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The Model

@ po = p1Xa, + p2xa, Mixture of two immiscible viscous incompressible
fluids in a bounded domain in R?.

@ Multi-phase flow evolution by Navier—Stokes Eq. (cf. [Lions, 1996])

pYi+ply - VIy —uldy +Vp=pu,  y(0)=y,,
(NSE) pt+1y-V]p=0, p(0) = po,
divy =0 +B.C.
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@ Multi-phase flow evolution by Navier—Stokes Eq. (cf. [Lions, 1996])

Minimize “Shape” “Geometry” “Cost”

T T T
J(p, u) = /0 /Q|p(t)—a|2dxdt 4 g/o H(S,)dt + %/o /Q|u|2dxdt
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divy =0 +B.C.

Markus Klein (U Tibingen) Control of Interface Evolution in Multi-Phase Flows 2013-03-13 | Garching



Evidence of the geometric functional

lp = olZzay)

« [ "H(s,)

2
||p - U||L2(QT) Target o
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Evidence of the geometric functional

llo— UHiZ(QT)

better corners
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Application ([Gerbeau et al., 2006]): Aluminium

production via electrolysis

anods

free interface

aluminium
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Application ([Gerbeau et al., 2006]): Aluminium

production via electrolysis

anods

free interface

— aluminium

bus bars cathod

‘ Anods shall not touch the interface!
= Interface control
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Goals

@ Existence of optimum.

@ (Necessary) first order optimality conditions.

@ Numerical scheme with low order Finite Elements.
@ Convergence of the numerical scheme.

Known result

@ Optimization (analysis, no numerics) of L2-functional (no geometric term)
subject to Stokes equation, cf. [Kunisch and Lu, 2011].

@ Convergent numerical scheme for equation (low regularity), cf.
[Banas and Prohl, 2010].
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Analytical problems and strategy

Minimize
5 T
J(p, ) / /|p f) — o2 dxdt + / HI(S,)dt + / /|u|2dxdt
0 Q
subject to
pYi+ply - Vly —plAy +Vp=pu,  y(0)=y,,
(NSE) pt+y-Vlp =0,  p(0)=po,

divy =0 +B.C.

@ Problem: Not clear if red term is w.l.s.c., and not clear if corresponding
Lagrange multiplier to mass equation exists and is a function.
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Analytical problems and strategy

Minimize

T » 5 T . @ T »
J(p,u) = /0 /Q|p(t)—0| dxdt + 5/0 HI(S,)dt + E/o /Q|u| dx dt

subject to

pYi+ply - Vly —pAy+Vp=opu,  y(0)=y,,
(NSE) pt+[y-Vlp =0, p(0) = po,
divy =0 +B.C.

@ Problem: Not clear if red term is w.l.s.c., and not clear if corresponding
Lagrange multiplier to mass equation exists and is a function.

@ Solution: Add artificial diffusion to equation and
approximate Hausdorff measure (“Mortola-Modica”, cf. [Braides, 1998])
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Analytical problems and strategy

Minimize
’
Wowy=  + 5 ( it 5 [ W) +
Qr
subject to
pYi+ply -VIy —plAy +Vp=pu,  y(0)=y,,
(NSE.) pt+ [y -Vlp— elApt =0, p(0) = po,

divy=0 + B.C.
(W > 0 double Well functional with W(p) = 0 iff p = py or p = po)

@ Solution: Add artificial diffusion to equation and

approximate Hausdorff measure (“Mortola-Modica”, cf. [Braides, 1998])
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Analytic results

Theorem (Existence)

For 4, > 0, there exists at least one minimum and the corresponding
Lagrange multipliers belong to some LP(Q7) for p > 1.
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Analytic results

Theorem (Existence)

For 4, > 0, there exists at least one minimum and the corresponding
Lagrange multipliers belong to some LP(Q7) for p > 1.

Proof.

Key are a priori estimates and regularity for y and p and Lagrange multiplier
theorem. 0
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Analytic results

Theorem (Existence)

For 4, > 0, there exists at least one minimum and the corresponding
Lagrange multipliers belong to some LP(Q7) for p > 1.

Proof.

Key are a priori estimates and regularity for y and p and Lagrange multiplier
theorem. 0

Passing to the limit for e,6 — 0?
Necessary condition for convergence of the whole system is

0~ e.
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Case ¢ < J: parasitic currents
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Case ¢ < J: parasitic currents
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Case £ > §: massive diffusion

st (NSE.).

p(t=0.5) p(t=0.5)
moderate ¢ big
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e Numerical Analysis and Computations
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Strategy

Strategy for the discretization

@ Fixd,e > 0.

@ Use “first discretize, then optimize” ansatz with convergent and
unconditionally stable scheme, cf. [Banas and Prohl, 2010].

@ Show existence of discrete optimum, derive discrete optimality conditions.
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Strategy for the discretization

@ Fixd,e > 0.

@ Use “first discretize, then optimize” ansatz with convergent and
unconditionally stable scheme, cf. [Banas and Prohl, 2010].

@ Show existence of discrete optimum, derive discrete optimality conditions.

@ Strong coupling of primal and dual variables in the adjoint equation
= Need to bound strong norms of the primal variables
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Strategy

Strategy for the discretization

@ Fixd,e > 0.

@ Use “first discretize, then optimize” ansatz with convergent and
unconditionally stable scheme, cf. [Banas and Prohl, 2010].

@ Show existence of discrete optimum, derive discrete optimality conditions.

@ Strong coupling of primal and dual variables in the adjoint equation
= Need to bound strong norms of the primal variables, in particular show:

sup IV + | AnR(DIP]
tel0,T]

)
+ /0 1ARY(B)IE + V(D)2 + | VR dt < C.
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Strategy

Strategy for the discretization

@ Fixd,e > 0.

@ Use “first discretize, then optimize” ansatz with convergent and
unconditionally stable scheme, cf. [Banas and Prohl, 2010].

@ Show existence of discrete optimum, derive discrete optimality conditions.

@ Strong coupling of primal and dual variables in the adjoint equation
= Need to bound strong norms of the primal variables, in particular show:

sup IV + | AnR(DIP]
tel0,T]

)
+ /0 1ARY(B)IE + V(D)2 + | VR dt < C.

@ = Bounds for dual variables.
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Main result

Theorem (Convergence)

There exist y, p, p; 2, q,m; u : Qr — R®), such that the solutions of the fully
discrete optimality system converge to them in some norms (up to
subsequences). The limit functions solve the original fully continuous
optimality system.
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Done

@ New geometric functional considered with PDE constraints: Evidence,
existence and optimality conditions for 4, > 0.

@ Rigorous converence analysis with unconditionally stable scheme for
o,e > 0.

@ Implementation for §,e > 0.

Outlook

@ What happens for ¢, — 0?7 Proofs?

@ Interplay between 4, e and numerical parameters (time step size k and
grid size h)?

@ Surface tension instead of geometric functional?

@ Other models (sharp interface, thin film, etc.)?

Markus Klein (U Tibingen) Control of Interface Evolution in Multi-Phase Flows 2013-03-13 | Garching 16/17



Done

@ New geometric functional considered with PDE constraints: Evidence,
existence and optimality conditions for 4, > 0.

@ Rigorous converence analysis with unconditionally stable scheme for
o,e > 0.

@ Implementation for §,e > 0.

Outlook

@ What happens for ¢, — 0?7 Proofs?

@ Interplay between 4, e and numerical parameters (time step size k and
grid size h)?

@ Surface tension instead of geometric functional?

@ Other models (sharp interface, thin film, etc.)?

Thank you for your attention!
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