE map (third); split-
ting ALE map (fourth); at times ¢t = 0,0.2,0.4,0.6,0.8,1 (from top to bottom).
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Figure 6: Mesh quality measures plotted against time

Similarly, the mesh quality measures are plotted in Figure 6. All three ALE
methods provide much better meshes than the normal evolution, while they still
yield meshes of similar quality.

5.2 Error behaviour of evolving surface parabolic PDEs

We tested the performance of the spring ALE algorithm by using it in the
numerical solution of an evolving surface PDE. As a well studied example, we
carried out the same experiments over the evolving surface of Section 5.1.1,
which have been also used in [ES12, EV15, KPG17].

The evolving surface PDE (1) is discretized using ALE ESFEM, described
in detail in [EV15, KPG17]. The inhomogeneity f is chosen such that the true
solution is known: u(z,t) = e~y 2,.

5.2.1 Discretization errors

The errors of the obtained lifted numerical solution is calculated in the following
norms at time 7'= N7 = 1:

(-, NT) = up |20 vy and IVr(u(, N7) — up) | L2 (v ey)-

The logarithmic plots, in Figure 7, show the usual convergence plots: the two
errors against time step size 7.

Figure 7 only serves as an illustration that the meshes from the literature
ALE map and from the DAE system yield errors of the same magnitude. More
spatial refinements would obfuscate the readability of the plots. For more de-
tailed convergence tests we refer to [EV15, KPG17].
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Figure 7: L? and H' norms of the errors for different spatial refinements plotted
against the stepsize for the normal movement, literature and splitting ALE maps
(light grey, grey and black, respectively) at time 7" = 1

Figure 7 shows the errors for all three methods concerning the evolution of
the surface (normal evolution, literature ALE and splitting ALE). On the left
we show the errors in the L? norm, while on the right in the H! norm. Different
shades correspond to different ALE maps (light grey, grey and black, respec-
tively), while the lines with different markers are corresponding to different mesh
refinements.

As usual we can observe two regions in Figure 7: A region where the time
discretization error dominates, matching to the convergence rates of the theo-
retical results for the backward Euler method (order 1, not the reference line).
In the other region, with smaller stepsizes, the spatial discretization error is
dominating (the error curves are flatting out).

5.2.2 Computation times

In Figure 8 we also compare the computational times for the pure normal move-
ment and splitting ALE approach (light grey and black in the figure). In
Figure 8 the errors at time 7 = 1 (both in the L? and H' norms, left and
right, respectively) are plotted against the CPU times for different spatial re-
finements (denoted by different markers: O, o, x) and different stepsizes (which
are 7 = 0.05,0.025,0.01,0.005, 0.0025, 0.001, corresponding to the markers).
The CPU times include all computations: normal evolution of the surface, sur-
face matrix assemblies, solution of the linear system, and also the computation
of the ALE mesh in the ALE case. A computational trade-off can be clearly
observed, (see, for instance the two rightmost lines in each plot), that the same
errors can be achieved by the ALE method on a much coarser mesh (having
only quarter as many nodes as the non-ALE mesh), at a computational cost
reduction of factor 10. Again, in the region with smaller stepsizes, the spatial
discretization error is dominating (hence the curves are flatting out).
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Figure 8: L? and H' norms of the errors for different spatial refinements and
time stepsizes plotted against the CPU times (in seconds) for the normal move-
ment and splitting ALE map (light grey and black, respectively)

5.3 Meshes with angle conditions

We also report on a somewhat simplified version of the force function proposed
in Section 4.1 in order to construct acute or nonobtuse meshes.

We consider here a stationary example of a torus. We constructed a trian-
gulation using DistMesh [PS04], seen left in Figure 9, which is not acute, the
largest angle of the mesh is above 100° (see the first entry in rightmost graph
in Figure 9).

As the surface is stationary here, we have the modified DAE system

S x(t) = BP((0) + haFu(x(1)) — DOx()A(D),
d(x(t),t) = 0,

with an additional force function F,, which is used to eliminate non-acute an-
gles. It is defined analogously as the function F', but using a length function
fal(e) based on the angle a. opposite to the edge e, instead of the formula in
(9). If the angle «, is larger than a user given tolerance, the desired length of e
is set to a value based on the law of cosines. As the important force is now Fy,
we set its spring constant k., = 4k. The original force function F' (with p = 0.1
in (9)) is only kept for smoothing reasons. We note here, that these parameters
are not claimed to be used universally.

The numerical solution of the above DAE system yields meshes with favourable
angle properties. We set here the angle tolerance to 85° and integrate the sys-
tem over 25 steps. The maximum angle in each time step can be seen on the
right in Figure 9, it can be observed that the angles quickly drop around the
desired value, while the finally obtained acute mesh can be seen in the middle
of Figure 9.

6 Conclusion

An efficient algorithm has been proposed to compute arbitrary Lagrangian Eu-
lerian maps for closed evolving surfaces, without any a priori knowledge on the
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Figure 9: Acute triangulation of a torus

surface evolution. To the knowledge of the author, such an algorithm was not
presented before in the literature.

The algorithm is based on the fast solution of the a constrained (DAE) sys-
tem, which obtains a tangential velocity based a spring analogy (which equidis-
tributes the grid points). Both the quality of the evolved meshes and the effi-
ciency of the algorithm is demonstrated on various numerical experiments chosen
from the literature.

Various generalisations of the proposed method is discussed. Among them,
an algorithm of ALE maps with angle conditions is also described in detail and
illustrated as well. Such methods are of interest for qualitative results, such as
discrete maximum principles [FMSV16, FMSV17, KKK17].
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High-order spatial discretizations and full discretizations of parabolic partial differential equations on
evolving surfaces are studied. We prove convergence of the high-order evolving surface finite element
method by showing high-order versions of geometric approximation errors and perturbation error estimates
and by the careful error analysis of a modified Ritz map. Furthermore, convergence of full discretizations
using backward difference formulae and implicit Runge—Kutta methods are also shown.

Keywords: parabolic problems; evolving surfaces; high-order ESFEM; Ritz map; convergence; BDF and
Runge—Kutta methods.

1. Introduction

Numerical methods for partial differential equations (PDEs) on stationary and evolving surfaces and for
coupled bulk—surface PDEs have been under intensive research in recent years. Surface finite element
methods are all based on the fundamental article of Dziuk (1988), further developed for evolving surface
parabolic problems by Dziuk & Elliott (2007, 2013b).

High-order versions of various finite element methods for problems on a stationary surface have
received attention in a number of publications previously. We give a brief overview of this literature
here:

* The surface finite element method of Dziuk (1988) was extended to higher-order finite elements on
stationary surfaces by Demlow (2009). Some further important results for higher-order surface finite
elements were shown by Elliott & Ranner (2013).

¢ Discontinuous Galerkin methods for elliptic surface problems were analysed by Dedner ez al. (2013)
and then extended to high-order discontinuous Galerkin methods in Antonietti et al. (2015).

* Recently, unfitted (also called trace or cut) finite element methods have been investigated intensively
(see, e.g., Olshanskii et al., 2009; Burman et al., 2015; Reusken, 2015). A higher-order version of
the trace finite element method was analysed by Grande & Reusken (2014).

However, to our knowledge, there are no articles showing convergence of the high-order evolving surface
finite element method for parabolic partial differential equations on evolving surfaces.

In this article, we extend the H'- and L?>-norm convergence results of Dziuk & Elliott (2007, 2013b)
to high-order evolving surface finite elements applied to parabolic problems on evolving surfaces with
prescribed velocity. Furthermore, convergence results for full discretizations using Runge—Kutta methods,
based on Dziuk et al. (2012), and using backward difference formulae (BDF), based on Lubich et al.
(2013), are also shown.

© The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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HIGH-ORDER ESFEM FOR EVOLVING SURFACE PDES 431

To prove high-order convergence of the spatial discretization, three main groups of errors have to be
analysed:

e Geometric errors, resulting from the appropriate approximation of the smooth surface. Many of these
results carry over from Demlow (2009) by careful investigation of time dependencies, while others
are extended from Dziuk ef al. (2012), Mansour (2013) and Lubich ef al. (2013).

e Perturbation errors of the bilinear forms, whose higher-order version can be shown by carefully using
the core ideas of Dziuk & Elliott (2013b).

* High-order estimates for the errors of a modified Ritz map, which was defined in Lubich & Mansour
(2015). These projection error bounds rely on the nontrivial combination of the mentioned geometric
error bounds and on the well-known Aubin—Nitsche trick.

We further show convergence results for full discretizations using Runge—Kutta and BDF methods.
The error estimates, based on energy estimates, for Runge—Kutta methods shown in Dziuk et al. (2012)
and for BDF methods in Lubich er al. (2013) are applicable without any modifications, because the
semidiscrete problem can be written in a matrix—vector formulation (cf. Dziuk et al., 2012), where the
matrices have exactly the same properties as in the linear finite element case. Therefore, the fully discrete
convergence results transfer to high-order evolving surface finite elements using the mentioned error
estimates of the Ritz map.

The implementation of the high-order method is also a nontrivial task. The matrix assembly of the
time-dependent mass and stiffness matrices is based on the usual reference element technique. Similar
to isoparametric finite elements, the approximating surface is parameterized over the reference element,
and therefore all the computations are done there.

It was pointed out by Grande & Reusken (2014) that the approach of Demlow (2009) requires explicit
knowledge of the exact signed distance function to the surface I". However, the signed distance function is
used only in the analysis, but it is not required for the numerical computations away from the initial time
level. This is possible since the high-order element is uniquely determined by its elements, and by using
the usual reference element technique. It is used only for generating the initial surface approximation.

Here, we consider only linear parabolic PDEs on evolving surfaces; however, we believe our tech-
niques and results carry over to other cases, such as to the Cahn—Hilliard equation (Elliott & Ranner,
2015), to wave equations (Lubich & Mansour, 2015), to ALE methods (Elliott & Venkataraman, 2014;
Kovacs & Power Guerra, 2014), nonlinear problems (Kovacs & Power Guerra, 2016) and to evolving
versions of bulk—surface problems (Elliott & Ranner, 2013). For more details, see a remark later on.
Furthermore, while, in this article, we consider only evolving surfaces with prescribed velocity, many
of the high-order geometric estimates of this article are essential for the numerical analysis of parabolic
problems where the surface velocity depends on the solution (cf. Kovacs et al., 2016).

The article is organized in the following way. In Section 2, we recall the basics of linear parabolic
problems on evolving surfaces together with some notation based on Dziuk & Elliott (2007). Section 3
deals with the description of higher-order evolving surface finite elements based on Demlow (2009).
Section 4 contains the time discretizations and states the main results of this article: semidiscrete and
fully discrete convergence estimates. In Section 5, we turn to the estimates of geometric errors and
geometric perturbation estimates. In Section 6, the errors in the generalized Ritz map and its material
derivatives are estimated. Section 7 contains the proof of the main results. Section 8 briefly describes
the implementation of the high-order evolving surface finite elements. In Section 9, we present some
numerical experiments illustrating our theoretical results.
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2. The problem

Let us consider a smooth-evolving compact surface, given by a smooth signed distance function d,
r® ={x e R™! | dx,t) = 0} ¢ R™! (m < 3),0 <t < T, which moves with a given smooth
velocity v. Let 0°u = d,u + v - Vu denote the material derivative of the function u, where V is the
tangential gradient given by Vru = Vu — Vu - nn, with unit normal n. We are sharing the setting of
Dziuk & Elliott (2007) and Dziuk & Elliott (2013b).

We consider the following linear problem on the above surface, for u = u(x, 7):

u+uVry -v—Arpu=f on I' (1),

(2.1)
u(-,0) = u on I"(0),

where for simplicity we set f = 0, but all our results hold with a nonvanishing inhomogeneity as well.
Let us briefly recall some important concepts used later on, whereas, in general, for basic formulae
we refer to Dziuk & Elliott (2013a). An important tool is the Green’s formula on closed surfaces,

/ Vrwz - Vrp$p = — (Arp2)é.
I ()

We use Sobolev spaces on surfaces: for a smooth surface I" (), for fixed ¢ € [0, T'] or for the space—time
manifold given by ¥r = U, I (t) x {t}, we define

H'(I'(1) = {n € L*(I'(®)) | Vrn € LT @)™},
H' (%) ={n € L*(%) | Vron € (I 0)"',0°n € L*(I' (1))}

and analogously for higher-order versions H*(I"(t)) and H*(¢;) for k € N (cf. Dziuk & Elliott, 2007,
Section 2.1).
The variational formulation of this problem reads as follows: find u € H'(%;) such that

d

— 1210} + f V[*(,)ll . V]*(,)QD = / u3'g0 (22)
dr Jr ra r

holds for almost every ¢ € (0, T) for every ¢(-,t) € H'(I'(¢)) with 3°p(-,1) € L*(I"(¢)) and u(-,0) = u,

holds. For suitable 1, existence and uniqueness results for (2.2) were obtained in Dziuk & Elliott (2007,
Theorem 4.4).

3. High-order evolving surface finite elements

We define the high-order evolving surface finite element method (ESFEM) applied to our problem follow-
ing Dziuk (1988), Dziuk & Elliott (2007) and Demlow (2009). We use simplicial elements and continuous
piecewise polynomial basis functions of degree k.

3.1 Basic notions

The smooth initial surface I"(0) is approximated by a k-order interpolating discrete surface constructed
in (a) below. This high-order approximation surface is then evolved in time by the a priori known surface
velocity v, detailed in (b). The construction presented here is from Demlow (2009, Section 2).
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(a) Let 1",} (0) be a polyhedron having triangular elements (denoted by E) with vertices lying on
the initial surface I"(0), forming a quasiuniform triangulation .7,' (0), with mesh parameter A, and unit
outward normal n;.

Next, for k > 2, we define I}¥(0), the k-order polynomial approximations to I"(0). For a given fixed

element E € ﬂhl (0), with nodes (numbered locally) x;, x,, ..., x,,, the corresponding Lagrange basis
functions of degree k on E are denoted by x5, x5, ..., )Z,’l‘k. For arbitrary x € E, we define the discrete
projection

ng

Ph(x,0) = Zp(xj, 0)x/ (x,0), with  I"(0) 3 p(¥,0) = ¥ — d (¥, 0)n(p(x’, 0)).

j=1

This definition yields a continuous piecewise polynomial map on I’} (0). Then the k-order approximation
surface is defined by

I (0) = {p"(x,0) | x € I}/ (0)}.

The vertices of Fh" (0) are denoted by a;(0),i = 1,2,...,N (here numbered globally). Note that these
vertices are sitting on the exact surface. The high-order triangulation is denoted by .7;f(0). Further small
details can be found in Demlow (2009).

(b) The surface approximation I“h"(t) at time ¢ € [0, T] is given by evolving the nodes of the initial
triangulation by the velocity v along the space-time manifold. For instance, the nodes a;(¢) are determined
by the ordinary differential equation (ODE) system

d j—
$a[(t) =v(a;(?),1).

Then the base triangulation and the basis functions move along as well. Hence, for 0 < ¢t < T, the nodes
(a,-(t))ﬁ.\’:l define an approximation of I"(¢) of degree k,

L0 = {p* 0 | x e (0},

defined analogously as for t = 0. Therefore, the discrete surface Fh" (¢) remains an interpolation of I" ()
for all times. The high-order triangulation at 7 is denoted by .7} (1).

REMARK 3.1 It is highly important to note here that computing p(-,) or p*(-,t), for t > 0, is never
used during the numerical computations, hence explicit knowledge of the distance function is avoided
(except for t = 0). Instead, the positions of the nodes appearing in an element of I} (f) are used to
construct a reference mapping over the reference triangle Ey. In fact, the nodes (locally numbered here)
ai(1),ax (1), ..., a, (¢) of the high-order element uniquely determine an approximating surface of degree
k (being an image of a polynomial of m variables over Ej). The ESFEM matrices are then assembled
using the reference element and the reference mapping.

The discrete tangential gradient on the discrete surface I7(#) is given by

Vr;lf(:)d) 1=V — V¢ - mnj,
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434 B. KOVACS

understood in an elementwise sense, with n],j denoting the normal to [} h" (®).

For every ¢ € [0, T] and for the k-order approximation surface Fhk (t), we define the finite element
subspace of order k, denoted by S5 (1), spanned by the continuous evolving basis functions x; of piecewise
degree k, satisfying x;(a;(t),t) = §; foralli,j =1,2,...,N:

Skt) ={p € CUF®) | ¢ = § op'(-,0)~" where ¢ € S¥(1)}

Span{xl(" t)v XZ(" t)’ L) XN(" t)}’

where

XG0 =50C0"n (G=12,...,N),

with X;(-, ) being the degree k polynomial basis function over the base triangulation I}, spanning the
space Sﬁ(t) ={¢ € C(L'®) | o is a piecewise polynomial of degree k}. By construction Sf(#) is an
isoparametric finite element space.

We interpolate the surface velocity on the discrete surface using the basis functions and denote it by
Vi, Then the discrete material derivative is given by

Oppn = 019+ Vi - Vi (¢n € S;(1)).
The key transport property derived by Dziuk & Elliott (2007, Proposition 5.4) is
,xi=0 for j=1,2,...,N. 3.1)

This result translates from the linear ESFEM case by the original proof of Dziuk & Elliott (2007,
Section 5.2) using barycentric coordinates and the chain rule.

The spatially discrete problem (for a fixed degree k) then reads as follows: find U, € Sf(), with
U, € S,f (t) and temporally continuous, such that

d e
— Ui, +/ VUi Vi,én = / U 0; i Vo € S/li(f) with dp ¢y, € SZ(f)), (3.2)
de 130 12 30) rk

h i@

with the initial condition U} € S5(0) being a suitable approximation to u.

Later on we will always work with a high-order approximation surface I'}(¢) and with the corre-
sponding high-order evolving surface finite element space Si(¢) (with 2 < k € N); therefore from now
on, we drop the upper index k, unless we would like to emphasize it or it is not clear from the context.

3.2 The ODE system
Similarly to Dziuk et al. (2012), the ODE form of the above problem (3.2) can be derived by setting

N
Un(-,0) =Y (D) (- 1)
j=1
in the semidiscrete problem, and by testing with ¢, = x; G = 1,2,...,N), and using the transport
property (3.1).

Downl oaded from https://academ c. oup. confingjna/article-abstract/38/1/430/ 3074895
by Uni versitatsbibliothek user
on 31 January 2018



HIGH-ORDER ESFEM FOR EVOLVING SURFACE PDES 435

The spatially semidiscrete problem (3.2) is equivalent to the following ODE system for the vector
a(t) = (e;(n)L, € RY, collecting the nodal values of Uj,(-, 1):

% Ma(1) +A)a(t) =0, (3.3)

a(o) = Ko,

where the evolving mass matrix M (¢) and the stiffness matrix A(z) are defined as
Mol = [ e and A0k = [ Vox- Vi
I,(0) I (@)
forj,k=1,2,...,N.

33 Lifts

For the error analysis we need to compare functions on different surfaces. This is conveniently done by
the lift operator, which was introduced in Dziuk (1988) and further investigated in Dziuk & Elliott (2007,
2013b). The lift operator maps a function on the discrete surface onto a function on the exact surface.
Let I},(t) be a k-order approximation to the exact surface I" (). Using the oriented distance function
d (cf. Dziuk & Elliott, 2007, Section 2.1), the lift of a continuous function n,: I},(f) — R is defined as

mp.0) =m0,  xe (),

where for every x € I,(¢) the point p = p(x,t) € I'(¢) is uniquely defined via

p :x_n(p’t)d(xa t) (34)

By n~! we denote the function on I7,(z) whose lift is .
In particular, we will often use the space of lifted basis functions

(S (@) = (S, )" = {, | ¢ € S, (O}

4. Convergence estimates
4.1 Convergence of the semidiscretization

We now formulate the convergence theorem for the semidiscretization using high-order evolving surface
finite elements. This result is the higher-order extension of Dziuk & Elliott (2013b, Theorem 4.4).

THEOREM 4.1 Consider the ESFEM of order k as a space discretization of the parabolic problem (2.1).
Let u be a sufficiently smooth solution of the problem, and assume that the initial value satisfies

0 K+
luy, — u(-, Ol 210y < Coh A
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Then there exists iy > 0, such that for mesh size i < hy, the following error estimate holds, fort < T

' 12
lun (o 0) — uC, Ol 2ray + R (‘/O IV (un(-,8) — ”(',S))”iz(r(s)) ds) < ChH.
The constant C is independent of & and ¢ but depends on 7.

The proof of this result is postponed to a later section, after we have shown some preparatory results.

4.2 Time discretization: BDF

We apply a p-step BDF for p < 5 as a discretization of the ODE system (3.3), coming from the ESFEM
space discretization of the parabolic evolving surface PDE.
We briefly recall the p-step BDF method applied to system (3.3) with step size T > 0:

1 14
=D Mt e+ A, =0 (n=p), (4.1)
T
where the coefficients of the method are given by §(¢) = Y7 8;¢/ = Y ")_; ; (1 —¢)*, while the starting
values are o, oy, ..., o,_;. The method is known to be 0O-stable for p < 6 and have order p (for more

details, see Hairer & Wanner, 1996, Chapter V).
In the following result, we compare the fully discrete solution

N
U/? - ZO[]”X]( : »tn)a
Jj=1

obtained by solving (4.1) and the Ritz map g”,, CHY(C () — S’,j (1) (t € [0, T]) of the sufficiently smooth
solution u. The precise definition of the Ritz map is given later.
The H, Y(I,(1))-norm of the ESFEM function R), is defined as

mh(Rh(" Z)’ ¢h)

IRy (-, Dl -1 =
Hy, (T () 0gpestn ||¢h||1-11(1"h(t))
The following error bound was shown in Lubich et al. (2013) for BDF methods up to order 5 (see
also Mansour, 2013).

THEOREM 4.2 (Lubich et al., 2013, Theorem 5.1) Consider the parabolic problem (2.1), having a suf-
ficiently smooth solution for 0 < ¢t < T. Couple the k-order ESFEM as space discretization with time
discretization by a p-step backward difference formula with p < 5. Assume that the Ritz map of the
solution has continuous discrete material derivatives up to order p + 1. Then there exists 7o > 0, inde-
pendent of A, such that for T < o, for the error E}} = U}' — Z,u(-,t,) the following estimate holds for
t,=nt <T:

" 12
12
NEG 22 F (r > ||vr,,<,_,)Eh||L2<Fh(,j))>

j=1
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n 1/2

< Chipt"+ (T D IR +C max ||E}],2

= ) osizp—1  MIE T
j=1 T

where R), is the high-order ESFEM residual. The constant C is independent of 4, n and t but depends on
T. Furthermore,

T ptl
B = [ 0GP0 0l
0 =1

REMARK 4.3 The most important technical tools in the proof of Theorem 4.2, and also in the proof of
the BDF stability result in Lubich ez al. (2013, Lemma 4.1), are the ODE formulation (3.3) and the key
estimates first shown in Dziuk er al. (2012, Lemma 4.1), where the following estimates are shown: there
exist i,k > 0 such that, for w,z € RV,

wi(M(s) = M)z < (" = DIwlluo lzlnw, W (AG) = A@®)z < € = Dlwlaw lzllaw-

The proof of these bounds involves only basic properties of the mass and stiffness matrices M (¢) and
A(?); hence it is independent of the order of the basis functions. Hence, the high-order ESFEM versions
of these two inequalities also hold. Therefore, the original results of Lubich et al. (2013) hold here as
well.

Later on, when suitable results are at hand, we give some remarks on the smoothness assumption of
the Ritz map.

4.3 Convergence of the full discretization

We are now in a position to formulate one of the main results of this article, which yields optimal-order
error bounds for high-order finite element semidiscretization coupled to BDF methods up to order 5
applied to an evolving surface PDE.

THEOREM 4.4 (k-order ESFEM and BDF-p) Consider the ESFEM of order & as space discretization of
the parabolic problem (2.1), coupled to the time discretization by a p-step backward difference formula
with p < 5. Let u be a sufficiently smooth solution of the problem and assume that the starting values
satisfy (with Z,u = (Pu)'))

Cohk+l .

IA

max P ot
s 1 ||14h (Zu)(-, l)lle(F(ti))

Then there exist .y > 0 and 7, > 0, such that for 7 < hy and 7 < 7, the following error estimate holds
fort, =nt <T:

1/2
n
j 2 k+1
”uZ - M(', tn)”Lz(['(tn)) +h (T Z ||v1—'(tj) (ulh - u(" tj))”LZ(r([,))> = C(Tp+ h )'
i
The constant C is independent of /2, t and n but depends on 7.
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438 B. KOVACS

The proof of this result is also postponed to a later section, after we have shown some preparatory
results.

REMARK 4.5 We remark here that an analogous fully discrete convergence result is readily available
for algebraically stable implicit Runge—Kutta methods (such as the Radau IIA methods), since the
Runge—Kutta analogue of Theorem 4.2 has been proved in Dziuk et al. (2012). The combination of this
result with our high-order semidiscrete error bounds (Theorem 7.1) proves the Runge—Kutta analogue of
Theorem 4.4.

5. Geometric estimates

In this section, we present further notation and some technical lemmas that will be used later on in the
proofs leading to the convergence result. These estimates are high-order analogues of some previous
results proved in Dziuk (1988), Dziuk & Elliott (2007), Demlow (2009), Mansour (2013) and Dziuk &
Elliott (2013b).

5.1 Geometric approximation results

In the following, we state and prove estimates for the errors resulting from the geometric surface approx-
imation. Most of these estimates hold for a sufficiently small z, which here means for 7 < hy with a
sufficiently small iy > 0.

LemmA 5.1 (Equivalence of norms, Dziuk, 1988; Demlow, 2009) Let n;, : I,(t) — R with lift nﬁl :
I'(t) — R. Then, for a sufficiently small &, the discrete and continuous L” and Sobolev norms are
equivalent, independently of the mesh size &.

For instance, there is a constant ¢ > 0 such that for all 4 sufficiently small,
-1 < |Int <
c ||77h||L2(rh(r>) = ||77;1||L2(r(t)> = c||nh||L2(Fh(t))7
~1 I
c ||7Ih||H1(rh(x)) <lmllmra < C||7Ih||H1(1‘h(r))-

We now turn to the study of some geometric concepts and their errors. By §, we denote the quotient
between the continuous and discrete surface measures, dA and dA,, defined as §,dA;, = dA. Further, we
recall that Pr and Pr, are the projections onto the tangent spaces of I'(¢) and I,(¢), respectively. We
further set, from Dziuk & Elliott (2013b),

1
O, = E(Id — d)PrPr,Pr(d — d.o7), .1
[

where S (J; = E)Xjni) is the (extended) Weingarten map. Using this notation and (3.4), in the proof of
Dziuk & Elliott (2013b, Lemma 5.5), it is shown that

Vi,®n(x) - Vi, ¢n(x) = 8104V r e, () - Ve, (p). (5.2)

For these quantities we show some results analogous to their linear ESFEM version showed in Dziuk
& Elliott (2013b, Lemma 5.4), Demlow (2009, Proposition 2.3) or Mansour (2013, Lemma 6.1).
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HIGH-ORDER ESFEM FOR EVOLVING SURFACE PDES 439
Later on the following estimates will play a key technical role.

LEMMA 5.2 For () and I'(t) as above, for a sufficiently small &, we have the following geometric
approximation estimates:

ld iy < ch**, 1= 8llzoocr, @y < ch**,

In — nyll o, @y < ch’, and

Id — 8,0l (@ < cht !, ||(3;:)(Z)d||L°°(rh(z)) < ch*,
”(81:)(08h”L°O(Fh(t)) =< Chkﬂ, ||Pr((3;:)(£)Qh)Pr”LOO(rh) = Cth,

with constants depending only on %7 but not on % or .

The first three bounds were shown in Demlow (2009, Proposition 2.3) for the stationary case. Noting
that the constants depend only on %7 these inequalities are shown.

The last four bounds are simply the higher-order extensions of the corresponding estimates of Mansour
(2013, Lemma 6.1). They can be proved in the exact same way using the bounds of the first three estimates.

These proofs are included in the Appendix.

5.2 Interpolation estimates for evolving surface finite elements

The following result gives estimates for the error in the interpolation. Our setting follows that of Demlow
(2009, Section 2.5).

Let us assume that the surface I"(¢) is approximated by the interpolation surface I i¥(1). Then for any
weH ki‘ (I"(t)), there is a unique k-order surface finite element interpolation I,’j w e S,’j (2); furthermore
we set (Ifw)! = Ifw.

LEMMA 5.3 (Demlow, 2009, Proposition 2.7) Letw : 4 — R such thatw € H**'(I"(¢)) for0 <t < T.
There exists a constant ¢ > 0 depending on ¢, but independent of % and ¢, such that for 0 < ¢ < T and
for a sufficiently small 4,

k k k+1
lw— IhW“LZ(I"(r)) +h|Vr(w— IhW)”LZ(r(r)) <ch** ||W||Hk+1(r(z))-

We distinguish the special case of a linear surface finite element interpolation on I'*(¢). For w €
H?(I'(t)), the linear surface finite element interpolant is denoted by I,E')w, and it satisfies, with ¢ > 0,

() () 2
lw—1, W||L2(F(t)) +h|Vrw—1, W)||L2(F(t)) <ch ||W||H2(F(t))'

Note that for 1,51) the underlying approximating surface I'f(¢) is still of high order. For k = 1, I} and
I ,(ll) simply coincide. The upper k indices are again dropped later on.

5.3 Velocity of lifted material points and material derivatives

Following Dziuk & Elliott (2013b) and Lubich & Mansour (2015) we define the velocity of the lifted
material points, denoted by v;, and the corresponding discrete material derivative d;.
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440 B. KOVACS

For arbitrary y(¢) = p(x(¢),t) € I'(¢), with x(¢) € I},(t), cf. (3.4), we have

d
Ey(t) = v ((0),1) = dp(x(0), 1) + Vi (x(1), 1) - Vp(x(1),1); (5.3)
hence for y = p(x, t) (see Dziuk & Elliott, 2013b),
vi(y,1) = (Pr — d7)(x, )V (x, 1) — 9; d(x, )n(x, 1) — d(x,1)dn(x,1).

Following Lubich & Mansour (2015, Section 7.3), we note that —d,d (x, t)n(x, t) is the normal component
of v(p, t) and that the other terms are tangent to /" (¢); hence

v — v, isatangent vector. 5.4)

It is also important to note that v, # V,ﬁ (cf. Dziuk & Elliott, 2013b).
The discrete material derivative of the lifted points on I"(¢) reads

Oyon = 0o + Vi - @y (01 € (Su(D)).
The lifted basis functions also satisfy the transport property
xi=0  (=12,....N).

To prove error estimates for higher-order material derivatives of the Ritz map, we need high-order
bounds for the error between the continuous velocity v and the discrete velocity v,. We generalize here
Dziuk & Elliott (2013b, Lemma 5.6) and Lubich & Mansour (2015, Lemma 7.3) to the high-order case.

LEMMA 5.4 For £ > 0, there exists a constant ¢, > 0 depending on %7, but independent of ¢ and £, such
that, for a sufficiently small %,

1@ v = vi)lleoray + RIVF@)D OO = vi) sy < e

Proof. We follow the steps of the original proofs from Dziuk & Elliott (2013b) and Lubich & Mansour
(2015). _
(a) For £ = 0. Using the definition (5.3) and the fact V,, = I,,v, we have

V@, 1) = vi(p, 0| = [Pr(v = L) (p, 1) + d(HLv(p, 1) + dn)| < ch**',

where we have used the interpolation estimates, Lemma 5.2 and the boundedness of the other terms.
For the gradient estimate we use the fact that V/d = V;0;d = 0 and the geometric bounds of
Lemma 5.2:

IVr(v =)l < clv = Ly| +c|Vr(v = Lv)|

+ |(Vrd) (AL + 0m)| + |d(V (A Ly + 0n))]

< cht.
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HIGH-ORDER ESFEM FOR EVOLVING SURFACE PDES 441

(b) For £ = 1, we use the transport property and again Lemma 5.2:

10 (v —vi)| < [(Pr)(v — Iyv)| + [Pr(dzv — 1,9;v)|
+ @) ALy + dm)| + |d (9 (A Lyv + )|

< ch*,
Again using Vyd = V0d;d = 0 and the geometric bounds of Lemma 5.2,

[Vro, v = vp)| < clv = Livl +¢c|Vr(v = Iv)|
+clop (v — )| + |V (v — 1,0,v)]
+ [(Vropd) (L + 0m)| + |d (Vi dp (F1,y + 9n))|

< cht.

(c) For £ > 1, the proof uses similar arguments. O

5.4 Bilinear forms and their estimates

We use the time-dependent bilinear forms defined in Dziuk & Elliott (2013b): for arbitrary z, ¢ € H'(I"(¢))
and for their discrete analogues for Z;,, ¢, € S (1),

m(t;z,9) = / 20, my(t; Zy, ¢1) = / Zyn,
I(n Iy ()
a(t;z,9) = f Vrz-Vro, an(t; Zy, n) = f V. Zn - Vr,¢n,
r@ T
gtviz,o) = | (Vr-v)ze, e Vi Zn, ) = | (Vi - Vi) Zuohy,
() Iy (1)
bt;viz,0) = | B(V)Vrz-Vre, by(t; Vi Zy, y) = Br(V)Vr,Zi - Vi, Ons
r I (0

where the discrete tangential gradients are understood in a piecewise sense, and with the tensors
given by

BW)y =8;(Vr-v) — (VP + (Vr)mi),
BVl = 8;(Vr, - Vi) — ((Vr)i(Vi); 4+ (V1) (Vi)

fori,j =1,2,...,m+ 1. For more details, see Dziuk & Elliott (2013b, Lemma 2.1) (and the references
in the proof) or Dziuk & Elliott (2013a, Lemma 5.2).
We will omit the time dependency of the bilinear forms if it is clear from the context.

5.4.1 Discrete material derivative and transport properties. The following transport equations, espe-
cially the one with discrete material derivatives on the continuous surface, are of great importance during
the defect estimates later on.
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LEmMMA 5.5 (Dziuk & Elliott, 2013b, Lemma 4.2) Consider I"(¢) as the lift of the discrete surface 1",," (1)
(i.e., I'(t) can be decomposed into curved elements that are lifts of the elements of I h" (1)), moving with
the velocity v, from (5.3). Then for any z, ¢, 97z, 9;¢ € H'(I" (1)) we have

d

am(za ‘P) = m(a}TZ! (p) + m(Z, 3;:§0) + g(Vh; 2y (p)a
d L] L]

Ea(z, @) = a0z, ¢) +a(z, dp¢) + b(vy; 2, ).

The same formulae hold for I"(f) when 9; and v, are replaced with d°* and v, respectively.
Similarly, in the discrete case, for arbitrary z,, ¢, 9724, 0;¢n € Si(t), we have

d
&mh(Zh,Q')h) = my (02, G1) + My (23, 0, 1) + 81 (Vis 2y 1)

d
aah(Zh,d)h) = a, (0,2, Bn) + an(zn, 05 Pn) + by (Vi 20 1.

5.4.2 Geometric perturbation errors. 'The following estimates are the most important technical results
of this paper. Later on, they will play a crucial role in the defect estimates. We note here that these results
extend the first-order ESFEM theory of Dziuk & Elliott (2013b) (for the first three inequalities) and
Lubich & Mansour (2015) (for the last inequality) to the higher-order ESFEM case.

The high-order version of the inequalities for time-independent bilinear forms a(-,-) and m(-,-)
were shown in Elliott & Ranner (2013, Lemma 6.2). The following results generalizes these for the
time-dependent case.

LEMMA 5.6 For any Z,, ¢, € Si(1), and for their lifts Z,, ¢, € H'(I"(t)), we have the following bounds,
with a sufficiently small A:

‘m(ZIJP;I,) - mh(Zh,¢h)| < ch*! ||Z;1,||L2(r(t)) ||¢}Il||L2(1"(t))’
la(Z,, ¢1) — an(Zi. )| < KNV EZ 2o | VB2

lgn: Zhs d1) — 80 (Vs Zio )| < W I Z3 2o 194 |20y
|bns Zh d1) — bu(Vis Zis 1) | < W IV EZE 2o | VDR 20y

where the constants ¢ > 0 are independent of % and ¢, but depend on ¥.

Proof. The proof of the first two estimates is a high-order generalization of Dziuk & Elliott (2013b,
Lemma 5.5), while the proof of the last two estimates is a high-order extension of Lubich & Mansour
(2015, Lemma 7.5). Their proofs follow these references. Both parts use the geometric estimates shown
in Lemma 5.2.

To show the first inequality, we estimate

\m(Z;, 1) — my(Zn i) | =

/ ZiphdA — | Zupn dA,
r

() 0
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—INl 4l
1-4, )thﬁhdA‘
ING)
k+1) 1 !
<ch ||Zh||L2(F(r))||¢h||L2(F(t))'

For the second inequality, similarly we have

|a(Z;. ¢}) — an(Zy. 1) | =

/ VrZ, - VrndA — | Vi,Zy - Vi,¢dA,
r Iy (1)

(Id = 8,0)VrZ, - Vré, dA‘

@

k+1 I !
<ch** IVrZl2arap 1V réulli2r ey -

For the third estimate we start by taking the time derivative of the equality m(Z, ¢f,) = my,(Zy, P11,
using the first transport property from Lemma 5.5 to obtain

d
5’"(2[’ o) = m(3;Z;. ¢y) +m(Z,, 8;6;) + gvis Z, 63)

d
= —my,(Z,,, p,6
dtmh( > Pudi)

= my(0; Zy, PuSn) + my,(Zy,, (05 1))
+ 80 (Vs Zyy, §181) + my(Zy,, (05, 8)Pn) -

Hence, using pw), = (3pwy)',

8w Zy 1) — (Vi Zis dudi) = m((3;Zy)', ) — my (35 2, $1S1)
+m(Z,, Brpn)") — my(Zy, Br 1)) + mu(Zy,, (B78,)b1)
= my,(Zy, (3,8,)Pn).

Hence, together with Lemma 5.2, the bound

lg s Za» D) — &0 (Vs Zos 0| < 186 (Vi3 Zir @18 — D) + [ (Z, (378,)n) |

1 !
=<c (||a/;8h||L°°(Fh(t)) + 11 - 5h||L°°(rh(z))) 1Z 2 cran 1Dl 20y

finishes the proof of the third estimate.
For the last inequality we take a similar approach, using the second transport property from Lemma 5.5
and the relation (5.2) to obtain

d
5111;(21”4%) = a0, Zy, on) + an(Zy, 3, Pn) + by (Vi; Zyy, )

— g ! 1 1
- QhVFZh : Vr¢h
dr Jr
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= Q\VrdZ, - Vrg) + O\VrZ) - Vrord,
() ()

+ | @0)VrZ Vgl + | BU)OVIZ Vgl
ra r()

Again, using ang = (9pwy)', together with (5.2) and the geometric estimates of Lemma 5.2 we obtain

b0 (Vi Zs ) = b Z0 ) = | [ @10DVrZy - Vigh+ | B0(Q, ~10)VrZ, - Vi)
NG ro
= chtt! ||VFZ[ll||L2(F(r))||VF¢}{,”L2(I"(t))s

completing the proof. O

6. Generalized Ritz map and higher-order error bounds

We recall the generalized Ritz map for evolving surface PDEs from Lubich & Mansour (2015).

DEFINITION 6.1 (Ritz map) For any given z € H'(I"(¢)), there is a unique @hz € S,’j (t) such that for all
¢u € Sk(t), with the corresponding lift ¢, = ¢}, we have

@i ( Pz n) = a* (. o), (6.1)

where we let a* = a + m and aj = a, + my,, so that the forms a and a, are positive definite. Then
Pz € (SK(1))! is defined as the lift of Pz, i.e., 2,z = (P2)".

We note here that originally in Lubich & Mansour (2015, Definition 8.1) an extra term appeared
involving 9°z and the surface velocity, which is not needed for the parabolic case. The Ritz map above is
still well defined.

Galerkin orthogonality does not hold in this case, just up to a small defect.

LEMMA 6.2 (Galerkin orthogonality up to a small defect) For any z € H'(I"(r)) and for all ¢, € (SF(2))!
and for a sufficiently small 4,

la*(z — Phz, on)| < ch**! ||<@hZ||H1(r<t)) ”‘ph”Hl(F(t))’ (6.2)
where ¢ is independent of &, h and 7.

Proof. Using the definition of the Ritz map and Lemma 5.6, we estimate

%/ o5 k+1
la*(z — Phz, )| = |ah(f@hZ7 on) — a (Puz, )| < ch * ||e@h2||f11(1‘<z)) ||‘Ph||H1(r(z))~
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6.1 Errors in the Ritz map

Now we prove higher-order error estimates for the Ritz map (6.1) and also for its material derivatives;
the analogous results for the first-order ESFEM case can be found in Dziuk & Elliott (2013b, Section 6)
or in Mansour (2013, Section 7).

6.1.1  Error bounds for the Ritz map.

THEOREM 6.3 Letz: % — R with z € H**!(I'()) for every 0 < ¢ < T. Then the error in the Ritz map
satisfies the bound, for 0 < ¢t < T and for h < h, with a sufficiently small A,

k+1
llz — e@hZ”LZ(r(n) +hllz — egZhZ”Hl(r(z)) <ch™* ||Z||Hk+1(r()‘))’
where the constant ¢ > 0 is independent of 4 and ¢.

Proof. To ease the presentation, we suppress all time arguments ¢ appearing in the norms within the proof
(except for some special occasions).
(a) We first prove the gradient estimate. Starting with the definition of the H!(I"(t))-norm, then using
the estimate (6.2), we have
Iz = Pzl = @@ — Piz,z — Pi2)

HY(I)
=a"(z— P,z — 1) +a" (2 — Pz, 1hz — Py2)

IA

k+1
llz — th”Hl(r)”Z = Inzllgiry +ch * ||<@hZ||H'(r)||IhZ - th”HHF)

A

k
chillz — gth”Hl(l“)”Z”Hk‘H([‘)

k+1 2 2 24112
+ T Qllz = Pal oy 12y I N )
using interpolation error estimate, and for the second term, we used the estimate

||<@h2||H1(r)||IhZ - th”Hl(l“) = (||=@h1 - Z||H1(r) + ||Z||H1(r)) (||I;,z - Z||1-11(r) +llz— =@hZ||Hl(r))

2 2 2% (112
< 2|z — Zzll + llzll + ch™ ||zl e

HY(I) HKHL() )’

Now using Young’s inequality, and for a sufficiently small (but 7 independent) 27 < hy, we have the
gradient estimate

Iz = Puzllut ray < Chk”Z”HHl(r(r))-
(b) The L2-estimate follows from the Aubin—Nitsche trick. Let us consider the problem
—Arpw+w=z— Pz on I'(1);

then the usual elliptic theory (see, e.g., Dziuk & Elliott, 2013a, Section 3.1; Aubin, 1998) yields the
following: the solution w € H*(I"(t)) satisfies the bound, with ¢ > 0 independent of ¢,

Wllw2ray < cllz— Pzl
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By testing the elliptic weak problem with z — £z, using (6.2) again, and using the linear finite
element interpolation I,il) on IX(t), we obtain

lz — Puzll?s . = a*(z — Phz,w)

L2(I)

=a'(z— Pyzw—1'w) +a*(z — Py 1I"w)

IA

(D k+1 (D
llz — th”Hl(l“)”W — L, wllgiry +ch * ||=@hZ||H1(F) 12, " wllg oy

A

k k+1 (1)
ch™ |zl grsr rychl Wl g2y + ch * ||<@h2||111(1")||]h Wyt
where for the second term we have now used
(1) (H
||<92hZ||H1(r)||Ih W||H1(F) <(lz— th“HI(F) + ||Z||H1(r>)(||W =1, W||H1(F) + ||W||H1(r))
k
< (L + ch) Izl grsrry (1 + D)Wl g2y

Then the combination of the gradient estimate for the Ritz map and the interpolation error yields

1
2 k+1
lz — ‘@hZ”LZ(F(I))E||W||H2(l"(t)) <lz— '@hZ”LZ([‘([)) <ch'* Nzl ks crap WD a2 )

which completes the proof. 0

6.1.2  Error bounds for the material derivatives of the Ritz map. Since, in general, 3; Z,z = 2,02
does not hold, we need the following result.

THEOREM 6.4 The error in the material derivatives of the Ritz map, for any ¢ € N, satisfies the following
bounds, for 0 < ¢ < T and for h < hy with a sufficiently small hy:

4
160D @ = P2y +hIVr@DO @ = P li2iray < €D 10D 2l st (-
j=0

where the constant ¢, > 0 is independent of 4 and ¢.
Proof. The proof is a modification of Mansour (2013, Theorem 7.3). Again, to ease the presentation, we
suppress the ¢ argument of the surfaces norms (except for some special occasions).
For £ = 1: (a) We start by taking the time derivative of the definition of the Ritz map (6.1), use the
transport properties Lemma 5.5 and apply the definition of the Ritz map once more; we arrive at
a* Oz, ) = —b(viiz, 1) — 8(Vis Z, on)
+ a0y Pz, dn) + b (Vis Pnz, on) + 8 (Vs Pz, ).

Then we obtain

a*(a,:z - 3;:@;12, on) = bz — Pz o) — 8Os 2 — Pz, 1)

6.3)
+ Fl (@h)?
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where

Fi(on) = (37 Puz. ¢n) — a* (0 Poz. on))
+ (s (Vi Pz, 1) — bi; Paz, 1))
+ (gn(Vi; Doz dn) — 80 Pz, on)-

Using the geometric estimates of Lemma 5.6, F; can be estimated as
[Fi(on)| < ch'H! (||3;:<@h2||f1'(r(r)) + ||3th||111(1"([))) ||90h||H1(F(t))' (6.4)
The velocity error estimate Lemma 5.4 yields
1852l < 18°2llgg1 oy + chE 2l ery-

Then using 97 &,z as a test function in (6.3), and using the error estimates of the Ritz map, together with
the estimates above, with & < hj, we have

185 Przlips ) = @ (05 Paz, 05 Pi2)

HY(I)

bz — Pz, 0y Pn2) + g 2 — Pz, 3y Puz) + a* (052, 0f Pp2) — F1(0) Pp2)

IA

Chk||Z||H’<+1(r)”a;:f@hzuyl(r) + ”8}:Z”H1(1‘)”a}:f@hZ”Hl(F)

+ ch**! (||3;<@h2||111(r) + |l @hZ”HI(F))”a}:gth”Hl(F)

= Chk“Z”HHl(r)||3;:=@h2||1-11(1") + (||3.Z||H1<1") + Chk”Z”HZ(F))||3/:<@n2||1-11(r)
+ ch**! (||3;:<@hZ||H1(F) +llz— e@hZ”Hl(r) + ||Z||H1(F))”a/:gZhZ”Hl(F)

k . . k+1 . 2
= (Ch ||Z||H’<+‘(F) +1 Z”Hl(r)) 19, f@hZ”HI(r) + ch'* 9, L@hZ”HI(F)s

absorption using an & < hy, with a sufficiently small /, > 0, and dividing through yields
105 Puzllutry < clld®zllyiry + Chk||Z||Hk+1(r)~

Combining all the previous estimates and using Young’s inequality, the Cauchy—Schwarz inequality
and Theorem 6.3, for a sufficiently small & < h,, we obtain

a* 3,z — Oy Pz, o) < cllz — Pzl llenll g
+ ch*t! (||3;:=@/12||H1(1") + ”th”Hl(F))”(ph”Hl([‘)
= Chk||Z||Hk+1(r)||‘ﬂh||H1(1">
+ Chk+l(||a.2||yl(r) +d+ Chk)||Z||Hk+1(r))”‘/’h“yl(r)

k
< ch (||Z||H/<+1(F) +h||3.Z||H‘(r)) ||</)/1||H1(r)-
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Then, similarly to the previous proof, we have

1852 — 3 Pazllzp vy < @* Bz — 8; Piz, 5z — 07 Pi2)
=a"(0;z— 0y Pz, 05z — 1,0°2) + a* (052 — 0 Pz, 1,0°z7 — 0; Ph2)
<193z — 9 Pwzllm () 195z — 192l g 1y

+ ch* (12l st oy + BB 2l g1 1)) 11402 — 85 Pazlig (-

Finally, the interpolation estimates, Young’s inequality and absorption using a sufficiently small 4 < hy,
yields the gradient estimate.
(b) The L? estimate again follows from the Aubin-Nitsche trick. Let us now consider the problem
—Arpw+w=09;z2— 0, Pz on I'(1),
together with the usual elliptic estimate, for the solution w € H2(I"(t)),

Wiz < cllopz — 0y Przllizrays

again, ¢ is independent of ¢ and 4.
Following the proof of Dziuk & Elliott (2013b, Theorem 6.2), let us first bound

—b(iiz = Pyt ["w) = bz — Pyzow — L") — b(vs 2 — Pyz, w)
< ch* |zl grs1(ry chlWll2ry — DOz — Pz, w)
= Mzl g oy W2y + Bz — Pz w)
+b(v;z — Pz, w) — bz — Pz, w),

where again /, ,51) denotes the linear finite element interpolation operator on I (f).
The pair in the last line can be estimated, using Lemma 5.4, by

b(viz — Pz, w) = b(visz — Pz, w) < /F() |BW) = BOIIVr(z— P3| Vrwl
'
= Ch2k||Z||Hk+l(r) Wl -
Finally, for the remaining term, the proof of Dziuk & Elliott (2013b, Theorem 6.2) yields
b(viz — Puz,w) = —cllz — ‘@hZ”LZ([‘)”W”HZ(F) = —ch'*! ||Z||Hk+1(1")||w||f12(r)~
For the other bilinear form in (6.3), we have
ez — Pz, op) < ch**! Nzl gt ry Wt iy
The combination of all these estimates with (6.4) yields

. . k+1
a*(dyz — Oy Pz, Iyw) < ch** Nzl ey W2y -
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By testing the above elliptic weak problem with z — &z, and using the above bound and the gradient
estimate from (a), we obtain

. . 2 . .
0,z — oy ‘@hZ”LZ(r) = a*(ahz -0, Phz,w)
. . 1 . . 1
=a* 3z — O Przow — I1"w) + a*(0rz — 0 Pz, 1V w)
k . k+1
<ch (||Z||Hk+1<r) + h|lo Z||H1(r)) Ch||w||H2(F(t)) + ch** ||Z||Hk+1(r)||W||H2(r)

k+1
<ch™* (||Z||Hk+1<r) + h”a.Z“Hl(F)) IWllzzr)-

For ¢ > 1, the proof is analogous. O

7. Error bounds for the semidiscretization and full discretization
7.1 Convergence proof for the semidiscretization

By combining the error estimates in the Ritz map and in its material derivatives and the geometric results
of Section 5, we prove convergence of the high-order ESFEM semidiscretization.

Proof of Theorem 4.1. The result is simply shown by repeating the arguments of Dziuk & Elliott (2013b,
Section 7 ) for our setting but using the high-order versions for all results: geometric estimates Lemma 5.2,
perturbation estimates of bilinear forms Lemma 5.6 and Ritz map error estimates Theorems 6.3
and 6.4. 0

7.2 Convergence proof for the full discretization

7.2.1 Bound of the semidiscrete residual. ~We follow the approach of Mansour (2013, Section 8.1) and

Lubich et al. (2013, Section 5) by defining the ESFEM residual R, (-, 1) = Z;Ll ri() x; (-, 1) € S;j (1) as

d - - -
/ Ry = — Pyuy, +f Vi, (Pwu) - Vi, bn — (Pyu) 0y, dns (7.1)
ko dr Jrkw ko x

h Y

where ¢, € Sk(1), and P,u(-, 1) is the Ritz map of the smooth solution u.
We now show the optimal-order H, L_norm estimate of the residual R,

THEOREM 7.1 Let the solution u of the parabolic problem be sufficiently smooth. Then there exist C > 0
and hy > 0, such that, for all 2 < hy and ¢t € [0, T], the finite element residual R, of the Ritz map is
bounded as

< Chk+1.

”Rh ||H;1(rh(l)) =

Proof. (a) We start by applying the discrete transport property to the residual equation (7.1):

d ~ - -
my,(Ry, ¢p) = amh(«@hu, &n) + an(Puu, dy) — my(Pyu, 3, ¢y)

= mh(a;7=gzlru, on) + ah(=§zhuy &n) + gn (Vi gzhu, n).
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(b) We continue by the transport property with discrete material derivatives from Lemma 5.5 but for
the weak form, with ¢ := ¢, = (¢)":

0= %m(u, on) + alu, @) — m(u, 3°¢;)
= m(0u, o) + au, @) + (Vs u, ) + m(u, 8504 — 3°p).
(c) Subtraction of the two equations, using the definition of the Ritz map (6.1) and using that
On — 0% = (v —Vv) - Vroy
holds, we obtain

i (R $1) = my, (0 Py, $n) — m(Du, 03)
+ 8 (Vs Pyt ) — i, 1)
+ m(u, @) — M (Do, )
+ m(u, (v, —v) - Vrgy).

All the pairs can be easily estimated separately as ch*™'[|@; [l 51 (), by combining the geometric pertur-
bation estimates of Lemma 5.6, the velocity estimate of Lemma 5.4 and the error estimates of the Ritz
map from Theorems 6.3 and 6.4. The proof is finished using the definition of the H, !_norm and the
equivalence of norms Lemma 5.1. (|

7.2.2  Proof of Theorem 4.4. Using the error estimate for the BDF methods Theorem 4.2 and using
the bounds for the semidiscrete residual Theorem 7.1, we give here a proof for the fully discrete error
estimates of Theorem 4.4.

Proof of Theorem 4.4. The global error is decomposed into two parts,
y — u(,1,) = () = (Pan) 5 1)) + ((Paw) (1) — ul-, 1)),

and then the terms are estimated separately by results from above.

The first term is estimated, analogously to Thomée (2006) or exactly as in Lubich ef al. (2013) and
Mansour (2013) as follows. The vectors collecting the nodal values of the error u}, — (Zu)(-, t,) satisfy
the fully discrete problem (4.1) perturbed by the semidiscrete residual (7.1) (cf. Mansour, 2013). Then
applying results for BDF methods Theorem 4.2, together with the residual bound Theorem 7.1 (and by
the assumption on the initial value approximation), gives the desired bound &' (F**! 4 7).

The second term is directly estimated by the error estimates for the Ritz map and for its material
derivatives, Theorems 6.3 and 6.4. O

REMARK 7.2 In Remark 4.5, we noted that the analogous fully discrete results can be shown for alge-
braically stable implicit Runge—Kutta methods. To be more precise, for the Runge—Kutta analogue, instead
of Theorem 4.2 one has to use the error bounds of Dziuk ez al. (2012, Theorem 5.1), but otherwise the
proof above remains the same.
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REMARK 7.3 The statement in the introduction on various extensions is supported by the following facts.
The first two points in the introduction, geometric errors and perturbation errors of the bilinear forms
(Sections 5.1 and 5.4), and the basic high-order evolving surface finite element setting (Section 3.1), are
independent of the considered problem. The velocity estimates (Section 5.3) depend only on the surface
evolution as well. Furthermore, these general high-order results could be used in analogous ways, as their
linear counterparts in the cited articles; or missing ones can be easily shown based on the ideas presented
here (e.g., involving the additional term for ALE maps (Elliott & Venkataraman, 2014; Kovacs & Power
Guerra, 2014).

The proof of the error bounds of a modified Ritz map (although perhaps defined slightly differently;
see, e.g., wave equations Lubich & Mansour, 2015, or quasilinear problems Kovacs & Power Guerra,
2016), rely on these geometric approximation results and some general techniques, such as the almost
Galerkin orthogonality and the Aubin—Nitsche trick. Naturally, the estimates for the semidiscrete residual
greatly depend on the problem itself, but in the above-mentioned articles, similar (if not the same) ideas
and techniques were used.

Finally, convergence of time discretizations, proved by energy estimates, carry over to high-order
discretizations of various problems, from Dziuk er al. (2012), Lubich ez al. (2013), Kovacs & Power
Guerra (2014), Lubich & Mansour (2015) and Kovacs & Power Guerra (2016).

REMARK 7.4 Theorem 4.2 requires sufficient temporal regularity of the Ritz map.
By having sufficient regularity of the solution and the surface evolution on [0, 7], using Theorem 6.4
and equivalence of norms, we obtain

||(a;:)(£)(§zhu)(',f)“[}(rh(;)) =< C”(a.)(b(u - gzh”)('y’)”[}(r(f)) + C||(a.)(Z)”||L2(1"(;))

¢
< (el + 1) Z ||(3.)U)”||Hk+1(r(z)>-

Jj=0

Here, the H**!(I"(t))-norm on the right-hand side could be replaced by H>(I"(t)) (also the power in A*+!
would be reduced to 2) by modifiying the proofs of Theorems 6.3 and 6.4, using the linear interpolation
11V on I}¥(7) instead of 1.

Alternatively, a weaker condition can be obtained in the following way. By having sufficient regularity
of the solution at + = 0 and having smooth evolution of the surface, by repeating the proof of Dziuk
et al. (2012, Theorem 9.1) for the Ritz map instead of the semidiscrete solution, the following estimate
is obtained:

T ¢
sup G5 i Dl + 19600 Fs )85 = SN O
te[0,7 0 g N
} =
The result could even be obtained directly by using Dziuk et al. (2012, Theorem 9.1) and modifying our
results using the semidiscrete solution instead of the Ritz map.

8. Implementation

The implementation of the high-order ESFEM code follows the typical method of finite element mass
matrix, stiffness matrix and load vector assembly, mixed with techniques from isoparametric FEM theory.
This was also used for linear ESFEM (see Dziuk & Elliott, 2007, Section 7.2).
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Similarly to the linear case, a curved element E}, of the k-order interpolation surface Fh" () is parame-
terized over the reference triangle Ey, chosen to be the unit simplex. Then the polynomial map of degree &
between Ej, and Ej is used to compute the local matrices. All the computations are done on the reference
element, using the Dunavant quadrature rule (see Dunavant, 1985). Then the local values are summed to
their correct places in the global matrices.

In a typical case, the surface is evolved by solving a series of ODEs, hence only the initial mesh is
created based on I"(0). Naturally, the problem of velocity-based grid distortion is still present. Possible
ways to overcome this are methods using the DeTurck trick (see Elliott & Fritz, 2016) or using ALE
finite elements (see Elliott & Venkataraman, 2014; Kovacs & Power Guerra, 2014).

9. Numerical experiments

We performed various numerical experiments with quadratic approximation of the surface I (¢) and using
quadratic ESFEM to illustrate our theoretical results.

9.1 Example 1: Parabolic problem on a stationary surface

Let us briefly report on numerical experiments for parabolic problems on a stationary surface, as a
benchmark problem. Let I" C R? be the unit sphere, and let us consider the parabolic surface PDE

ou—Aru=f,
with given initial value and inhomogeneity f chosen such that the solution is u(x, ) = e~%x,x,.

Let (93 )k=12.... and (Ty)r=12.... be series of meshes and time steps, respectively, such that 2/, = hy_,
and 27, = 7,4, with i, = +/2 and 7; = 0.2. For each mesh .7, with corresponding step size T, we
numerically solve the surface PDE using second-order ESFEM combined with third-order BDF methods.
Then, by ¢; we denote the error corresponding to the mesh .7, and step size 7. We then compute the errors
between the lifted numerical solution and the exact solution using the following norm and seminorm:

0072y . n
L=(L) : I‘;‘nagjv lluy, — uCo )l 2¢r )

. 12
LZ(HI) : (T Z ”VF(fn)(uZ - u("t"))||1242(1—'(1n))> :
n=1

Using the above norms, the experimental order of convergence rates (EOCs) are computed by

EOC, = /e 5
k nQ) ,3,...,n).

In Table 1, we report on the EOCs for the second-order ESFEM coupled with the BDF3 method;
theoretically, we expect EOCA 3 in the L*(L?)-norm, and EOC~ 2 in the L?>(H")-seminorm.
In Figs 1 and 2, we report on the errors

lu(-,Nt) — u;:/”LZ(I") and ||Vp(u(-,Nt) — ug)lle(m,
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TABLE 1 Errors and EOCs in the L®(L*)- and L*(H")-norms for the stationary

problem
Level dof L>®(L?) EOC L*(H"Y) EOC
1 6 5.3113-1073 — 8.0694 - 1073 —
2 18 2.9257-1073 09511 431621073 0.99805
3 66 9.2303 - 10~ 1.7122 1.9050 - 1073 1.2139
4 258 1.7285-107* 2.4338 5.4403 - 1074 1.8207
5 1026 2.6463 - 107 2.7124 1.2265- 10~ 2.1529
6 4098 3.6845- 107 2.8457 24772107 2.3088
o 2nd order ESFEM — BDF3 o 2nd order ESFEM — BDF3
10 T 10 T
—8— 7 =0.2 —8— 7 =0.2
—— 7 =0.1 —— 7 =0.1
101 =—7 28’8%5 107 ——7T 28'835 E
$710:0125 $7:010125
7 = 0.00625 7 = 0.00625 .
2 7 =0.003125 ) 7 =0.003125 -575
10 " — — — O*) 5 107 - = = o) L7

L2—norm error

mesh size (h)

H1—semin0rm error

mesh size (h)

10°

FIG. 1. Spatial convergence of the BDF3 / quadratic SFEM discretization for the stationary surface PDE.

at time Nt = 1. The logarithmic plots show the errors against the mesh width /4 (in Fig. 1) and against
time-step size t (in Fig. 2).

The different lines correspond to different time-step sizes and to different mesh refinements, respec-
tively in Figs 1 and 2. In both figures we can observe two regions. In Fig. 1, a region where the spatial
discretization error dominates, matching the convergence rates of our theoretical results, and a region,
with fine meshes, where the time discretization error dominates (the error curves flatten out). In Fig. 2,
the same description applies but with reversed roles. First, the time discretization error dominates, while
for smaller step sizes the spatial error dominates. The convergence in space (Fig. 1) and in time (Fig. 2)
can both be observed to be nicely in agreement with the theoretical results (note the reference lines).
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2nd order ESFEM — BDF3 2nd order ESFEM — BDF3

Lz-norm error
H1—seminorm error

107 107
step size (1) step size (1)

FiG. 2. Temporal convergence of the BDF3/quadratic SFEM discretization for the stationary surface PDE.

TABLE 2 Errors and EOCs in the L*(L?)- and L*(H")-norms for the evolving

surface problem

Level dof  L>(L% EOC L*(H") EOC

1 6 5.7898 - 1073 — 8.4446 - 1073 —

2 18 9.5840 - 10~* 2.8688 1.8173-1073 2.4504
3 66 4.0725-1074 1.2704 1.6549 - 1073 0.13895
4 258 9.1096 - 1073 2.1755 54513 -107* 1.6133
5 1026 1.3847 - 1073 2.7226 1.2774-1074 2.0971
6 4098 1.9534-1076 2.8267 2.6135-107° 2.2901

9.2 Example 2: Evolving surface parabolic problem

In the following experiment, we consider the parabolic problem (2.1) on the evolving surface given by
F() = {x e B a5 452 45— 1 =0},

where a(t) = 1 + % sin(2mt) (see, e.g., Dziuk & Elliott, 2007; Dziuk et al., 2012; Mansour, 2013), with
given initial value and inhomogeneity f chosen such that the solution is u(x, r) = e~%x;x,.
Similarly to the stationary surface case, we again report on the experimental orders of convergence
and similar spatial and temporal convergence plots. They are all produced exactly as described above.
The EOC:s for the evolving surface problem solved with BDF method of order 3 and evolving surface

finite elements of second order can be seen in Table 2.
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FiG. 3. Spatial convergence of the BDF3/quadratic ESFEM discretization for the evolving surface PDE.

L2—norm error

HIGH-ORDER ESFEM FOR EVOLVING SURFACE PDES
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Fi1G. 4. Temporal convergence of the BDF3/quadratic ESFEM discretization for the evolving surface PDE.
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The errors at time Nt = 1 in different norms can be seen in the following plots: the different

lines again correspond to different time-step sizes and to different mesh refinements in Figs 3 and 4,
respectively.
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Appendix. Proof of the geometric approximation results of Lemma 5.2

For clarity we recall Lemma 5.2.

LEmMA A.1 For Fh" (t) and I'(¢) as above, for h < hy with a sufficiently small i, > 0, we have the
geometric approximation estimates:

ldllzoor, iy < ch*t, 1T = 8ullzoo iy < ch**,

In = gl o, < ch, and

I1d = 84Qnllzoo(ry ey < B, @) dlli ) < B,
”(8}:)(6)811”L00(1’h(t)) =< Chkﬂ, ||PT((3;:)(Z)Qh)Pf”LOO(F,,) = Cth,

with constants depending only on %, but not on /4 or ¢.

Proof of Lemma 5.2. The proofs follow the ideas of Dziuk & Elliott (2007, Lemma 5.1) and Man-
sour (2013, Lemma 6.1), in combination with the ideas and techniques of the proof of Demlow (2009,
Proposition 2.3).

LetE =E(t) C I"hk (#) be an element of the discrete surface. By 7, we denote the k-order interpolation
operator of Section 5.2.

(i) Since the nodes of E lie on the exact surface I"(f) we have that the interpolate Thd vanishes on
E. Then by using standard interpolation estimates (from Lemma 5.3 or from Brenner & Scott, 2007) we
obtain

T k+1 k+1
ldlloew) = ld — hidllLoe) < ' ld lyirroo gy < B A ek agy -
Higher-order norm estimates are shown analogously:
Ip — Prllwice < ch ' (A.1)
(ii1) For the normal vector estimate,

@) — nf®)| < InP*&E) — n@EE)| + In(pE)) — 0P &)
< (Gl + c(Grht, (A.2)
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where for the last estimate we used the smoothness of ¢; and the above bound on d, and the bounds (A.1)
and the Gram—Schmidt orthonormalization algorithm (cf. Demlow, 2009).
(ii) The second estimate is shown by recalling, from Demlow (2009, (2.10)), that (fora fixed t € [0, T'])

i) =n(x) i) [ [ —d. 0K (x) (e T, (A3)

j=1
where K;(x) = «;(p(x,1))/1 + d(x,t)k;(p(x, 1)) with k; being the principle curvatures; cf. Demlow (2009).

Then, following the proof of Demlow (2009, Proposition 4.1), using ||d| .~ = O (h**') and (A.2), we
obtain

11— 841 < c(@n)h*™ + (@)1 —n -y
< (@R (@) In — m? < e(Gp)h . (A4)

(iv) To show the fourth estimate, we use the idea of the linear ESFEM case. Using the previous
estimates and (5.1) the definition of Q,

|Id — 8,0,| < |Pr — PrPr;Pr| + ch**'.
Then, for an arbitrary unit vector z,
|(Pr — PrPr,Pr)z| = |z - (n, — (ny, - m)n)(ny, — (ny, - mn)| < ch™,
where the estimate follows, using (A.2), from

[n;, — (0, -n)n| < |(n-n)n, — (n;, - n)n,| + (0 - n)n, — (0, - n)n|

< |((n —ny) - )| + [(n, - n)(n, — n)| < ch*.

See also the proof of Demlow (2009, Proposition 4.1).

The proofs of the estimates with material derivatives are similar to their nondifferentiated versions;
we follow the ideas of Mansour (2013).

(v) Again, since (9;)“d vanishes at the nodes of E, hence the interpolant 7;,(8}:)“)11 vanishes on E
completely. Again by interpolation estimates we obtain

1O Ol = 160D Od =T, Ol < HH 1@ O dllyirioegey < B 1D Ol et gy

(vi) The sixth estimate is shown by taking the material derivative of (A.3) and by a similar argument
to (A.4),

1@ 8ull oo < @R 4+ c(@p)lof(mn —m) > < e(Gph*,

where the last inequality follows by the chain rule and since the combination of (A.1) and (A.2), together
with n = Vd, yields |9; (n — n})| = O(h").
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(vii) Let us show the last estimate for £ = 1. The higher-order version follows by a similar argument
recursively. It is clear from the definition of Q, (see (5.1)) that with a smooth remainder function R we
can write

1
O, = S—PrPthr + dR(6,, Pr,Pr),, 7).
h

Now using the facts ||d||, |0;d]| = OB, 8, = 1+ O (K" and ||8:8, || = O(h**") we bound
Pr(d;Q1)Pr = Pro; (PrPr,Pr)Pr + O/(h*1).

The first term here is estimated separately. Using d;n-n = 0, in Mansour (2013, equation 6.4), it is shown
that

Pro; (PrPr,Pr)Pr = Pro; (PrPr,Pr — Pr)Pr = —Pro; (Pr nhnZPr)Pr.
Since the projections are bounded, we need only the bounds

|Prn,| = [n, — (n-ny)n| < cht,

|0y (Prny)| = |97 (ny, — (n - my)n)| < ch’,

where the first inequality has been shown above, while the second follows by the chain rule and by
[07(n — nf)| = O(*) proved above, together with the boundedness of d7n and d;n, (which follows
from velocity approximation and the smoothness of ¢; for the first term, while for the latter by the same
arguments and an additional triangle inequality). O
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1 | INTRODUCTION

Many important problems can be modeled by partial differential equations (PDEs) on evolving surfaces.
Examples for such equations are given in material sciences, fluid mechanics, and biophysics [1-3].

We consider the heat equation on closed evolving surfaces, in the case where the surface velocity v
is explicitly given, derived in [4]. Dziuk and Elliott [4] introduced the evolving surface finite element
method (ESFEM) to spatially approximate such problems. Error estimates for the semidiscretization
with piecewise linear finite elements in the L? and H' norm are given in [4, 5]. Convergence results
for time discretizations, as well as full discretizations, have been shown in [6, 7].

The aim of this work is to give error bounds for the semidiscretization with linear finite elements
in the L and W'*° norm. The authors are not aware of any other maximum norm convergence results
for evolving surface PDEs.

Such estimates are of particular interest for nonlinear parabolic PDEs on evolving surfaces, and
in the case when the velocity v is not explicitly given, but depends on the solution u. Example of
such problems are given in [1, 8—11] and the references therein. The first convergence results for such
coupled problems have been recently shown in [12]. The treatment of such general equations is beyond
the scope of this paper.

Our convergence proof for the semidiscretization of the linear heat equation on evolving surfaces
relies on three main results.

Numer Methods Partial Differential Eq. 2017;1-37. wileyonlinelibrary.com/journal/num © 2017 Wiley Periodicals, Inc. 1
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e We give error bounds in the L> and W!* norms for a suitable time-dependent Ritz
map (also used in [13], which is not the same as the one in [5]). The proofs of these
results are based on Nitsche’s weighted norm technique [14].

e Asthe surface evolves in time the Ritz map is time dependent, hence it does not commute
with the time derivative. We therefore need the essential novel results: the L> and W'
norm error bounds in the material derivatives of the Ritz map. Up to our knowledge,
such maximum norm estimates have not been shown in the literature until now.

e We extend the weak finite element maximum principle, which is originally due to
Schatz et al. [15] for Euclidean domains, to the evolving surface case. In [15], they
use basic properties of the semigroup corresponding to the linear heat equation on
a bounded domain. As there is no semigroup theory for the linear heat equation on
evolving surfaces, we are going to use a different approach.

The proven convergence result has optimal order, in the sense of powers of the mesh size, however,
contains a nonoptimal logarithmic factor. We expect that the results presented here may be improved
to have optimal logarithmic factors, shown using more involved proof techniques generalized from
the Euclidean domains, see for instance [16—18] and especially the proof of the logarithm-free discrete
maximum principle proved in [19]. However, such logarithmically optimal bounds are not in the scope
of the present work, as such a refined analysis would easily double the length of the paper.

In a recent preprint of Kroner [20], L™ estimates—of order O(| log(h)|h + t'/?) —are shown for
full discretizations of parabolic PDEs on stationary surfaces. The results of that paper are obtained
using different proof techniques.

The layout of the paper is as follows. We begin in Section 2 by introducing the problem along
with some notation. In the first three subsections of Section 3, we quickly develop the ESFEM, and
recall basic results and estimates. In the following three subsections, we introduce a surface version
of Nitsche’s weighted norms, and define an L2-projection. In Section 4, we give error bound in the
maximum norm for our Ritz map and for its material derivative. In Section 5, we derive a weak
ESFEM maximum principle. In Section 6, we give error bounds for the semidiscretization of the linear
heat equation on evolving surfaces in the L> and W'* norm. In Section 7, we present the results
of a numerical experiment. We gather technical details for calculations with our weight functions in
Appendix B.

2 | A PARABOLIC PROBLEM ON EVOLVING SURFACES

Let us consider a smooth evolving closed hypersurface I'(f) C R™*! (our main focus is on the case
m =2, but some of our results hold for more general cases), 0 < ¢ < T, which moves with a given
smooth velocity v. More precise we assume that there exists a smooth dynamical system @ : I'y x
[0,T] — R™! such that for each t € [0,7] the map ®, = ®( - ,¢) is an embedding. We define
I'(t) = &,(I'y) and define the velocity v via the equation 9, P (x, 1) = v(P(x,1),1). Let 0°u = d,u+v-Vu
denote the material derivative of the function u. The tangential gradientis givenby Vru = Vu—Vu-vv,
where v is the unit normal and finally we define the Laplace—Beltrami operator via Aru = Vr - Vru.
This article shares the setting of Dziuk and Elliott [4, 5, 21].
We consider the following linear problem derived in [4, Section 3]:

*u~+uVrg - v— Arpu=f on I'(9),

1
u(-,0) = uy on I"(0). W
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We use Sobolev spaces on surfaces: For a sufficiently smooth surface I" and 1 < p < oo, we define

W'P(T) = {n € L (D)|Vry € L7(D)"*},

and analogously W*?(I") for k € N [4, Section 2.1]. We set H*(I") = W*2(T"). Finally, G; denotes the
space-time manifold, that is, Gr = U,conI" () x {}.
If f =0, then a weak formulation of this problem reads as follows.

Definition 2.1 (weak solution, [4] Definition 4.1). A function u € H'(Gr) is called a
weak solution of (1), if for almost every ¢ € [0, T']

d
— W)-l—/ Vi - Ve =/ ud*p,
dt Jrq r@ NG}

holds for every ¢ € H'(Gr) and u(-,0) = u,.

For suitable f and u, existence and uniqueness results, for the strong and the weak problem, were
obtained in [4, Section 4].

Throughout this article, we assume that f and ug a such regular that u € W>*°(Gy). Furthermore,
we set for simplicity reasons in all sections f = 0, as the extension of our results to the inhomogeneous
case are straightforward.

3 | PRELIMINARIES

We give a summary of this section. In Section 3.1, we introduce the ESFEM, which is due to Dziuk
and Elliott [4]. In Section 3.2, we recall the lifting process, which originates in Dziuk [22]. In Section
3.3, we collect important results from Dziuk and Elliott [5] and sometimes state them in a slightly
more general fashion. In Section 3.4, we introduce weighted norms, which are due to Nitsche [14], and
give connections to the L* norm. In Section 3.5, we give interpolation estimates in the L?, L*°, and
weighted norms and further give some special interpolation estimates in weighted norms. The latter
two were first stated in Nitsche [14]. In Section 3.6, we introduce an L2-projection, give a stability
bound in L” norms and finish with a error estimate with respect to a different weight function. The
basic reference for this is Douglaset al. [23] and Schatz et al. [15].

3.1 | Semidiscretization with the ESFEM
The smooth surface I'(¢) is approximated by a triangulated one denoted by I',(¢), whose vertices

(@)L, = (®(a;(0), 1)}, are sitting on the surface for all time, such that

@) = U E®).

E@eTy 1)

We always assume that the (evolving) simplices E(¢) are forming an admissible triangulation 7, (z),
with & denoting the maximum diameter. Admissible triangulations were introduced in [4, Section 5.1]:
Every E(t) € T,(¢) satisfies that the inner radius o;, is bounded from below by ch with ¢ >0, and I';,(¢)
is not a global double covering of I"(#). The discrete tangential gradient on the discrete surface I';,(#)
is given by

VFh(r)¢ =V¢ — Vo - vy,

understood in a piecewise sense, with v;, denoting the normal to I',(¢) (see [4]).
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For every ¢ € [0, T], we define the finite element space S, () spanned by the continuous, piecewise
linear evolving basis functions x;, satisfying

xi(ai(0),1) = 8; foralli,j=1,2,...,N,

therefore, S;(1) = span {};( - ,0), x2( - ,0),.... xv( - , D}
The continuous dynamical system ® is

interpolated by @, : I',(0) x [0,T] — R™*!,

N
(1) = Y D(a;(0),)x;(, 1), )

j=1

the discrete dynamical system of the interpolating discrete surface I'; (7).
This defines a discrete surface velocity V), via the ordinary differential equation (ODE) 9,®,(-, 1) =
V(@ (-, 1), t). Then, the discrete material derivative is given by

0, n = 0,n + V- Vo, (¢n € S (1)).
The key transport property derived in [4, Proposition 5.4], is the following
oxk=0 for k=1,2,...,N. 3)

The spatially discrete problem for evolving surfaces is: Find a U, € S,(¢) with 9;U,, € S, () and
temporally smooth such that, for every ¢, € S;,(¢) with 95¢,, € S,(1),

d

— Unn + / Vr, Uy - Vr, ¢ = / Ux3, én, €]
dr Jrya () T (@

with the initial condition U, (-,0) = U,? € 5,(0) being a sufficient approximation to u.

3.2 | Lifts

In the following, we recall the so-called lift operator, which was introduced in [22] and further investi-
gated in [4, 5]. The lift operator projects a finite element function on the discrete surface onto a function
on the smooth surface.

Using the oriented distance function d ([4, Section 2.1]), for a continuous function n;, : I';(f) — R
its lift is defined as

mO D =m0,  x e,
where for every x € I[',(¢) the value x' = x'(x,t) € I'(¢) is uniquely defined via the equation
x=x'+ v, 0dx, ).
This notation for x' will also be used later on. By 7/, we mean the function whose lift is 5, and by E} we

mean the lift of the triangle E,,. These lifted triangles, or curved elements, form a curved triangulation
of the smooth surface I'(z).
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The following pointwise estimate was shown in the proof of Lemma 3 from Dziuk [22]:

1
- [Ven, D] < Ve, ma@)] < ¢ [ Vi, ] ®)

We now recall some notions using the lifting process from [4, 22]. We have the lifted finite element
space

S0y ={on =) | b € Si(0)} .

By §,, we denote the quotient between the continuous and discrete surface measures, dA and dAj,
defined as §,dA;, = dA. For these quantities, we recall some results from [4, Lemma 5.1].

Lemma 3.1 For sufficiently small h, we have the estimates
2 2
ldllzoor, @y < ch®, 1T = 8ullzoo(r,y < ch’,
with constants independent of t and h.

3.3 | Geometric estimates and bilinear forms

The definitions and results of this subsection are independent of the surface dimension m.
Let us denote by @}, : T’y x [0,T] — R™! the lift of ®, from Equation (2), that is, for x € I',(¢)
with lift x' € T'(z)
DL, 1) = Dy(r,r) ([0, T).

We then define the velocity v, via the formula 3, !, (x, 1) = v,,(d>§1 (x,1),1). Hence, the discrete material
derivative on I'(¢) is given by

opu = ou+v,-Vu,
which satisfies the following relations, cf. [5]:

0°u = dyu+ (v, —v) - Vru, (6)

2
v —=villzeeqray + 2V = villweeray < ch™lIVIiwaco - (N

We use the time-dependent bilinear forms defined in [3, Section 3.3]: for z, ¢ € H'(T'(t)) and Z,, ¢, €
H'(T,(1)):

a(t;z,¢) =/ Vrz - Vro, ant:Zisgn) = 3 /EVFhZh -V P
ING) E€T)
m(t;z,¢) =/ 29, my,(t; Zy, r) Z/ Zyn,
r e 10
gt;viz, @) = (Vr -v)ze, 8n(t; Vis Zp, i) = / (Vr,, - Vi) Zuth,
r e rH (o)
buivieg) = [ BOWiz-Vio. 6ViZitn = 3 [ BV 2
0 E

EeTy
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where the discrete tangential gradients are understood in a piecewise sense, and with the matrices

B); = 8;(Vr -v) — ((Vr)v; + (Vr)v),
By(Vi)y = 8;(Vr - Vi) = ((Vr,);(Va); + (Vi) (Vi)

where i,j =1,2,...,m+ 1.
We will also use the following bilinear forms, for ¢t € [0, T] on H'(I'(2)) x H'(I'(¢)),

a*(t; © ) = a(t; '7 ') + m(t; '7 ')a
g+ b)E;v;-) = gt v, ) + b6 vs-,),
and similarly, their discrete bilinear form counterparts for the discrete surface, a; and (g, + b;,). Note
that both bilinear forms a* and aj are positive definite.
If it is clear from the context, we will drop the omnipresent argument ¢ from the bilinear forms.

The time derivatives of the bilinear forms are given in the following lemma.

Lemma 3.2 (Discrete transport property). For z,, 31z, op¢ € H' (T (1)), we have

d
Em(z, @) = m(3;z,9) +m(z,9;9) + g(vi; 2, 9),

d
@a(z, @) = a(0;z,¢) +a(z,0,9) + b(vi; z,9). ¢))

Similarly for Zy, ¢n, 93 Z, 03¢, € H (T (1)), we have

d

Emh(zh, &n) = my (0, Zy, &1) + my(Zy, 9, ) + g1 (Vs Zy, 1),

d

Eah(zh’(ﬁh) = ay (0, Zy, b)) + an(Zy, 05 1) + by(Vi; Zy, d1). 9

Important and often used results are the bounds of the geometric perturbation errors in the bilinear
forms.

Lemma 3.3 Forall 1 < p,q < oo, that are conjugate, p~' +q~' = 1, and for arbitrary

Z, € LP(T'y (1)) and ¢, € Li(T, (1)), with corresponding lifts z, € L’(I'(t)) and ¢, €
L1(T' (1)), we have the following estimates:

2
[m(zp, on) — My (Zp, d)| < ch™l|zullr e 190l La @)

) ) 2
18hs zn> 01) — 81n (Vi Zn, &) | < ch”|zuller oy l9n Loy -

Similarly, for Z, € W"(T',(t)) and ¢, € WH(T, (1)), with lifts z, € W' (T'(¢t)) and
o € WH(T (1)),

lazn, @) — an(Z, &) < ch* [ Vezall o | Ve@nllia s
b 2 1) — b (Vi Zy, o) < Ve znll o o op | Ve@nll Ly -

Here the constant ¢ > 0 is independent from t € [0, T and the mesh width h.
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Proof These geometric estimates were established for the case p = ¢ = 2 in [5, Lemma
5.5] and [13, Lemma 7.5]. To show the estimates for general p and ¢, the same proof
applies, except the last step where we use a Holder inequality. -

3.4 | Weighted norms and basic estimates

Similarly, as in the works of Nitsche [14], weighted Sobolev norms and their properties play a very
important and central role. In this section, we recall some basic results for them.

Definition 3.1 (Weight function). For y > 0 sufficiently big but independent of 7 and
h, we set

0 :[0,00) = [0,00), p?:= p>(h) := yh® |logh.
We define a weight function . = u(t; .) : I'(#) — R via the formula, for any y € T'(¢),
p@x) = pxy) =k =y +p° Vxel@®. (10)
The actual choice of y is going to be clear from the proofs.

Definition 3.2 (Weighted norms, [14] Section 2). Let u be a weight function and o €
R. We define the norms
lull?,, = / Wl
r

2 2 2 2 2 2112
Nl ,, = lullyo, + 1Veulls s lullye , = luliy, + 1VEull -

In order to show basic estimates for the weighted norms, we need the following general
version of inverse estimates for finite element functions, cf. [15].

Lemma 3.4 (Inverse estimate). There exists ¢ >0 such that for each triangle E,(t) C
['),(¢) the following inequality holds

100 () ko iy < "2V (0) lwma ey oy (Vo € Si(D)).
We can now turn to the estimates of the weighted norms defined above.

Lemma 3.5 Ler dimI'(t) = 2. Let ¢, € S),(t) with corresponding lift ¢, € Sf,(t). Then
there exist constants ¢ > 0 independent of t, h, and y such that

l@nllLooqry < ch|loghlll@nll;2,, (11
||‘Ph||w1~°°(r(t)> < cy |10gh|1/2||¢h||111,1- (12)

Proof There is a point y,, € Ey C I';(¢) such that

@nllwioo @y = 16nGo)l + [Ve,dnGo)| = 1 @nllwroogy)-
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Note that on Ey the estimate p;(x;) < cp? holds for i < hy, hy sufficiently small. Then,
the second bound yields from using inverse inequality (Lemma 3.4) and (57. The bound
(11) is proved using similar arguments. -

We remind here that the weighted norms and p depend on #, cf. Definitions 3.1 and 3.2.
Lemma 3.6 Let dimI'(¢t) = 2 and let u : T'(t) — R be a sufficiently regular. For all

y > 0 exists hy = ho(y) > 0 sufficiently small and a constant ¢ = c(hy) > 0 such that
forall h < hy, we have

A

-1
lull 2o < co™ llullroeray), (13)

lullgiy < ¢ |10gp|l/2||u||wlm(r(r))~ (14)
c is independent of t and h.

Proof Fora = 1,2, we obviously have

A

1
lullZ, < llulZ~ f w b
2. EEEO) [l (1x — y* + yh? |log h])

Let « = 1. Denote by r = distr(x,y) the intrinsic distance. As the intrinsic distance is
equivalent to the (extrinsic) Euclidean distance, cf. (56), we have

1 1
dy < c/ — .
/Fm (|x = yI* + yh? |logh|) roy (2 + yh? |loghl)

We use geodesic polar coordinates, cf. Section B1, to reach

1 R r
——dy<c / —dr.
/m (r* + yh* |loghl) o (r*+yh*[loghl)
The result readily follows. The case o =2 is shown using similar arguments. .

Naturally, there is a weighted version of the Cauchy—Schwarz inequality, namely we have

la* @z, e)| < lznllgt ol g

la, (Z, o) < cllzallyr o ll@nlla o a5)

and similarly for the bilinear forms g and b. Furthermore, this yields a weighted version of the geometric
errors of the bilinear forms (Lemma 3.3), for any dimensions.

Lemma 3.7 Under the conditions of Lemma 3.3, the following estimates hold, with a
constant ¢ > 0 independent of t, h, and y,

|a* (21 #3) — @3 (Zn, )| < P12l N Bpll it s (16)
(g + D) Vi3 23 1) — (&1 + D) (Vi Zis @0 < 112311 o I B3l 1 o A7)
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Lemma 3.8 (i) Spatial derivatives of u™' arebounded as

—3/2
s

IVen™'| < 2u |Arp”!| < ep”? (18)

with ¢ > 0 independent of t, h, and y.
(ii) For arbitrary u € H'(I'(¢)), the following norm inequalities hold.:

A

Il < cllullza + lullg ), 19)
||M72u||142,71 = Pil”u”LZ,z- (20)

Proof (i) The first estimate follows from

2x—y _ 2R

[Vep™'| < [Vp'| < — =
"

For the second inequality consider the formula,
Arf = Af = V3f(v,v) — Hv - Vf,

where f : U — R is a smooth extension of the function f to an open neighbourhood
U c R™! of ['(¢) (cf. [4]), sz denotes the Hessian of f and H denotes the trace of the
Weingarten map of I'(¢).

(i1) In order to show these estimates, we use the bounds (18) obtained above. .

3.5 | Interpolation and an improved inverse estimate
Here, we collect some results involving evolving surface finite element functions.
For a sufficiently regular function u : I'(#) — R, we denote by Ih ues, (t) its Lagrange interpola-

tion on I',(¢). Then, the finite element interpolation is given by [,u = (]hu) € S’ (1), having the error
estimate below, cf. [24].

Lemma 3.9 Form < 3 and p € {2, 00}, there exists a constant ¢ > 0 independent of h
and t such that for u € W (I (¢)):

lu — Lille iy + I Ve — L) || e ey
201192
< ch* (| Vrullr oy + BRI Vrullaoay)-

The interpolation estimates hold also if weighted norms are considered.

Lemma 3.10 Let m < 3. There exists a constant ¢ > 0 such that for u € W>*(I'(t)) the
following inequality holds

i — Tyl + e — Lyal2, < e Nog hlllullZ o - @1

Proof Use Lemma 3.6 in conjunction with Lemma 3.9 for p = oc. .
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Lemma 3.11 There exists hy > 0, yo > 0 such that for all @« € R, there exists a
constant ¢ = c(hy, yp) > 0 independent of t and h such that for all y > 1y, for the weight
W, compare to Equation (10), and for all h < hy the following inequalities holds:

(i) Let u € H'(I'(t)) be curved element-wise H, that is, for each element E C T',(1)
with corresponding lift E' C T'(t), we have that u|z € H*(E"). Then, the interpolation
Lyu € S! (1) satisfies

lu = Bll2 g + RIVE@ = L)l 2 < R (VR 2 g + chlVrullp,),  (22)

where || Viul| 2, is understood curved element-wise.

(ii) For any ¢, € Sfl(t), the following estimate holds:

h
™" o — 1}1(M71¢h)||1-11,71 =c (; + h) (lenllzzz + 1Vr@ullz2)- (23)

Proof (i) To prove inequality (22), it suffices to show that there exists a constant ¢ =
¢(a) > 0 independent of ¢, i such that for each element K € 7,,(¢) it holds

/ B (W — Lw)* + 1 [V (w — Lw) ) < chz/ we (VEw]* + ch [Viw]?),
K! K!

where K! C T'(¢) denote the lifted curved element of K. It is easy to show that there exists
Yo = Yo(hy) > 0 and ¢ = ¢(yp) > O such that for all y > yy it holds

max, g ;U (x, y)) e

maXgeT, -
"\ min, g p(x, y)

A straightforward calculation finishes the proof.
(ii) For an arbitrary function f : T',(f) — R, which is element-wise H?, a short
calculation, similar to the one done in Dziuk [22, Lemma 3], shows that

[(V0)i(Ve), (D] < (V) (Ve )N+ e Ve (PO,

for a sufficiently small 4y > h > 0. A straightforward calculation combined with 1 and
(18) finishes the proof. .

Now, we show a modified version of the inverse estimate of Lemma 3.4.

Lemma 3.12 There exists ¢ > 0 with

1
lonllLoe ey < v/ ‘Ph(}’)dv()’)‘ + ¢ | log A" Vr@ull ooy
r®@

where V = fm) dv.

Proof Follow the steps in Schatz et al. [15] using the Green’s function from Theorem
A.1. For the estimates, use geodesic polar coordinates as in Section B.1. .
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3.6 | Estimates for an L*-projection
This section shows some technical results for the L>-projection, which is denoted by P, (in contrast

with the Ritz map which will be denoted by P,).

Definition 3.3 (L2-projection). We define Py(t) : L*(I'y(t)) — Si(¢) as follows. Let
w, € L2(I',(¢)) be given. Then, there exits a unique finite element function Py ()u;, € S ()
such that for all ¢, € S;,(¢) it holds

my (Po(Dup, ¢p) = my,(up, ¢y). (24

Definition 3.4 For two points x,y € I',(¢), we define its intrinsic Riemannian distance
as

1
dist; (x, y) = distr, ( (x,y) = inf / lo |2,
o Jo

where o ranges over all possible curves [0, 1] — I',(¢) with (0) = x, 0(1) = y and
where o is piecewise smooth, that is, there exists a finite partition of [0, 1] such that o
restricted on that subinterval is smooth. For two sets A, B C I';(¢), we set

dist,(A,B) = inf dist,(a,b).
(a,b)eAxB

The following important L”-stability bound and exponential decay property from Douglas et al.
[23, Equations (6) and (7)] holds without any serious modification.

Theorem 3.1 For p € [1,00], let u, € L’(I';,(t)). Then, there exists a constant ¢ >0
independent of h and t such that

1Po@®unllrr,ay < cllunllrw,ay-

Further there exists ¢, c3 > 0 independent of h and t such that for A} (t) and A%(t) disjoint
subsets of T, (t) with supp(u;,) < A}l, we have

;. 1 42y,—1
||P0(t)uh||L2(A%(t)) < Cze_f3dzsth(Ah,Ah)h

||1411||L2(A}1’(,))~ (25)
A quick proof sketch can be found in the Appendix.
For the proof of our discrete weak maximum principle, we are going to use a different weight
function then (10). Let y : [0,T] — R™"!, ¢ — y(¢) be a curve with the property y(¢) € I'(¢). In the
following, we write y instead of y(¢). We define, for any x € I'(¢) and mesh width 4,

o (x) == 0j (x) == op(x,y) == (Ix —y[* + hz)l/z.

(26)
We gather some estimates concerning o in the next lemma.

Lemma 3.13 There exists a constant ¢ > 0 independent of t and h such that the following
estimates hold

10°0 Lo rey < c, 1950 llLoray < ¢, 27
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1
IVro ey <1, |V12*0| <c (; + 1) ’ ||V1%(02)||L00(r(x)) <c (28)

The proof of this lemma is a straightforward calculation and is omitted here.

Lemma 3.14 There exists ¢ >0 such for fixed t € [0,T], x, € [',(¢), 0 = %, ¢, €
Su(t), and r, = Py(c*¢y,) the following inequality holds:

2 2
llo“¢n — 1/f;z||L2(rh(z)> + h||V1",,(CT & — Wh)”LZ(rh(r))

2
< el (lgnll 2,y + 10 Ve, @ull 2y a)-

Proof Consider a triangle E;, C I',(¢) and set g, = i;,(az@,). Use Lemma 3.13 and (58)
and follow the steps in Schatz et al. [15, Lemma 1.4]. .

4 | A RITZ MAP AND SOME ERROR ESTIMATES

Just as in the usual L*-theory the Ritz map plays a very important role for our L> -error estimates.
This section is devoted to the careful L> and weighted norm analysis of the errors in the Ritz map.

Definition 4.1 (Ritz map, [13]). We define P, (¢) : H'(I'(t)) — S,(¢) as follows: Let
u € H'(I'(t)) be given. Then, there exits a unique finite element function P, (£)u € S, (¢)
such that for all ¢, € S;,(¢) with ¢, = qb,’l it holds

ay (P (D, ) = a* (u, o). 29)
This naturally defines the Ritz map on the continuous surface:
Pi(tu = (P (Hu) € S}(1).

Note that the Ritz map does not satisfy the Galerkin orthogonality, however it satisfies, using (16),
the following estimate, cf. [13]. For all ¢, € Sﬂl (1), we have

|a*(u — Py@u, )| < ch* [Pyl g1 | @nll 1 g (30)
In this section, we aim to bound the following errors of the Ritz map:
u—Pi(Hu and 9;u — Pi(Hu),

in the L> and W' norms. Previously, H' and L? error estimates have been shown in [4, 5].

4.1 | Weighted a priori estimates

Before turning to the maximum norm error estimates, we state and prove some technical regularity
results involving weighted norms.
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Lemma 4.1 (Weighted a priori estimates). For f € L2(I'(¢)), the problem
—Arpw+w=f on I'(1),

has a unique weak solution w € H'(I'(t)). Furthermore, w € H*(I'(t)) and we have the
following weighted a priori estimates

Wiy -1 < e 21 + IWll2reyy) 3D
IWllgz -1 < cUfll2 -1 + IWllat ) (32)

where the constant ¢ > 0 is independent of t, h, and y.

Proof Existence and uniqueness of a weak solution follows from [25]. Using integration
by parts, Young’s inequality and |Vru| < ,/u a short calculation shows (31). For the
details on elliptic regularity and a derivation of the a priori estimate

Wllg2r@y < cll = Arw +wll 200 (33)

where ¢ > 0 is independent of #, we refer to [26, Appendix A].

Because of (31) it suffices to prove (32) with || V%w”iz _, as the left-hand side instead

of [wl7, . We have
m+1
uIViw =1 = YY) Vil + p? | VEw]
i=1

m+1
=Y IV = y)'w) = Vr(x =)' ® Viw
i=1

i i2
—Viw ® Vr(x —y) —wVi(x — )"+ p* [Viwl,

where x = (x',...,x"), y = !,...,y"") and (x — y)' = x' — y'. We deduce

m+1
IVEwll2_y < ¢ (Z VR =)Wl + ||w||Lz> :

i=1

Using (33) with the product rule

Ar(fg) = gArf +fArg —2Vrf - Vrg
leads to (32). .

Lemma 4.2 For g € L*(I'(t)) the problem

—Arpw+w=pu"’g.
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has a unique weak solution w € H'(I'(t)). Furthermore, w € H*(I'(t)), and there exists
a constant ¢ > 0 independent of t and h such that

Wl oy < 072 1og plligl3a - (34)

Proof Lemma 4.1 gives us existence, uniqueness, and regularity of w. Consider the
number

1
i (12 i f € HAT@), 1= Araf +112_, <1}

Inequality (34) is proven if we show

1 2
- < - l s
o cp " |logp|

where c is ¢ independent. A short calculation shows that the smallest eigenvalue ):min (1)
of the elliptic eigenvalue problem

—Arf +f =Au*f onT()

is equal to A(#). The weighted Rayleigh quotient implies

2
Amin = inf ”f”;fl .
remn IF1Es,
Hence it suffices to prove
Ilflliz,2 <cp™? [Tog(PIIf 7,1 (35)

foraf € H'. With a Holder estimate, we arrive at

1/p 1/q 1/p
2 -2 2 -2 2
Ifll2, = (/ 2 ”) </ S q) = </ J ”) W20 oy
r'(t) (@) r@

where 1 < p,q < oo satisfies p~! +¢~! = 1. We take the choice ¢ = +/ | log p|. Itis easy
to prove the following quantitative Sobolev—Nierenberg inequality for moving surfaces:

W llaaey < cqllf |t

where c is independent of ¢ and g. A straightforward calculation with geodesic polar
coordinates using Lemma B.3 and Lemma B.2 shows inequality (35). .
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4.2 | Maximum norm error estimates

Before showing L>® and W'> norm error estimates for the Ritz map, we show similar estimates for
weighted norms. Then, by connecting the norms, use these results to obtain our original goal.
Throughout this subsection, we write P,u instead of Py (f)u.

Lemma 4.3 There exists hy > O sufficiently small and y, > 0 sufficiently large and a
constant ¢ = c(hy, o) > 0 such that for u € W>*(I'(¢)) it holds

lu = Prullyy, + llu — Pruly | < ch® [log hl||ull; (36)

122 W20 (1))

Proof Step 1: Our goal is to show

lu— Pyully, < ch® |log hl|lull; + &llu— Prul @37

W2:20(I' (1)) 122"
Similarly, as in Nitsche [14, Theorem 1], for an f € H'(I'(¢)) we have using partial

integration

1
5 (Arp )f* = — FVru™t - Vif.
) O)

This further implies

1
/ 1 IV = / Vel Vel / (Arp 2.
'@ @) r@

As Pyu € H'(T'"), we deduce using (18)

1
g S @@= PupT = Pu)) = 5 | (ArpT) (= Py’
r@

< a*(u— Py, p” (= Puu)) + cllu — Pyul;

22"

lu — Prul|

L ~ .
For simplicity, we set e = u — P u, and use I,u = (Iu) to obtain

a'(e,u'e) = a* (e, " (u— L))
+a*(e, w L — Pyu) — (™" (lu — Pu)))
+a* e, ,(w " u—P)) =1 + L+ I

Using Lemma 3.7 15), Lemma 3.8 (19), Lemma 3.10 (21), and ¢ -Young inequality we
estimate as

Il < ellel}, + ch® [loghl|lull;

HL1 W20 (1)

For the second term use in addition Lemma 3.11 (23) and a0 < & < hy sufficiently small
to get

L] < 3||€||?11’1 + c(h? [log Alllullwacorqy, + llellz22)-
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For the last term use in addition Lemma 3.7 (30) to obtain
Il < ellelly, + c(h® |log hlllullyzcoray, + llellz2)-

These estimates together, and absorbing ||e||§]1'1, imply (37).

Step 2: Using an Aubin—Nitsche argument, we prove that there exists y > 3, > 0
sufficiently large such that for all § > O the following estimate holds

llu— Prullj, < ch|lull; + 8llu — Prully - (38)

22 = W2eo (I (1)
Let w € H*(I'(¢)) be the weak solution of
—Arw+w= ,u_ze.
Then by testing with e, we obtain
||e||22,2 = (a*(e,w) — a*(e,,w)) + a*(e,I,w) = a*(e,w — [w) + a* (e, [w).

In addition to the already mentioned lemmata in Step 1 use Lemma 4.1 (32), Lemma 3.8
(20), Lemma 4.2 (34), and a sufficiently large y > y, > 0 to estimate

* 1 2 2
la*(eow —Lw)| < Zllel, + S llel -
For the other term, we estimate

2

2 4 2
la*(e. lyw)| = ch™llel g Ml = ch™ ully0 ) + pllelliz:

By absorption, this implies (38).
The final estimate is shown by combining (37) and (38), and choosing § > 0 such
that ¢ < 1. Then, an absorption finishes the proof. .

Theorem 4.1 There exist constants ¢ > 0 independent of h and t such that

lu — (Phi (W) 0o rryy < ch® [Tog b lull 200 s
flu— (Ph,l(t)u)IHW]voo(l"(t)) < ch|loghlllullyzeoqry, (@€ W>*(I (1))

Proof Using Lemma 3.9, Lemma 3.5 (12), and Lemma 3.6 (14), we get

flu— P1M||W1,°0(r(;)> < flu-— Ihu”wl»OO(r(n) + clllyu — Ph,114||wl.oo(rh(,))

172

< chllully2co oy + cllog A= | yu — Pryullg

<ch |10gh|||u||w20°(rh(r)) + cllu— (Ph,lu)l||H1,1~

For the W' -estimate use Lemma 4.3 to estimate the weighted norms. The L* -estimate
is obtained in a similar way. .
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Remark 4.1 The paper of Demlow [27] (dealing with elliptic problems on stationary
surfaces) contains a related result in Corollary 4.6, however, it does not directly imply
Lemma 4.3. There are two crucial differences compared to the theorem above. As there
is no surface evolution in [27], the constants appearing in his proof would need to be
shown being uniform in time.! Furthermore, Demlow uses a different Ritz map (denoted
by ﬁﬁk there): instead of using the positive definite bilinear form a*(-, -) in (29), he uses
the original positive semidefinite bilinear form a(-, -) and works with functions with mean
value zero.

4.3 | Maximum norm material derivative error estimates

As the material derivative does not commute with the time dependent Ritz map, that is, 9P (H)u #
P (t)0;u, we have to bound the error 9 (u — P, (f)u). Again, we first show our estimates in the weighted
norms, and then use these results for the L°° and W > norm error estimates. Up to the authors knowledge
such a maximum norm error estimate for the material derivative of the Ritz map have not been shown
in the literature before.

For this subsection, we write P, ;u instead of P, (¢)u and further Pu instead of P; (f)u.

We first state a substitute for our weighted pseudo Galerkin inequality (30).

Lemma 4.4 There exists a constant ¢ > 0 independent of h and t such that for all u €
W2>(Gr) and @, € Si (1) it holds
|a* (3 (u = Pyu), gp)| < c(h*[185 (u — Py g,
+ h 10gh|1/2(||“||w2’°0(r<1)) + ||3.”||W1v°°(r(1))))||<Ph||H1,—1- (39
Proof The main ideais given by Dziuk and Elliott in [5]. Using (6) and Lemma 3.6 (14)
it is easy to verify
05 Prullyy < 1950 — 95 Prullgn
+ ¢ [og A2 (10" ullyroo ey + Allielly2oor)- (40
Let ¢, € S,(7), such that ¢, = ¢}. Taking time derivative of the definition of the Ritz
map (29), using the discrete transport properties (8) Lemma 3.2, and the definition of the
Ritz map, we obtain
a*(a,:u - 3;:P1M, op) = a;(aﬁph,lu,%) - a*(aﬁplus ©n)
+ (gn + b)) Vi u™ 1) — (8 + D) (vii u, 1)
— (gn+ b)) Vi u™ = Pyu, ). (41

Then estimate using Lemma 3.7 (16), (17), Lemma 4.3 (36), and the above inequality to
finish the proof (cf. [21, Thm. 7.2]). .

Lemma 4.5 For k € {0, 1}, there exists ¢ = c(k) > 0 independent of t and h such that
for u € W3*(Gyp), the following inequalities hold

2—k
l0;u — Iha.M”wk-OO(r(t)) < ch (||M||W2¢00(r<z)) + ||a'u||w2m(r(r)))s 42)

In fact, some of them is later shown to be z-independent in the Appendix.
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IB5u — 19°ullZ,, + N185u — 1,9°ully

< ch® |log hl(lullyz.e ey + 13Ul w200 ) (43)

Proof Using (6), we get

l0;u — Iha.u”Wk’N(F(t))
< v=w)- Vr“”wk-oc(r(r)) +[10%u — Iha'u||wk1°0(r(;))-
Use Lemma 3.9 and (7) to show the first estimate.

For the second inequality use a Holder estimate, and (42) with Lemma 3.6 (13) and
(14). .

Lemma 4.6 There exists hy > 0 sufficiently small and y, > 0 sufficiently large and a
constant ¢ = c(hy, yp) > 0 such that for u € W**(Gy), the following holds

1850 — 9 Pruell7a, + B3 — 35 Prullyy

< [10g hl* (1o gy + 18712000 (44)

Proof This proof has a similar structure as Lemma 4.3, and as it also uses similar argu-
ments, we only give references if new lemmata are needed. For the ease of presentation,
we set e = u — Pu and split the error as follows

ope = (0qu — 1,0°u) + ([,0°u — 9, Pyu) =: 0 + 0.
Step 1: Our goal is to prove
13elZy , < ch® 1Mog Al sy + 187Ul 200 ) + ENB N2 - @5)
We start with

I8gel%, < a*@e.n're) + clldjell’,

and continue with

1

a*(dpe, u'are) = a (e, n o)

+a*@re, w0, — 1('6,))
+a*@eIn™0) =L +5L+1

We estimate the three terms separately. For the first e-Young’s inequality and Lemma
4.5 (43) yields

2 2 2 2
L1 < ellagely, + e Nlog Al gy + 1813200

For a sufficiently small 0 < h < hy, we obtain

LI < ellogel, + cUldgelZs, + A 110g Al + 19° 1 20 )
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Using Lemma 4.4 (39) and a 0 < h < h, sufficiently small, we arrive at
LI < elldgell?y, + clapel?e, + B 1og Al nm g, + 18°1 20 )-
These estimates together, and absorbing |9, ell ;1 ;, imply (45).
Step 2: Using again an Aubin—Nitsche like argument we show that, for any § > 0
sufficiently small, we have
logelZ,, < sl85el?, + ch® Hoghl*(lulldom g + 181320 ) (46)
Let w € H*(I'(¢)) be the weak solution of
—Arw+w= ;ﬁa,;e.

Then, we have

logell 2, = a*(dye, w — Iw) + a*(9ye, w).
Again let ¢ > 0 be a small number. For y > y, sufficiently big, we get

2

la* (e, w — Lw)| < elldrels, + Slorels,

Using (41) and proceeding similar like in Dziuk and Elliott [5, Theorem 6.2], by adding
and subtracting terms, we get

a* e, Iw) = —(a* (O Pru, Iw) — @ (3; Ppyut, Iw)
+ (g + D) Iyw) — (g + b)) (Visu™' Tyw)
+ (gn + b)) Visu™ = Py, Lw) — (g + b)Y (vis u — Pru, [w)
+ (g +D)isu — Piu, Iyw) — (g + b)(v;u — Pru, Iw)
+ (g +b)(v;u — P, yw) — (g +b)(viu — Pru, w)
+ (g +D)(v;u — Piu,w))
=h+h+J+Ji+Js+ .

Use Lemma 3.7 (17), (40), Lemma 4.3 (36), and the inequality
hILwlig < elldgell2,
for y > y, sufficiently big, we obtain
Uil -+ Wl < 8l85elzn, + elldrel?, + ch?(ulpm + 19%ul100).
With the same arguments like for a*(d;e, w — I,w), we estimate

2 2
IJs| < elldgell, + dllozell;,
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for y > y, sufficiently big. For y > y;5 sufficiently big, we estimate the last term as
follows

sl < cllell2 lwllgz_,

12
< cllellr=|log p| / Wil 2,

) 32
< ch?[log P ||ully2ec Wl 42—y

<eldelis, + ch® [loghl*ullf0-

By absorption, these estimates together imply (46).
The final estimate is shown by combining (45) and (46), and choosing § > 0, such
that ¢§ < 1. Then, a further absorption finishes the proof. .

From the weighted version of the error estimate in the material derivatives, the L* norm estimate
follows easily.

Theorem 4.2 (Errors in the material derivative of the Ritz projection). Letz € W**(Gy).
For a sufficiently small h < hy and a sufficiently big y > y, there exists c = c(hy, yp) > 0
independent of t and h such that

195 (2 = (Pra D)) leseray < ch*[og Al (lzllwzse ) + 1872l waceray)s

19y (z — (Ph,l(f)Z)l)”Wlm(r(t)) <ch |10gh|5/2(||z||w2v0°(r(r)) + 18°zllw2.cor(ry))-

Proof The above results are shown by exactly following the proof of Theorem 4.1, with
Lemma 4.6 (44) being the main tool. .

5 | MAXIMUM NORM PARABOLIC STABILITY

The purpose of this section is to derive an evolving surface finite element weak discrete maximum
principle. The proof is modeled on the weak discrete maximum principle from Schatz et al. [15]. For
this, we are going to need a well-known matrix formulation of (4), which is due to Dziuk and Elliott
[4].

The matrix—vector formulation was first used for theoretical reasons in Dziuk et al. [6], in order to
show stability and convergence of time discretizations of (4).

Using the matrix—vector formulation, we derive a discrete adjoint problem of (4), which does not
arise in Schatz et al. [15]. Here, it arises in a natural way, as the ESFEM evolution operator is not
self adjoint. We then deduce a corresponding a priori estimate, and finally prove our weak discrete
maximum principle.

5.1 | A discrete adjoint problem

A matrix ODE version of (4) can be derived by setting
N
Un( .0 =Y o010,
j=1

testing with the basis function ¢, = x;, where S,(1) = lin {x;|j = 1,...,N}, and using the transport
property (3).
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Proposition 5.1 (ODE system). The spatially semidiscrete problem (4) is equivalent to
the following linear ODE system for the vector a(t) = (oc_,-(t));\’: | € RY, collecting the
nodal values of U, (-, t):

d
E(M ®a(t)) +A@)a(t) =0,
a(0) = ay, 47

where the evolving mass matrix M(t) and stiffness matrix A(t) are defined as
M@y = / Xj Xks Ay = / Ve, X% - Vo, xe G k=1,2,...,N).
I Ly

Definition 5.1 Let0 < s <t < T. For given initial value w;, € S;,(s) at time s, there
exists unique’ solution u;,. This defines a linear evolution operator

Ey(t,s) 1 Sp(s) = Su(t),  wy = up(2).
We define the adjoint of E,(t, s)
Eu(t,s)" : Sp(t) — Si(s)
via the equation
my(t; Ey (2, )i (), wa (1)) = my (s394 (5), Ep(t, ) wi (1)), (48)
where @, (s) € S,(s) and w,(¢) € S,(¢) are some arbitrary finite element functions.

Lemma 5.1 (Adjoint problem). Let s € [0, 1], wheret € [0, T]and wy,(t) € Si(t). Then,
ul(s) = E(t,5)"w,(t) is the unique solution, for every ¢;, € Sy(1),

my(s; 0, uy, dn) — an(s; uy, ¢) = 0, onT'(s) 49)
uy (1) = wy(t), onI(1).

where 9;” is the discrete material derivative with respect to the backwards time s (defined
as the one in Section 3.3).

Remark 5.1 The problem (49) has the structure of a backward heat equation, where s
is going backward in time. Hence, we considered (49) as a PDE of parabolic type. We
recall, that using Lemma 3.2 we may write Equation (4) equivalently as

my(t; 8wy + (Vr,, - Vidun, o) + an(t;upn, 1) = 0, on I (),

(50)
u,(0) = ugp, on I'(0)

2 Compare to Dziuk and Elliott [4].
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The problems (50) and (49) differ in the following way: If the initial data for (49) is
constant, then it remains so for all times. In general, this does not hold for solutions of
(50). On the other hand, (50) preserves the mean value of its initial data, which is in
general not true for a solution of (49).
Proof of Lemma 5.1 First, we investigate the finite element matrix representation of

E,(t,s) with respect to the standard finite element basis, which we denote by E,(z, s).
From (47), we have

d
7 MOEL 0un(0) + ADEL, 0)uy(0) = 0.

Let A(z,s) the resolvent matrix of the ODE

d§ e
- AOM®) g =0.

Then, obviously it holds
E(t,s) = M) A(t, )M (s).
Denote by E, (¢, s)* the matrix representation of E,, (¢, s)*. From Equation (48), it follows
E;(t,5)" = M(s) 'Ey(t,)"M () = A(t,s)".
Now, we calculate % Note that A(z,s) = A(s,¢)”" and it holds

—1
M = —A(s, ;)*LA(S’ D A

7L
ds ds (s,)

From that it easily follows

dA(t,s) .
=A@, 5)ASM(s)",
ds
which now implies
dE,(t,5)"
aBut.s)” _ M(s) "A(S)E(t, 5)". .
s

5.2 | A discrete delta and Green’s function

Leté, = 8;’1 = 5;,)% € S, (¢) be a finite element discrete delta function defined as
ma(t;8,"", o) = @i, 1) (n € (D). (5D
If 6% : T',(#) — R is a finite element function having support in the triangle E) containing x;,, then

as dimI", () = 2, one easily calculates |60 || 2o =€ for some constant independent of / and .
For the discrete delta function &, a similar result holds.



KOVACS axo POWER GUERRA

WILEY2

Lemma 5.2 There exists ¢ > 0 independent of t and h:
||O'Xh5;h ”LZ(rh([)) <c (xh € Fh(t))

The proof is a straightforward extension of the corresponding one in Schatz et al. [15] and uses the
exponential decay property of the L2-projection, cf. Theorem 3.1 (25).

Next, we define a finite element discrete Green’s function as follows. Let s € [0, T]. For given
uy, € Sy(s), there exists a unique ¥, € S,(s) such that

a, (83 Y, 0n) = my(s;up, ©4) Vi € Sp(s).
This defines an operator
Ty Su(s) = Su(s), Ty 'un = Y.

We call G;* = T,*8;™ a discrete Green’s function.
A short calculation shows that for all 0 # ¢, € S,(s) it holds

my(s; Ty on, o) > 0,

which implies that G;” (x) > 0. Actually, we can bound the singularity x with ¢ | log A/

Lemma 5.3 For the discrete Green’s function G;’x, we have the estimate
G (x) < c|loghl.
Proof Using Lemma 3.12 with (5), we estimate as

S, 1/2 X 1/2 S,X
1G ey < € g bl 2IG 1y = € 1 log il /G (o). .

The next lemma needs a different treatment then the one presented in Schatz et al. [15]. The reason
for that is that the mass and stiffness matrix depend on time and further the stiffness matrix is singular.

Lemma 5.4 Let be uj, a solution of (49). Then, we have the estimate

t
2 . LRt x
A ||u2||L2(rh(.y))ds S C- mh(t’ T; uh’ u;)

Proof Note that Lemma 3.2 (9) reads with the matrix notation as follows: If Z,, and ¢,
are the coefficient vectors of some finite element function, then we have the estimate

rdM(s)
b ds
7 dA(s)
b ds

¥/

b1 < ¢\ ZIM )L 9T M(5).

e N N T (52)
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In the following with drop the s dependency. Let u be the time-dependent coefficient
vector of u;. Then, we have

du du
O0=—-M—+Au=-M—+ A+ Mu—Mu.
ds ds
Equivalently, we write this equation as
1d T —1
———[uMA+M)"'M
5 s MA+ M) Mu]
T T -1 1 ,d -1
=—u'Mu+u MA+M) Mu— Eu d—[M(A + M) Mlu.
s
The last term expanded reads

luTi[M(A +M)"'Mu

2 ds
am 1 d(A+M)™!
=u'"—A+M) 'Mu+ fuTMuMu =1 +L.
ds 2 s
Using (52) and a Young’s inequality, we estimate as
1
L < c-u"M@A+M)"'Mu + 5uTMu.
1 dA+M
L] = 3 uTMA + M)‘l¥(A + M) 'Mu
\)

c-u"MA+ M) 'Mu.

IA

Putting everything together, we obtain
d T -1 T T -1
—d—[u MA+M)" Mul< —uMu+c-u"MA+M) Mu.
S

The claim then follows from Lemma C.1. .

5.3 | A weak discrete maximum principle

Proposition 5.2 Let U, (x,t) € S;,(t) the ESFEM solution of our linear heat problem.
Then, there exists a constant ¢ = c¢(T,v) > 0, which depends exponentially on T and v
such that

||Uh(f)||L°°<r,,(z)) <c|log h|||Uh(0)||L°°(Fh(O))-
Proof There exists x;, € [';,(¢) such that

U lle = |Up@Gin, )| = my(2; Uh(l),x,yxh) = mh(léE(l,O)Uo’Sﬁ,xh)
= my(0; UY,E(t,0)°8,™) < |US NIz lIE(,0)*8, ™ ||

The claim follows from Lemma 5.5. .
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Lemma 5.5 For G(t,5) = E;(t,5)"8,", where 8" is defined via (51) and E,(t,s)" is
defined via (48), it holds

G, Ol ry 0y < ¢ |loghl,

where the constant ¢ = c(T,v) depending exponentially on T and v such and is
independent of x, h, t, and. s.

Proof The proof presented here is a modification of the proof from Schatz et al. [15,
Lemma 2.1]. We estimate

G, 0) 11 o =l I/UXHLZ(F,I(O)) lo*Gy (2, 0) l2r, 00
With Subsection B.1, it follows

2
11/07 12 1,y < € loghl.

It remains to show

lo* Gyt 011} < c [loghl.

L2(Tp(0)) =

In the following, we abbreviate 0 = ¢* and G, = Gj(¢,s). With Equation 49 and the
discrete transport property, we proceed as follows

1d
2ds
= —my(s; 0;" Gy, 6°Gy) + ay(s; Gy, 0°Gy)

= 2my(s; 0 Vr, G, G Vr, 0)

5 2
||0Gh ||L2(F;,(S)) + ||UthGh ”Lz(l"h(ﬁ))

.5 l
—my(s;9;°0,0G;) — 5m,,(s;ozci, Vr, - Vi)

= —my(s; 3;:"YGh,C72Gh — W) + an(s; Gy, G, — ¥
= 2my,(s; 0 Vr, Gy, G, Vr, 0)

_ 1
— my(s; Gydy°0,0Gy) — Emh(S;ozGi, Vr, - Vi)

=L+L+L+1L+1s.

For the choice ¥, = Py(0>G,), we have I; = 0. Using Cauchy—Schwarz inequality,
Lemma 3.14 and an inverse estimate 3.4, we get

L < C(”Gh”iz(rh(m + ||Gl1||L2(Fh(.v)) : ||<7Vl“hGh||L2(rh(s)))-
Using Lemma 3.13 (28), we obtain

1] < cllGall 2,9 lo Vi, Gall 2y 51y
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Using Lemma 3.13 (27), we have

A

4| < C”Gh”Lz(Fh(x)) llo G ||L2(l"h(s))1

2
<
sl < cloGulla, -

After a Young’s inequality, we have

L2(T(5)) L2(Tp(s) — L2(Ty(9)) L2(Ty ()"

d
—allaGhll2 + oV, Gill; < clGull} + cloGil;

Lemma C.1 yields

13
2 2 2
10 Gt O g, ) < © ( /0 Gt 5) B, 5 + ||ova;||L2(rh(o))) .

For the first term, we get from Lemma 5.4 and Lemma 5.3 the bound

1
/ Gt )32, s < ¢ [oghl.
0

The last term is bounded according to Lemma 5.2. .
Remark 5.2 By using the techniques of [19] instead of [15], the logarithmic factor

| log(h)| is expected to disappear, however, this would lead to a much more technical and
quite lengthy proof, as already noted in the introduction.

6 | CONVERGENCE OF THE SEMIDISCRETIZATION

Theorem 6.1 Let I'(t) be an evolving surface of dimension two, let the function u :
I'(t) = R be the solution of (1) and let u, = U}’l € H'(T'(t)) be the solution of (4). If it
holds

2
1Py (D)u — Uh||L°°<r,,(r)) <ch’,

then there exists hy > 0 sufficiently small and ¢ = c(hy) > 0 independent of t, such that
forall 0 < h < hy, we have the estimate

e — wpllzooqryy) + Allu = upllyioo ey

<ch’ |10gh|4(1 + [)(”””Wlw(r(z)) + ||3.”||W2v°0(r(1)))-

Proof We use here the notations P, ju = Pj,;(t)u, Piu = (Phlylu)l and u, = U}. We
then split the error as follows

u—u, = (u— P+ (Ppju— Uh)l =0 + 9,’1.

Because of Theorem 4.1, it remains to bound 6,,. It suffices to prove an L* -estimate for
6y, as the W' -bounds follows by an inverse inequality.
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Obviously, there exists R;, € S,(¢) such that for all ¢, € Sj,(¢) it holds

d
— O +/ V0 - Vi, 0 — / 040, dn = / Ry
dt Jr,o e ) Iy

By the variation of constant formula, we deduce

() = E,0.06,0) + [ Bt R
With Proposition 5.2, we get
10hll o0 ryen < € [10g Al (104 (O) | .2(r, ) + TMAXsei0. 1R () |20 1, 00))-
Observe that if we denote by ¢, := ¢}, then a quick calculation reveals

my (R, ¢n) = mh(a;:Ph,lu, &n) + & (Vi Prau, @p) + an(Prau, ¢p)
— (m(0gu, o) + gvis u, @) + au, ¢1)) (53)

Lemma 6.1 finishes the proof. .

Lemma 6.1 Assume that R, € S;(t) satisfies for all ¢, € S;,(t) with ¢, := ¢fl Equation
(53). Then, it holds

”Rh”LOO(Fh(r)) =< ch? | log h|3(||u||w2~00<r(z)) + ||8.u”W2~°°(F(t)))-
Proof Using Definition 3.3 (24), (53) and as L™ is the dual of L', we deduce

IRk oo 1)) = sup  my(Ry. fi) = sup  my(Ry, Pofi)-
TreLl (T, ®) fpel Ty

Wil 1 p =" Wil 1 ¢, (1) ="

Now consider

my(Ry, Pofy) = mh(a;:Ph,lu’PQﬁl) - m(8;u,Pthl)
+ 81 (Vis Piatt, Pofi) — 8(vis u, Pofy)
+ an(Ppau, Pofi) — a(u,Pthl)
=L+5L+15

Using Lemma 3.3 and Theorem 3.1, it is easy to see

I
1] < c(ll0u — 9, (Praw) lloo iy
2 2
+ (19%ullzeoray + h ”u”WLOC(F([))))II.ﬁv"Ll(Fh(l))
! 2
|| < cllu — Pyt ||zeoray + h ||M||L°°<r(r>))|lfh||L1(rh<x>)

2 !
1] < c(h lulleoqray + Nl — Prai) oo Wall 1,0

Theorems 4.1 and 4.2 imply the claim. .



ﬂw ILEY KOVACS axo POWER GUERRA
7 | NUMERICAL EXPERIMENTS

7.1 | Convergence tests

We present a numerical experiment for an evolving surface parabolic problem discretized in space
by the ESFEM. As a time discretization method, we choose backward difference formula 4 with a
sufficiently small time step (in all the experiments we choose t = 0.001).

As initial surface I'y we choose the unit sphere > C R3. The dynamical system is given by
®(x,y,2,1) = (/T + 025sin(2r1)x, y, z), which implies the velocity v(x, y,z,t) = (7 cos(2mt)/ (4 +
sin(27t))x, 0,0), over the time interval [0, 1]. As the exact solution, we choose u(x,y,z,t) = xye™®.
The complicated right-hand side was calculated using the computer algebra system Sage [28].

We give the errors in the following norm and seminorm

L®(L™) : max |[u, — u(-, t) Lo @))»

1<n<N

N 1/2
AW ; (r > Vi (1t — u(-,r,l>>|§oo<r(,m> :

n=1

The experimental order of convergence (EOC) is given as

In(er/ex—1)
EOC, = ——, k=2,3,...,n),
¢ n(2) ( n)

where ¢; denotes the error of the kth level.

Table 1 reports on the EOCs for the ESFEM—backward Euler solution of the evolving surface PDE
example detailed above. According to Theorem 6.1, the L>°(L*°) error is expected to have convergence
order 2, while we expect order 1 in the L> (W) norm. The numerical experiments match with the
theoretical convergence rates, while the obtained logarithmic factor is not detected numerically.

7.2 | Discrete maximum principle on evolving surfaces

We conducted a further experiment regarding discrete maximum principle on evolving surfaces.
Although this is not our main interest in the present paper, but it is suitable here to explore such
numerical examples. As it is well known, the homogeneous heat equation started from an initial con-
dition uo = 1 on an evolving surface may lead to nonconstant solutions. The maximum of the solution
depends on the deformation of the surface, that is, on the velocity v.

As an initial surface, we have chosen the sphere with radius 1, I'(0) = {|x| = 1}, and numerically
solved the problem (1) with f =0 and uy = 1, with three different velocities. In Figure 1, we have
plotted the time evolutions at times ¢ = 0,0.25,0.5,0.75, 1 (from top to bottom) for all three surface

TABLE 1 Errors and experimental order of convergences (EOCs) in
the L (L) and L*>(W"*°) norms

Level dof L>(L*) EOCs L*2(W'™) EOCs
1 126 0.00918195 - 0.01921707 -

2 516 0.00308305 1.57 0.01481673 0.37

3 2070 0.00100752 1.61 0.00851267 0.80
4 8208 0.00025326 1.99 0.00399371 1.09
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FIGURE 1 The numerical solutions (and their maximum values) for the three surface evolutions shrinking sphere,
bouncing ellipsoid, and “baseball bat” (from left to right), at = 0,0.25,0.5,0.75, 1 (from top to bottom) [Color figure
can be viewed at wileyonlinelibrary.com]
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evolutions (from left to right): for a shrinking sphere I'(r) = {|x| = 1 — t/2} (left), for the bouncing
ellipsoid example from Section 7.1 (middle), and the “baseball bat” like surface from Test Problem 2
of [29], or see also [21, Example 9.2] (right). The surface of the latter case is given by:

8, Dxy  g(x, 1)x3

VE 2+ AL
g, t) = e /a2 + x4+ (1 —e™)((1 —x)(F +0.05) +x7/1 — x?).

L@ = [(xl—i—maX{O,xl}t, )|xeF(0):Sz},
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APPENDIX A: GREEN’S FUNCTION FOR EVOLVING
SURFACES

Aubin [25, Section 4.2] proves existence of a Green’s function on a closed manifold M, that is a
function which satisfiesin M x M

Agdisr. G(P, Q) = 8p(Q),
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where A is the Laplace—Beltrami operator on M. The Green’s function is unique up to a constant. For
Lemma 3.12, we need that the first derivative of a Green’s function can be bounded independent of 7.

Theorem A.1 (Green’s function). Let I'(¢) with t € [0, T] be an evolving surface. There
exists a Green’s function G(t;x,y) for T'(t). The value of G(x,y) depends only on the
value of distr)(x,y). G(x,y) satisfies the inequality

IViG(t;x,y)| < c——.
r distr) (x,y)

for some ¢ > 0 independent of t.
Furthermore for all functions ¢ € C*(Gyr), it holds

1
o(x, 1) = V/ o, dy — G(t;x,y)Are(y, t)dy. 54
NG

INO)

Proof Asnoted in Aubin [25, 4.10], the distance r = distr, (x, y) is only a Lipschitzian
function on I'(#). To use his construction, we therefore need to revise that the injectivity
radius at any point P € I"(#) can be bounded by below by a number independent of P and
t. This follows if the Riemannian exponential map is continuous in ¢ and from Lemma
C.2. To prove that the Riemannian exponential map is continuous one carefully revises
the construction of exponential map as it is given in Chavel [30, Chapter 1]. Formula
(54) follows from Aubin [25, Theorem 4.13] and that the constant is independent of 7 is
a straightforward calculation. -

APPENDIX B: CALCULATIONS WITH SOME WEIGHT
FUNCTIONS ON EVOLVING SURFACES

B.1 | Integration with geodesic polar coordinates on evolving surfaces

Assume we have a sufficiently smooth function f : I'(t) x I'(#) — R, where the value f(x, y) depends
only on the distance r = distr((x,y). In the flat case, that is, & C R"™, we can use polar coordinates
to show the integral

R
/f(x,y)dy < C/ r’"ilf(r)dr.
Q 0

For a surface I'(¢), this is more difficult. The purpose of this section is to derive a similar bound for

S (. y)dy.

r@

Applying the well known coarea formulae to the distance function r, cf. Chavel [30, Theorem 3.13]
and Morgan [31, Theorem 3.13], we obtain

S, y)dy = / / f(dwdr
L@ 0 {distp ) (xy)=r}

_ /°° Hm({diStr(t)(xJ) = ”})
0

Fryrdr,

rm
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where H™ denotes the m-dimensional Hausdorff measure. Obviously, there exists a positive number
R >0 independent of ¢ and x,y € I'(¢) such that for all » > R it holds

H™ (distrq (x,y) = 1) = 0. (55)
Lemma B.1. There exists ¢ >0 independent of t and p,q € ' (t) such that
H'”({distr(,)(p, q) = r}) <c.
Proof For a fix point p € I'(¢) it is possible to use the Riemannian exponential map to
flat out I'(¢), cf. Figure 1 for an illustration on the torus. We make this argument precise.
As I'(#) is compact we have that I'(7) is geodesic complete, that is, the Riemannian

exponential map is defined on the whole tangent bundle.
For r € [0, 00), let

Spy(r) == {v e T,T ®)g,(v,v) = r*}
be the sphere of radius r, where g, is the Riemannian metric. For v € §,(1), we have that
S i10,00) > T', & > exp,(dv).
is a geodesic. It is well known that a geodesic is just locally length minimizing. Hence
there exists a unique A,(v) > 0, such that f,|[0, 1, (v)] is a length minimizing geodesic
and for every ¢ > 0, we have that £, |[0, A..(v) + €] is not anymore length minimizing. We
define

W, (1) :={w e T,T@)lw=A-vwithv €S, and 1 € [0,A,(M]}.

The Hopf-Rinow theorem states that two points on a geodesic complete manifold can be
joint by a length minimizing geodesic. Hence, it holds

exp, (W, N S,(r) = {distr, (p.q) =r}.
Applying a general area-coarea formula, cf. [31, Theorem 3.13], shows the bound
{distr(,) P, q) = r} <ecr",
where c is independent of p. r can be bounded by R, cf. (55). -

Lemma B.2 There exists ¢ > 0 depending on t € [0,T] and x € T'(t) such that

S
r>0 rm

"({dist ,y) =
upH ({ istr (X, ) ”}) <
Proof A corollary of Gray [32, Theorem 3.1.] is the following formula:

1
H ([distry (ry) = r}) = wr(1 — 72 / Flordo),
0
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T,I'(t)
Wo o a N wsz
exp,,

w31 ¢ f W32

w2, 1 . AU2 3

FIGURE B1 llustration of a possible W, for the Torus as a subset of R® with induced metric. Note that the
opposite boundary of W, are identified. It holds exp,(w;.) = g; and exp,(0) = p [Color figure can be viewed at
wileyonlinelibrary.com]

where w,, is the volume of the m-dimensional sphere of R"*!, where r is assumed to be
smaller than the injectivity radius, that is, the biggest possible A,(v) from the proof of
Lemma B.1 and where f is some function depending smoothly on r and x. We easily see

A ({distrgy () = )
ILmO p = W,,.

This implies

H({distr (x,y) = r}) -

rm
for all r smaller than the injectivity radius. For all larger r, we conclude with Lemma B.1.

Combining Lemma B.2 with Lemma B.1, we obtain

R
fx,y)dy < c/ r"f(r)dr.
T'® 0
B.2 | Comparison of extrinsic and intrinsic distance

Lemma B.3. There exists a constant ¢ > 0 independent of t such that for all x,y € I'(t)
the following inequality holds

c-distrgy(x,y) < |x =yl (56)

Proof For simplicity, we assume that I'(f) = I'y for all + € [0, T]. The basic idea
is to find a radius » >0 and two constants ¢;,c, > 0 such that (56) holds with ¢; for
distr) (x,y) < r and with ¢, for distr)(x,y) > r.
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Observe that from the compactness from I it follows that there exists » > 0 such that
for all distr(,(x,y) < r it holds

v(x) - v(y) > cos(/6).

After rotation we may assume x =0, v(x) = e, and that Iy may be written as graph of
a smooth function, that means that there exits f : U(x) — R smooth with U(x) C R”
an open subset, such that z = (Z',w) € I'y C R” x R with distr¢(z,x) < r, if and
only if 7 € U(x) and w = f(2'). Forx = (0,0) and y = (y,f(y")) consider the path
t—= (ty,f(®)). We calculate

1
distr) (x,y) < f L+ dfyyde < J1+ 1 f e V1< (14 11100 1y = X1
0

Now the derivatives of f are bounded by m - tan(w/6).

To get the existence of ¢, > 0 observe that distr, is continuous and hence the set
distF(lt) {r > 0} is compact. On this set the function |x — y| does not vanish and takes it
maximum and minimum. .

B.3 | Weight functions

Definition B.1. Let u and fi be like (10) resp. (26). For given u, ft with curve y = y(1),
we define a curve y, = y,(t) := y(t) "' € T',(1). Now, we define a weight function on the
discrete surface

wy @) - R, resp. g Tp(t) —» R,

via the same formula like (10) resp. (26).

Lemma B.4. There exists a constant hy = hy(y) > 0 sufficiently small and ¢ = c(hy) >
0 independent of t and h such that for all 0 < h < hy it holds

Proof The main idea is to observe that we have the inequalities

Ix™ =yl <2d + |x —yl,
x —yl <2d+ [x" =yl

where d = d(t) := maX,cr()distgn+1 (x, [ (2)). .

WILEY
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APPENDIX C: MODIFIED ANALYTIC RESULTS FOR
EVOLVING SURFACE PROBLEMS

Lemma C.1 (modified Gronwall inequality). Let ¢ > 0 be a positive constant, let ¢, ¥,
and p be some positive functions defined on [t, T] and assume for all s € [t, T] we have
the inequality

d
—d—‘f(s) FU(s) < co(s) + pls).

Then it holds

T T
(1) + / V(s)ds < 7D (p(T) + / p(s)ds).

—c(T—

Proof Calculate — % [pe 91 and integrate from ¢ to T. -

Lemma C.2 (modified inverse function theorem). Let f : R" x [0,T] — R" be a

smooth map, denote by f(t)(x) := f(x,t) and assume that for all t € [0,T] the map
df (t)y = % (0,1) is invertible. Then there exists r > 0 independent of t such that

@ fO B0} > R, x> fx,1),

is a diffeomorphism onto its image and we have B,,(0) C f &)"" {B,(0)} for all t, where
B.(0) := {x € R"| |x| < r}. The map

g:[0.T1 x B.(0) > R", (.x) = f(1)'(x)
is smooth. In particular, g is smooth in t.

Proof The results follow from the compactness of [0, 7] and the smoothness of f. -

APPENDIX D: L?-STABILITY OF AN L*-PROJECTION ON
SURFACES

We want to show Theorem 3.1. We essentially copy the proof of (23, Equations (6) and (7)) and give

N
in one point a slightly different argument. We recall that I', () = 'EJIE,« for some elements E;. There

exists a constant K > 0 which satisfies the following inequalities:

1. Foreachi = 1,...,N there exists a disc B; C E; with
h < Kdiam(B)),

where diam(B;) = sup dist, (x,y).

(x))eB;
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2. For all finite element basis function (x;),_,, we have

diam(suppy;) < Kh.
Proof of Theorem3.1 Foreachi=1,...,N’set

u onk,
u; =
0 else.

Set
N
W; = Pou; = Z Wiixi.
=1

Just like in [23, (10)—(22)] we may deduce that there exists ¢,k > 0 independent of &
such that

IWi()| < ce™ B |yl o (59)

We calculate

N

Poux)| <) [Wi)]

i=1
—ak
= CZE el ooy
k>0
< cllullzoe(ry-
In the second estimate, we have used that the numbers of elements E;, which satisfy

kh < dist(x, E}) < (k + Dh,

arein O(k), as I is compact, [, approximates I" and as the triangulation is quasi-uniform.
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We show convergence results for full discretizations of quasilinear parabolic problems on
evolving surfaces with prescribed velocity. We prove unconditional stability and higher-order
convergence results for R-K and BDF methods. We show convergence as a full discretiza-
tion when coupled with the ESFEM method as a space discretization for quasilinear problems.
Similarly to the linear case the stability analysis relies on energy estimates and multiplier
techniques.

First, we generalize some geometric perturbation estimates to the quasilinear setting. We define
a generalized Ritz map for quasilinear operators, and use it to show optimal order error estimates
for the spatial discretization. For deriving the optimal order L?-error bounds of the Ritz map we
will use a similar argument as Wheeler in [2], and elliptic regularity for evolving surfaces. A
further important point of the analysis is the required regularity of the generalized Ritz map. This
will be used together with the assumed Lipschitz-type estimate for the nonlinearity, analogously
as in [3-5].

We show stability and convergence results for the case of stiffly accurate algebraically stable
implicit R—K methods (having the Radau IIA methods in mind), and for an implicit and linearly
implicit k-step BDF up to order five. These results are relying on the techniques used in [4-7]. By
combining the results for the spatial semidiscretization with stability and convergence estimates
we show high-order convergence bounds for the fully discrete approximation.

A starting point of the finite element approximation to (elliptic) surface partial differential
equations is the paper of Dziuk [8]. Various convergence results for space discretizations of linear
parabolic problems using the ESFEM were shown in [9, 10], a fully discrete scheme was analyzed
in [11]. These results are surveyed in [12].

The convergence analysis of full discretizations with higher-order time integrators within the
ESFEM setting for linear problems were shown: for algebraically stable R—K methods in [6]; for
BDF in [7]. The ESFEM approach and convergence results were later extended to wave equations
on evolving surfaces see [13].

A unified presentation of ESFEM and time discretizations for parabolic problems and wave
equations can be found in [14].

A great number of real-life phenomena are modeled by nonlinear parabolic problems on evolv-
ing surfaces. Apart from general quasilinear problems on moving surfaces, see for example, 3.5
in [15], more specific applications are the nonlinear models: diffusion induced grain boundary
motion [16-20]; Allen—Cahn and Cahn—Hilliard equations on evolving surfaces [1, 21-24]; mod-
eling solid tumor growth [20, 25]; pattern formation modeled by reaction-diffusion equations
[26, 27]; image processing [28]; Ginzburg—Landau model for superconductivity [29].

A number of nonlinear problems, in a general setting, were collected by Dziuk and Elliott in
[9, 12, 15], also see the references therein. A great number of nonlinear problems with numerical
experiments were presented in the literature, see for example, the above references, in particular
[9, 15, 19, 20].

The article is organized in the following way: In Section II, we formulate our problem and
detail our assumptions. In Section III, we recall the ESFEM, together with some of its important
properties and estimates. We introduce the generalized Ritz map, and show optimal order error
estimates for the residual, using the crucial W regularity estimate mentioned above. Section IV
covers the stability results and error estimates for R—K and for implicit and linearly implicit BDF
methods. Section V is devoted to the error bounds of the semidiscrete residual, which then leads
to error estimates for the fully discretized problem. In Section VI, we briefly discuss how our
results can be extended to semilinear problems and to the case where the upper and lower bounds
of the elliptic part are depending on the norm of the solution. Numerical results are presented in
Section VI to illustrate our theoretical results.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Il. THE PROBLEM AND ASSUMPTIONS

Let us consider a smooth evolving compact hypersurface T'(1) € R"™' (m < 2),0 <t < T,
which moves with a given smooth velocity v. Let 9°u = 9,u +v- Vu denote the material derivative
of the function u, where V. is the tangential gradient given by Vru = Vu — Vu - vv, with unit
normal v. We are sharing the setting of [9, 10].
We consider the following quasilinear problem for u = u(x,t):
[3°M +uVrg - v — Vrg - (A@)Vrpu) = f on(2), o)
u(.,0) =uy onl'(0),

where A : R — R is sufficiently smooth function. For simplicity, we set f =0, but all our results
hold with a nonvanishing f as well.

Remark 2.1. The results of the article can be generalized to the case of a sufficiently smooth
matrix valued diffusion coefficient A(x,t,u) : T,I'(t) — T, I'(¢). The proofs are similar to the
ones presented here, except they are more technical and lengthy, therefore, they are not presented
here.

The abstract setting of this quasilinear evolving surface partial differential equation (PDE) is
a suitable combination of [4] (Section I) and [30], (Section II.C): Let H (¢) and V (¢) be real and
separable Hilbert spaces (with norms ||.||x ), ||-|lv(), respectively) such that V (¢) is densely and
continuously embedded into H (¢), and the norm of the dual space of V (¢) is denoted by |.|[yy-
The dual space of H (¢) is identified with itself, and the duality (.,.), between V (¢)" and V()
coincides on H (t) x V(¢) with the scalar product of H (¢), forall ¢ € [0, T'].

The problem casts the following nonlinear operator:

(A(u)v,w), = A(u)Vrv - Vrw.
T

We assume that A satisfies the following three conditions:
The bilinear form associated to the operator A(u) : V(t) — V(t)'is elliptic withm > 0

(Aww,w), = m|lw|f, e V), @)
uniformly in u € V(¢) and for all ¢ € [0, T']. It is bounded with M > 0
{A@)v, w),| < Mlllyvpllwllve (v,w € V(@)), (3)
uniformly in 4 € V(¢t) and for all + € [0,7T]. We further assume that there is a subset
S(t) € V(t) such that the following Lipschitz—type estimate holds: for every § > 0 there exists
L = L(8, (S(t))o<<r) such that
I(A(w) — A(wz))MHV(,)/ < dl|lw; — w2||V(r) + L||w;, — w2||H(r), “4)
foru e S@t), wi,w, e V(t),0<t <T.
The above conditions were also used to prove error estimates using energy techniques in [31]

and in [3, 4], or more recently in [5].

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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The weak formulation uses Sobolev spaces on surfaces: For a sufficiently smooth surface I'
we define

H'(T) = {n e L*(")|Vrn € L*()"*},
and analogously H*(T") for k € N and W&?(T") for k € N, p € [1,00], cf. [9] (Section ILA).
Finally, Gr = U,¢o.I"(¢) x {r} denotes the space-time manifold.

The weak problem corresponding to (1) can be formulated by choosing the setting: V(t) =
HY(I'(t)) and H(¢) = L*(I'(¢)), and the operator:

(A(w)v,w), = A)Vrv - Vrw.
N0)

The coefficient function A : R — R satisfies the following conditions.
Assumption 2.1.

a. It is bounded, and Lipschitz—bounded with constant {.
b. The function A(s) > m > 0 for arbitrary s € R.

Throughout the article, we use the following subspace of V (¢), for r>0,
S@) =8, r)={ue HT®) llullyroomey <r}s

that is, W>>(I'(¢)) functions with norm less then r.
Then, the following proposition easily follows.

Proposition 2.1. Under Assumption 2.1 and u € S(t) (0 < t < T) the above operator A
satisfies the conditions (2), (3) and (4) (with § = 0), they possibly depend on S(t,r).

Proof. The first two conditions (2) and (3) follow from (a) and (b). Condition (4) holds, as
foru € S(t), wy, w, € H'(T'(t)) and any z € H'(I'(¢)), we have

[{(A(wy) — A(w2))u, 2),| =

/ (A(w,) — A(w,))Vru - Vrz
NG}
< ctllwr — wallp2ey ¥ 1zl g @)

hence, L = cfr, where the constant ¢ is from Assumption 2.1 (a). [ ]

Definition 2.1 (Weak form). A function u € H'(Gr) is called a weak solution of (1), if for
almost every t € [0, T]

d
- up + AW)Vru - Vro = / ud*e ()
dt Jrg r( ()

holds for every ¢ € H'(Gr) and u(.,0) = u,.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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lll. SPATIAL SEMIDISCRETIZATION: EVOLVING SURFACE FINITE ELEMENTS

As a spatial semidiscretization we use the ESFEM introduced by Dziuk and Elliott in [9]. We
shortly recall some basic notations and definitions from [9], for more details the reader is referred
to Dziuk and Elliott [8, 10, 12].

A. Basic Notations

The smooth surface I'(¢) is approximated by a triangulated one denoted by I';(¢), whose vertices
a;(t),i =1,2,..., N, are sitting on the surface, given as

It = U E(7).

E(eTy (1)
We always assume that the (evolving) simplices E(f) are forming an admissible triangulation
Tn(t), with h denoting the maximum diameter. Admissible triangulations were introduced in [9]
(Section 5.1): T'(¢) is a uniform triangulation, that is, every E(¢) € T,(¢) satisfies that the inner

radius oy, is bounded from below by ¢, with ¢ >0, and I',(¢) is not a global double covering of
I'(z). Then the discrete tangential gradient on the discrete surface I',(¢) is given by

Vi@ = Vo — V- vy,
understood in a piecewise sense, with v, denoting the normal to I',(¢) (see [9]).
For every ¢ € [0, T] we define the finite element subspace S;,(#) spanned by the continuous,

piecewise linear evolving basis functions x;, satisfying x;(a;(t),t) = §;; foralli, j = 1,2,..., N,
therefore,

Sh(t) = Span {Xl("t)7 XZ('7 t)’ LI ’XN(-v t)} .

We interpolate the surface velocity on the discrete surface using the basis functions and denote it
with V. Then the discrete material derivative is given by

Opp = 0, + Vi - Vb, (Pn € Su(®)).
The key transport property derived in [9] (Proposition 5.4), is the following
O xk=0 for k=1,2,...,N. (6)
The spatially discrete quasilinear problem for evolving surfaces is formulated in

Problem 3.1 (Semidiscretization in space). Find U, € S;,(t) such that

— Uy + AUV, Uy - Vi, on = / U, 0, bn, Vo € Sp(®), (D)
dr Jr, 0 0) 0)

with the initial condition U,(.,0) = U,? € S,,(0) being a suitable approximation to uy.
We postpone existence and uniqueness of (7) to the next subsection.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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B. The ODE System
The ODE form of the above problem can be derived by setting

N
Un(0) =Y ;x50 1)

j=1

into (7), testing with ¢, = x; and using the transport property (6).

Proposition 3.1 (quasilinear ODE system). The spatially semidiscrete problem (7) is equiva-
lent to the following nonlinear ODE system for the vector a(t) = (a;(t)) € RY, collecting the
nodal values of Uy (., 1):

®)

LM D)a()) + Aa(t)a(t) =0
o (0) = o

where the evolving mass matrix M (t) and a nonlinear stiffness matrix A(o(t)) are defined as

M), = /r o Xj Xks Ala(®))y = AU Vr, x5 - Vi, Xes
h

Tp (1)
for a(t) defining U, = Z_’;’zl a;(t)x; (1)

The proof of this proposition is analogous to the corresponding one in [6].

Existence and uniqueness of (8) and hence of (7) can be shown as follows. As .A(«) is Lipschitz
continuous in u#, we deduce that A (o)« is Lipschitz continuous is «. Then as M(¢) is invertible, the
existence and uniqueness of «(¢) for the system (8) follows from the Picard-Lindel6f theorem.

Time discretizations. We briefly introduce the time discretizations applied to the above ODE
system (8). However, more details can be found in Section IV.

We use algebraically stable s-stage implicit R—K methods, defined by its Butcher tableau, with
step size T > O:

s
Mo, = My, + T E a;jClyj, for i=1,2,...,s,
j=1

K
Mn+lan+l = Mnan +T § biani,

i=1
0:(55,”' +A(ani)(xni for i=12,...,s,
with M,; := M(t, + ¢;t) and M, := M (t,,41).
We also use k-step BDF methods with step size T > 0:
1 &
=Y 8 Mty + Ala)e, =0, (n > k),
T

Jj=0

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where the coefficients of the method are given by §(¢) = 212:1 %(1 — ¢)". Similarly, we also
consider their linearly implicit modification, using the polynomial y (¢) = ¢* — (¢ — D*™":

k k
1
— oM [ T A Ol n:O, Zk
T]z:;J (tae ) 0tn—j + (Zy_,a J>ot (n =k

j=1

C. Discrete Sobolev Norm Estimates

Through the article, we will work with the norm and seminorm introduced in [6]. We denote these
discrete Sobolev-type norms as

1z = Zull 2,000 [z(D1aw == NVr, Zill 2,00y (10)

for arbitrary z(¢) € RY, where Z,,(.,t) = Z_';/:l Zj () x; (., 1), further by M (t) we mean the above
mass matrix and by A(¢) we mean the linear (but time dependent) stiffness matrix:

Aty = /r ()VF;,Xj Vi, Xk
n(t

A very important lemma in our analysis is the following:

Lemma 3.1 ([6] Lemma 4.1). There are constants , k (independent of h) such that

' (M(s) = M@)y < "™ = Dlzlmwlylue,
2 (AGs) = A@)y < (€7 = Dlzlawylan

forall y,z e RN and s,t € [0,T]

D. Lifting Process and Approximation Results

In the following, we recall the so called lift operator, which was introduced in [8] and further
investigated in [9, 10]. The lift operator projects a finite element function on the discrete surface
onto a function on the smooth surface.

Using the oriented distance function d [9] (Section 2.1), for a continuous functionn, : T';(t) —
R its lift is define as

m(p.t) = m(x, 1),  xel@),

where for every x € I',(¢) the value p = p(x,t) € I'(t) is uniquely defined via x =
p+v(p,)d(x,t). By n~! we mean the function whose lift is 7.

We now recall some notions using the lifting process from [8, 9] and [14]. We have the lifted
finite element space

Si(t) = {on = ¢yl € Su (D)}

By 4, we denote the quotient between the continuous and discrete surface measures, dA and dA,,
defined as 6,dA;, = dA. Further, we recall that
Pr:= (§; — v,—vj)'"+l and Pr, := (§; — vh.ivll,j):ﬁfil

ij=1

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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are the projections onto the tangent spaces of I' and I';,. Further, from [10], we recall the notation
1
0, = 8—(1 — dH)PrPr,Pr(I — dH),
h

where H (H;; = BX,. v;) is the (extended) Weingarten map. For these quantities we recall some
results from [9] (Lemma 5.1), [10] (Lemma 5.4) and [14] (Lemma 6.1).

Lemma 3.2. Assume that T';,(t) and T'(t) is from the above setting, then we have the estimates:

2 2
[dl|Lor,ay < ch™s  Nvjlleew,wy < ch, |11 = dullreow,ay < ch”,

2 2 2
||a;:d||L°°(Fh(r)) <ch®, ||Pr— Ol < ch?, ||Pr(3;:Qh)Pr||L°°(rh(z)) <ch,
with constants depending on Gr, but not on t.

Lemma 3.3. For 1 < p < oo there exists constants cy, ¢, > 0 independent of t and h such that
the for all u, € WP (T'),(2)) it holds that ul, € WP (T (1)) with the estimates

1
Cl||”h||wlvﬂrh(¢)) = ||Mh||W17P(r‘(x)) = Cz””h”Wl,P(rh(;)y

Proof. The proofs follows easily from the relation Vr,u;, = Pr,(I — dH)Vruﬁl, cf. [8]
(Lemma 3). [ ]

E. Bilinear Forms and Their Estimates

Apart from the & dependence, we use the time dependent bilinear forms defined in [10]: for
arbitrary z, ¢, &€ € H'(I"), & € S(t), and their discrete analogs for Z;,, ¢, &, € S:

m(z,¢) = / 29,
()

a¢;z,0) = AE)Vrz - Vro,
r'(t)

g;z,9) = / (Vr - v)zo,
()

b&;v;2,90) = B(;v)Vrz - Vro,
I

my(Zy, pn) = / Z, P

Ty (@)

an(Ens Zn, on) = -A(gh)vr,, Zy - Vrh n,
Tp ()

en(Vis Zy, ) = / (Vr, - Vi) Zuon,
Tp(0)

by (Ens Viis Zis bn) = By (&rs Vh)vl“h Zy - Vrh¢h,
Ty (0)
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where the discrete tangential gradients are understood in a piecewise sense, and with the tensors
given as

B(&;v);; = 0°(AE®)) + Vr - vAE) — 2A¢)D(v),
By (n: Vi)i; = 95 (AGEn) + Vr, - Vi A& — 2AED Dy (Vi),

fori,j=1,2,...,m+ 1, with

1
D);; = 5((Vr)ivj + (V) v),

1
Dy(Vi)i; = 5 V), (Vi + (Vi) (Vi)

fori,j =1,2,...,m+ 1. For more details see [10] (Lemma 2.1) (and the references in the proof),
or [12] (Lemma 5.2).
We will also use the transport lemma (note that 9;z, = 9,2, + v, - Vz, foraz, € Sﬁl ):

Lemma 3.4. For arbitrary &) € S.(t) and z,, i, 8} 74, 35 @n € Sh(t) we have:
d L] L]
am(Zh,%) = m (9,2, @n) + m(zp, 0, 01) + &(Vp3 Zn, i),

d
aa@;ﬁ;Zh,%) = a(&; 05 zn 0n) + a (&) 2, 0pon) + b(ERs Vi 2 1),
where vy, is the velocity of the surface, see [10] (Definition 4.9)

Proof. This lemma can be shown analogously as [10] (Lemma 4.2), therefore, the proof is
omitted. |

Versions of this lemma with continuous material derivatives, or discrete bilinear forms are also
true.
The following estimates will play a crucial role in the proofs.

Lemma 3.5 (Geometric perturbation errors). For any § € S(t), and Z,,¢, € S,(t) with
corresponding lifts z;,, i, € S, (t) we have the following bounds

|m(zn, o) — mu(Zp, on)| < Ch2||Zh||L2(r(r)>||</7h||L2<r(t)),
la(&; zn, o) — 61/:(54; Zi, )| < Ch2||Vl"zh||L2(F(t))||VF§0h||L2(F(1))7
l&(ns zns 1) — &1 (Vis Zin, )| < Ch2||Zh||L2(r(r)>||</7h||L2<r(t)),
1B vis zhs 1) — bi(E™5 Vi Zu, )| < Ch2||VrZh||L2<r(t))||Vr§0h||L2(r<z))-

Proof. The first estimate was proved in [10] (Lemma 5.5), while the third can be found in
[13] (Lemma 7.5).

The proof of the second estimate is similar to the linear case found in [12] (Lemma 4.7). Again
using the notation from [12]:

1
0, = 8—(1 — dH)PrPr,Pr(I — dH)
h
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we obtain

AE YV, Zy - Vi, = 8, AET) Q1 Vrzi(p,.) - Vegn(p, ). (1D

Similarly as in [10] (Lemma 5.5), the boundedness (Proposition 2.1) and the geometric estimate
[IPr — Qpllrooqr,) < ch?® provides the estimate

|a(§;1h, (ph) - ah(%-il; Zh’ ¢h)|

= AE)Vrzy - VrgpdA — .A(é_l)Vrh Zy, - Vr,¢pdA,

r'(n) Cp(0)

= AE)Vrzy - Vrg,dA — f 8 AETN 0L Vrza(p, ) - Vegn(p, )dA,
r(t) ()

= AE)Pr— Q,)Vrzy - VF‘phdA‘

()

IA

2
Mech ||VrZh||L2(r(;)>||Vr¢’h||L2(r(r>)-

To prove the fourth estimate we follow [13]: starting with the equality

d

d
— AE NV, Zy - Vi, n = — AE)Q),Vrzy - Vrg,
dr Ty () t

d I'(1)

then the transport lemma (Lemma 3.4 above) yields
A(g 7])Vr,, 0, Zn - Vr,én + AT 71)Vrh Zy, - Vr, 0,
() Ty ()

+ By Vi)V, Zy, - Vi, ¢

T (1)

= A(S)inraﬁzh - Vrop, + A(S)szl‘zh - Vo, on

r@) @)

+ B(E; Uh)Q]thZh - Vi, + A(f)aﬁ(Q];,)VrZh - Vrgy.

I ()
Therefore, using that the lift of 93 Z, is 9;z;,, (11) and Lemma 3.2 provides
164 (E™"5 Viis Zis @) — b(E; 05 Zis )

B(;;';Uh)(th — D)Vrz, - Ve,
INO)

A©)8;(0))Vrz - Veg,
()

+

= Ch2||Vr1h||L2(r(t))||VF(Ph||L2(r(r)),
where the last estimates follow from Lemma 3.2, similarly as in [13] (Theorem 7.5). [ ]
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F. Interpolation Estimates

By I, : H'(I'(r)) — S!(¢) we denote the finite element interpolation operator, having the error
estimate below.

Lemma 3.6. For m < 3, there exists a constant ¢ > 0 independent of h and t such that for
ue H*(I'(1)):

2
[lu — Ihu||L2(r(t>) + h||Vr(u — Ihu)”LZ(F(t)) < ch ||u||H2(F(t))'
Furthermore, ifu € W**(I'(t)), it also satisfies
Ve — L)l Loy < chllullyacoriys
where ¢ > 0 is also independent of h and t

Proof. The firstinequality was shown in [8]. The dimension restriction is especially discussed
in [12] (Lemma 4.3).

The analogue of the second estimate for a reference element were shown in [32] (Theorem
3.1). Denote by E;(t) C I';(¢) an arbitrary element and denote by E(¢) C I'(¢) the lift of this
triangle.

1
-1 1 o o
IVr(u — Liw)l|oEey < cllVr, @™ — Liu )o@, o) < CE”VRz (@ — Iyit)|| Lo (k)
[T looior
= CZHVRZMHLOC(EO) =< Cﬁh ||V1-hu Lo, ) < Ch||u||w27w(E<1)),

where E, C R? is the standard unit simplex, i : E, — R is the representation of u~’| £, on Eg
w.r.t. a suitable affine linear transformation and Vﬂézﬁ denote the usual Hessian of #. For the first
and the last inequality we have used, that the discrete and continuous norms are equivalent. The
intermediate steps uses the uniformity of the triangulation together with standard estimates for

the pullback, cf. [33] or [34], (Section 10.3). [

G. The Ritz Map for Nonlinear Problems on Evolving Surfaces

Ritz maps for quasilinear PDEs on stationary domains were investigated by Wheeler in [2]. We
generalize this idea for the case of quasilinear evolving surface PDEs. We define a generalized
Ritz map for quasilinear elliptic operators, for the linear case see [13].

By combining the above definitions we set the following.

Definition 3.1 (Ritz map). For a given z € H'(T'(t)) and a given function € : T'(t) — R there
is a unique P,z € S, (t) such that for all ¢;, € S, (t), with the corresponding lift ¢, = ¢!, we have

ar (€7 Puz, dn) = a* (&2, on)s (12)

where a* = a + m and a;, = a, + my, to make the forms a and a, positive definite. Then
Puz € Sk (1) is defined as the lift ofﬁhz, that is, Ppz = (ﬁhz)l.

We recall here that by £~ we mean a function (living on the discrete surface) whose lift is &.
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Galerkin orthogonality does not hold in this case, just up to a small defect:

Lemma 3.7 (pseudo Galerkin orthogonality). Forany given & € S(t) their holds, that for every
z € H'(T'(t)) and @, € S\(1)

la*(&32 — Puz, o) < Ch2||PI1Z||H](l"(t))||(/)h||H](l"(t))’ (13)
where c is independent of &, h and t
Proof. Using the definition of the Ritz map:
la*(§:2 = Puzog)| = lap (6™ Puz.n) — a” 62 Puz.gn)|

2
< Mch* | Puzll g1 @ en@ull 1 ey

where we used Lemma 3.5. [ ]

H. Error Bounds for the Ritz Map and for its Material Derivatives

In this section, we prove error estimates for the Ritz map (12) and also for its material derivatives,
the analogous results for the linear case can be found in [10] (Section 6), [14] (Section 7). The
& independency of the estimates requires extra care, previous results, for example, the ones cited
above, or [13] (Section 8), are not applicable.

Theorem 3.1. The error in the Ritz map satisfies the bound, for arbitrary § € S(t) and
0 <t < T and h < hy with sufficiently small hy,

2
llz = Puzlli2qay + hllz = Przllaicwy < ezl p2eaey)-
where the constant c is independent of &, h, and t (but depends on m and M)

Proof. (a) We first prove the gradient estimate.
Starting by the ellipticity of the form a and the non-negativity of the form m, then using the
estimate (13) we have:

m||z — Pzl a* (&2 —Puz,2 — Pu2)

il(m» =
=a*(&z2— Puz,z — Li2) + a* (&2 — Puz, Iz — Piz)
<Mllz - PhZ”Hl(r(z))”Z = Wzl gt ey

+ ch*[|Puzll i wan 1 Inz = Pazll i)

< Mechllz = Puzllmr ropllzl 2y
2 2 2 211112
et (2012 = Pazl s gy + 1211y + 2112 i)
using the interpolation error, and for the second term we used the estimate

Pzl gt renHnz = Przll gt o)
= (||th - Z||H](F(t)) + ||Z||H](F(t))) (||IhZ - Z||H‘(r(z)) + 1z — th”Hl(T‘(t)))

+ ch?||z])?

2 2
< 2llz = Pzl gy + 121 2 o

HL(T (1) T
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Now, using Young’s and Cauchy—Schwarz inequality, and for sufficiently small (but § indepen-
dent) & we have the gradient estimate

1
llz = Puzll — Mch?||z||?
m

if‘(rm) = H2T )"
(b) The L?-estimate follows from the Aubin-Nitsche trick. Let us consider the problem
=Vr - (AE)Vrw) +w =z —Pyz onT (),

then by elliptic theory, cf. Theorem A.1, we have the estimate, for the solution w € H 2T (@)
Nwllp2rey < cllz = Puzll2@e)

where c is independent of ¢ and &. By testing the elliptic weak problem with z—P_hz we have

z = Przllfa gy, = @ (52 = Paz,w)

=a'(;z—Puz,w — Liw) +a* (2 — Puz, [w)
= Mllz = Puzll g copllw — Lowllgi e

2
+ ch™ [Pzl gt o op | Hnw gt royy -

Then, the estimates of the interpolation error and combination of the above results yields

1
2 2
llz — thl|L2(F(l));||w||H2(l"(t)) <llz— PhZHLz(r(,)) < Mch ||Z||H2(r(x))||w||H2(r(t)),

which completes the proof of the first assertion. [

To proof error estimates for higher order material derivatives of the Ritz map, we need to
control the error (8;)(k)(v — vy) in the L®- and W"*-norm.

Lemma 3.8. For k > 0 there exits a constant c = c(k) > 0 independent of t and h such that
||(3;:)(k)(v - vh)||L°°(F(t)) + h||VF(8;:)(k)(U - vh)||L°°(F(t)) =< ch?
A proof of this lemma can be found in Mansour [14] (Lemma 6.3).
Theorem 3.2. Assume that & € S(t) and that in addition that for k > 1 it holds (3;)“‘) (A)) €

L*°(Gr). The error in the material derivatives of the Ritz map satisfies the following bounds, for
0 <t < T and h < hy with sufficiently small hy,

k
16D @ = Pud)lli2y + AIVE@DP @ = Prd)ll 2y < Mech® Y 1G22
j=1
The constant ¢, > 0 is independent of & and h (but depends on a and M)
Proof. The proof is a modification of [14] (Theorem 7.3).
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For k =1: (a) We start by taking the time derivative of the definition of the Ritz map (12), use
the transport properties (Lemma 3.4), and use the definition of the Ritz map once more, we arrive
at

a*(&; 05z, 01) = —b(&; Vi3 2, 0) — g(Uh3 2, )
+ap 0Pz ) + buE Vi Paza i) + 84 (Vi Prz. i)
Then, we obtain
a*(&; 05z — 0y Puz,n) = —b(Es vz — Puzoon) — (s 2 — Puz, n) + Fi(ey), (14)
where
Fi(pn) = (@50, Puz.dn) — a™ (& 9, Pz, o)
+ (b5 Vi Pz i) — b(E; v Przo 01)
+ (&1 (Vi Puzs ) — 8(is Pz, 1))

Using the geometric estimates of Lemma 3.5 F'; can be estimated as

[Fi(on)] < CMhz(”a}TPhZHHl(F(z)) + ||th||H1(F(t)))||(ph||H1(F(t))'

Then, using 9; P,z as a test function in (14), and using the error estimates of the Ritz map, together
with the estimates above, with & < h, independent of £, we have

||8;PhZ||H1(]"(,)) < MCHB.ZHHI(FO)) + MCh||Z||H2(r<r))-

Combining all the previous estimates and using Young’s inequality, Cauchy—Schwarz inequality,
for sufficiently small (¢ independent) 2 < h, we obtain

a*(&; 95z = 8y Pazs o) < Mch(llzll 2y + 118"zl i o) 1@nl i oy
Then, as in the previous proof we have
ml[3;2 — 9 Puzlly gy < @63 032 — 93 Ph, 072 — 3 Pi2)
=a*(&; 007 — 0 Puz, Opz — 1,0°2)
+a*E; 00z — 8 Puz, 1,0°z — 3 Puz)
< M9z = B Puzllim canl195z = 1n9° 2l i1y
+ Mch(l1zll g2y + 712l g1 o) 1002 = 35 Pzl g1 1y

Then the interpolation estimates, Young’s inequality, absorption using & < hy, yields the gradient
estimate.

(b) The L*-estimate again follows from the Aubin-Nitsche trick. Let us now consider the
problem

V- (AE)Vrw) +w =3z — 8Pz on T(),
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together with the elliptic estimate (cf. Theorem A.1), for the solution w € H>(I'(¢))
Hwll g2y < clloyz — 3;:7’h2||L2<r<,>),

again, c is independent of 7 and &.

Then, a similar calculation as [10] (Theorem 6.2), [14] (Theorem 7.3) provides the L>-norm
estimate.

For k> 1 the proof is analogous. n

Remark 3.1. If& € Wo°(I'(¢)) and A € W**(R) then it holds that (8,:)(")./4(5) e L>®('(1)).
For the convenience of the reader we give a proof for k =2. It holds

ONP(AE) = (A7) = A"(§)(3;6) + A (k.
We have the identity
05 = 3% + (v, —v) - Vré.
For the second derivative we calculate
0P = (3P + (v —v) - VrO'E + 3] (v — v) - Vi€ + (v — v) - 3°VrE + VEE(v, — )%
Using Lemma 3.8 the claim follows.

Regularity of the Ritz Map. The following technical result will play an important role in
showing optimal bounds of the semidiscrete residual.

Lemma 3.9. For m < 2, there exists a constant ¢ > 0 independent of h and t such that for a
functionu € W**(I'(t)) for all t € [0, T], the following estimate holds

Ve Prullrooray) < clullwz.oo -
Proof. Using the triangle inequality we start to estimate as
||VI‘Phu||L°°(I‘(t)) < IVr(Phu — Ihu)||L°°(I‘(t)) + Ve (Lyu — M)||L°c(r<n) + ||Vru||L°°(r(:>)-

The last term is harmless. The second term is estimated using Lemma 3.6. For the first term, using
the inverse estimate, error estimates for the Ritz map and for the interpolation operator we obtain

—m/2
[IVr (P — L)l Loy < ch "/ IV (Phu — Ih“)llLZ(r(;))
—m/2
<ch " (Ve (Ppu — M)||L2(r(z)) +IVr(u — Ihu)||L2(r(z)))
—m/2
<ch™ hllull g2y < cllillwzoo -

Remark 3.2. A stronger result holds, assuming that u € W!">®(I'(¢)), the bound
[IVrPuu|| pooran < cllu]| i (I'(2)) can be shown. However, the proof is technical and requires
more sophisticated arguments, cf. [35]. This enables to weaken the assumption to W'* in the
definition of the S(¢) set. We do not include these results here because of their length.
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IV. TIME DISCRETIZATIONS: STABILITY

A. Runge-Kutta Methods

We consider an s-stage algebraically stable implicit R—K method for the time discretization of
the ODE system (8), coming from the ESFEM space discretization of the quasilinear parabolic
evolving surface PDE.

In the following, we extend the stability result for R—K methods of [6] (Lemma 7.1), to the
case of quasilinear problems. Apart form the properties of the ESFEM the proof is based on the
energy estimation techniques, see Lubich and Ostermann [4] (Theorem 1.1). Generally on R-K
methods we refer to [36].

For the convenience of the reader we recall the method: for simplicity, we assume equidistant
time steps #, := nt, with step size t. Our results can be straightforwardly extended to the case of
nonuniform time steps. The s-stage implicit R—K method, defined by the given Butcher tableau

(ci) (aij)
i)

applied to the system (8), reads as

N
M,a,, = Mo, + 1 E a,'jélnj, for i=1,2,...,s,

j=1

s
Mn+1an+1 =M,a,+7 E b,'()lm',

i=1
where the internal stages satisfy
Oz(itni-f—A(O(ni)Otni for i = 1,2,...,S,

with M,; := M(t, + ¢;t) and M, ., := M(t,.,). Here &,; is not a derivative but a suggestive
notation.

We recall that the fully discrete solution is U} = Zjv: L @ X (. 1) Existence and uniqueness
of the R-K solution can be obtained analogously to [37] (Theorem 7.2).

For the R-K method we make the following assumptions:

Assumption 4.1.

o The method has stage order g>1 and classical order p>q+1.

e The coefficient matrix (a;;) is invertible.

* The method is algebraically stable, that is, b; > 0 for j = 1,2,...,s and the following matrix is
positive semidefinite:

(biaij + bjaj — bibj)

ij=1"
* The method is stiffly accurate, that is, b; = a,j, and c¢; =1 for j = 1,2,... 5.
Instead of (8), let us consider the following perturbed version of the equation:

{%(M(t)&(t))—I—A(&(t))&(l):M(l)r(t) (16)
a(0) = ap.
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The substitution of the true solution &(t) of the perturbed problem into the R-K method, yields the
defects A,; and §,;, by setting e, = o, —@(t,), En; = oty —0(t,+c;t) and E,; = 6, — (8, +¢;7),
then by subtraction the following error equations hold:

MyE, = Mye, +7 Y _ajEy— Ay, for i=12,.. s, (17a)

Jj=1

Mn+|en+] = Mnen +7 ZbiEnX - 8n+1’ (17b)

i=1
where the internal stages satisfy:

Eyi 4+ A)Ey = —(A() — A@))ani — Myiri, for i=1,2,....s,  (18)

with r,; :==r(t, + ¢ 7).
Now, we state one of the key lemmas of this paper, which provide unconditional stability for
the above class of R—K methods.

Lemma 4.1. For an s-stage implicit R—K method satisfying Assumption 4.1. If the Eq. (5) has a
solution in S(t) for 0 <t < T. Then there exists a 1y > 0, such that fort < tgandt, =nt <T,
that the error e, is bounded by

n n—1 s n
)
2 2 2 2 k2
lealy, +7 D lecla, < C(|eo|M0 + 70D WMl +7 31—y,
k=1 k=1

k=1 i=1

n—1 s

—l—CrZZ(IM,;lAk,-ILM +|MIZ-IA“|12ski))’ (19)

k=0 i=1

where ||w||ﬁ,, = wT (A@t) + M(1))"'w. The constant C is independent of h, T, and n (but depends
onm, M, L, u, k, and T)

Proof. The combination of proofs of Theorem 1.1 from [4] and of Lemma 7.1 from [6] (or
[14] (Lemma 3.1) suffices, therefore it is omitted here. To be precise, the proof of this result is
more closely related to [6]. Except the estimates involving the (nonlinear) internal stages, see [4].

a. We start as in the cited papers, that is, to be able to benefit from algebraic stability, we write

s
2 5 2
IMysienl2 1 = [Mye, +7 Y biE,L
n+1 =1 n+1

s
- 2<Mnen +T Z bjEnj | Mn:{I | 8n+l> + |5n+1 |i/[_+{l 5

j=1
and by expressing M, e, from the R—K method (17a), for the first term, we obtain

|M,e, + T Zb,—En,ﬁﬂll = [Myenly,  +2t > bHE M My Ey + Ay

j=1 j=1

+ 77 Z Z(bibj —bia;j — bjaji)(E:1i|Mn_+11 |E.nj>’

i=1 j=1
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where the last term is nonpositive by algebraic stability. The middle term is rewritten as

(Ellj |M_1

n+1|MnjEnj + Anj> = (Enj|M,,_j]|MnjEnj + Anj)

+(EjIM = M M E, + A). (20)

n+l

All the terms in the above equations can be estimated identically as in the mentioned proofs,
except the first term in (20).
b. To estimate this term, including the nonlinearity, we use Proposition 2.1 [i.e., the inequalities
(2), (3), and (4)], like in [4]. Using (18), the internal stages, give
(Enj|M,; My Ey; + Ayj) = (Eyj|Eyj) + (Ej M A,)

— (A Ey|Ey),  — (Aln) EyIM;|A)

In+1
— ((A(@wj) = A(@n))an | Enj + M, Aj)
- (Mnj rnlenj + M,,_,IAnj>

Using the results of Proposition 2.1 and that &,; = u(.,, + ¢;7) is assumed to be in
S(t, + ¢;T), we can estimate as follows (using Cauchy—Schwarz and Young’s inequality)

|<Etl_/ |M7

nj

UM, Ej + Ay < _m|En_j|12§nj + MlEn_/|Anj|M,:j1Anj|A,,j

+ L|Enj|Mnj |Enj + M,;l Anle

nj

+ |(Mnj rnj|Enj + M,leArzj)|
o 2 -1 2 -1 2
= _Z|E"j|Anj + C|Mn_j A”j'A,,j + C|Mnj A’lj|Mnj
+ CIEy Iy, + ClMy 12,

As the right-hand side of this estimate is the same as in the cited proofs, it can be finished in
the exact same way as in the mentioned references. ]

Then, using the above stability results, the error bounds are following analogously as in [6]
(Theorem 8.1) (or [14] (Theorem 5.1).

Theorem 4.1. Consider the quasilinear parabolic problem (1), having a solution in S(t) for
0 <t < T. Couple the ESFEM as space discretization with time discretization by an s-stage
implicit R—K method satisfying Assumption 4.1. Assume that the Ritz map of the solution has
continuous discrete material derivatives up to order q + 2. Then there exists 1y > 0, independent
of h, such that for T < 1, for the error T < 1 the following estimate holds fort, = nt < T:

1

n 2
J2
||EZ||L2(Fh(t,1)) + <T Z ||Vrh(tj)Eh||L2(rh([j))>

j=1

n—1 s %
g, patl . 2 0
< Chuyt"' + C(r DO R+ c,r>||Hh1(rhW_ﬂ)) + ClIEN 20y 00

k=0 i=1
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where the constant C is independent of h, T, and n (but depends on m, M, L, u, k, and T).
Furthermore

T 9+2

ﬁ;f,q =/ Z||(a;:)<€)(7)h'4)(-vt)lle(l"h(t))dl
0 4=

T q+1
* / 3 1195500 P ()20, -
0

=1
The H, '-norm of Ry, is defined as

(Ry (1) @n) 12000

u
ozgpesy oy @nllgi,on

IIRh(-at)IIHh*I(rh([)) = (21)

Proof. Our proof is almost the same as the one for Theorem 5.1 in [14].

We estimate the terms of the right-hand side of (19). At first we connect ||.||,., and ||.|| H 0"
1

_ 1/2 _

IMr|l, = " MA + M) MR = A+ M) Mr||,
rT(A 4+ M) Pw rTMz
rerr P oy —

0£weRN wlw ozcrN (27 (A + M)2)'?

<Rh, ¢h>L2(rh)
sup ———

ozgpes,  Pnllgr,

= ”Rh”H]:th .

By Taylor expansion, the definition of stage and classical order, and with the bounded Peano
kernels K and K;, the defects satisfy

[ =t 5 (@+2)
Sy =17 K (Ma) ™ (r)dt,
In T

fn+1 t— tn ~
A =17 / Ki< )(Ma)“’“)(t)dr,
T
In

hence, by a simple but lengthy calculation (given in detail in [14]) the following bound is obtained:

n n—1 s
Sk - _ ~ 2
T Il CT 0D UM Al + 1M Al ) < OB, (2
k=1

k=0 i=1

and therefore, by inserting everything into (19), the proof is completed. |

B. Backward Differentiation Formulae

We apply a k-step backward difference formula (BDF) for k < 5 as a discretization to the ODE
system (8), coming from the ESFEM space discretization of the quasilinear parabolic evolving
surface PDE. Both implicit and linearly implicit methods are discussed.

In the following, we extend the stability result for BDF methods of [7] (Lemma 4.1), to the case
quasilinear problems. Apart from the properties of the ESFEM the proof is based on Dahlquist’s
G-stability theory [38] and on the multiplier technique of Nevanlinna and Odeh [39].
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We recall the k-step BDF method for (8) with step size 7 > 0:

k

1

=Y 5M@ Pan +A@Ia =0, (= k), (22)
T

j=0

where the coefficients of the method are given by §(¢) = Zl;:o §;¢) = ZIZ:I %(1 —2)¢, while
the starting values are o, oy, . . ., o,_;. The method is known to be O-stable for £ < 6 and have
order k (for more details, see [36; Chapter V]).

The linearly implicit modification is, using the polynomial y () = Zl;zl vi¢l = ¢k -
(¢ -

1 k k
=DM e+ A (Z y,«a,l,-) @, =0,  (n=k). (23)

Jj=0 j=1

For more details we refer to [5], in particular for existence and uniqueness of the BDF solution
see Section III.A in [5].

Instead of (8) let us consider again the perturbed problem (16). By substituting the true solution
a(t) of the perturbed problem into the BDF method (22), we obtain

k

1

=D 8 My i + A@)E =~y (1= D).
. .

j=0

By introducing the error e, = «, — @(t,), multiplying by 7, and by subtraction we have the error
equation

k
D My jen; + TA@)es + T(A@) — A@))& = Tdy, (0 = K). 24)
Jj=0

In the linearly implicit case we obtain:

k k k
Y 8iM, e, +TA (Z V./an—./) entt <A (Z V.i“n—j)
j=1 j=1

Jj=0
k
—A (Z y,»&n,)) Gy =tdy  (n= k),
j=1

where d, have similar properties as d,,, therefore it will be also denoted by d,,.
The stability results for BDF methods are the following.

Lemma 4.2. For a k-step implicit or linearly implicit BDF method with k < 5 there exists a
7o > 0, such that for t < vy andt, = nt < T, that the error e, is bounded by

n n

2 2 2 2
lealis, +7D_lesli; = CT Y1412, + C max ey,

j=k J=k

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1220 KOVACS AND GUERRA

where ||u)||i’, = wT (A(t) + M(t))"'w. The constant C is independent of h, T, and n (but depends
onm, M, L, u, k and T)

Proof. The proof follows the proof of Lemma 4.1 from [7], and [5] Section VI, using
G-stability from [38] and multiplier techniques from [39]. Except in those terms where the
nonlinearity appears, see Theorem 1 in [5].

(a) The starting point of the proof is the following reformulation of the error equation (24):

k k
M, Y Sjen; + TA@e, + T(A@,) — A@)a = td, + Y 8;(M, — M,_j)e,;

j=0 j=1

and using a modified energy estimate. Following [39], we multiply both sides with
the multiplier e, — ne,_;, where the smallest possible values of n is found to be
n = 0, 0, 0.0836, 0.2878, 0.8160 for k = 1,2,...,5, respectively, cf. [39]. This gives
us, forn >k + 1:

L+II+1IP=111,+1V,,

where

k
I, = <Z(Sjenj|Mn|en - ﬂ€n1>,

=0
II,,] = T(enlA(an)len - nen—l>a
117 = t{(Aa,) — A@@))ale, — ne,—1),
111, = T(dnlen - 776;171%
k

IVn = Z(enflen - Mn7j|en - T)en71>'

Jj=1

We only have to estimate these terms in a suitable way.
(b) We start by bounding the nonlinear terms. First, we will estimate /7! from below using
(2) and Lemma 3.1:
Tﬁl[],,l <€,1|A((Xn)|€,,) —77|(€n|A(05n)|9n71)|

2
m|en|A,1 - M n|e11|A,, |€n,1 |Ay,

v

\

m 1
> (m - Zn) lealy, — EMZ (1 +2ct)le,ly, -
The other term is estimated using (4), Young’s inequality, and again by Lemma 3.1:

I > —[{(A@) — A@n))Gnlen — ne, 1)

%

—Llen|u, (lenla, + nlen-1la,)

v

m [T L 2 L ) 2
—lenls, = Lo lenlh, — S nlely, + S0+ 26eD)lenly, -
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Combined, and using that 0 < n < 1, we have

1 1 L
I+ 112 > t§m|en|§n —1 (ELZ + 5) lealy,

1 L
—1Tn (EMz + 5) 1+ 2K‘E)|€n71|12;]171

The estimations of /,,, 111, and IV, are the same as in the proof in [13], with G-stability
of [38] as the main tool.
(c) Combining all estimates and summing up gives, for t < 1y and forn > k + 1:

n n—1 n
m
IEnlzg,,l+ZT E IejlijECTE |Ejlg; +Ct E ;113 ; + Cntlecly, s
Jj=k

Jj=k+1 Jj=k+1

where E,, = (e,,...,e,_x11), and the |E,1|ZG,,, = Zf,jzl gij{en—i+i|My|e,—iy;). This is the
same inequality as in [7], hence we can also proceed with the discrete Gronwall inequality.
(d) To achieve the stated result we have to estimate the extra term C (|ek|i4k + rleklek). For
that we take the inner product of the error equation for n =k with ¢, to obtain Similarly as
for 111, use the properties of operator A and Lemma 3.1, yields
lexl%y, + tolecll, < Ctlldil 2y + C max Jeil?, .
i O0<i<k—1 !
The insertion of this completes the proof.
The result follows from analogous arguments for linearly implicit methods, cf. [5,
Section VI]. [ ]

Again, using the above stability results, the error bounds are following analogously as in [7]
(Theorem 5.1) or [14] (Theorem 5.3).

Theorem 4.2. Consider the quasilinear parabolic problem (1), having a solution in S(t) for
0 <t < T. Couple the ESFEM as space discretization with time discretization by a k-step implicit
or linearly implicit backward difference formula of order k < 5. Assume that the Ritz map of the
solution has continuous discrete material derivatives up to order k + 1. Then there exists Ty > 0,
independent of h, such that for T < 1o, for the error E}; = U}; — Pyu(.,t,) the following estimate
holds fort, =nt <T:
1
n 2
7 nv
NER 20y + (T Z ||Vr,,(x,-)Eﬁ||Lz(rh(,j)))
j=1

1

n 2
< CBT" TZ R,(,t)|?_ C max ||E! 3)>
< CBux +< .1“ n( '/)”H],I(rh(’j)) + 05I,EIHH PIFEI
=

where the constant C is independent of h, n, and t (but depends on m, M, L, u, k, and T).
Furthermore

T k+1

B =/ 2 1@D Y Pran) (Dl -
0

=1
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Proof. The proof of this result is analogous to that of Theorem 4.1, it uses the norm identity,
and bounded Peano kernels. For details see the above references. ]
V. ERROR BOUNDS FOR THE FULLY DISCRETE SOLUTIONS

We follow the approach of [7] (Section V) by defining the FEM residual R,(.,t) =
Y 0x (1) € i) as

d ~ ~ ~ ~
/ Ry, = @ Prudy + APyu)Vr(Ppu) - Vi, — (Puu)0; éy, (25)
Ty Tp T

Tp
where ¢;, € S,(¢), and the Ritz map of the true solution u is given as
N
Pu(a) =@ (0%, (1),
j=1

The above problem is equivalent to the ODE system with the vector r(t) = (r;(¢)) € R":

d
a(M(l)&(t)) + A@®)a(t) = M@0)r (),

which is the perturbed ODE system (16).

A. Bound of the Semidiscrete Residual

We now show the optimal second order estimate of the residual R),.

Theorem 5.1.  Let u, the solution of the parabolic problem, be in S(t) for 0 <t < T. Then
there exists a constant C > 0 and hy > 0, such that for allh < hyandt € [0, T], the finite element
residual R), of the Ritz map is bounded as

2
Rl g=1r) 00 < ch”.

Proof. (a) We start by applying the discrete transport property to the residual Eq. (24)

d . L. .
mu(Ry, ¢n) = amh(Ph“,¢h) + ap (Puus; Pyu, ¢p) — my(Puu, 8;¢p)
= my (O Pt dn) + an(Pruz P, d) + g (Vs P, ).

(b) We continue by the transport property with discrete material derivatives from Lemma 3.4,
but for the weak form, with ¢ := ¢, = (¢>h)1:

d
0= am(u,wh) +au;u, @p) —m(u, 3°¢,)
=m(0u, o) + au;u, p) + g(vp; u, @p) +mu, 0,0, — 3°¢;).
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(c) Subtraction of the two equations, using the definition of the Ritz map with & = u in (12),
that is,

ay(u™; Py, ¢n) = a* (s u, @),
and using that

O — 0% = (v — V) - Vi,
holds, we obtain

my(Ry, ¢n) = mh(aﬁﬁhu,@,) —m(9,u,p;) + gh(Vh;ﬁhu,(bh) — g u, @)
+ a; (Pyu; Pout, dy) — a (™ s Pyu, ¢y) + m(u, @p) — my, (Puu, )
+ m(u, (v, —v) - Vrgy).
All the pairs can be easily estimated separately as c/?||g; || L2(r (> by combining the estimates of
Lemma 3.5, and Theorem 3.1 and 3.2, except the third, and the last term.
The term containing the velocity difference (v, —v) can be estimated, using |v, —v|+h|Vr (v, —

v)| < ch? from [10, Lemma 5.6], as ch*||Vr @, |l 2y
The nonlinear terms are rewritten as:

ay (Poa Poaas 1) — a ™"y P, ¢1) = a (Praa; Praa, 1) — a* (Pous Py, 93)
+ a*(Pyu; Puu, @) — a*(u; Puu, @1)
+ a” (u; Puu, ¢p) — a;('fl; 'ﬁhu, dn)
For the first and the third term Lemma 3.5 provides an upper bound ch?||Vr @y || 121, (similarly

like before).
Finally, using Lemma 3.9 we obtain, similarly to (4), that the second term can be bounded as

(A(Pyu) — Aw))VrPyu - Vre,

r()

|a* (Pyu; Pru, on) — a™ (u; Pyu, )| =

< cl||Pyu — ”||L2(r(t))||Vl"7)hu||L°°(F(1))||V1“(/7h||L2(r(z))
< cl|[Pyu — ”||L2(r(z)) cr ||VF§0h||L2(r<1))

= CethHVF(thLz(l'(t))’
Therefore, by (21), and using the equivalence of norms [8] (qﬁﬁ, = ¢;,), we have

my(Ry (., 1), ¢p) <o ||<Ph||H1(r(z))

< ch’.

||Rh(-a t)||H;:1(rlz(t)) =

oztnesy@  NPnllmt gy Ndnll gty )
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B. Error Estimates for the Full Discretizations

We compare the lifted fully discrete numerical solution u}, := (U, ;])’ with the exact solution u(., ,,)

of the evolving surface PDE (1), where U} = Z?’:l o} x;(., 1), where the vectors o are generated

by a R—K or a BDF method.

Theorem 5.2 (ESFEM and R-K). Consider the ESFEM as space discretization of the quasilin-
ear parabolic problem (1), with time discretization by an s-stage implicit R—K method satisfying
Assumption4.1. Let u be a sufficiently smooth solution of the problem, which satisfies u(.,t) € S(t)
(0 <t < T), and assume that the initial value is approximated as

||u2 — (Pa) (, Ol 2r 0y < Coh*.
Then, there exists ho > 0 and 19 > 0, such that for h < hy and © < 1), the following error
estimate holds fort, =nt <T:

1

n 2
Ny, — uCst) 220y TP (T Z ||VT‘(t‘,-)(uf, —u(, tj))”iZ(F(,j))) <C@E'™ +h?).

j=1

The constant C is independent of h, t, and n, but depends on m, M, and L, from (2), (3) and (4),
on W, K, from Lemma 3.1, and on T.

Theorem 5.3 (ESFEM and BDF). Consider the ESFEM as space discretization of the qua-
silinear parabolic problem (1), with time discretization by a k-step implicit or linearly implicit
backward difference formula of order k < 5. Let u be a sufficiently smooth solution of the problem,
which satisfies u(.,t) € S(t) (0 <t < T), and assume that the starting values are satisfying

max ||ul — (Pou)(, 1)]],2 < Coh*.
Jmax [l = (Pun) (1) |20y < Co

Then, there exists ho > 0 and 19 > 0, such that for h < hg and © < 1), the following error
estimate holds fort, =nt <T:

n 2
Ny = o)l 2 ) + h(r > 1 Vrap () — u<.,r,))||izm,j))> < C(T* +h).

j=I

The constant C is independent of h, t, and n, but depends on m, M, and L, from (2), (3) and (4),
on W, K, from Lemma 3.1, and on T.

Proof of Theorem 5.2-5.3. The global error is decomposed into two parts:
MZ - Ll(., tn) = (MZ - (Phu)(-’ tn)) + ((’Phl/l)(, tn) - I/l(., tn))y

and the terms are estimated by previous results.

The first one is estimated by our results for R-K or BDF methods: Theorem 4.1 or 4.2, respec-
tively, together with the residual bound Theorem 5.1, and by the Ritz error estimates Theorem
3.1 and 3.2.

The second term is estimated by the error estimates for the Ritz map (Theorem 3.1 and3.2). m
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VI. SEMILINEAR PROBLEMS EXTENSION

The presented results, in particular Theorem 5.2 and 5.3, can be generalized to semilinear prob-
lems. Convergence results for BDF method were already shown for semilinear problems in [5].
For the analogous results for R—K methods follow [4] (Remark 1.1). Problems fitting into this
framework can be found in the references given in the introduction.

Following Remark 1.1 from [4], the inhomogeneity f(¢) in the evolving surface PDE (1) can
be replaced by f (¢, u) satisfying a local Lipschitz condition [similar to (4)]: for every § > O there
exists L = L(8,r) such that

[(1f(t,w) — fEw)llvey <0llwi —wallve + Lllwy —wallpgyy O=<t<T)

holds for arbitrary w;, w, € V(¢) with ||w, ||y, [lw2||v¢) < r, uniformly in ¢. Such a condition
can be satisfied using the same S set as for quasilinear problems.

To be precise: In this case the bilinear form a(¢;.,.) is not depending on &, it reduces to the
case presented in [10]. Therefore, Section III here would reduce to recall results mainly from
[9, 10]. There is no & dependency in the definition of the generalized Ritz map, hence, it is the
one appeared in [13, 14] together with the error bounds presented there. The regularity result of
the Ritz map is still needed from Section III.G.

The stability estimates for the R—K and BDF methods are needed to be revised in a straightfor-
ward way, cf. [4, 5], respectively. To give more insight we give some details in the case of BDF
methods. R—K methods can be handled in a similar way.

The error equation for the semilinear problem reads as

k
ZajMnfjenfj + TAnen = T(f(tn’an) - f(tny&n)) + tdn’ (n > k)
j=0
After testing with the multiplier e, — ne,_; we obtain
L,+11,=111,+1V,+V,.

The new nonlinear term is now estimated as

TVl = [ (st — fta, @)len — nen_y)]
<11 = FE @10yl = nenilla,
< (8llella, + Llleallm,)lenlla, + nllen-illa,)
< 28lle,l%, + Cnlleally, + Clleally,, -

The other terms are either estimated as before, or in a much simple way, for instance in the case
of II,, which is now linear, cf. [7].

Vil. NUMERICAL EXPERIMENTS

We present a numerical experiment for an evolving surface quasilinear parabolic problem dis-
cretized by evolving surface finite elements coupled with the backward Euler method as a time
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TABLEL Errors and EOCs in the L>®(L?) and L?>(H") norms.

Level Dof L>®(L?) EOCs L*(HY EOCs
1 126 0.07121892 - 0.1404349 -

2 516 0.02077452 1.78 0.0404614 1.80

3 2070 0.00540906 1.94 0.0111377 1.86

4 8208 0.00136755 1.98 0.0033538 1.73

5 32682 0.00034289 2.00 0.0011904 1.49

integrator. The fully discrete methods were implemented in DUNE-FEM [40], while the initial
triangulations were generated using DistMesh [41].
The evolving surface is given by

r@) ={xeRa@®)'x] +x; +x; — 1 =0},

where a(¢) = 1 + 0.25sin(27¢), see for example [9, 6, 14]. The problem is considered over the
time interval [0, 1]. We consider the problem with the nonlinearity A(u) = 1 — %e*“z/ 4. This
satisfies the conditions in Assumption 2.1, as it has lower bound 1/2, upper bound 1, and its
derivative A'(u) = %e*“z/ 4 is also bounded, hence, A is Lipschitz continuous. The right-hand
side f is computed as to have u(x,t) = e~%x,x, as the true solution of the quasilinear problem

0°u 4+ uVrg - v — Vg - (A)Vrpu) = f onT' (1),
u(.,0) = uy onI"(0).

The time integrations require the solution of a nonlinear system at every timestep. As it is usual
for R—K methods, we used the simplified Newton iterations, cf. [36] (Section IV.H].
such that 2k, ~ hk,l and 41, = 1;_, with 7; = 0.1. By ¢, we denote the error corresponding to
the mesh 7, (7) and step size t;. Then the experimental order of convergences (EOCs) are given
as
In(ex/ex—1)

E = — =2,3,...,n).
0C, 2 (k=2,3,...,n)

In Table I, we report on the EOCs, for the ESFEM coupled with backward Euler method,
corresponding to the norm and seminorm

L®(LY) : max ||u? —u(.,t ,
(L) 1ﬁnan h ( n)||L2(r(r,,))

N 1/2
LZ(HI) : (T Z ||Vl"(tn)(”2 - L{(., tn))“iZ([‘(,,,))) :

n=1

We computed the numerical solution using the backward Euler method coupled with ESFEM
for four different meshes and a series of time steps, until the final time 7 = 1. Then we computed
the errors in the discrete norm and seminorm, cf. (10), these error curves are displayed in Fig. 1.
The convergence in time can be seen (note the reference line), while for sufficiently small t the
spatial error is dominating, in agreement with the theoretical results.
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discrete L 2—error

discrete L 2—error

FIG. 2.

ESFEM
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— — —slope1

step size ( t)
FIG. 1.

ESFEM

dof =126
dof=516
dof =2070
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10 107
step size ( t)

discrete H '—error

ESFEM

1227

dof =126
dof =516
dof =2070
dof =8208

— — —slope1

step size ( t)

Errors of the ESFEM and the backward Euler method at time 7 = 1.

ESFEM

discrete H '—error

dof =126
dof=516
dof=2070
dof =8208
dof =32682
— — —slope3

10 107
step size ( t)

Errors of the ESFEM and the three step linearly implicit BDF method at time 7 = 1.

Figure 2 shows a similar plot: the errors here were obtained by the three step linearly implicit
BDF method coupled with ESFEM for five different meshes and a series of time steps. Again the

results are matching with the theoretical ones.

We note that, for this example, no significant difference appeared between the fully implicit

and linearly implicit BDF methods.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1228 KOVACS AND GUERRA

APPENDIX: A PRIORI ESTIMATES

The result presented here gives regularity result, with a ¢ independent constant, for the elliptic
problems appeared in the proofs of the errors in the Ritz map.

Theorem A.1 (Elliptic regularity for evolving surfaces). i. Let T'(t) be an evolving surface, fix
at €[0,T] and a function& : T'(t) - R.

i. Let f € HY(I'(t)) and
L(u) := —Vr - (A(§)Vru) + u. (26)
Then, there exists a weak solution u € H'(I'(t)) of the problem
Lu)=f 27
with the estimate

Heell g1y < cllflg=1ay)» (28)

where the constant above is independent of t.

ii. Let L(u) be (26), let f € L>(I'(t)) and let u € H'(I'(t)) be a weak solution of (27). Then
u is a strong solution of (27), that is, u solves (27) almost everywhere and there exists a
constant ¢ > 0 independent of t and u such that

Hull g2y < clall 2wy + N 2@))-

Proof. For (i): The Lax—Milgram lemma shows the existence of the weak solution u. Because
the coercivity and boundedness constants (2) and (3) are independent of 7, the constant in (28)
also not depends on ¢. For (ii): Basically we consider pullback of the operator L to I'(0), rewrite
it in a local chart and then apply the corresponding results of [42].

By assumption there exists a diffeomorphic parametrization of our evolving surface I (¢), that
is, we have a smooth map

®: '(0) x [0,T] > R"*!
such that
d,:T(0) - R™  @,(x) := &(x,1)

is an injective immersion which is a homeomorphism onto its image with ®,(I"(0)) = I['(¢).
Because I'(0) is compact, there exists a finite atlas

(@a(0) : U,(0) C T(0) - R™),_,
such that ¢,(U,(0)) € R™ is bounded and a finite family of compact sets (V, (0))ﬁ=1 with

k
V,.(0) C U,(0), and 91Vn (0) = I'(0). Using the properties of the diffeomorphic parametrization

the new collections,
Vn(t) = ¢I(Vn(0))7 Un(t) = (bz(Un(O))’ ¢n(l) = (Pn(o)od’;l,
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still have the same properties. Now consider the following standard formulae of Riemannian
geometry [43]:

3@, (1)) A ()™)
ox! axi 7

Vrh(x,0) =Y gl (x,0)

i,j=1
where

RO ICAON

ox! ox/

gij,n(xat) =

X

is the first fundamental form and gjl-f (x, ) are entries of the inverse matrix of g, := (g;;,), and

VFXZ

le
> e )

where X is a smooth tangent vector field with X; = X - a("’(’) ) and Jgn = +/det(g,). Itis
straightforward to calculate that

m m

3 i a .
(=Vr - AVr + u)0, (07 0) = Y @iy (x.1) (g 9”3(’]) H n me( (w° <p (t) h

i,j=1

+ n(x, Hute, ()™

for some appropriate functions a;;, € W'*(U, (1)), b; ,, ¢, € L™(U,(t)) where a;;, represents
a uniform elliptic matrix. Observe that the assumptions (2), (3), and (4) implies that the function
above can be bounded independently of £. Now [42] (Theorem 8.8) states that, if u°¢, (1)~ is the
H'-weak solution of (27), then it must be a strong solution as well.

For the estimate in (ii) observe that [42] (Theorem 9.11) gives us for V, () in particular the
estimate

||”O‘pn(t)_1[-12(v,;(;)) = C(||M°<Pn(f)_l||L2<U;,(t>) + ||fo(ﬂn(t)_l ||L2(U,’,(t)))7 (29)

where V| := ¢,()(V,(t)) and U, := ¢,(t)(U,(t)) are obviously independent of . Thus the

n

constant above is independent of . Then Theorem 3.41 in [44] shows that

—1 -1
Null 2w,y < c@u’e,(t) N2y < cllup,(t) Ha2ev) s

where the constant in the middle depends continuously on 7, hence the last constant is independent
of ¢. A similar estimate holds for the right-hand side of (29). An easy calculation finishes the proof
for (ii). ]
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1 Introduction

Starting from a paper by Dziuk and Elliott [10], much insight into the stability and
convergence properties of finite elements on evolving surfaces has been obtained by
studying a linear parabolic equation on a given moving closed surface I"(¢). The
strong formulation of this model problem is to find a solution u(x, ¢) (for x € I'(¢)
and 0 <t < T) with given initial data u (x, 0) = uo(x) to the linear partial differential
equation

%u(x, 1) +ulx,t)Vry -v(x,t) — Arpulx,1) =0, xeI'(t), 0<t<T,

where 9° denotes the material time derivative, A () is the Laplace—Beltrami operator
on the surface, and V() - v is the tangential divergence of the given velocity v
of the surface. We refer to [12] for an excellent review article (up to 2012) on the
numerical analysis of this and related problems. Optimal-order L? error bounds for
piecewise linear finite elements are shown in [13] and maximum-norm error bounds
in [23]. Stability and convergence of full discretizations obtained by combining the
evolving surface finite element method (ESFEM) with various time discretizations are
shown in [11,15,24]. Convergence of semi- and full discretizations using high-order
evolving surface finite elements is studied in [20]. Arbitrary Euler-Lagrangian (ALE)
variants of the ESFEM method for this equation are studied in [16,17,21]. Convergence
properties of the ESFEM and of full discretizations for quasilinear parabolic equations
on prescribed moving surfaces are studied in [22].

Beyond the above model problem, there is considerable interest in cases where the
velocity of the evolving surface is not given explicitly, but depends on the solution
u of the parabolic equation; see, e.g., [1,6,16,18] for physical and biological models
where such situations arise. Contrary to the case of surfaces with prescribed motion,
there exists so far no numerical analysis for solution-driven surfaces in IR3, to the best
of our knowledge.

For the case of evolving curves in R?, there are recent papers by Pozzi and Stinner
[25] and Barrett et al. [2], who couple the curve-shortening flow with diffusion on the
curve and study the convergence of finite element discretizations without and with a
tangential part in the discrete velocity, respectively. The analogous problem for two- or
higher-dimensional surfaces would be to couple mean curvature flow with diffusion on
the surface. Studying the convergence of finite elements for these coupled problems,
however, remains illusive as long as the convergence of ESFEM for mean curvature
flow of closed surfaces is not understood. This has remained an open problem since
Dziuk’s formulation of such a numerical method for mean curvature flow in his 1990
paper [9].

In this paper we consider different velocity laws for coupling the surface
motion with the diffusion on the surface. Conceivably the simplest velocity law
would be to prescribe the normal velocity at any surface point as a function of
the solution value and possibly its tangential gradient at this point: v(x,t) =
gux, 1), Vrpu(x, 1)) vre(x) for x € I'(t), where vy () (x) denotes the outer nor-
mal vector and g is a given smooth scalar-valued function. This does, however, not
appear to lead to a well-posed problem, and in fact we found no mention of this seem-
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Finite elements on a diffusion-driven evolving surface 645

ingly obvious choice in the literature. Here we study instead a regularized velocity
law:

v(x, 1) —aArpux, 1) = g(ux, 1), Vegu, ) vre (), x € I'(1),

with a fixed regularization parameter o > 0. This elliptic regularization will turn
out to permit us to give a complete stability and convergence analysis of the ESFEM
semidiscretization, for finite elements of polynomial degree at least two. The case of
linear finite elements is left open in the theory of this paper, but will be considered
in our numerical experiments. The stability and convergence results can be extended
to full discretizations with linearly implicit backward difference time-stepping, as we
plan to show in later work.

Our approach also applies to the ESFEM discretization of coupling a regularized
mean curvature flow and diffusion on the surface:

v — aAp(,)v = (—H + g(u, V[‘(t)u))w"(t),

where H denotes mean curvature on the surface I"(¢).
The error analysis is further extended to a dynamic velocity law

0°v + UVF(,) SV — OIAF(,)U = g(u, V[‘(;)u) Vr@)-

A physically more relevant dynamic velocity law would be based on momentum and
mass balance, such as incompressible Navier—Stokes motion of the surface coupled to
diffusion on the surface. We expect that our analysis extends to such a system, but this
is beyond the scope of this paper. Surface evolutions under Navier—Stokes equations
and under Willmore flow have recently been considered in [3-5].

The paper is organized as follows.

In Sect. 2 we describe the considered problems and give the weak formulation.
We recall the basics of the evolving surface finite element method and describe the
semidiscrete problem. Its matrix—vector formulation is useful not only for the imple-
mentation, but will play a key role in the stability analysis of this paper.

In Sect. 3 we present the main result of the paper, which gives convergence estimates
for the ESFEM semidiscretization with finite elements of polynomial degree at least
2. We further outline the main ideas and the organization of the proof.

In Sect. 4 we present auxiliary results that are used to relate different surfaces to
one another. They are the key technical results used later on in the stability analysis.
Section 5 contains the stability analysis for the regularized velocity law with a pre-
scribed driving term. In Sect. 6 this is extended to the stability analysis for coupling
surface PDEs and surface motion. The stability analysis works with the matrix—vector
formulation of the ESFEM semidiscretization and does not use geometric arguments.

In Sect. 7 we briefly recall some geometric estimates used for estimating the consis-
tency errors, which are the defects obtained on inserting the interpolated exact solution
into the scheme. Section 8 deals with the defect estimates. Section 9 proves the main
result by combining the results of the previous sections.
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In Sect. 10 we give extensions to other velocity laws: the regularized mean curvature
flow and the dynamic velocity law addressed above.

Section 11 presents numerical experiments that are complementary to our theoreti-
cal results in that they show the numerical behaviour of piecewise linear finite elements
on some examples.

We use the notational convention to denote vectors in R by italic letters, but to
denote finite element nodal vectors in RY and R3 by boldface lowercase letters and
finite element mass and stiffness matrices by boldface capitals. All boldface symbols
in this paper will thus be related to the matrix—vector formulation of the ESFEM.

2 Problem formulation and evolving surface finite element
semidiscretization

2.1 Basic notions and notation

We consider the evolving two-dimensional closed surface I"(r) C R? as the image
ro={X(p.n:per®)

of a sufficiently regular vector-valued function X : I” 0% [0, T] — R3, where I"%is the
smooth closed initial surface, and X (p, 0) = p. In view of the subsequent numerical
discretization, it is convenient to think of X (p, ) as the position at time ¢ of a moving
particle with label p, and of I'(#) as a collection of such particles. To indicate the
dependence of the surface on X, we will write

r)=rX(,t), orbriefly I'(X)

when the time ¢ is clear from the context. The velocity v(x,t) € R3 at a point x =
X(p,t) € I'(t) equals

»X(p, 1) =v(X(p,1),1). 2.0

Note that for a known velocity field v : R3 x [0, T] — R3, the position X (p, 1) at time
t of the particle with label p is obtained by solving the ordinary differential equation
(2.1) from O to ¢ for a fixed p.

For a function u(x, t) (x € I'(¢),0 <t < T) we denote the material derivative as

%u(x,r) = %M(X(p, 1),t) for x =X(p,1).

Atx € I'(t) and 0 < r < T, we denote by vy(x)(x,?) the outer normal, by
Vrxu(x, t) the tangential gradient of u, by A (xyu(x, t) the Laplace-Beltrami oper-
ator applied to u, and by V(x) - v(x, t) the tangential divergence of v; see, e.g., [12]
for these notions.
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2.2 Surface motion coupled to a surface PDE: strong and weak formulation

As outlined in the introduction, we consider a parabolic equation on an evolving
surface that moves according to an elliptically regularized velocity law:

°u+uVrxy - v—Arcou = fu, Vrxu),
v—OlA['(X)U = g(u,Vr(X)u)vr(X). (2.2)

Here, f:R x R> — Rand g:R x R?> — R are given continuously differentiable
functions, and o > 0 is a fixed parameter. This system is considered together with the
collection of ordinary differential equations (2.1) for every label p. Initial values are
specified for u and X.

On applying the Leibniz formula as in [10], the weak formulation reads as follows:
Find u(-, 1) € W'(I'(X (-, 1)) and v(-, £) € Wh(I'(X (-, 1)))* such that for all
test functions ¢ (-, 1) € H'(I'(X (-, 1)) with3®¢ = Oand ¥ (-, 1) € H (I'(X (-, 1)))>,

d
— ue +/ VI“(X)M . Vr(x)(p = / f(u, VF(X)M)‘/)’
dt Jrox rx rx)

/ v+ (x/ Vrxov - Ve = gu, Vrxyu) vrxy - v,
rex r) rx)

2.3)

alongside with the ordinary differential equations (2.1) for the positions X determining
the surface ' (X).

We assume throughout this paper that the problem (2.2) or (2.3) admits a unique
solution with sufficiently high Sobolev regularity on the time interval [0, T] for
the given initial data u(-,0) and X(-,0). We assume further that the flow map
X, t): Iy — I't) ¢ R3is non-degenerate for 0 < ¢t < T, so that I'(¢) is a
regular surface.

2.3 Evolving surface finite elements

We describe the surface finite element discretization of our problem, following [7,8].
We use simplicial elements and continuous piecewise polynomial basis functions of
degree k, as defined in [7, Section 2.5].

We triangulate the given smooth surface 1'% by an admissible family of triangu-
lations 7, of decreasing maximal element diameter /; see [10] for the notion of an
admissible triangulation, which includes quasi-uniformity and shape regularity. For a
momentarily fixed &, we denote by x0 = (x?, R x](f,) the vector in R3*V that collects
all N nodes of the triangulation. By piecewise polynomial interpolation of degree k,
the nodal vector defines an approximate surface I ho that interpolates I"° in the nodes
x?. We will evolve the jth node in time, denoted x;(¢) with x;(0) = xl?, and collect
the nodes at time ¢ in a vector

x(1) = (x1(1), ..., xn(1) € R3V.
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Provided that x(¢) is sufficiently close to the exact position x;? () := X(pj,t) (with

pj = x?) on the exact surface I'(r) = I'(X(-,t)), the nodal vector x(¢) still cor-
responds to an admissible triangulation. In the following discussion we omit the
omnipresent argument ¢ and just write X for x(#) when the dependence on ¢ is not
important.

By piecewise polynomial interpolation on the plane reference triangle that corre-
sponds to every curved triangle of the triangulation, the nodal vector x defines a closed
surface denoted by I, (x). We can then define finite element basis functions

oilx]: Ix) >R, j=1,...,N,

which have the property that on every triangle their pullback to the reference triangle
is polynomial of degree k, and which satisfy

¢jlx](xx) =8 forall j k=1,...,N.
These functions span the finite element space on I, (x),
Sn(x) = span{¢1[x], ¢alx], ..., pn[x]}.
For a finite element function u;, € S;(x) the tangential gradient Vy, (x)uy, is defined

piecewise.
We set

N
Xn(pn 1) =Y xj (1) ;X)) (pn),  pu € I},
j=1

which has the properties that X, (p;,t) = x;(t) for j =1,..., N, that X, (pp, 0) =
py forall p, € Fho, and

I (x(1) = I'(Xp (-, 1)).

The discrete velocity v, (x,t) € R at a point x = X, (pn, 1) € I'(X;,(-, 1)) is given
by

0 Xn(pn, 1) = vp(Xn(pn, 1), 1).
A key property of the basis functions is the transport property [10]:
d
(¢ xOIXn (P 1) = 0.
which by integration from O to 7 yields
¢ [x(1(Xn(pp. 1)) = ¢;[x(0)](pn)-
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This implies that the discrete velocity is simply

N
va(x, 1) = Y (1) ¢;[x()](x) forx € M(x(1)), with v; (1) = %;(1),
j=1

where the dot denotes the time derivative d/dz.

The discrete material derivative of a finite element function

N

wp(x, 1) =Y uj(t) ¢;[x(0D](x), x € Ti(x(1)),

j=1

is defined as

d
pup(x,t) = Euh(Xh(Ph,f), t) for x = Xp(pp, t).

By the transport property of the basis functions, this is just

N
opun(x. 1) =Y itj (1) ¢;[x()(x), x € Ti(x(0)).

j=1
2.4 Semidiscretization of the evolving surface problem

The finite element spatial semidiscretization of the problem (2.3) reads as follows:
Find the unknown nodal vector x(r) € R3" and the unknown finite element functions
up(-,t) € Sp(x(¢)) and v, (-, t) € Sp(x(7))3 such that, for all on(-, 1) € Sp(x(t)) with
dpon = 0and all Y (-, 1) € S (x(1))3,

d
— UpPh +/ Vooun - Ve = fn, Vi,coun) on,
dt Jr, I (x) ()
/ Vp - Yn +Ol/ VU VomWs = / g, Vr,un) vy x) - Vhs
I (x) I (x) I (x)
2.4
and
@ Xn(pn. ) = va(Xn(pn. 1), 1), pp € I} (2.5)

The initial values for the nodal vector u corresponding to u; and the nodal vector
x of the initial positions are taken as the exact initial values at the nodes x? of the

triangulation of the given initial surface I":

5O =20, wj O =u(x0,0), (G=1....N).
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2.5 Differential-algebraic equations of the matrix—vector formulation

We now show that the nodal vectors u € RY and v € R3V of the finite element
functions uj, and vy, respectively, together with the surface nodal vector x € R3V
satisfy a system of differential-algebraic equations (DAEs). Using the above finite
element setting, we set (omitting the argument ¢)

N
up = Zuj¢j[X], up(xj) =uj € R,
j=1

N
v =Y v;pIx], va(x)) =v; € R,
=1

and collect the nodal values in column vectors u = (u;) € RN andv = (v i) € R3N.
We define the surface-dependent mass matrix M(x) and stiffness matrix A(x) on
the surface determined by the nodal vector x:

wmﬁ=/ ¢, [x1g[x].
1) (jok=1,....N).

AX)|jk = /F( )Vrhfﬁj[X] -V, ok [x],
(X

We further let (with the identity matrix I3 € R3%3)
Kx) =5L® (M(x) + oeA(x)). (2.6)

The right-hand side vectors f(x, u) € RY and g(x, u) € R3" are given by

f(x,u)]; = /F o S un, Viup) ¢5x1,
h(X

gX, W3j—1n+e = / gun, V,up) (VF;,(X))Z ¢;[x],
Ty (x)

forj=1,...,N,and £ =1, 2, 3.
We then obtain from (2.4)—(2.5) the following coupled DAE system for the nodal
values u, v and Xx:

% (M(x)u) +AXuU = f(x, u),

KX)v = g(x, u), 27

X=vV.
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With the auxiliary vector w = M(x)u, this system becomes

X=1v,

w=—-AX)u+ f(x,0),
0 = —-KXV+g(x,u),
0=-—-MXu-+w.

This is of a form to which standard DAE time discretization can be applied; see, e.g.,
[19, Chap. VI].

As will be seen in later sections, the matrix—vector formulation is very useful in the
stability analysis of the ESFEM, beyond its obvious role for practical computations.

2.6 Lifts

In the error analysis we need to compare functions on three different surfaces: the
exact surface I'(t) = I'(X(-, 1)), the discrete surface I'y(t) = I,(x(t)), and the
interpolated surface I')'(t) = I,(x*(t)), where x*(¢) is the nodal vector collecting
the grid points x;‘ (t) = X(pj,t) on the exact surface. In the following definitions we
omit the argument ¢ in the notation.

A finite element function wy, : I, — R (m = 1 or 3) on the discrete surface, with
nodal values w j, is related to the finite element function Wy, on the interpolated surface
that has the same nodal values:

N
l'i}\h = Z Wj¢j[X*].
j=1

The transition between the interpolated surface and the exact surface is done by the
lift operator, which was introduced for linear surface approximations in [8]; see also
[10,13]. Higher-order generalizations have been studied in [7]. The lift operator /
maps a function on the interpolated surface I')" to a function on the exact surface I,
provided that I} is sufficiently close to I”.

The exact regular surface I" (X (-, t)) can be represented by a (sufficiently smooth)
signed distance function d : R3 x [0, T] — R, cf. [10, Section 2.1], such that

rxe.n)={xek’ |dx 1) =0} cR. (2.8)

Using this distance function, the lift of a continuous function n, : I — Ris
defined as

() = (x), xely,

where for every x € I';’ the point y = y(x) € I” is uniquely defined via
y=x—v(yd(x).
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! we denote the

For functions taking values in R? the lift is componentwise. By 7~
function on I';" whose lift is 7.
We denote the composed lift L from finite element functions on I}, to functions on

I via I} by
wk = @)

3 Statement of the main result: semidiscrete error bound

We are now in the position to formulate the main result of this paper, which yields
optimal-order error bounds for the finite element semidiscretization of a surface PDE
on a solution-driven surface as specified in (2.2), for finite elements of polynomial
degree k > 2. We denote by I'(r) = I'(X(:, t)) the exact surface and by I}(t) =
I'(Xy,(-, 1)) = I,(x(¢)) the discrete surface at time . We introduce the notation

xE@x, )= XE(p, 1) e Ti(r) for x =X (p,1) € I'(1).

Theorem 3.1 Consider the space discretization (2.4)—(2.5) of the coupled problem
(2.1)~(2.2), using evolving surface finite elements of polynomial degree k > 2. We
assume quasi-uniform admissible triangulations of the initial surface and initial values
chosen by finite element interpolation of the initial data for u. Suppose that the problem
admits an exact solution (u, v, X) that is sufficiently smooth (say, in the Sobolev class
H*tY) on the time interval 0 <t < T, and that the flowmap X (-,t) : Iy — I'(t) C
R3 is non-degenerate for 0 < t < T, so that I' (t) is a regular surface.

Then, there exists ho > 0 such that for all mesh widths h < hy the following error
bounds hold over the exact surface I'(t) = I'(X (-, 1)) for0 <t <T:

1

2 2
ds> < ChF

(Hu,ﬁ(.,z) —u(, )|

1 2
+/ HM;L,(-,S) - ”("S)H
o Jo HY(I'(s)

and

v ot

HU(I(5))3

1/2
ds> < Ch*,

k

(

< Ch
HY(I (1))}

Hx;f(n 1) —idr

The constant C is independent of t and h, but depends on bounds of the H**' norms
of the solution (u, v, X), on local Lipschitz constants of f and g, on the regularization
parameter a > 0 and on the length T of the time interval.

We note that the last error bound is equivalent to

L k
[xken-xen,, ., = e
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Moreover, in the case of a coupling function g in (2.2) that is independent of the
solution gradient, so that g = g(u), we obtain an error bound for the velocity that is
pointwise in time: uniformly for0 <t < T,

ko —ven] < cont

A key issue in the proof is to ensure that the W' norm of the position error of the
curves remains small. The H'! error bound and an inverse estimate yield an O (h%~1)
error bound in the W1 norm. This is small only for k > 2, which is why we impose
the condition k > 2 in the above result.

Since the exact flow map X(-,¢): o — [I'(¢) is assumed to be smooth and
non-degenerate, it is locally close to an invertible linear transformation, and (using
compactness) it therefore preserves the admissibility of grids with sufficiently small
mesh width 7 < hg. Our assumptions therefore guarantee that the triangulations
formed by the nodes x*(t) = X (p;, t) remain admissible uniformly for ¢ € [0, T'] for
sufficiently small 2 (though the bounds in the admissibility inequalities and the largest
possible mesh width may deteriorate with growing time). Since k > 2, the position
error estimate implies that for sufficiently small / also the triangulations formed by
the numerical nodes x ; () remain admissible uniformly for # € [0, T']. This cannot be
concluded for k = 1.

The error bound will be proven by clearly separating the issues of consistency and
stability. The consistency error is the defect on inserting a projection (interpolation or
Ritz projection) of the exact solution into the discretized equation. The defect bounds
involve geometric estimates that were obtained for the time dependent case and for
higher order £ > 2 in [20], by combining techniques of Dziuk and Elliott [10,13] and
Demlow [7]. This is done with the ESFEM formulation of Sect. 2.4.

The main issue in the proof of Theorem 3.1 is to prove stability in the form of an
h-independent bound of the error in terms of the defect. The stability analysis is done
in the matrix—vector formulation of Sect. 2.5. It uses energy estimates and transport
formulae that relate the mass and stiffness matrices and the coupling terms for different
nodal vectors X. No geometric estimates enter in the proof of stability.

In Sect. 4 we prove important auxiliary results for the stability analysis. The stability
is first analysed for the discretized velocity law without coupling to the surface PDE in
Sect. 5 and is then extended to the coupled problem in Sect. 6. The necessary geometric
estimates for the consistency analysis are collected in Sect. 7, and the defects are then
bounded in Sect. 8. The proof of Theorem 3.1 is then completed in Sect. 9 by putting
together the results on stability, defect bounds and interpolation error bounds.

4 Auxiliary results for the stability analysis: relating different surfaces

The finite element matrices of Sect. 2.5 induce discrete versions of Sobolev norms.
For any w = (w;) € RY with corresponding finite element function w, =

Zjv:l w;p;[x] € Sp(x) we note

@ Springer



654 B. Kovacs et al.

Wl =W MEW = [wpl]7 (4.1)

(I (x))’

Wl = W AW = | V5, cowal ;2 4.2)

()
In our stability analysis we need to relate finite element matrices corresponding to
different nodal vectors. We use the following setting. Let x,y € R3¥ be two nodal
vectors defining discrete surfaces I7,(x) and I, (y), respectively. We let e = (e;) =

X—Yy € R3N . For the parameter 6 € [0, 1], we consider the intermediate surface
I hg = I, (y + fe) and the corresponding finite element functions given as

N
ez = Z ejp;ly + 0e]
j=1
and, for any vectors w, z € RN,

N N
wzzzwj¢j[y+6e] and zz =ZZ/¢./[y+96]~
j=1 j=1

Lemma 4.1 In the above setting the following identities hold:
1
w (M) — M(y)z = / / w) (Vy - ef) 2 co.
o Jry L
1
W (Ax) — A(y)z = f / Vigu - (Drpef) Vi do,
0 rhe h h h

with Drheez = trace(E)Iz — (E + ET) for E = VFher e R33,

Proof Using the fundamental theorem of calculus and the Leibniz formula we write

1
d
wT(M(x)—M(y))z:/ w}lz}i—/ wgzg 2/ —/ wZZZdO
1) i) o d6 Jrp

1
= / / w (VF9 ~ez> 29 dé.
0 th h

In the last formula we used that the material derivatives (with respect to 8) of wz and
zﬁ vanish, thanks to the transport property of the basis functions. The second identity
is shown in the same way, using the formula for the derivative of the Dirichlet integral;

see [10] and also [15, Lemma 3.1]. ]

A direct consequence of Lemma 4.1 is the following conditional equivalence of
norms:
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Lemma 4.2 If [V - )l oo oy < pfor 0 < 6 < 1, then

IWlMy+e) < €/ IWlmgy)-

IFIDpoeylloeroy < nfor0 <6 <1, then

IWllagte) < €”? [Wlaw)-

Proof By Lemma 4.1 we have for) <t <1
IWRtcysre) — IWIRiy = W' (M(y + T€) — M(y))w
T T
0 0 0 02
_ (V- ) o < do
‘ 2
— /0 IW IRy 60 4.

and the first result follows from Gronwall’s inequality. The second result is proved in
the same way. U

The following result, when used with w,@l equal to components of ez, reduces the
problem of checking the conditions of the previous lemma for 0 < 6 < 1 to checking
the condition just for the case 6 = 0.

Lemma 4.3 In the above setting, assume that

0 1
” Vilyien ” =5

4.3
L®(Iylyh) — 2 (43)

Then, for 0 < 6 < 1 the function wz = Z;V:l w;jp;ly + 0e] on r? =ly+6elis
bounded by

HVF:wZ‘ for 1< p <oo,

0
=< H Vrowy

Lo(ry) Lo(r3)

where c, depends only on p (we have coo = 2).

Proof We describe the finite element parametrization of the discrete surfaces th in
the same way as in Sect. 2.3, with 6 instead of ¢ in the role of the time variable. We
set

N
Y (qn) = Ya(qn.0) = > _(vj +0e)d;[¥ln). qn € Thly), (4.4)
j=1

so that

r(Y)) = Lily +0el =TI}.
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Since Y f? (qn) = qp for all g, € 'Y = I},[y], the above formula can be rewritten as
Y (qn) = qn + 0ef)(qn).
Tangent vectors to I’he at yZ = Yf (gn) are therefore of the form
T
8y = DY} (qn) 8qn = 84 +0(Voen(an) i,

where dqj, is a tangent vector to [ ho at gy, or written more concisely, 8q;, € Ty, Fho.
Letting | - | denote the Euclidean norm of a vector in R3, we have at yg = Y}? (gn)

0 (vO\\T 5.0
oy (Vrpwy (%)) 83 Dwj (vy) 8y,
v oW (y ) — Sup = Sup
r?Wn \Yn 16y | 18y}
5)‘f€Ty;* ry Yn ByzeTyZ rf Yh

— Duwj, (v;) DY () 8qn
- . :
saet, 10 |DY} (an) 8qn]

By construction of wZ and the transport property of the basis functions, we have

N N
wy (Vi (qn)) =Y _wigily +0el (V) (an)) = Y w;djlylign) = w}(gn).

j=1 j=1
By the chain rule, this yields

Duwj, (vy) DY} (qn) = Dw})(qn).

Under the imposed condition ”Vﬂ.oeg” Loy < % we have for0 <0 <1

T
| DY}/ (qn) 8qn] = 18qn] — 01(Vroeh(an)) " Sanl = 515qnl.
Hence we obtain

Dw)(qn) 8qn

‘V 9w9 (ye)‘ = P -
r7"h \’h
' sanety, 10 DY) (an) 8qn|

0
_ Dw;, (gn) 8qn

0
< foe =2 |V paufgn)|
Sqnely, 1"}? §| qn
This yields the stated result for p = oco. For 1 < p < oo we note in addition that
in using the integral transformation formula we have a uniform bound between the
surface elements, since D Yf is close to the identity matrix by our smallness assumption
0
on V roep: 0
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The arguments of the previous proof are also used in estimating the changes of the
normal vectors on the various surfaces I he = Iyly + Oe].

Lemma 4.4 Suppose that condition (4.3) is satisfied. Let yz = Y}? (qn) € th be
related by the parametrization (4.4) of I f over I ho, for 0 < 0 < 1. Then, the corre-
sponding unit normal vectors differ by no more than

’

‘Vphf? (yf,) —Vro (YI(z))‘ =Co ‘Vrl?eg(y}?)

with some constant C.

Proof Let 5‘111 and 8q}2, be two linearly independent tangent vectors of Fho atg, € Fho
(which may be chosen orthogonal to each other and of unit length with respect to

the Euclidean norm). With 8y!"' = DY/ (q1) 8q}, = 8¢} + 0(Vroen (qn))" 8q}, for
i = 1,2 we then have, for0 <6 < 1,

Syz’l X Syz’z

6
Vo \ V) = —F5————F5-
T, () 188 x 8y02)

Since this expression is a locally Lipschitz continuous function of the two vectors, the
result follows. (The imposed bound (4.3) is sufficient to ensure the linear independence
of the vectors 8y2” ) O

We denote by 97 f the material derivative of a function f = f (yfl, 0) depending
on6 € [0, 1]and y! € IY:

d
¥ f= @f(yﬁ,e).

From Lemma 4.4 together with Lemma 4.3 we obtain the following bound:

Lemma 4.5 [f condition (4.3) is satisfied, then

< C|vpped

OV o )
Joivs Lr(ry) Lr(ry)

where C is independent of 0 <0 < land 1 < p < oo.

Proof By Lemma 4.4 with Fh9 in the role of Fho, we obtain

)

0vrs O] = [tim (v (377) = v (5))/7] = €| Vel ()

which implies

el

OV o
H O T lLe(rp) Lo(rf)’

and Lemma 4.3 completes the proof. g

@ Springer



658 B. Kovacs et al.

We finally need a result that bounds the time derivatives of the mass and stiffness
matrices corresponding to nodes on the exact smooth surface I"(¢). The following
result is a direct consequence of [15, Lemma 4.1].

Lemma 4.6 Ler '(t) = ['(X(-, 1)), t € [0,T], be a smoothly evolving family of
smooth closed surfaces, and let the vector x*(t) € R3N collect the nodes x;“(t) =
X(pj, ). Then, '

d
w%M(x*(t))z < CIwlme0) 12l )
d

T
w
dt

AKX (1))z < Clwllax o) 12l A
forall w,z € RN. The constant C depends only on a bound of the W'-* norm of the
surface velocity.

5 Stability of discretized surface motion under a prescribed driving-term

In this section we begin the stability analysis by first studying the stability of the
spatially discretized velocity law with a given inhomogeneity instead of a coupling to
the surface PDE. This allows us to present, in a technically simpler setting, some of
the basic arguments that are used in our approach to stability estimates, which works
with the matrix—vector formulation. The stability of the spatially discretized problem
including coupling with the surface PDE is then studied in Sect. 6 by similar, but more
elaborate arguments.

5.1 Uncoupled velocity law and its semidiscretization
In this section we consider the velocity law without coupling to a surface PDE:
vV—aArx)v = gvrx,

where g : RIxR—> Risa given smooth function of (x, ), and @ > 0 is a fixed
parameter. This problem is considered together with the ordinary differential equations
(2.1) for the positions X determining the surface I"(X). Initial values are specified
for X.

The weak formulation is given by the second formula of (2.3) with the function g
considered here. This is considered together with the ordinary differential equations
(2.1) for the positions X.

Then the finite element spatial semidiscretization of this problem reads as: Find
the unknown nodal vector x(r) € R3M and the unknown finite element function
vp(-, 1) € Sy (x(z‘))3 such that the following semidiscrete equation holds for every

Ui € Sp(x(1))*:

/ Vp - Y +Ol/ V5hoUh - Vh,e¥n = [ gvrx - Vn, (5.1
(%) I (x) (%)
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together with the ordinary differential equations (2.5). As before, the nodal vector of
the initial positions x(0) is taken from the exact initial values at the nodes x? of the
triangulation of the given initial surface I'%: x i(0) = x? forj=1,..., N.

Asin Sect. 2.5, the nodal vectors v € R3" of the finite element function vy, together
with the surface nodal vector x € R3V satisfy a system of differential-algebraic equa-
tions (DAEs). We obtain from (5.1) and (2.5) the following coupled DAE system for
the nodal values v and x:

Kx)v =g(x,1),

X=v.

(5.2)

Here the matrix K(x) = I3 ® (M(x) + ¢A(x)) is from (2.6), and the driving term
g(x, t) is given by

g(X, ))|3(j—1)+¢ =/ g(, 1) (Vl“h(x))( oilxl, (j=1,....,N,£=1,2,3).
Iy (x)

5.2 Error equations
We denote by
x*(r) = (xj(t)) e R¥*  with x;‘(t) =X(pj,t), (j=1,...,N)
the nodal vector of the exact positions on the surface 1" (X (-, t)). This defines a discrete

surface I, (x*(¢)) that interpolates the exact surface I" (X (-, 1)).
We consider the interpolated exact velocity

N
UG 1) = ) Vi) with vi(0) = i),
j=1
with the corresponding nodal vector
Vi) = (vi@) = X" (1) e RPN,

Inserting v;: and x* in place of the numerical solution v, and x into (5.1) yields a
defect dj, (-, 1) € S (x*(1))3: for every yy € Sp(x*(1))3,

/ vy - Y +01/ VeV - Ve Un = / gvr,x) - Yn +/ dp - Y.
I (x*) I (x*) I (x*) I (x*)

With dj (-, t) = Z;V:l dj(t)¢;[x*(t)] and the corresponding nodal vector dy(t) =
(dj (t)) € R3N we then have (I3 ® M(x*(1)))dy(f) as the defect on inserting x* and
v* in the first equation of (5.2). With MBl(x*) = I3 ® M(x*), we thus have
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KxH)v* = g(x*) + M (x*)dy,

x* =v*.

(5.3)

We denote the errors in the surface nodes and in the velocity by ex = x — x* and
ey = v — v*, respectively. We rewrite the velocity law in (5.2) as

K(x*)v = —(K(X) - K(x*))v* — (K(x) — K(X*))ev + g(x).

Then, by subtracting (5.3) from the above version of (5.2), we obtain the following
error equations for the uncoupled problem:

K(x*)ey, = —(K(x) — K(x*))v* - (K(x) - K(X*))ev
+(gx) — g(x) — MPl(x")d,, (5.4)

€y = ey.

When no confusion can arise, we write in the following M(x*) for MPBl(x*) and
|| . ”HI(F) fOl" || . ||H1(1")3, etc.

5.3 Norms

We recall that K(x*) = I3 ® (M(x*) + a¢A(x*)) and, for w € R3" and the corre-
sponding finite element function wy = le\’:l w;g;[x*] €S (x*)3, we consider the
norm
Wik ey =W Kx*w
— 2 2 ~ 2
= ”wh “Lz(ﬂl(x*)) +a ”VF;,(X*) Wh ” L2(I,(x*)) ||wh ” HIU(T(x*)
For convenience, we will take o« = 1 in the remainder of this section, so that the last

norm equivalence becomes an equality. For the defect dj, € Sy, (x*)3 we use the dual
norm (cf. [24, Proof of Theorem 5.1])

th(X*) dh ’ wh

”dh”H—l I (x*) “— sup
IO esuoeyd 1VR 1 (e
d7M(x*)z d7M(x*)K(x*) 2w
= Sup D —— = su 1
0£2eR3 (zTK(X*)Z)2  0#£weRW (wlw)z

= K& IMEO)dy 2 = (47 MEOKE) ™ Mx)dy )
(5.5)

We denote

ldy]|? g := dITM(x*K(x*) "' M(x*")dy,
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so that

”dV”*,X* - ”dh”H}jl(Fh(x*))

5.4 Stability estimate

The following stability result holds for the errors ey and ey, under an assumption of
small defects. It will be shown in Sect. 8 that this assumption is satisfied if the exact
solution is sufficiently smooth.

Proposition 5.1 Suppose that the defect is bounded as follows, with k > 1:
ldvOllx=@y < ch®, 1 €[0,T].
Then there exists hg > 0 such that the following error bounds hold for h < hg and

0<t<T:

t
lex(lk ey < € /O ldy ()12 yeds, (5.6)

t
llev(®) gy < ClAVOI3 5+ C /O ldy (5) 3 <ds. (5.7)

The constant C is independent of t and h, but depends on the final time T and on the
regularization parameter .

We note that the error functions e, (-, 1), ex (-, 1) € S,(x*(r))> with nodal vectors
ey (1) and ex(¢), respectively, are then bounded by

lew s Ol g1,y < CR and lex G Dl gm0y < Ch*, €0, T].

Proof The proof uses energy estimates for the error equations (5.4) in the matrix—
vector formulation, and it relies on the results of Sect. 4. In the course of this proof ¢
and C will be generic constants that take on different values on different occurrences.

In view of condition (4.3) for y = x*(¢), we will need to control the W' > norm
of the position error e, (-, t). Let 0 < t* < T be the maximal time such that

IV, o ex (> Dl Lo oy < h“ D2 for 1 [0, 1%]. (5.8)

At t = t* either this inequality becomes an equality, or else we have t* = T.

We will first prove the stated error bounds for 0 < ¢ < ¢*. Then the proof will be
finished by showing that in fact #* coincides with 7.

By testing the first equation in (5.4) with ey, and dropping the omnipresent argument
t € [0, t*], we obtain:

eyl = e K(x*)ey = —e! (K(x) — K(x*))v*
—el (Kx) — K(x"))ey
+el (g(x) — g(x*)) — el M(x*)dy.
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We separately estimate the four terms on the right-hand side in an appropriate way,
with Lemmas 4.1-4.4 as our main tools.

(i) We denote, for0 < 6 < 1, by eg and v;;’g the finite element functions in Sy, ([ ,f)3
for th = I, (x* 4 Oey) with nodal vectors ey and v*, respectively. Lemma 4.1 then
gives us

el (K(x) — K(x")v*

ffre Vi - vh9d6+a/ /r9 1oy - (Dpoed)Vipovp? do.

Using the Cauchy—Schwarz inequality, we estimate the integral with the product of
the L> — L? — L norms of the three factors. We thus have

1
T o * * 0 L0 *,0
€y (K(X) K ))V = /0 ”91;”142(1“}?) ”va ex”LZ(FhG) ”Uh ”LO“(F}?) de
! 0 0 0
*,
e [ Vel IPr gy Vg ooy 90
1
0 0 *,0
= C/O ||ev||1-11(rh9) ”ex”]-]l([‘hﬁ) ”vh ||W1,oc(1—~h€) de.
By (5.8) and Lemma 4.3, this is bounded by

el (Kx) — K&*)V* < cllewll g1, o0 llex o 105 oo, )

where the last factor is bounded independently of /. By the Young inequality, we thus
obtain

ey (KO — K&V < gllewlfi o + Cllexl o

2 2
= tllevlikue) + Cllexllg -

(ii) Similarly, estimating the three factors in the integrals by L?> — L® — L2, we
obtain

ey (Kx) — K(x")ey < cllevlla g, oo IV - exllzoecr, oo
2
+ca ”VF;, €y ||L2(I"h(x*)) ”DF], €x ”LOO(I_';,(X*))

< ch“"D2 eyl xe)-
where in the last inequality we used the bound (5.8).

(iii) In the following bound we use Lemma 4.5. Again with the finite element
function eg = Z?’:l(ev)jq&j [x* + Oex] on the surface Fhe = I, (x* + Oey), for 0 <
6 < 1, we write
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1
d
T * 1 0 6
e g(x)—g(x):/ gvpl-e —/ gvro-e =f —f gvre - e, db.
v ) r) Iy v o n v o do Jre Iy v

Using the Leibniz formula, this becomes

ez(g(x) —g(x") = _/01 /;719 (ae.(g”r,? 'e?}) + (gvrhﬁ ~e§) (Vrle ~e2)> de.

Here we have, noting that age?, =0,
Bg(gvphg ) =gl vre +g dgvre - el
With Lemmas 4.3 and 4.5 we therefore obtain via the Cauchy—Schwarz inequality

/F" 39’(8‘)17? -e0) < 5 118l Nex 2 e lew 2 ey
h

2
+c5lIglie ||VFh(x*)€x||L2(1*h(x*)) “eU”LZ(Fh(X*))’

and again with Lemma 4.3,

[, (v -et) (750 2) = G gl Newliaqroon 1980 - exlizcron
h

In total, we obtain a bound of the same type as for the terms in (i) and (ii):
ey (80) — (") < cllexll i oo levll2em o)

1 2 2
= C”ex”K(X*) ||ev||M(x*) < g”eV”K(x*) + C”ex||K(x*)~

The combination of the estimates of the three terms (i)—(iii) with absorptions (for
sufficiently small 2 < hg), and a simple dual norm estimate, based on (5.5), for the
defect term, yield the bound

levllkoe < cllexlgee + cldyll g (5.9)

Using this estimate, together with taking the || - || K x+) norm of both sides of the second
equation in (5.4), we obtain

lexllkoer = llevligee) < cllexllioe + clldylls . (5.10)

d
In order to apply Gronwall’s inequality, we connect I ||exll%<(x*) and ||éX||%(<X*) as
follows:

| e

) 1 d
sl = e KOs + sef (3 Kx) Jex

N =
o

t

IA

léx Ik + cllexlli e
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where we use the Cauchy—Schwarz inequality and Lemma 4.6 in the estimate. Inserting
(5.10), we obtain

d 2 2 2
a ”eX”K(X*) = C||ex||K(X*) + C”dv”,,,x*-

| =

A Gronwall inequality then yields (5.6), using ¢;(0) = x;(0) — x? =0 for j =
1, ..., N. Inserting this estimate in (5.9), we can bound ey (¢) for 0 <t < t* by (5.7).

Now it only remains to show that t* = T for h sufficiently small. For 0 < r < t*
we use an inverse inequality and (5.6) to bound the left-hand side in (5.8):

IV anex GO lLem,aeon < ch IVnaemex G Ol a0
< ch™|lex(®) lkxryy < cCh ! < Lp=D/2

for sufficiently small 4. Hence, we can extend the bound (5.8) beyond ¢*, which
contradicts the maximality of #* unless we have already t* = T. U

6 Stability of coupling surface PDEs to surface motion

Now we turn to the stability bounds of the original problem (2.4)—(2.5), or in DAE
form (2.7), which is the formulation we will actually use for the stability analysis.

6.1 Error equations

Similarly as before, in order to derive stability estimates we consider the DAE system
when we insert the nodal values u*(z) € RV of the exact solution u(-, ¢), the nodal
values x*(r) € R3N of the exact positions X (-, ), and the nodal values v*(¢) € R3N
of the exact velocity v(-, ). Inserting them into (2.7) yields defects dy(r) € R" and
dy(t) € R3V: omitting the argument 7 in the notation, we have

% <M(x*)u*> + AU = £(x*, u*) + M(x*)d,,

Kx")v* = gx*, u*) + MPl(x*)dy, 6.1)

x* = v*,

where again M3 (x*) = I3 @ M(x*). As no confusion can arise, we write again M(x*)
for M3 (x*).

We denote the PDE error by e, = u—u*, and as in the previous section, ey = v—v*
and ex = x — x* denote the velocity error and surface error, respectively. Subtracting
(6.1) from (2.7), we obtain the following error equation:

% (M(x*)eu) + AKX ey = — % ((M(x) _ M(x*))u*>

- % ((M(x) - M(x*))eu)
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(A(x) — A(x*))u*
(Ax) — A(X"))eq
+ (f(x, w) — £(x*, u¥)) — M(x")dy,
K(x*)ey = —(K(x) — K(X*))V* - (K(x) - K(X*))ev
+ (g(x, w) — g(x*, u")) — M(x")dy,
é = ey. (6.2)

6.2 Stability estimate

‘We now formulate the stability result for the errors ey, ey and ex of the surface motion
coupled to the surface PDE. Here, we use the norms (4.1)—(4.2) and those of Sect. 5.3.

Proposition 6.1 Assume that the following bounds hold for the defects, for some
Kk > 1:

Idu@ =y < ch®, lldy@)llx) < ch®, fort €[0,T].

Then there exists hg > 0 such that the following stability estimate holds for all h < hy
and0 <t <T:

t t
lea(®) I3eee) + /0 lew() 113 ey ds + lex (D)1 ) + /0 lley ()l ) ds
! 2 2
=€ | (Il + Iy )ds. (6.3)

The constant C is independent of t and h, but depends on the final time T and on the
regularization parameter o.

We note that the error functions e, (-, 1) € S,(x*(¢)) and e,(-, 1), ex(-, 1) €
Sp(x*(1))3 with nodal vectors ey (r) and ey (1), ex (1), respectively, are then bounded
by

t 1/2
||€u(', t)”Lz([‘h(x*(z))) + <‘/(; ”eu(', t)”%_]l(rh(x*(t))) dS> =< ChK,

' 12
(,/() ”ev(', t)”ill(n,(x*(t))ﬁdS) E Chkv (64)

llex (-, t)||H1(1_'h(X*(t)))3 <Ch*, te€[0,T].

Proof The proof is an extension of the proof of Proposition 5.1, again based on the
matrix—vector formulation and the auxiliary results of Sect. 4. We handle the surface
PDE and the surface equations separately: we first estimate the errors of the PDE,
while those for the surface equation are based on Sect. 5. Finally we will combine the
results to obtain the stability estimates for the coupled problem.
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In the course of this proof ¢ and C will be generic constants that take on different

values on different occurrences.
Let 0 < #* < T be the maximal time such that the following inequalities hold:

pE=D/2

\% *(1))€x (5 [ o * = ’
IV, ex GOl o)) = for 1 e [0, ). (6.5)

llew (-, Ol Lo,y < 1,

Note that t* > 0 since initially both e, (-, 0) = 0 and ¢, (-, 0) = 0.

We first prove the stated error bounds for 0 < ¢ < r*. At the end, the proof will be
finished by showing that in fact #* coincides with 7.

Testing the first two equations of (6.2) with e, and ey, and dropping the omnipresent
argument ¢ € [0, t*], we obtain:

el %(M(x*)eu> +elA(x")ey = —e! % ((M(x) M(x*))u*)
d
—ej (M) — Mx))es )
—el (A(x) — A(x"))u*
—el (AX) — A(x"))ey
+el (F(x, w) — £(x*, u*)) — el M(x*)dy,
leylik o) = —er (K(x) — K(x*))v*— el (K(x) — K(x*))ey
+el (g(x, ) — g(x*, u*)) — el M(x")d,.

o

»
I
o

<

(A) Estimates for the surface PDE: We estimate the terms separately, with Lem-
mas 4.1-4.3 as our main tools.
(i) The symmetry of M(x*) and a simple calculation yield

e < (eMixen) + el (5 M6 e
d
dt

- (M0e) S
2 1 M
lealige + 5eb (5 MO Jeu.

Q-'Q_

| =N =

where the last term is bounded by Lemma 4.6 as

d

T *
_M
It (x")ey

u

< ¢ lleullpgeer)-
(i1) By the definition of the A-norm we have
el A(x")eq = [leull} xe)-
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(iii) With the product rule we write
T d * *
e o (M)~ Mex))u”)

= el (M(x) — M(x"))i* + elf( % (M(x) — M(x*)))u*. (6.6)

With th (t) = Iy[x*(t) + Bex(r)] and with the finite element functions efj(-, 1),
uZ’9(~, t) € Sp(x*(t) + Oex(t)) with nodal vectors ey(t), u*(¢), resp., Lemma 4.1
(with x*(¢) in the role of y) yields for the first term, omitting again the argument ¢,

1
b M) = 1 [ e (Vg -2) a0
h

Using the Cauchy—Schwarz inequality we obtain

o *,0

1
T . 0 6
€y (M(X) - M(X*))ll* = /0 ”eu ||L2(Fh9) ||VF;,9 " Ex ”LZ(F;?) ||8huh ”LOO(FJIG) do.

Under condition (6.5) we obtain from Lemmas 4.2 and 4.3 that for 0 < ¢ < r*,

o %,0

ey (M(x) = M) | < e llegll 2o, 1€l gm0y 13705 oo o) -

Now, the last factor is bounded by

because of the assumed smoothness of the exact solution # and hence of its material
derivative 9°u (-, t), whose values at the nodes are the entries of the vector u*(z). Hence
we obtain, on recalling the definitions of the discrete norms,

o *,0
opuy,

e =l =

—el (M(x) — M(x*))i* < Cllealma lexlke)-

Using Lemma 4.1 together with the Leibniz formula, the last term in (6.6) becomes
r(d 1 0 0 6
* * . *,
el ( = (M) — M(x )))u - /0 /F,f 0o (Vr,f : ex> ¥ do

1
+ f f ez (Vre ~e§> uzﬁ (VF" ~vz> de,
0 I—vhé) h h

where vZ is the velocity of 1",19 (as a function of t), which is the finite element function
in Sp (x* + Oey) with nodal vector X* + 0éx = v* + Oey. Thus,

vl = v’ 66, 6.7)
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where v;';’e and ¢! are the finite element functions on Y with nodal vectors v* and
ey, respectively. In the first integral we further use, cf. [14, Lemma 2.6],

T
o (Vrf -eﬁ) = VF}? i (<I3 — ! (vz) )Vr,fvz) : Vrheez,

where : symbolizes the Euclidean inner product of the vectorization of two matrices.
Here we note that o ef is the finite element function on 7 ,f with nodal vector éx = ey,
so that dre? = ef.

We then estimate, using the Cauchy—Schwarz inequality in the first step, Lem-
mas 4.2 and 4.3 in the second step (using (6.5) to ensure the smallness condition in
these lemmas), the definition of the discrete norms in the third step, and using the first
bound of (6.5) and the boundedness of the discrete gradient of the interpolated exact

velocity Vr, (x+ vy, and of the interpolated exact solution uj; in the fourth step,

1
/ /Qez o (vrﬁ -eﬁ) ' de‘
o Jry i

1
0 0
< V .
_/o /phe leullzary) (” ry - eollz(ry)

*,0 0
VR on ey - IV rpecliiay)

HIV el 2y - IV o€ ey Yyl ) 46

= ¢ lleull 2y (19 o€l 20,000
HIVran vy llee ey - IVoanex 2o, o)
HIVr, el 2, ”VF;,(X*)ex”L"O(Fh(x*)))||MZ||L°°(I'},(X*))

<c ”eu”M(x*)(”ev”A(x*) + IV, v L o) llexllace)
+||ev||A(x*)||th(x*)ex||L°°(1‘h(x*))>||“*||oo

< clleullmer (llevllxere) + Cllesliee) + lexlicxni®~/2)C

= C'lleallmi (llev ) + Nl )-

With the same arguments we estimate, on inserting (6.7),

1
f / ez (Vr" 'eg) uZ’e (Vpe . vfl) d@'
0 rhg h h

1
0 0 *,0 *,0
S[o /pe ewllzaqry 1V - exlliaqrpy Nen ™l () W - v ey 99
h

1
6 0 ,0 (7]
+f0 /p leullza(rey WV rg - €cllio(rpy e ™ eoe(riy 1V - uliz(r) 46
h
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< ¢ lleullmes llex ke I ooV i, ) - Vil Lo (x))
+clleallmas) 1V aexllLoe o) 1 oo lley K x)

< C lleullvioe (ev ik + lexlicess )
Altogether we obtain the bound
d
—ef = (M09 = M)u") = Clleullvice (llevlkex) + llesli)-

(iv) We obtain similarly

—el g ((M(x) - M(x*))eu>

U dt

1.,,d 1d
- _Ee,f(a (M(x) — M(x*)))eu -3 (e,{ (M(x) — M(x*))eu)
< ¢ lleullvigen)(llev i + llexllicee ) leull ooqryeny

1 d

S (el{ (M(x) — M(x*))eu>

< Clleullmes) (llev ke + lexlka) —

23 (el (M)~ Mx ey,

where we used the second bound of (6.5) in the last inequality.
(v) Lemma 4.1, the Cauchy—Schwarz inequality and Lemma 4.3 yield

1
.0
—el (A(x) — A(X"))u* = —/0 /r9 Vroey - (Dpoed)Vpouy” do
h

< clleallac) llexllacs) 1V, o0y Lo, o)
< Cllegllax) llexllke)-

(vi) Similarly we estimate

—el (A(x) — A(x"))ey < C”eu”i(x*) | D, xsyex oo x))

< Ch* D lenl1 xo)-

where we used the first bound of (6.5).
(vii) The coupling term is estimated similarly to (iii) in the proof of Proposition 5.1:

T 1 0
e, (F(x. ) — f(x*,u") = /.r,l f (”h, Vi) “h) e, = /Fhﬂf (u;;, VrhOuZ) €y
With
N
u) =3+ 0ew) ) ¢jIx* + Oex] = u” + 0cf 6.8)
j=1
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we therefore have
I'd
eg(f(x, u) — f(x*, u)) =/ @/ f (uz, VFHMZ) e? do
0 ry !

and with the Leibniz formula (noting that e? is the velocity of the surface Fhe considered
as a function of 0), we rewrite this as

eg (f(x, u) — f(x*, u*))
1
:/ / (Bgf (uz, Vpgufl) 4 f (uz, Vpgufl) el (VF9 'ef;))d@.
0 I—vhe h h h
Here we use the chain rule
B f (uz, Vr]?uz) =0 f (uz, Vrheug) Bguz +of (uz, VF,?“Z) agvrhguz

and observe the following: by the assumed smoothness of f and the exact solution u,
and by the bound (6.5) for e, (and hence for eg by Lemmas 4.2 and 4.3), we have on
recalling (6.8)

6 0 .
0 f (uf Vrpuf) HLOO(O?) <c, i=12

‘We note

0
u

g uz =e
and the relation, see [14, Lemma 2.6],

T
. 0 _ o 0 6 8 6 (T 0 0
08V o) = V 0y — Vel Vpouf) +vf) (vf) (Vrheex> Vo

We then have, on inserting (6.8) and using once again Lemmas 4.2 and 4.3 and the
bound (6.5),

el (f(x,u) — f(x*, u")) = /(;l /1“9 ez(alf (uz, Vrheuf,) el
h
+ 02 f (), V o) (Ve = Vel Vo) + v () (vrhee;f)T Vo) )do
< clleullz2¢rm, x#y) (”eu”Lz(l‘h(x*))
HIVr s eull r2cm, ) + VR ex L2, an) 1V o)yl o)
IV, exlloen, o) IIVMx*))eu||L2(n,<x*>))
< ClleullM(x*)(IleullM(x*) + lleullax) + llexllax) + ||eu||A(x*))

< Clleullme (lleallvoe) + lleallacey + lexlixer )
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Combined, the above estimates yield the following inequality:

2 ewlyey + leul ey < C llealgceey + Cllealvioes (levliory + lexlices)
7 dt M(x*) A(x*) = M(x*) (x (x*) (x*)
+ ClleullM lleviikxe) + clleulivxn) llex Ik x+)
1d/p
+ Clleullvie lev k) = 5 30 (€ (M09 = M(x"))eu)

pk=1/2

+ Clleullaxs llex gz + C ||eu||i(x*)

+ Clleulveer) (leulvexs) + leullaee) + lex ko))
+ Clleullax*) 1 dullxx+-
Estimating further, using Young’s inequality and absorptions into ||eu||i(x*) (using

h < ho for a sufficiently small /), we obtain the following estimate, where we can
choose p > 0 small at the expense of enlarging the constant in front of e, ||12v1(x*):

1d 2 Lo 2 2 2
7 dt ||eu||M(X*) + ) ||eu||A(X*) = C”eu”M(X*) + C”ex”K(X*) + p”ev”K(x*)
1d
% (eg (M(x) — M(x*))eu> +clldyl? .

(6.9)
(B) Estimates in the surface equation: Based on Sect. 5, we obtain
lev ik < cllexligee + ler (80 w) — g(x*, u))| + clldy |1} -

where the coupling term can be estimated based on (iii) in the proof of Proposition 5.1
and (vii) above:

el (g(x, u) — g(x*, u"))| < llevlimar) (lleullmas) + lleullac + lexliken))-
We then obtain
levllkoery < C(llexllieer + lleullypger + leulliqes + vl ). (6.10)
As in Sect. 5, this provides the estimate

1d

5 30 sl = Clliexllien) + leullRuee + el + Idvl1Z5)- (6.11)

(C) Combination: We first insert (6.10) into (6.9), where we can choose p > 0 so
small that Cp < 1/2 for the constant C in (6.10). Then we take a linear combination
of (6.9) and (6.11) to obtain, for a sufficiently small o > 0,

d 2 1 2 d 2
a ||eu||M(x*) + E”e“”A(x*) +o & ||ex||K(x*)
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d
< clleulRacer) + cllexlie + 5 (e (M09 = M(x"))eu )

+lldull? o + clldy 3 -
We integrate both sides over [0, ¢], for 0 < ¢ < r*, to get
1 t
2 2 2
||eu(t)||M(X*) + Efo ||eu(5)||A(x*)dS + U”ex(t)”[((x*)
< llew (0)II2 012 ' 2 2 \g
< [leu( )”M(x*) + llex( )”K(x*) +c ||eu(s)||M(X*) + ||ex(5)||K(X*) s
0

t
—eu(d) (M) — M(x"))eu(0) + ¢ /0 (laa) 12 + 1y ()1 )ds.

The middle term can be further bounded using Lemmas 4.1-4.3 and an L> — L>® — L2
estimate, as

1
eu(t)T(M(x)—M(x*))eu(t):f / el (Vo -el)el do
o Jry h

IA

cllew® g 1 Vo« €xllo (o)
Ch*™ D2 lew(®) I3

IA

where we used the first bound from (6.5) in the last inequality.
Absorbing this to the left-hand side and using Gronwall’s inequality yields the
stability estimate

t
lew ) By, + /0 a1 + llex ()1

t
<c / (18u) 12 + 1y (). )ds. 6.12)
0

Inserting this bound in (6.10), squaring and integrating from O to 7 yields

t t
[0 lev) e ds < ¢ /0 (ldu ()12 + 1y ()1 - ) ds.
With the assumed bounds of the defects, we obtain O (i%) error estimates for 0 < ¢ <
t*. Finally, to show that t* = T, we use the same argument as at the end of the proof
of Proposition 5.1. O

Remark 6.1 1If the coupling function g = g(u) in (2.2) does not depend on the tan-

gential gradient of u, then the term ||eu||i(x*) does not appear in the bound (6.10).
Therefore, inserting the estimate (6.12) into (6.10) then yields a pointwise stability
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estimate for ey: uniformly for0 <t < T,
2 2 ! 2 2
llev(®llg s = Clldv(OIy = + C/O (Ildu(S)II*,X* + IIdv(S)II*,X*)dS-

7 Geometric estimates

In this section we give further notations and some technical lemmas from [20] that
will be used later on. Most of the results are high-order and time-dependent extensions
of geometric approximation estimates shown in [7,8,10,13].

7.1 The interpolating surface

We return to the setting of Sect. 2, where X (-, t) defines a smooth surface I'(t) =
I'(X (-, t)). For an admissible triangulation of I"(¢) with nodes xjf(t) = X(pj,t) and
the corresponding nodal vector x*(r) = (x; (1)), we define the interpolating surface
by

N
Xi(pn 1) = Y x5 (0) ;[xOpn), pi € T},
j=1

which has the properties that X (p;, t) = x;.‘(t) =X(pj,t)yforj=1,...,N,and
Iy () = Th(x*(1) = T'(X;(, ).
In the following we drop the argument ¢ when it is not essential. The velocity of the

interpolating surface /", defined as in Sect. 2.3, is denoted by v}.

7.2 Approximation results

The lift of a function nj, : I')(t) — R is again denoted by 172 :I'(t) — R, defined via
the oriented distance function d between I h* (t) and I'(¢) provided that the surfaces
are sufficiently close (which is the case if 4 is sufficiently small).

Lemma 7.1 (Equivalence of norms [8, Lemma 3], [7]) Let ny : I'})(t) — R with lift
nil : I'(t) — R. Then the L? and WP norms on the discrete and continuous surfaces
are equivalent for 1 < p < oo, uniformly in the mesh size h < hg (with sufficiently
small hg > 0) andint € [0, T].

In particular, there is a constant ¢ such that for 4 < hgand0 <t < T,

—1 I
¢ ||7}h||L2(1‘h*(t)) = ||7Ih||L2(1‘(,)) = C||77h||L2(1*}f(z)),

Ml ey < Ml arey < elmlla e
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Later on the following estimates will be used. They have been shown in [20], based
on [7,13].

Lemma 7.2 Let I'(t) and I (t) be as above in Sect. 1.1. Then, for h < ho with a
sufficiently small hg > 0, we have the following estimates for the distance function d
from (2.8), and for the error in the normal vector:

k+1
dl oo (ryrey) < ch e — V}h*(,)IILOC(F(r)) < ch*,

with constants independent of h < hg andt € [0, T].

7.3 Bilinear forms and their estimates

‘We use surface-dependent bilinear forms defined similarly as in [13]: Let X be a given
surface with velocity v, with interpolation surface X}’ with velocity vy . For arbitrary
z, ¢ € H'(I'(X)) and for their discrete analogs Zj,, ¢y, € Sp(x*):

m(X; z,go):/ 20, m(XZ§Zh,¢h)=/ Zpn,
) r(x;)
a(X; z,go)z/ Vrz-Vro, a(XZ;Zh,qﬁh):/ V1, Zn - Vr,0n,
rx r(x;p)
q(X; v;z,go)=/ (Vr - v)zg, q(X;,‘;v;f;Zh,qﬁh):/ (Vi - v7) Zndn.
rx) rx;)

where the discrete tangential gradients are understood in a piecewise sense. For more
details see [13, Lemma 2.1] (and the references in the proof), or [12, Lemma 5.2].

We start by defining a discrete velocity on the smooth surface, denoted by y,.
We follow Section 5.3 of [20], where the high-order ESFEM generalization of the
discrete velocity on I"(X) from Sections 4.3 and 5.3 of [13] is discussed. Using the
lifted elements, I"(X) is decomposed into curved elements whose Lagrange points
move with the velocity 0y, defined by

d
0 ( (X5) .01 = o (X0) G

Discrete material derivatives on 1" (X ;:) and I"(X) are given by

3% on = don + vy, - Vou,
h *
, (on € Sp(x")).

33 ¢ = gy, + 00 Ve,

In [13, Lemma 4.1] it was shown that the transport property of the basis functions
carries over to the lifted basis functions ¢ ;[x*]:

l
aghqs,[x*]’:(a;z@[x*]) —0, (j=1,....N).
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Therefore, the above discrete material derivatives and the lift operator satisfy, for
on € Su(X}),

!
o | °
32 ¢ = (avz<ph) . (7.1

Lemma 7.3 (Transport properties [13, Lemma 4.2]) For any z(t),¢(t) € H !
("X, 1)),

d
5 "Xz @) =m(X;9°2,¢) +m (X;:2,0%) +q(X; vz, 0).

The same formulas hold when I' (X) is considered as the lift of the discrete surface
I'(X}) (i.e. I'(X) can be decomposed into curved elements which are lifts of the
elements of I' (X})), moving with the velocity Oy,:

d L]
5 "Xz 0) = m(X; 95, 2, 9) + m(X: 2, 05, ¢) +q(X: 03 2, ).

Similarly, in the discrete case, for arbitrary zj,(t), ¢p(t), BJZ zu(t), 3;}*%0) e S

(x*(1)) we have:

d
am(X;‘,; Zh,Qn) =m (XZ; 032, <ph) +m (XZ; s 8;2«@,) +q (X35 vis zn o)

where v} is the velocity of the surface I" (X}).

The following estimates, proved in Lemma 5.6 of [20], will play a crucial role in
the defect bounds later on.

Lemma 7.4 (Geometric perturbation errors) Forany Zy, ¥, € Sp(X*) where I' (X})
is the interpolation surface of piecewise polynomial degree k, we have the following
bounds, for h < hgy with a sufficiently small hy > 0,

o (X Zh 0}) = m (X35 Zao )| = BTN ZR D o oo 104 2
la (X: 24 6} ) = a (X Zuoon)| = BTNV 24 2oy 1V b 2o
‘C] <X§ Op; Zi,, (P£,> —dq (Xh, Uh, Zh, ¢h ‘ = ch* ! ||Zh||L2(F(X))||¢h ||L2(F(X))

The constant c is independent of h and t € [0, T].

7.4 Interpolation error estimates for evolving surface finite element functions

For any u € H**!(I'(X)), there is a unique piecewise polynomial surface finite
element interpolation of degree k in the nodes x”.‘ denoted by Inu € Sp(x*). We set

Ihu = (Ih u)! : I'(X) — R. Error estimates for thls interpolation are obtained from
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[7, Proposition 2.7] by carefully studying the time dependence of the constants, cf.
[20].

Lemma 7.5 There exists a constant ¢ > 0 independent of h < hg, with a sufficiently
small hg > 0, and t such that for u(-,t) € Hk+1(1"(t)),f0r0 <t=<T,

lu = Inull 2oy + BIVE @ = T |2 ixyy < hE Tl g ) -

The same result holds for vector valued functions. As it will always be clear from
the context we do not distinguish between interpolations for scalar and vector valued
functions.

8 Defect bounds

In this section we show that the assumed defect estimates of Propositions 5.1 and 6.1
are indeed fulfilled.

The interpolations satisfy the discrete problem (2.4)—(2.5) only up to some defects.
These defects are denoted by d,, € Sy (x*), d, € Sp,(x*)?, withx*(¢) the vector of exact
nodal values x}‘.‘ (t) = X(pj,t) € I'(t), and are given as follows: for all ¢, € S;,(x*)

with 9%, = 0 and ¥, € S (x*)3,
h

d ~ ~
/ dyon = — Thu @y +/ Vi, Intt - Ve @n
[ (x*) dt Jp, ) [ (x)

—/ f(;;zu,vfh(x*);;zu) @hs
I (x*)

/ dy - Yy = / T -y +Ot/ vl}l(x*)INhU Ve Vh
I (x*) I (x*) I (x*)

—/ 8 (I~hu VFh(X*)INhM) v, x*) - Yh-

Iy (x*)

Later on the vectors of nodal values of the defects d,, and d, are denoted by d,, € RN
and dy € R3V, respectively. These vectors satisfy (6.1).

Lemma 8.1 Let the solution u, the surface X and its velocity v be all sufficiently
smooth. Then there exists a constant ¢ > 0 such that for all h < hg, with a sufficiently
small hg > 0, and for all t € [0, T], the defects d,, and d, of the kth-degree finite
element interpolation are bounded as

k
”du”*,x* = ”d”"H,:l(F(X;;)) =< ch s

”dV”*,X* = “dv”H;TI(F(XZ)) =< Chks

where the H, U norm is defined in (5.5). The constant c is independent of h and
te[0,T].
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Proof (i) We start from an identity for the dual norm as in (5.5), (omitting the argument
x* of the matrices):

1
Idullaxe = (4 MM + A)7'Mdu ) = dull 1)

In order to estimate the defect in u, we subtract (2.3) from the above equation, and
perform almost the same proof as in [13, Section 7]. We use the bilinear forms and
the discrete versions of the transport properties from Lemma 7.3. We obtain, for any
on € Sp(x*) with 3;;:(,0}, =0,

m (X} du, i) = %m (X5: Thu. 1) + a (X5: Tne. on)
—m (X5 f (Inw, Vi, Tnu) , on)

= m (X 03 Tow, o) + @ (X35 vis Tows @n) + @ (XG5s T, )
—m (X5 f (Taw, Vi, Thu) , on)

and

d
0= o (X;u,<p,ll> +a(X;u,g0;l) —m(X; f(u,Vp(x)u),<p,l1>

=m (X; 33 u, (pi) +q (X; O u, wi,) +a (X; u, g0£l> —-m (X; f(u, Vrxou), wi) .

Subtracting the two equation yields

m (Xp; du, on) =m (XZ? 8;;l<l~hu, ¢h> —m (X; 93, u, @2)
+q (X5 vy Et“vﬁl’h) —q (X; U uwpi)
+a (XZ, Thu, goh) —a (X; u, (p§l>

- (m (X35 f (Tnu, Vi, Inut) , gn) — m (X; f @, Vru), 902) )

We bound all the terms pairwise, by using the interpolation estimates of Lemma 7.5 and
the estimates for the geometric perturbation errors of the bilinear forms of Lemma 7.4.
For the first pair, using that (8;* L) = th I, u, we obtain

h

|m (XZ; 8;Zf;1u, (ph) —m (X; 85hu, wi) | < |m (XZ; BJZE,M, (ph) —m (X; 85}, Thu, (pfl) |
| (X 1493, — 03,0, ) |

K+l 1
< " ey ll2rx)-
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For the second pair we obtain

lg (X5 vi: T, 1) — q (X; On; u,rpﬁ,) | < |q (X5 vfs Tou, 1) — ¢ (X; On: Inu, wﬁ,) |
+|q (X vjs Tnu — u, ¢n) |

k+1 1
< ch*t el 2crxy)-

The third pair is estimated by

a (35 T ) = a (5.0 ) | = [ (5 T ) = a (3 o)
< IVrehll 2 x-

For the last pair we use the fact that ( f (u, Vpu))_l = f(u_l, (Vru)_l) and the local
Lipschitz continuity of the function f, to obtain

o (X f Goat, Vi, T, @n) = m (X f G, Vo) |
*, T T -1 -1
<|m (Xh, f (Inu, V5, Iyu) — f (u » (Vru) )JPh) |
+|m (XZ; fu, Vi)™, <ph) —m (X; f(u, Vru), <p;ﬂ) |
< el f (Tau, Vr, Inu) — f (M_l, (VFM)_I> ||L2(r(x;;))||€0;,||L2(F(X))
+ el Mgyl 2 rxy)-

The first term is estimated, using the local Lipschitz continuity of f and equivalence
of norms, by

I (T, Vi Tawe) = f @™ (Ve ™) 2 rxy)
S ”f”W]oo (C”Ihl/l — M”LZ([‘(X)) + C”VF(I]’IM - M)HLZ(F(X))

+ell (V™) — VF"‘”LZ(F(X)))’

where the first two terms are bounded by O (h*) using interpolation estimates, while
the third term is bounded, using Remark 4.1 in [13] and Lemma 7.2, as

< ch*.

!
H (Vrhuil) —Vru
L2(I' (X))

Thus for the fourth pair we obtained
|m (XZ§ f (Eu, VFhEzu) ) ‘Ph) —m (X; fu,Vru), QO;,) | = Chk”‘ﬁ;l ||L2(F(X))-
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Altogether, we have

m (Xjis du on) < B gl

which, by the equivalence of norms given by Lemma 7.1, shows the first bound of the
stated lemma.

(i1) In order to estimate the defect in v, similarly as previously we subtract (2.3)
from the above equation and use the bilinear forms to obtain

m (Xiszdy ) = m (X Tooovn) = m (X: 0,94
+oz(a (X Tnv, ) —a <X§ v, ‘/’;i))

m (Xi: 8T, Vi, Tuowr . i) —m (X: G, Viwwren, )

Similarly as in the previous part, these three pairs are bounded pairwise. For the first
pair we have

‘m (X7: Tnv., yn) — m (X; v, 1//;’[). < ‘m(XZ; Tyv, yn) —m (X; Ihvﬂ/ff1>
+ ‘m (X; Ihv—v,w,[l)‘

K1yl
< Y2 oxy)-

For the second pair we use the interpolation estimate to bound

‘a(XZ; Ty, ) —a (X; v, 1//2)’ < ‘a (X5 Thv, ) —a (X; Ihv, 1//2)
+ ‘a(X; Ihv—v,w,l,)’

< o |vru|

L2(r (X))

The third pair we estimate, similarly to the nonlinear pair above, by

‘m (XZ; g (Tnu, Vi, Tyu) vrx), 1ﬂh) -m (X; & . Vru) vrex), M’)‘
= (3 (s G ) = £ 6 970" e )|
+ (X 8 @ Vo™ (v = Vit ) - V)|
+ | (X5 8 6 Ym0~ vt vn) = m (X5 8 G Vrw v )
< eh¥ gl IVl 20 o0y + €IV X = XD e2qroo) 1Al 2ron)
el gl 2 gl 2 )

< chfligllwreo 1V 2oy + B 1WA 2 0 o

< Chk”%l, lz2(rxy)s
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where we have used the local Lipschitz boundedness of the function g, the interpolation
estimate, Lemmas 7.2 and 7.4, through a similar argument as above for the semilinear
term with f.

Finally, the combination of these bounds yields

m (X5 dv. ¥n) < ch 131 ooy

providing the asserted bound on dy. g

9 Proof of Theorem 3.1

The errors are decomposed using interpolations and the definition of lifts from
Sect. 2.6: omitting the argument ¢,

uﬁ —u = (ﬁh — 1~hu)l + (Ihu — u),
v,f —v = (ﬁh — I~hv)l + (Ihv — v),

XE—X = (X - 1X) + (I, X - X).

The last terms in these formulas can be bounded in the H'(I") norm by Ch¥, using
the interpolation bounds of Lemma 7.5.

To bound the first terms on the right-hand sides, we first use the defect bounds of
Lemma 8.1, which then together with the stability estimate of Proposition 6.1 proves
the result, since by the norm equivalences of Lemma 7.1 and Eqgs. (4.1)—(4.2) we have
(again omitting the argument 7)

o~ ~ N\l ~ ~
|(Mh - IhM) ||L2(r) < cllup — Ih”||L2(1"h*) = c|leullmx*),

o~ >~ A\l ~ >
|V1“(14h - Ihu) ||L2(F) = C||vrh* (“h - Ihu)”LZ(rh*) = c|leullax®),

and similarly for v, — Tyvand X), — I, X.

10 Extension to other velocity laws

In this section we consider the extension of our results to different velocity laws:
adding a mean curvature term to the regularized velocity law considered so far, and
a dynamic velocity law. We concentrate on the velocity laws without coupling to the
surface PDE, since the coupling can be dealt with in the same way as previously. We
only consider the stability of the evolving surface finite element discretization, since
bounds for the consistency error are obtained by the same arguments as before.
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10.1 Regularized mean curvature flow

We next extend our results to the case where the velocity law contains a mean curvature
term:

v—aArxv —BArxX =g, Hvrx), (10.1)

where g : R3xR — Risa given Lipschitz continuous function of (x, t),and @ > 0 and
B > 0 are fixed parameters. Here A (x)X is a suggestive notation for —H v, where
H denotes the mean curvature of the surface I'(X). (More precisely, Ar(x)id =

—Hvrx) ).
The corresponding differential-algebraic system reads

KX)V +AX)X = g(x), (10.2)

where K(x) is again defined by (2.6) and where we now write A(x) for the matrix
Bz @ A(x) with A(x) of Sect. 2.5.
Similarly as before the corresponding error equation is given as

Kx"ey + A(x™)ex = —(K(x) — K(x*))v* - (K(x) - K(x*))eV
— (A®) — AEH)x* — (A(x) — A(x¥))ex
+ (g(x) — g(x*)) — M(x")dy

together with éx = ey.

Proposition 10.1 Under the assumptions of Proposition 5.1, there exists hg > 0 such
that the following stability estimate holds for all h < ho, forQ <t <T:

t
”ex(t)”%((x*(t)) = C/o 1y (s)II3 - ds,

t
lev g ey < ClAV@17 4 + C / ldy ()13 - ds.
0

The constant C is independent of t and h, but depends on the final time T, and on the
parameters o and f.

Proof We detail only those parts of the proof of Proposition 5.1 where the mean
curvature term introduces differences, otherwise exactly the same proof applies.
In order to prove the stability estimate we again test with ey, and obtain

levlike = —ef (Kx) — Kx)v* — el (Kx) — K(x"))ey
- eVT (A(x) — A(x*))x* — ez (A(x) — A(x*))eX — eVTA(x*)eX
+el (g(x) — g(x*)) — el M(x*)dy.
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Every term is estimated exactly as previously in the proof of Proposition 5.1, except
the terms corresponding to the mean curvature term, involving the stiffness matrix A.
They are estimated by the same techniques as previously:

A

1
el (A(x) — A(X"))x* + €] (A(X) — A(x¥))ex < gnevn%qx*) + cllexllk )

1
—llevllk ey + cllexlkoe)-

e‘{A(x*)eX g

IA

Altogether we obtain the error bound
2 2 2
||ev||K(x*) = c”ex”K(x*) + C”dV”*,x*,

which is exactly (5.9). The proof is then completed as before. U

With Proposition 10.1 and the appropriate defect bounds, Theorem 3.1 extends
directly to the system with mean curvature term in the regularized velocity law.

10.2 A dynamic velocity law

Let us consider the dynamic velocity law, again without coupling to a surface PDE:
0°v + vWrx) v —alArxv =g, 1) vrx),

where again g:R> x R — R is a given Lipschitz continuous function of (x, ¢), and
a > 0 1is a fixed parameter. This problem is considered together with the ordinary
differential equations (2.1) for the positions X determining the surface I"(X). Initial
values are specified for X and v.

The weak formulation and the semidiscrete problem can be obtained by a similar
argument as for the PDE on the surface in Sect, 6. Therefore we immediately present
the ODE formulation of the semidiscretization. As in Sect. 2.5, the nodal vectors
v € R3N of the finite element function vy, together with the surface nodal vector
x € R3V satisfy a system of ODEs with matrices and driving term as in Sect. 5:

4 (M(x)v) +AX)V =g(Kx, 1),

dt (10.3)

X=V.

By using the same notations for the exact positions x*(¢) € RV, for the interpolated
exact velocity v*(t) € R3N | and for the defect dy(¢), we obtain that they fulfill the
following equation

d
< (M(x*)v*> F AKXV = g(x*, 1) + M(x)dy,

x* = v*.
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By subtracting this from (10.3), and using similar arguments as before, we obtain the
error equations for the surface nodes and velocity:

% <M(x*)ev) +A(X ey = —% ((M(x) - M(X*))V*)

d
- 4 (M09 - Mx))ey)

—(Ax) — AEH)V*

— (Ax) — A(xM)ey

+(8(x) — g(x")) — M(x")dy
€y = ey.

We then have the following stability result.

Proposition 10.2 Under the assumptions of Proposition 5.1, there exists hg > 0 such
that the following error estimate holds for all h < hg, uniformly for) <t <T:

t t
lex ) 1Ry + eV gy + /0 ley ()13 e (sy) 45 <C Oudv(s)u%,x* ds.

The constant C > 0 is independent of t and h, but depends on the final time T and
the parameter «.

Proof By testing the error equation with ey, we obtain

el % (M(x*)ev) + el Ax*)ey = —e! % ((M(x) — M(x*))v*)
—e! % (M~ ME)ey)
—el (A(x) — AX"))v*
—el (A(x) — A(x"))ey
+ey (800 — g(x") — ey M(x")dy.
The terms are bounded in the same way as the corresponding terms in the proofs of

Propositions 5.1 and 6.1. With these estimates, a Gronwall inequality yields the result.
O

With Proposition 10.2 and the appropriate defect bounds, Theorem 3.1 extends
directly to the parabolic surface PDE coupled with the dynamic velocity law.

11 Numerical results

In this section we complement Theorem 3.1 by showing the numerical behaviour of
piecewise linear finite elements, which are not covered by Theorem 3.1, but never-
theless perform remarkably well. Moreover, we compare our regularized velocity law
with regularization by mean curvature flow.
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11.1 A coupled problem

Our test problem is a combination of (2.2) with a mean curvature term as in (10.1):

°u+uVr-v—Aru = f(t,x),

(11.1)
v—aArv—BArX = dSuvr+g(t,x)vr,

for non-negative parameters «, 8, §. The velocity law here is a special case of (2.2)
for B = 0, and reduces to (10.1) for § = 0. The matrix—vector form reads

%(M(x(r))u(t)) +A(x())u@t) =£(r,x(1)), t€[0,T],
K (x(1))%(1) + BA(x(1))x(1) = SN(x(1))u(r) + g(t, x(1)), 1 € [0, T],

for given x(0) and u(0), where

N(X)ul3(j—1)4+¢ = / (Wh),zu,/% [x],

I (x)
forj=1,...,Nand?¢ =1,2,3.
In our numerical experiments we used a linearly implicit Euler discretization of

this system with step sizes chosen so small that the error is dominated by the spatial
discretization error.

Example 11.1 We consider (11.1) and choose f and g such that X(p,t) = r(t)p
with

rorxg
rxe Kk 4 ro(1 — e~k

r(t) =

and u(X, 1) = X1 X2e % are the exact solution of the problem. The parameters are
settobe T =1,a=1,=0,6=04,ro=1,rk =2and k =0.5.

We choose (7) as a series of meshes such that 2h; =~ hy_1.In Table 1 we report on
the errors and the corresponding experimental orders of convergence (EOC). Using
the notation of Sect. 2.6, the following norms are used:

llerry || oo 2y = sup @n (-, 1) — Tpu(-, f)||L2(rh*(t)),
[0,7]

T
||erru||Lz(H|) = (/
0

lerry |l oo g1y = sup [Vn (-, 1) = Inv(-, f)||H1(rh*(,)),
[0,7]

1

~ 2 2
ﬁh(-,s)—lhu(-,s>H ds> :

HY(T(s)

||errx||Loc(Hl) = [%u]?]”’.x\h( L t) — id[‘h*(t)”Hl(Fh*(t)).
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Table 1 Errors and EOCs for Example 11.1

Level DOF h(T) llerrull oo 7.2 EOC lerrull 241y EOC
(a) Errors for u

1 126 0.6664 0.1519165 - 0.2727214 -

2 516 0.4088 0.0896624 1.08 0.1498895 1.22
3 2070 0.1799 0.0222349 1.70 0.0344362 1.79
4 8208 0.0988 0.0070552 1.91 0.0109074 1.92
5 32,682 0.0499 0.0018319 1.98 0.0029375 1.92
Level DOF h(T) ||errv\|Loo(H1) EOC HerrxllLoo(I_ﬂ) EOC

(b) Surface and velocity errors

1 126 0.6664 0.2260428 - 0.1473157 -

2 516 0.4088 0.0595755 2.73 0.0298673 3.27
3 2070 0.1799 0.0158342 1.61 0.0106836 1.25
4 8208 0.0988 0.0053584 1.81 0.0042312 1.54
5 32,682 0.0499 0.0019341 1.50 0.0017838 1.27

The EOC:s for the errors E(hi—1) and E (hy) with mesh sizes hx_1, hj are given via

E(hi_1)
tog ()
EOC(hg—1, i) =

h B 9
log (Z_kl)

The degree of freedoms (DOF) and maximum mesh size at time 7" are also reported
in the tables.

In Table 1 we report on the errors and EOCs observed using Example 11.1. The
EOC:s in the PDE are expected to be 2 for the L°°(L2) norm and 1 for the L2(H )
norm, while the errors in the surface and in the surface velocity are expected to be 1
in the L>°(H") norm.

k=2,...,n).

Example 11.2 Again we consider (11.1), but this time we quantitatively compare the
two different regularized velocity laws. Hence, we let § vanish. We use a g like in
Example 11.1 and run two tests with the common parameters 7T = 2,rg = 1, rx =2
and k = 0.5, and use the same mesh and time step levels as before. The first test uses
a = 0and B = 1 and the second test uses « = 1 and 8 = 0. The results are captured
in Table 2. Our regularized velocity law provides smaller errors as regularizing with
mean curvature flow. The EOCs in the errors in the surface and in the errors for the
surface velocity are expected to be 1 in L*°(H 1y, and L (HY), norm, see Table 2b.
While it can be observed that for this particular example the convergence rates for
a # 0 are higher then for 8 # 0.
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Table 2 Errors and EOCs for Example 11.2

Level  DOF h(T) L%, EoCc L*@HY), EoCc L%®@HY, EOC

(a) Surface and velocity errors with parameters « = 0 and f = 1

1 126 0.6664  0.756045 - 131532 - 1.601255 -

2 516 04088  0.393067 134 0.78538 1.06 0.522342 2.29
3 2070  0.1799  0.095914 172 0.96206 2025 0.137396 1.63
4 8208  0.0988  0.035166 1.67 1.48784 2073 0.044666 1.87
5 32,682 0.0499  0.019755 0.85 273584 -0.89  0.013507 175
Level  DOF h(T) L%, EoC L*@#HY, EoC L*°@HYH, EOC

(b) Surface and velocity errors with parameters « = 1 and f = 0

1 126 0.6664 0.149836 - 0.225114 - 0.143419 -

2 516 0.4088 0.036118 291 0.058147 2.77 0.024087 3.65
3 2070 0.1799 0.009286 1.65 0.015843 1.58 0.009702 1.11
4 8208 0.0988 0.002705 2.06 0.005361 1.81 0.003990 1.48
5 32,682 0.0499 0.000686 2.01 0.001935 1.49 0.001746 1.21

11.2 A model for tumor growth

Our next test problem is the coupled system of equations

0°u+uVp-v—Aru = fi(u, w),
0°w+wVp-v—D.Arw = fo(u, w), (11.2)
v—aArv—BArX = éuvr,

where

filu,w) =y@—u+u*w), frlu,w)=yb—u’w),

with non-negative parameters D., v, a, b, «, f5.

For o« = 0 this system has been used as a simplified model for tumor growth; see
Barreiraetal. [1] and [6,16]. These authors used the mean curvature term with a small
parameter S > 0 to regularize their velocity law.

We used piecewise linear finite elements and the same time discretization scheme
asin[1,16].

Example 11.3 We consider (11.2) and want to compare qualitatively the two different
regularized velocity laws & # 0 and 8 # 0. As common parameters we use D, = 10,
y =100,a = 0.1, b = 0.9 and T = 5. The initial surface is a sphere and the initial
values up and wy are calculated by solving an auxiliary surface PDE as follows. We
take small perturbations around the steady state

<ﬁo) _ <a+b+81(x)>
wo #—F&(x) ’
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Fig. 1 Simulation for Example 11.3. The first column corresponds to (o, 8) = (0, 0.01) and the second
column to (&, B) = (0.01,0). a Time t = 0, b time r = 1] and ¢ time t = 2

where €1 (x), e2(x) € [0, 0.01] take random values. We solve the auxiliary coupled
diffusion equations with the stationary initial surface until time T = 5. We set ug =
#(T) and wg = w(T), which we used as initial values for (11.2).

We perform two experiments with (¢, 8) = (0,0.01) and (¢, 8) = (0.01,0).
We present snapshots in Fig. 1. We observe that both velocity laws display the same
qualitative behavior, also agreeing with [16].
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Linearly implicit full discretization of
surface evolution

Balazs Kovacs - Christian Lubich
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1 Introduction

In this paper we study full discretizations of geometric evolution equations us-
ing the evolving surface finite element method (ESFEM) for space discretiza-
tion and linearly implicit backward differentiation formulae (BDF) for time
discretization. We consider the situation where the velocity v(z,t) of a point
x on an evolving two-dimensional closed surface I'(t) C R? at time ¢ is de-
termined by one of the following velocity laws, for which finite element semi-
discretization in space was studied in [KLLP17]:
(1) Regularized mean curvature flow: for x € I'(¢),

v(z,t) — aAppyv(z,t) = =BHpw (@) vpe (o) + g(z,t) vp@ (), (1.1)

where Apy is the Laplace-Beltrami operator on the surface I'(t), Hp( is
mean curvature, v is the outer normal, g is a smooth real-valued function,
and « > 0 and > 0 are fixed parameters. This velocity law can be viewed as
an elliptically regularized mean curvature flow with an additional driving term
in the direction of the normal vector. In [KLLP17] this elliptic regularization
allowed us to give a complete stability and convergence analysis of the ESFEM
semi-discretization, for finite elements of polynomial degree at least two. In
contrast, for pure mean curvature flow (that is, & = 0), no convergence results
appear to be known for ESFEM on two-dimensional closed surfaces.
(ii) A dynamic velocity law: for x € I'(t),

0*v(x,t) +v(x,t) V) - vz, t) — alpgyv(a, t) = glx,t) vpg (),  (1.2)

where 9®v denotes the material time derivative of v and V - v denotes the
surface divergence of v;

(iii) The case where the velocity law (i) or (ii) is coupled to diffusion on
the evolving surface, as in [KLLP17].

We note that in all these cases, the considered velocity v is in general not
normal to the surface, but contains tangential components.

The rigorous study of the stability and convergence properties of full dis-
cretizations obtained by combining the ESFEM with various time discretiza-
tions for problems on evolving surfaces was begun in the papers [DE12] (im-
plicit Euler method), [DLM12] (implicit Runge-Kutta methods) and [LMV13]
(BDF methods). These papers studied a linear parabolic equation on a given
moving closed surface I'(t). Convergence of full discretizations of that problem
using higher-order evolving surface finite elements is studied in [Kov17]. Con-
vergence properties of full discretizations for quasi- and semilinear parabolic
equations on prescribed moving surfaces are studied in [KP16]. For curves in-
stead of two-dimensional surfaces, convergence of full discretizations of curve-
shortening flow coupled to diffusion is studied by Barrett, Deckelnick & Styles
[BDS17).

The main difficulty in proving the convergence of the full discretization of
the surface-evolution equation in (i)—(iii) is the proof of stability in the sense
of bounding errors in terms of defects in the discrete equations. The proof
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requires some auxiliary results from [KLLP17], which relate different finite el-
ement surfaces. For (1.1), the stability proof just uses the zero-stability of the
BDF methods up to order 6. For (1.2), it is based on energy estimates that
become available for BDF methods up to order 5 by the multiplier technique of
Nevanlinna and Odeh [NO81], which in turn is based on the G-stability theory
of Dahlquist [Dah78]. These techniques were originally developed for stiff or-
dinary differential equations and have recently been used for linear parabolic
equations on given moving surfaces in [LMV13] and for various quasilinear
parabolic problems in [AL15,ALL17,KP16].

The paper is organized as follows.

In Section 2 we describe the problem and the numerical methods. We
recall the basics of the evolving surface finite element method and give its
matrix—vector formulation, and we formulate the linearly implicit BDF time
discretization.

In Section 3 we present the main result for (1.1), which gives optimal-
order convergence estimates for the full discretization by ESFEM of polynomial
degree at least 2 and linearly implicit BDF methods up to order 6. This result
is proven in Sections 4 to 7.

Section 4 contains auxiliary results for the stability analysis of the dis-
cretized velocity law (1.1). We collect results from [KLLP17] that relate dif-
ferent finite element surfaces to one another. We also include a new auxiliary
result for the linearly implicit BDF time discretization.

Section 5 contains the stability analysis, which works with the matrix—
vector formulation of the discrete equations. Like the proof of stability of the
ESFEM spatial semi-discretization in [KLLP17], it does not use geometric
arguments.

Section 6 gives estimates for the consistency errors, that is, for the defects
on inserting the interpolated exact solution into the discrete equations.

Section 7 proves the convergence result for the full discretization of (1.1)
by combining the results of the previous sections.

In Section 8 we extend the convergence analysis to the full discretization
of the dynamic velocity law (1.2). This is done for BDF methods up to order 5
using energy estimates based on the Nevanlinna-Odeh multiplier technique.

In Section 9 we extend the convergence result for the full discretization to
the case where the velocity law (1.1) or (1.2) is coupled to diffusion on the
evolving surface, as studied in [KLLP17] for the semi-discretization. The result
is obtained by combining the techniques of [KLLP17] and [LMV13] with those
of Sections 4 to 7 of the present paper.

Section 10 presents numerical experiments using quadratic ESFEM that
illustrate the numerical behaviour of the proposed full discretization.

We use the notational convention to denote vectors in R? by italic letters,
but to denote finite element nodal vectors in R3" by boldface lowercase letters
and finite element mass and stiffness matrices by boldface capitals. All boldface
symbols in this paper will thus be related to the matrix—vector formulation of
the ESFEM.
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2 Problem formulation and ESFEM / BDF full discretization

We use the same setting as in our previous work [KLLP17]. We recall basic
notions, but refer to Section 2 of [KLLP17] for a more detailed description.

2.1 Basic notions and notation

We consider the evolving two-dimensional closed surface I'(t) C R? as the
image

I(t)={X(q,t) : €I}

of a regular vector-valued function X : I'® x [0,7] — R3, where I'? is the
smooth closed initial surface, and X (g,0) = ¢. To indicate the dependence of
the surface on X, we write

I'(t)y=I(X(-,t)), orbriefly I'(X)

when the time ¢ is clear from the context. The position X(g,-) is related to
the wvelocity v(x,t) € R3 at the point z = X(q,t) € I'(t) via the ordinary
differential equation

9 X(q,t) = v(X(q,1),1). (2.1)

For € I'(t) and 0 < t < T, we denote by vp(x)(z) the outer normal, by
Vrx)yu(z,t) the tangential gradient of a real-valued function u on I'(t), and
by Ap(xyu(z,t) the Laplace-Beltrami operator applied to u.

2.2 Weak formulation of the surface-evolution equation

The space discretization is based on the weak formulation of the surface-
evolution equation (1.1), which reads as follows: Find v(-, ) € Whe(I'(X(-,1)))3
such that for all test functions ¥(-,¢) € H*(I'(X(-,1)))3,

/ v+ V[‘(X)U'V[‘(X)¢
I(X) I(X) (2.2)

+ 5 V)X - Ve :/ gvr(x) - ¥,
r(X) Ir(x)

alongside with the ordinary differential equation (2.1) for the positions X
determining the surface I'(X). (More precisely, the term V p(x)X should read
Vrooidrx-)

We assume throughout this paper that the problem (1.1) or (2.2) admits a
unique solution with sufficiently high Sobolev regularity on the time interval
[0,T7] for the given initial data X (-,0). We assume further that the flow map
X(-,t) : Iy — I'(t) C R® is non-degenerate for 0 < t < T, so that I'(t) is a
regular surface.
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2.3 Evolving surface finite elements

From Section 2.3 of [KLLP17] we recall the description of the surface finite ele-
ment discretization of our problem, which is based on [Dzi88] and [Dem09]. We
use simplicial elements and continuous piecewise polynomial basis functions
of degree k, as defined in [Dem09, Section 2.5].

We triangulate the given smooth surface I'° by an admissible family of
triangulations 7, of decreasing maximal element diameter h; see [DE07] for
the notion of an admissible triangulation, which includes quasi-uniformity and
shape regularity. For a momentarily fixed h, we denote by x° = (z9,...,2%,)
the vector in R3N that collects all N nodes of the triangulation. By piecewise
polynomial interpolation of degree k, the nodal vector defines an approximate
surface I') that interpolates 1" in the nodes m?. We will evolve the jth node

0

in time, denoted z;(t) with z;(0) = =, and collect the nodes at time ¢ in a

column vector in R3N,
x(t) € R3N.

We just write x for x(¢) when the dependence on ¢ is not important.

By piecewise polynomial interpolation on the plane reference triangle that
corresponds to every curved triangle of the triangulation, the nodal vector x
defines a closed surface denoted by I,[x]. We can then define finite element
basis functions

¢;[x] : In[x] = R, j=1,...,N,

which have the property that on every triangle their pullback to the reference
triangle is polynomial of degree k, and which satisfy

¢j[x](zk) =0j, forall jk=1,...,N.
These functions span the finite element space on I}, [x],

Sp[x] = Sh(In[x]) = span{zﬁl[x],qbz[x}, .. .,quN[x]}.

For a finite element function uj, € Sy[x] the tangential gradient Vp, xus is
defined piecewise on each element. We set

N
Xn(gn,t) = D a;(1) ¢5[x(O0)](an),  an € I3,
j=1

which has the properties that X, (g;,t) = x;(t) for j = 1,..., N, that X} (qn,0) =
qp, for all ¢, € F}?, and
LLx(8) = D(Xa (1),
The discrete velocity vy (z,t) € R® at a point z = Xp,(qn,t) € I'(Xp(-,1)) is
given by
8tXh(qh, t) = vh(Xh(qha t), t).

In view of the transport property of the basis functions [DE07],

< (501 Xnan 1) =0,
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the discrete velocity equals, for z € I}, [x(t)],

N

on(w,t) =Y vi(t) g5 [x(D)] () with v;(t) = (D),

j=1

where the dot denotes the time derivative d/dt. Hence, the nodal vector of the
discrete velocity is v = x.

2.4 ESFEM spatial semi-discretization of the evolving-surface problem
The finite element spatial semi-discretization of the problem (2.2) reads as

follows: Find the unknown nodal vector x(t) € R3" and the unknown finite
element function vy, (-,t) € Sy,[x(¢)]® such that, for all 1 (-,t) € Sp[x(t)]3,

/ vh Y t+a | Virxn e Vi x ¥
I'n[x] I'n[x]

(2.3)
+B [ ViwgXn: Vo, x¥n = / 9Vr,ix] " Vhs
Iy [x] In[x]
and
0 X1 (qn,t) = v (Xn(qn, 1), 1), an € I} (2.4)

The initial values for the nodal vector x of the initial positions are taken as
the exact initial values at the nodes x? of the triangulation of the given initial

surface I'0:

z;(0) = a9, j=1,...,N.

2.5 Matrix—vector formulation

We define the surface-dependent mass matrix M(x) and stiffness matrix A (x)
on the surface determined by the nodal vector x (cf. [KLLP17, Section 2.5]):

e R
Thlx] Gk=1,...,N).
A= [ V- el

We further let (with the identity matrix I3 € R3*3)
MBl(x) = Lo M(x) and APl(x)=1I3® A(x),

and then define
K(x) = MPl(x) + a AP (x). (2.5)

When no confusion can arise, we write in the following M(x) for MEBl(x),
A(x) for ABN(x) and || - || g2y for || - [|zr(rys, ete.
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The right-hand side vector g(x,t) € R3V is given by

g0, )]+ n -1 :/ ]g(~,t) (Vruix) , 04[%]

Iy [x

forj=1,...,Nand {=1,2,3.
We then obtain from (2.3)—(2.4) the following system of ordinary differen-
tial equations (ODEs) for the nodal vectors x(t) € R3":

K(x)x + fA(x)x = g(x,1). (2.6)

2.6 Linearly implicit BDF time discretization

We apply a p-step linearly implicit backward difference formula (BDF) for
p < 6 as a time discretization to the ODE system (2.6). For a step size 7 > 0,
and with ¢, = n7 < T, we determine the approximation x™ to x(t,,) by the
fully discrete system of linear equations

KRV + BAG)X" = g(&" )

H
Mu
3
%
=
©
-’

3

=0

where the extrapolated position vector X" is defined by

P
X" = nyjxnflfj, n>p. (2.8)

The starting values x°,x',...,xP~! are assumed to be given. They can be

precomputed in a way as is usual with multistep methods: using lower-order
methods with smaller step sizes or using an implicit Runge-Kutta method.

The coefﬁcients are given by §(¢) = Z?:o 8;¢8 =30, %(1 —¢)¢ and
v(¢) = Z] 07i¢? = (1= (1—-¢)P)/¢. The classical BDF method is known to
be zero-stable for p < 6 and to have order p; see [HW96, Chapter V]. This
order is retained by the linearly implicit variant using the above coefficients
;5 cf. [AL15,ALL17].

We note that the method requires solving a linear system with the sym-
metric positive definite matrix %UK(;(") + BA(X™) in the nth time step.

From the vectors x” = (z7) and v = (v}}) we obtain position and velocity
approximations to X (-, ¢,) and v(-,t,) as

XM (qn) Zm ¢;[x(0)](qn) for g € p,
=t (2.9)

vp(x) = x"](z) for x € I,[x"].

H'Mz
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2.7 Lifts

Here we recapitulate [KLLP17, Section 2.6]. In the error analysis we need
to compare functions on three different surfaces: the eract surface I'(t) =
I'(X (1)), the discrete surface I',(t) = I',[x(t)], and the interpolated surface
I} (t) = I'h[x.(t)], where x,(t) is the nodal vector collecting the grid points
Z4j(t) = X(gj,t) on the exact surface. In the following definitions we omit
the argument ¢ in the notation.

For a finite element function wy, : I, — R™ (m = 1 or 3) on the discrete
surface, with nodal values w;, we denote by @y, : I — R the finite element
function on the interpolated surface that has the same nodal values:

N
B = > wiyx.)

Jj=1

The transition between the interpolated surface and the exact surface is done
by the lift operator, which was introduced for linear surface approximations in
[Dzi88]; see also [DE07,DE13]. Higher-order generalizations have been studied
in [Dem09]. The lift operator ! maps a function on the interpolated surface
I'y to a function on the exact surface I, provided that I} is sufficiently close
to I'.

The exact regular surface I'(X(+,t)) can be represented by a (sufficiently
smooth) signed distance function d : R3 x [0,T] — R, cf. [DE07, Section 2.1],
such that I'(X(-,t)) = {z € R® | d(z,t) = 0} C R® . Using this distance
function, the lift of a continuous function n,: Iy — R™ is defined as

M (y) =mn(x),  wely,

where for every x € I} the point y = y(z) € I' is uniquely defined via
y=x—v(y)d()

We denote the composed lift L from finite element functions on I} to
functions on I' via I} by

3 Statement of the main result: fully discrete error bound

We formulate the main result of this paper, which yields optimal-order error
bounds for the ESFEM / BDF full discretization of the surface-evolution equa-
tion (1.1), for finite elements of polynomial degree k > 2 and BDF methods
of order p < 6. We denote by I'(t,) = ['(X(-,t,)) the exact surface and by
I7 = I'(X}') = I'h[x"] the discrete surface at time t,. For the lifted position
function we introduce the notation

(:UZ)L(JU) = (XZZ)L(q) ely for == X(q,t,) € I'(tn).
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Theorem 3.1 Consider the ESFEM / BDF linearly implicit full discretiza-
tion (2.7) of the surface-evolution equation (1.1), using finite elements of poly-
nomial degree k > 2 and BDF methods of order p < 6. We assume quasi-
uniform admissible triangulations of the initial surface and initial values cho-
sen by finite element interpolation of the initial data for X. Suppose that the
problem admits an exact solution (X, v) that is sufficiently smooth (say, of class
C([0,T], H*+1)YnCPL([0,T]), W) ) on the time interval 0 < t < T, and that
the flow map X(-,t) : Iy — I'(t) C R® is non-degenerate for 0 < t < T,
so that I'(t) is a regular surface. Suppose further that the starting values are
sufficiently accurate:

I(X)E = X (i) roys < Co(hF +77), i=0,1,...,p—1.

Then, there exist hg > 0, 19 > 0 and co > 0 such that for all mesh widths
h < hg and step sizes T < Ty satisfying the mild stepsize restriction

(s S COh»
the following error bounds hold over the exact surface I'(t,) = I'(X(-,t,))
uniformly for 0 <t, =nt <T:
[@m)® = idr@) g (reys < C(RF +77),
JR)E = o)l ey < CORE +72).

The constant C' is independent of h and 7 and n with nt <T, but depends on
bounds of higher derivatives of the solution (X,v), and on the length T of the
time interval.

We note that the first error bound is equivalent to
X" = X (st roys < C'(h* +7P),

and we mention that the remarks after Theorem 3.1 in [KLLP17] (the con-
vergence theorem of the ESFEM semi-discretization) apply also to the fully
discretized situation considered here.

The proof of Theorem 3.1 is given in the course of the next four sections.

4 Preparation: Estimates relating different surfaces

In our previous work [KLLP17, Section 4] we have shown some auxiliary results
relating different finite element surfaces, which we recapitulate here.

The finite element matrices of Section 2.5 induce discrete versions of Sobolev
norms. For any w = (w;) € RV with corresponding finite element function

wp, = Z;V:1 w;¢;[x] € Sp[x] we note

[wllRae = W M)W = [[wn 721, p)» (4.1)
132(r ) (4.2)

[WlAg) =W AW = |V, pwn
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We use the following setting. Let x,y € R3Y be two nodal vectors defining
discrete surfaces I',[x] and I}, [y], respectively. We let e = (e;) = x—y € R3V.
For 6 € [0, 1], we consider the intermediate surface I'Y = I';[y + fe] and the
corresponding finite element functions given as

N

eh = eip;ly + be]

j=1
and in the same way, for any vectors w,z € RY,
N N
wh =Y wigily +0e] and 2 = zp;ly + Oe].
j=1 J=1
The following lemma collects results from [KLLP17, Section 4].
Lemma 4.1 (i) In the above setting the following identities hold:

W (M) =Mz = [ [ ul(Vyg-e)ef o,

1
WA - AWz = [ [ Vpoul D)V a0,
o Jrg " '
with Dr}fez = trace(E)I3 — (E + ET) for E = Vpﬁez € R3S,
(@) If |V o - gl oo rgy < wand | Dpgef || ooy < p for 0 <0 <1, then

IWllnacy-oe) < €2 [Wlinacy) and [|Wllagy-+oe) < e/ [Wlagy)-
(iii) If |V el Lo (ruy) < 3, then, for 0 < 6 < 1, the function wj, =
Z;.Vzl w;b;ly + 0e] on I'Y = Iy + 0e] is bounded by

HVFngHLP(F;j) < ¢ ||VF;3“}2||LP(F;3) for 1<p<oo,

where ¢, depends only on p (we have co = 2).

(iv) Let yj, € I be defined as yf = Y00, (y;+0¢;)8;[y](an) for gn € Tuly].
If Hvrh[y]e?lHLoc(Fh ) < %, then the corresponding unit normal vectors differ
by no more than

lvro (uh) = vro ()] < COIV roed (i),
where C' is independent of h and of qn, € Ih[y]-
The following result is shown in Lemma 4.1 of [DLM12].

Lemma 4.2 Let I'(t) = I'(X(-,t)), t € [0,T], be a smoothly evolving family
of smooth closed surfaces, and let the vector x,(t) € R3N collect the nodes
x}(t) = X(gj,t). Then, for 0 < s,t <T and for all w,z € RY,
wh (M(x.(1)) = M(x.(5)))z < O(t = 8)[Wllmee. o) |12l v 09
W (A(x. (1) — A(xu(5)))z < Ot = 8)[Wllagx. oIzl acx. o)
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and the norms for different times are uniformly equivalent for 0 < s,t <T':

WM. ) < CllWliMe.(s)), WA @) < ClWllac.(s)-
The constant C depends only on a bound of the W1> norm of the surface
velocity.

We also need a result which compares the finite element surfaces with exact
and extrapolated nodes.

Lemma 4.3 Let I'(t) = I'(X(-,t)), t € [0,T], be a smoothly evolving family
of smooth closed surfaces. We denote the nodal vectors of exact solution values
by X% = x,(t,) and of the extrapolated values by X = Z?;g v;x2 7 9. Then,
the following estimates hold for all w,z € RN :

w(M(XY) = M(x)))z < O7” || wllneen)
Wl (AR — A(xD)z < O77 | wl|aer)

ZHM(xf)v

2l A
where C' is independent of h, T and n with 0 < nt <T.
Proof For the extrapolated value X(q,t) = Z?;S v X(q,t — (j + 1)7), we

use the error formula with Peano kernel representation, see e.g. [Gau97, Sec-
tion 3.2.6],

X(q.t) — X(q.t) =77 /0p Kkp(N) AP X (g, t — A7) dA (4.3)

with a bounded Peano kernel x,. We note that we have

Tl — ;= X(gj,tn) — X(gj,tn)-

Since X is assumed smooth, we obtain from the above error formula that for
0 < 6 < 1, the finite element function &’ in Sj,(I'Y) with the nodal vector
X" —xn, for I'Y = I, [x?+0(X? —x7)], has a gradient bounded in the maximum
norm by ¢7P, where c is independent of 7 and h. So we have the bound

0
IV o) - €57 oo (rep)) < e

Together with Lemma 4.1 and an L? — L™ — L? estimate, we thus obtain

1
W (MG - Mz = [ w9
h

IN

1
0 ,0 0
1819 By 280

IN

e || o 120 2o

IN

e |wllvexr) 12l v -
The second estimate is proved in the same way. O

The above lemma immediately implies the following norm equivalence, for
sufficiently small step size 7,

3wl ey < Wl < 51w lE o) (4.4)
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5 Stability
We denote by
x.(t) = (2. () € RN with a, ;(t) = X(q;,1), (j=1,...,N)

the nodal vector of the ezact positions on the surface I'(X (-, ¢)). This defines
a discrete surface I, [x.(t)] that interpolates the exact surface I'(X (-, 1)).
We consider the interpolated exact velocity

Vs, h( Zv* () [x.(1)] with v, ;(t) = 2. ;(t),

j=1

with the corresponding nodal vector
vi(t) = (vsj(t)) = %.(t) € R?N,

We write

XL = Xu(tn), Vi =vVi(tn).

The errors of the numerical solution values x™ and v" are marked with their
respective subscript, hence are denoted by

no__ n n n n n
v =V —V .

5.1 Error equations

The nodal vectors of the exact solution satisfy the equations of the linearly
implicit BDF method only up to defects di, and d7 that, for n > p, are defined
by the equations

Kxo)vi+ 5A(~") Y= g(Xtn) + M(x))dy

725x”17v +dy. (5.1)
We subtract (5.1) from (2.7) to obtain the error equations
K(x})ey+ BA(~") X
- (K (~" —K(x))ey — (KE") —K(&))vr
_ ,3( A(x*))e B(A(x ) — A(x*))x* (5.2)

+ g( ) n) - g(X TL) M( *)dca

1< .
- E djer ) = ey —dy.
j=0
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5.2 Stability bound

We recall that the matrix K(x.) defines a norm which is equivalent to the
H! norm on I',[x.]. The defect dy € R3" will be measured in the dual norm
defined by

]2, = d"M(x.)K(x.)"'M(x.)d,

*, X s
which is such that for the finite element function dj € Sj[x*]® with nodal
vector d we have, from [LMV13, Proof of Theorem 5.1] or [KLLP17, Formula

(5.5)];
th, [x*] dh . wh

e
ognesnix? [ Unllm ()2

ld

(5.3)

)X Hdhr”H,TI(Fh[X*]) =

In these norms we have the following stability result.

Proposition 5.1 Suppose that the defects of the p-step linearly implicit BDF
method are bounded as follows, with a sufficiently small ¥ > 0 (that is inde-
pendent of h and 7 and n): forn > p withnt < T,

ld¥llkxry < 9h  and  ||dY|laxx <Oh  for kT <T. (5.4)
Further, assume that the initial values are chosen such that
lekllkxey <Oh  and  [lef |kt S VR for k=0,....,p—1.  (5.5)

Then, the following error bounds hold, for n > p such that nt < T,

n p—1
lelliry < CT ) (%l ey + 117 0 ) +C D llekllixe s
* (x3) X (x%)

=0

Jj=p
n ) ] p—1 ]
leslery < O D (12 ) + 19512 ) + QLI p +C D ekl
Jj=p i=0

(5.6)
where C' is independent of h, T and n with nt < T, but depends on T.

In Section 6 we will show that the defects obtained on inserting the exact
solution values into the BDF scheme satisfy the bounds

Iz ko) < CRF+77),  (lde e < C(R* +77).
Hence, condition (5.4) is satisfied under the mild stepsize restriction
™ < coh (5.7)

for a sufficiently small ¢y that is independent of h and 7. We note that the
error functions e?, e € S,[x7]® with nodal vectors e and e?, respectively,

are then bounded by

er oy < C(hF 4 7P),
ezl ey < C( ) for nr < T.

)
llewllzr (rury < (h* +77),



14 B. Kovéacs and Ch. Lubich

Proof The proof is based on energy estimates for the matrix—vector formula-
tion of the error equations (5.2) and relies on the results of Section 4. In the
proof, ¢ will be a generic constant independent of A and 7 and n with n7 < T,
which assumes different values on different occurrences. For many estimates
we use similar techniques of proof as for the corresponding time-continuous re-
sults in [KLLP17]. However, to keep the paper fairly self-contained we include
some detailed arguments.

In view of the condition in (iii) of Lemma 4.1 for y = X! and x = X", we
need to control the W1 norm of the position error €?. Let us assume that
the error estimate (5.6) holds for p,...,n—1. Then, using an inverse inequality
and the norm equivalence (4.4) and the definition of € (cf. (2.8)), we obtain

IV g€ Lo (o) < ™IV, mei€n e (o)

< chHep k) < ch” ek k)
p
<MY eIk e
j=1

<ch t-edh < cv,

(5.8)

A

where the last but one estimate follows from (5.6) for the past, and the as-
sumption on small defects (5.4). For sufficiently small J, we are thus in the
position to use the bounds given in Lemma 4.1.

We estimate the two error equations (5.2) separately, and then combine
them to yield the final estimate.

(a) Estimates for the velocity law. By testing the first line of the error
equations (5.2) with e? we obtain

slevlioen) < el
— (e (KE") - K(XI) vl — (ef) (K(X") — K(X!))ey

— Bley)" (AX") — ARD)xY — Blel)" (AX") — A(XD))ex

v

+(e0) (8(X" tn) — 8(X),tn)) — Bley)TA(XD)ek — (e}) M (x))dy,

where the inequality follows from (4.4). To bound the right-hand side, we use
arguments of the proof of Proposition 10.1 (and that of Proposition 5.1) of
[KLLP17], using the results of Lemma 4.1.

(i) For 0 < 6 < 1, we denote F[f’e = I},[X? + 6€?], where € = X" — X' =
Z];;é ;e P+, We denote the finite element functions in S, (I7%)? with
n,0
v

e .0 . .
nodal vectors €7, €7 and v by e7% e™? and vy, respectively. The definition

(2.8) and Lemma 4.1 then give us

1
()" (K(x") - K&E))vi = / / e’ (Ve - Ep?)ol? d
oJry

h

1
+a / Vrno€y® - (Dpna@ )V pnovl? 6.
0

n,0 h
Fh,
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Using the Cauchy—Schwarz inequality, we estimate the integral with the prod-
uct of the L? — L? — L™ norms of the three factors. We thus have

() (K(&") — K(&2)v!
! 6 0 7
< [ sy 1y 102 ey 20
1
.0 2,0 .0
+Ck/(; ||VF:,.962 ”LZ(F:”H) HDF’?,eé'; ||L2(F,:f”9) ||VF:,,9’Uf ”L’C(F;’e)de

1
< e /0 1 gs s N gy 02y .
By (5.8) and Lemma 4.1, this is bounded by
()" (K(x") - K(x!)) v
< cllegllm e €2 mr ey 103 lwre ()

where the last factor is bounded independently of h and 7. By Young’s in-
equality, we thus obtain

/4
()" (KE") — K&V < gllenl g + CZ ler ™ 17 (oo
i=1

P
s llevlien) + CZ llex ™ I
=1

P

< srlleblieen + e ek e

j=1
where the last inequality follows from the norm equivalence (4.4).
(i) Similarly, estimating the three factors in the integrals by L? — L™ — L2
we obtain
(en)" (K(x") — K(x))ey < clleblZar, zep IV - €l iz
+ el Vel ez 1P €l e (e

< ek < 2rllevlien),

where we used the estimate (5.8) in the last but one inequality.

(iii)~(iv) The estimates involving the mean curvature term SA (in view of
(2.5)) can be shown analogously as (i) and (ii):

(e9)" (A(X") — ARD)x) + ()T (AR") — A(XD))ey

p
< Frlleb iy + el + CZ llex ™ I en)
=1

(e¥)"ARD)er < grllelllicper +clexlikpn)-
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(v) Similarly as in (i) we rewrite

(ee)T(g(invtn) - g(§:7tn)) = /

GV ey — g "von - en
rin h rom h

h

h
1
d n n,0
- @/pﬁb.ﬂ Ve @m0

We use the Leibniz formula and 93e%™ = 0 just as in (iii) of the proof of

[KLLP17, Proposition 5.1], to finally obtain

(e (8(xX" tn) — g8(X1.tn)) < cllepllrzcr,zo €0l (ru )
< cHeC’HKawIIEQIIi(;g)
P
< sqlled i en) + CZ llex ™ I geny-
j=1
(vi) The term with the defect is estimated as
(ev) " M(xI)dy = (ef) 'K (xI)/*K(x!) "/ *M(x])dy
< leSlikealldvlloxe < szllellien +cldvl? -
Finally, by combining all these estimates, using multiple absorptions, with
sufficiently small ¥} we finally obtain
p .
el il o) < clexlimn + e lex ke +cldilliae.  (5.9)
j=1

(b) Estimates for ODE. We rewrite the second equation of (5.2) as
1 <& ) —~n
- Z(Sn,jefc = e, —dy ,
j=p
with 6; = 0 for j > p and

152
=" .
de =di+ - > n-jel,
j=0
where we note that a\x" = d} for n > 2p. With the coefficients of the power

series -
/‘(C) = Z /lngn = %

n=0

we then have, for n > p,

n .
T
er=7> pnj(el —dy).
J=p
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By the zero-stability of the BDF method of order p < 6 (which states that all
zeros of §(¢) are outside the unit circle with the exception of the simple zero
at ¢ = 1), the coefficients p,, are bounded: |u,| < ¢ for all n.

Taking the K (x?) norm on both sides and recalling that by Lemma 4.2
all these norms are uniformly equivalent for 0 < n7 < T, we obtain with the
Cauchy—Schwarz inequality

n .
o~
% ey < em D lled = e 15
Jj=p

n n p_l
< er 3 el + e D Il + 3 ekl
j=p i=p =0

Combining this inequality with (5.9) and using a discrete Gronwall inequality
then yields the result. |

6 Consistency error

In this section we show that the consistency errors, that is, the defects defined
by (5.1) and obtained by inserting the interpolated exact solution into the
numerical method, are bounded in the required norms by C(h* + 7P) for the
finite element method of polynomial degree k£ and the p-step BDF method.

Let us first recall the formula for the defect of the spatial semi-discretization
dpo (-, 1) from Section 8 of [KLLP17], for vy, € Sh[x.(t)]®:

/ dp,w(5t) - n = / Tyv(-,t) - + 04/ Vi Inv (1) - Vi, n
T [x.(t) I [x.(1)]

] T [x.(8)]

+p Vi, InX (1) - Vi, tn — / 9 ) V. (1) Phs
Tr[xx (1)) Tr[xx (1))

which satisfies the following bounds.

Lemma 6.1 [KLLP17, Lemma 8.1] Let the surface X and its velocity v be
sufficiently smooth. Then there exists a constant ¢ > 0 (independent of t) such
that for all h < hy, with a sufficiently small hg > 0, and for all t € [0,T], the
defects dy, ., of the kth-degree finite element interpolation are bounded as

. k
||d}L,v( ’t)”H,jl(I‘(X;)) < ch”.
We will now bound the defect of the full discretization.

Lemma 6.2 Let the surface X and its velocity v be sufficiently smooth. Then
there exist hg > 0 and 19 > 0 such that for all h < hg and for all T < 19, the
consistency errors are bounded as

”d:i“*,XQ = ||d:f||H;1(F(X;(t"))) < C(TI7 + hk),
ldxllkxry = ldz |l xi ey < e7?,

where ¢ is independent of h, T and n with nt < T.



18 B. Kovéacs and Ch. Lubich

Proof For the defect in v, the corresponding finite element function d €
Sp[x7] with nodal values dy satisfies the following: for all finite element func-

tions 1, € Sp[x%] and the corresponding ¢, € Sp[X?] with the same nodal
values,

/ dy - = / Ty tn) - n + o Vi () - Vi
Iy Il

x7] %7 Inlxz]

+ 6 Vi DX (o tn) - Vi, tn — / 9t v xe) - Vns
I'n[x7] In[x7]
6.1)

where T,v(-,t,), [nX (-, t,) € Sp[X7]® denote the finite element interpolation
of v(-,t,) and X(-,t,), respectively, on I',[X}]. Let us first rewrite (6.1), by
subtracting the weak form of the problem (2.2). For the first term on the
right-hand side, by adding and subtracting, this yields

/ fhvc,tn)wh—/ o(rtn) - U
In[x7] (X (tn))

= / fhv(wtn)'wh*/ Lo ty) - ¥
Iy J Iy

x7] x7]
+ / Tuo(estn) - — / o(rtn) - 0.
Iy [x7] (X (tn))

Note that the last pair is simply a spatial defect, therefore repeating the same
process for all four terms, and using the spatial defect dp,,, from Section 8 of
[KLLP17], we obtain

/ dn -y = / Too(st) - — / Too(st) - n
Iy [x2] I [x7] Tn[x?]

‘ol Vi Inv(tn) - Vi s — a Vi Inv(tn) - Vi, dn

In[x7] I [x2]
+ VDo X (tn) - Vin — B VDo X (o tn) - Vi, tn
In[x7] In[x?]
*/ 95tV xn] - U +/ (- )V, e - Un
I'n[x7] Inlx?]

+/ dh,v(’ytn) '1/)h-
I

x7]

We estimate the defect d} pairwise, using similar tools as in part (a) of the
proof of Proposition 5.1 and recalling (5.3).
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For the first pair, we use the setting of Lemma 4.3, and then a Cauchy
Schwarz inequality and an L? — L? — L® estimate yield

‘/ Do ty) - tn — / Th(-t,) - wh‘
Iy [x7] Iy [x7]

_ ‘/O /Fw AT o T Yol 0|
h

1
0
/0 ||7/’hHL2(p:v9)||vpg~9 ||L2(F” 9)””1 h HLoo(F" 0ydd

0
ellf ooy 185l s oy

IN

IN

”*,’hHLm(r;jv")

IN

cllvonll Lz e €0 |z (0,
: (H’U*(ﬁn)HLw(n[xz]) + llvan (s tn) — v*(wtn)lle(m[ng)
CH%HL?(&[xn])||@7§HH1<F;L[X”] (14 ch®)|va (s t) llwroe (1, x21)

el ¥ = x2 lx(xe [x7])

IN AN IA

CTp||1/1hHL2(F;,,[xQ])v

where we used a W1 interpolation estimate from [Dem09, Proposition 2.7],
and the last inequality follows from (4.3).

The other three pairs are again estimated similarly as above, and we finally
obtain the bounds

’ vfhfhv(ﬁtn) . thwh_ VF’LELU(.7t'n) ' VI‘,ﬂ/)h‘
Th[x7] Donber]
< erlnllar(rxp)
‘ VI’;L[hX( tn) vV, ¥n— thth("t") ’ vp"wh‘
Fh[x" Iy [x7]
< erPlnlla(rxp))
‘ / g( fn v, xz] - U= / g(‘,tn)VFh[if] . wh‘
r,[x Iy [x7]
< erlnlla (rxp))-

Furthermore, as shown in Lemma 8.1 of [KLLP17], the spatial defect dj, , (-, t,,)
is bounded by

/ o) S R i e
Iy,

x!t]

Combining the above estimates, we obtain the bound [|[d%||,x» < ¢(7P + R*).
The defect in X is given by

12
=7 Z 8% (tn—j) — X (tn)
j=0
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and is solely due to temporal discretization. The bound ||dy ||k (xr) < e then
follows by Taylor expansion. |

7 Proof of Theorem 3.1

The errors are decomposed using interpolations and the definition of lifts from
Section 2.7. We denote by Iyv € Sp[x.] the finite element interpolation of v
on the interpolated surface I',[x,] and by I,v = (I,v)! its lift to the exact
surface I'(X). We write

W) = v(ta) = @ = Dol 1)) + (Tno(otn) — v(-t0)),s
(XY = X () = (X7 = DX (o tn)) + (InX (o tn) = X (1))

The last terms in these formulas can be bounded in the H'(I") norm by Ch*,
using the interpolation bounds of [Kov17].

To bound the first terms on the right-hand sides, we first use the defect
bounds of Lemma 6.2, which then, under the mild stepsize restriction, together
with the stability estimate of Proposition 5.1 proves the result, since by the
norm equivalences from Lemma 4.1 and equations (4.1)—(4.2) we have

IN

_ . .
(@5 = Ino (s t0)) L2y < cllOh = Inv( tn)ll L2 xo)

clleglimnys

A

o~ l o~
IVr (@ = Inv(tn)) 2y < ellVirg (0 = o ta)) e e

= CHecHA(xg),

and similarly for )?f: — th(~,tn).

8 A dynamic velocity law
8.1 Weak formulation and ESFEM / BDF full discretization

We now consider the dynamic velocity law (1.2), viz.,
O%v + UVF(X) SV = &Ap(x)’l) =S g(-,t) VP(X)s

where again g : R? x R — R is a given smooth function of (x,t), and a > 0
is a fixed parameter. This problem is considered together with the ordinary
differential equation (2.1) for the positions X determining the surface I'(X).
Initial values are specified for X and v.

The weak formulation of the dynamic velocity law (1.2) reads as follows:
Find v(-,t) € Whe(I'(X(-,t)))® such that for all test functions (-, t) €
HY(I'(X(-,t)))® with vanishing material derivative,

d
*/ v +a/ VF(X)U'VF<X)1/1=/ gvrx) - ¥, (8.1)
dt Jrx) rx) rx)
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together with the ordinary differential equation (2.1) for the positions X de-
termining the surface I'(X). The finite element space discretization is done
in the usual way. We forego the straightforward formulation and immediately
present the matrix—vector formulation of the semi-discretization. As in Sec-
tion 2.5, the nodal vectors v(t) € R3YN of the finite element function vy (-, t),
together with the surface nodal vector x(t) € R3N satisfy a system of ordinary
differential equations with matrices and driving term as in Section 2.5:

4 (M(x)v) +AX)V = g(x,1),

dt (8.2)

X=V.

We apply a p-step linearly implicit BDF method to the above ODE system
with a step size 7 > 0: with ¢, = n7 < T and with the extrapolated nodal
vector X7 defined by (2.8), the new nodal vectors of velocity and position,
v™ and X", respectively, are determined from the following system of linear
equations:

1< ; :
_ Z 6]M()’E’L7])V"7J + A(i’n)v’ll/ — g(§7L7 t)

=
j=0

1< .
_ 6]x71,7] — VTL.
- >

j=0

As in Section 2, the nodal vector x™ defines the discrete surface I},[x"] =
I'(X}'), which is to approximate the exact surface I'(X), and we obtain the
position and velocity approximations (2.9).

(8.3)

8.2 Statement of the error bound

The following result is the analogue of Theorem 3.1 for the dynamic velocity
law. We use the same notation for the lifted approximations.

Theorem 8.1 Consider the ESFEM / BDF linearly implicit full discretiza-
tion (8.3) of the dynamic velocity equation (1.2), using finite elements of poly-
nomial degree k > 2 and BDF methods of order p < 5. We assume quasi-
uniform admissible triangulations of the initial surface and initial values cho-
sen by finite element interpolation of the initial data for X. Suppose that the
problem admits an exact solution X, v that is sufficiently smooth (say, of class
C([0,T], H*+1) n CP+1([0,T], W1>)) on the time interval 0 < t < T, and
that the flow map X (-,t) : [y — I'(t) C R® is non-degenerate for 0 <t < T,
so that I'(t) is a regular surface. Suppose further that the starting values are
sufficiently accurate: for i =0,...,p—1,

I(XI)Y = X i)l oy + 1 (Wh)" = v i) roys < Co(hF +77).

Then, there exist hg > 0, 79 > 0 and c¢g > 0 such that for all mesh widths
h < hg and step sizes T < T satisfying the mild stepsize restriction 7P < coh,
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the following error bounds hold over the exact surface I'(t,) = I'(X(-,t,))
uniformly for 0 <t, =nt <T:

(@) " = idpe) lm () < CRF +7P),
1/2
N = ot e + (z )" o 7tj>ugl<p<tj>)3)

< C(h" +77).

The constant C' is independent of h and T and n with nt < T, but depends on
bounds of higher derivatives of the solution (X,v), and on the length T of the
time interval.

8.3 Auxiliary results by Dahlquist and Nevanlinna & Odeh

While the formulations of Theorems 3.1 and 8.1 are very similar, the proofs
differ substantially in the stability analysis. In this subsection we recall two
important results that combined permit us to use energy estimates for BDF
methods up to order 5: the first result is from Dahlquist’s G-stability theory,
and the second one from the multiplier technique of Nevanlinna and Odeh.
These results have previously been used in the error analysis of BDF methods
for various parabolic problems in [AL15,ALL17,KP16,LMV13|.

Lemma 8.1 (Dahlquist [Dah78]) Let §(¢) = >-%_, 6;¢7 and pu(¢) = X2, p1;¢7
be polynomials of degree at most p (at least one of them of degree p) that have
no common divisor. Let ( -,- ) denote an inner product on RN . If

R®>O for €| <1,

w(¢)

then there exists a symmetric positive definite matrizc G = (g;;) € RP*? such
that for all wy,...,w, € RY

p » p P
<Z(siwp7i7zﬂiwp7i> 2 Z Gij (Wi, Wj) — Z 9ij (Wi—1, Wj_1).
i=0 i=0

4,j=1 4,j=1

In view of the following result, the choice u(¢) =1 — n¢ together with the
polynomial §(¢) of the BDF methods will play an important role later on.

Lemma 8.2 (Nevanhnna & Odeh [NOSI]) If p < 5, then there exists
0 <n <1 such that for §(¢) =>7_; (1 =),

3(¢)
1—n¢

The smallest possible values of n are found to be n = 0,0,0.0836,0.2878,0.8160
forp=1,...,5, respectively.

Re

>0, for |¢] < 1.
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8.4 Error equations

By using the same notations as in the previous sections for the nodal vectors
of the exact positions x7 € R3Y and of the exact velocity v? € R3V and for
their defects d}} and d¥, we obtain that they fulfil the following equations:

P
LS EME VI 4 ARDVE = g% 1) + M),
7=0
725 X = v 4l

By subtracting the above equations from (8.3), we obtain the error equations
for the surface nodes and velocity:

1& .
M(x)— >0y + A(x)el
7=0

= = D) = M) = 252, (M) - Mot
%Z (')~ M) (Vi + )
~ (AR ~ AGD)el  (AR") - ARD) (VI + o))

+g(x" ) g(Xi,tn) — M(x)dy

12
Tg djex? =ey —dy.
J=0

(8.4)

8.5 Stability

We then have the following stability result.

Proposition 8.1 Under the smallness assumptions of Proposition 5.1 for the

defects and the errors in the initial values, the following error bound holds for
BDF methods of order p <5 fornt <T':

n
e &) + €2 Baer) + 7D €212 s
Jj=p
n

<Oy (IlahliZ sy + 19212 ) + el 2 (8.5)
Jj=p
p—1

+ O3 (llekleer) + et Racesy )

=0
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The constant C' is independent of h, T and n, but depends on T'.

Proof We test the first error equation in (8.4) with e — ne” ! to obtain

P
n n— 1 T n J n—1\T ny.n __ n
(e —ney M — E —ney ) A(X* ey =r,

v
=0

\] —

where the right-hand term p” can be estimated by the same arguments as
in part (a) of the proof of Proposition 5.1. On the left-hand side we have a
term containing the stiffness matrix A (x%), which is estimated from below as
follows using Lemmas 4.2 and 4.3:

n
vllaea

(eb—ney )TA(xD)el > [levlapn —nllev™
2 Hecni(xg) —n(1+cr)ley” 1||A(x" 1)||ez||A(x:;)
> (1= 30— cr)llellfaces) — (31 +en)llef ™ R oy

The other term on the left-hand side, which contains the mass matrix M(x?),
is estimated from below using Lemmas 8.1 and 8.2. Let us introduce

E} = (ep™"™, .. el el)
and the norm
p . .
BL[E 0 = Y gi(ed 7)™ M(x! el P,
ij=1

which satisfies the norm equivalence relation

p P
Aumin D 1€ P Raeer) < TERExr < Amax D 1687 Rgeerys (8:6)

i=1 =1

where A\pin and Apax are the smallest and largest eigenvalue of the symmet-
ric positive definite matrix G = (g;;) of Lemma 8.1. Hence we obtain from
Lemmas 8.1 and 8.2

(ev —mey ™) M(x) 25 e > [EY[G s — B G
7=0
where we note that by Lemma 4.2,

B & < (L en) By 2

Gx}~ 1

so that altogether we have

[EL % — (1 +en) B2 1

+7(1 = 50— )¢l Ape) — (50 +en)levT IR o1y < T
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Using these inequalities from 1 to n yields for sufficiently small 7, with a
positive constant v,

n n
22 ey +97 D e T3 ) < eTIBYR o + 7 eIy,
j=0 j=0

Using this bound together with estimates for p/ and el obtained in the same
way as in the proof of Proposition 5.1 then yields the stated result. O

Together with bounds for the consistency errors d7 and d3, which are
proven in the same way as in Section 6, the stability bounds of Proposition 8.1
then yield the O(h* + 7P) error bounds of Theorem 8.1.

9 Coupling with diffusion on the surface

Let us now turn to the parabolic surface PDE coupled with the regularised
velocity law. We consider the following coupled problem of an evolving surface
driven by diffusion on the surface, for which the ESFEM semi-discretization
was studied in [KLLP17]:

0%u + UVF(X) CU— Ap(x)u = f(u, Vp(x)u),
v —alpxyv+ BHpxyvrx)y = 9(u, Vix)yw)vrx) 9.1)
X (q,t) = v(X(g,t), 1),

with @ > 0 and 8 > 0. The weak formulation and the ESFEM spatial semi-
discretization, also in its matrix—vector formulation, are given in Section 2 of
[KLLP17]. The finally obtained coupled system of differential-algebraic equa-
tions for the vectors of nodal values u(t) € RV, v(t) € R3", and x(t) € RN
reads, with the matrices of Section 2.5:

% (M(x)u) + A(x)u = f(x,u),
K(x)v + SA(x)x = g(x,u),

X

(9.2)

V.

The right-hand side vectors are defined slightly differently from Section 2.5.
They are given by

ﬂx@b=é{ﬁ@mWWMWkL

g(X, u)‘S(j—l)+E = / g(uhvvfhuh) (VF;L[X])é d)j[x]v

Iy [x]

forj=1,...,N,and £ =1,2,3.
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The linearly implicit BDF discretization then reads as follows: with the
extrapolated position vectors X" defined by (2.8),

p
LS MG A = ()
=0
KE")v" + AX")x" = g(x™,u"), (9.3)
1< ,
- e R )
- Z d;x =v".
Jj=0

Full discretizations using BDF methods of parabolic PDEs on an evolving
surface with a given velocity have been studied in [LMV13]. The combination of
the proofs of Lemma 4.1 and Theorem 5.1 of [LMV13] with the error analysis of
the ESFEM semi-discretization in [KLLP17] and with the proof of Theorem 3.1
in the present paper yields the following convergence theorem. We omit the
details of the proof.

Theorem 9.1 Consider the ESFEM / BDF linearly implicit full discretiza-
tion (9.3) of the coupled surface-evolution equation (9.1), using finite elements
of polynomial degree k > 2 and BDF methods of order p < 5. We assume
quasi-uniform admissible triangulations of the initial surface and initial values
chosen by finite element interpolation of the initial data for X. Suppose that
the problem admits an exact solution u, X, v that is sufficiently smooth (say, of
class C([0,T], H*+1)NCP+L([0, T], W) ) on the time interval 0 < t < T, and
that the flow map X (-,t) : [y — I'(t) C R® is non-degenerate for 0 <t < T,
so that I'(t) is a regular surface. Suppose further that the starting values are
sufficiently accurate. Then, there exist hg > 0, 79 > 0 and ¢y > 0 such that
for all mesh widths h < hg and step sizes T < 79 satisfying the mild stepsize
restriction TP < coh, the following error bounds hold over the exact surface
I'(ty) = I'(X(-,tn)) uniformly for 0 <t, =nt <T:

n ) 1/2
168 = utllancr + (IR = uCat e )
J=p
< C(h* +7P),
@i ™ = v, to)llmr (reayys < C(RF +77),

@m)" = idr@) g () < CF+77).

The constant C' is independent of h and T and n with nt < T, but depends on
bounds of higher derivatives of the solution (u,v,X), and on the length T of
the time interval.

10 Numerical experiments

10.1 Forced mean curvature flow
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We performed numerical experiments for the velocity law (1.1): for z = X(q,t) €
I(t) with g € Ty,
v(x,t) — aAppv(a,t) = — BHpw)(x) vpe (z) + 9(1'775) vp@ (),

0 X (q,) = v(X(g,1),1), (10.1)

where the inhomogeneity g : R3 x [0,7] — R is chosen such that the exact
solution is X (g, t) = r(t)q, with ¢ on the unit sphere I'y. The function r satisfies
the logistic differential equation:

0= (1-)rw,  telT],
r(0) = ro,

with m > 79 =1, i.e. 7(t) = rom1 (7‘0(1 —e ) + Tle*t)7
Therefore, the velocity is simply given by, for x(t) = X (q, 1),

o(z(t),t) = @(t) = #(t)p = (1 - ;T;))r(t)p - (1 - r%))w(t).

The numerical experiments were performed in Matlab, using a quadratic
approximation of the initial surface Iy and using the quadratic ESFEM imple-
mentation from [Kov17], and linearly implicit BDF methods of various orders.

Let (Tk)k=1,2,...,m and (T)k=1,2,....n be a series of quadratic initial meshes
and time steps, respectively, such that 27, = 7,1, with 7 = 0.1, where the
meshes are generated independently.

We computed the fully discrete numerical solution of the above problem,
with parameters @« = 1 and 8 = 1, for each mesh and stepsize using the
second order BDF method and second order ESFEM. In Figures 10.1 and
10.2 we report on the following errors of the quadratic ESFEM / BDF2 full
discretization

I(zh)" —idr,)

at time T'= N7 = 5. The logarithmic plots show the errors against time step
size 7 (in Figure 10.1), and against the mesh width A (in Figure 10.2).

The different lines correspond to different mesh refinements and to dif-
ferent time step sizes in Figure 10.1 and Figure 10.2, respectively. In both
figures we can observe two regions: In Figure 10.1, a region where the tempo-
ral discretization error dominates, matching to the O(72) order of convergence
of our theoretical result, and a region, with small stepsizes, where the space
discretization error dominates (the error curves are flattening out). In Fig-
ure 10.2, the same description applies, but with reversed roles. First the space
discretization error dominates, while for finer meshes the temporal error dom-
inates. The convergence in time, see Figure 10.1, can be nicely observed in
agreement with the theoretical results (note the reference line), whereas we
observe better L2 norm convergence rates (O(h?)) for the space discretization,
see Figure 10.2, than shown in Theorem 3.1 for the H' norm (only O(h?)).
This phenomenon is due to the fact that in the defect estimates we use the

L2(I'(t,))3 and ||VF((.LZ)L - idF(t,L))HLQ(F(t,L))*”’
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interpolation instead of a Ritz projection (which is hard to define in this set-
ting), therefore have a defect estimate of order two. However, the classical
optimal L? norm convergence rates of O(h?) are nevertheless observed.
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2nd order ESFEM / BDF2,
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Fig. 10.1: Temporal convergence of the BDF2 / quadratic ESFEM discretiza-
tion for the surface-evolution equation (10.1)
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Fig. 10.2: Spatial convergence of the BDF2 / quadratic ESFEM discretization

for the surface-evolution equation (10.1)
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Figure 10.3 shows the same errors for the BDF method of order 4. It is
clearly seen that in this problem the BDF4 method gives much better accuracy
than BDF2, at nearly the same computational cost.

2nd order ESFEM / BDF4, with a=l, pB=1
10! r r 10! : r
g —8— dof 36 & 8 —a— dof 36 —Eﬂ\ﬂ
—O0— dof 132 —O0— dof 132
0| |——dof516 ] ol |——dof516
10 g ——dof 2052 10 g——dof 2052
o dofsios | O —g —6—dof 8195 [O——6—_¢
—+— dof 39168 —+— dof 39168
10t |=— -0 ,1 10l == -0 /
. 2 Lx
g 5}
) €
g !g 10-2 L
g £
g 5.
o an3L
T 10
10
10-5 v L 10-5
1072 10 1072 10t
step size ( 7) step size ( 7)

Fig. 10.3: Temporal convergence of the BDF4 / quadratic ESFEM discretiza-
tion for the surface-evolution equation (10.1)

Numerical experiments for a semi-linear parabolic PDE system coupled to
a velocity law on a surface with less symmetry, illustrating the coupled problem
of Theorem 9.1, are discussed in detail in our previous work [KLLP17], where
linearly implicit BDF methods have also been used.

10.2 Mean curvature flow

We also performed some numerical experiments, using mean curvature flow
(MCF), to illustrate the effect of the elliptic regularisation. We again consider
the problem (10.1), however without a forcing term, i.e. the following form of
mean curvature flow:

v(z,t) — aApgv(z,t) = — BHpw) () vy (z),

9 X (q,t) = v(X(q,1),1). (10.2)

The initial surface is a rounded cube, the parameter ( is fixed to one. Fig-
ure 10.4 shows the results of different numerical experiments (using quadratic
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finite elements and BDF method of order 4) at times ¢ = 0,0.2,0.4,0.5 from
top to bottom, while the parameter « is set to 0.1,0.01,0.001 and 0, from left
to right, respectively. We note that our convergence results apply only to the
case of a fixed positive o, but the numerical experiments show good behaviour
also for @ — 0.

veve
CRCRCRC)
JCNCICES

NI

Fig. 10.4: MCF with different values of a at different times
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