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Abstract. A model is proposed to e.g. control the domain wall motion in ferromagnets in the

presence of thermal fluctuations, and the existence of an optimal stochastic control process is

proved. The convergence of a finite element approximation of the problem is shown in space-
dimension one, which then allows to apply Pontryagin’s maximum principle for this finite dimen-

sional setting. The resulting coupled system of forward-backward stochastic differential equations

is numerically solved by means of the stochastic gradient method to enable practical simulations.

1. Introduction

The ability to manipulate magnetic nanostructures is relevant to optimize data storage devices;
typical examples are walls in a ferromagnetic nanowire (d = 1) separating domains of almost uniform
magnetization m, whose control over their position, structure, and dynamic behavior is crucial to
ensure a reliable transport of data which are represented by those magnetic structures. A central
problem in this context is to design (controlling) field pulses u which enable prescribed precessional
switching, in particular in the presence of thermal fluctuations. At zero temperature, the physical
literature mainly discusses simplified settings, or ‘trial-and-error approaches’ to motivate certain
field pulses which approximately serve this goal; see [5, p. 144]. The approaches in [1, 2] discuss
controllability of finite spin ensembles through applied fields u, while a more practical approach
which is based on the minimization of a functional J(m,u) subject to solving the Landau-Lifshitz-
Gilbert equation is studied in [13].

Let D ⊂ Rd (1 ≤ d ≤ 3) be a bounded Lipschitz domain, and T > 0. The magnetization
m : DT × Ω → R3 at elevated temperature T > 0 is governed by the stochastic Landau-Lifshitz-
Gilbert equation (SLLG)

dm =
(
m×Heff − αm× (m×Heff)

)
dt+ ιm× ◦dW in DT : (0, T )×D , (1.1)

∂m

∂ν
= 0 on ∂DT := (0, T )× ∂D ,

m(0, ·) = m0 on D,

where ι = ι(T) denotes the noise intensity. Moreover, Heff ≡ Heff(m) = −DE(m) denotes the
effective field in this model of ferromagnetism, which is deduced from the Landau-Lifshitz energy
E(m) ≡ Eu(m) for some given external field u : DT × Ω → R3, and for simplicity in this work
ensembles the exchange and external field energies,

E(m) =

∫
D

A

2
|∇m|2 − 〈m,u〉 dx , (1.2)

where A,α > 0; see e.g. [4, 27] for further details on this model. The system in (1.1) is driven
by a Hilbert space-valued Q-Wiener process W , where Q : K → K is a symmetric, non-negative
operator acting in a Hilbert space K ⊂W 1,∞(D;R3)∩H2(D;R3), and ◦dW (t) in (1.1) denotes the
Stratonovich differential. By [8], there exists a weak martingale solution of (1.1) with u = 0 for
1 ≤ d ≤ 3, which is a 6-tuple

(
Ω,F , {Ft}, P,W,m

)
such that (1.1) holds P -a.s. in analytically weak

form; it may even be obtained as proper limit of iterates of an implementable numerical scheme
as shown in [4]. These results may be sharpened to the existence of a unique strong solution for
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d = 1, where an Ft-adapted process m : DT × Ω 7→ S2 satisfies (1.1) in analytically weak form for
a given stochastic basis

(
Ω,F , {Ft}, P,W

)
; cf. [9, 12].

Our goal is the stochastic optimal control in ferromagnetism: Let m̄ ∈ H1(DT ;S2)a be given,
K > 0 and q ≥ 2. Find a weak admissible solution π∗ :=

(
Ω∗,F∗, {F∗t }, P ∗,W ∗,m∗, u∗

)
which

minimizes

J(π) = E
[ ∫ T

0

(
‖m− m̄‖2L2 + ‖u‖2qH1

)
dt+ ψ(m(T ))

]
with π =

(
Ω,F , {Ft}, P,W,m, u

)
subject to (1.1) and ‖u(t)‖L2 ≤ K for a.e. t ∈ [0, T ], P -a.s.

(1.3)

The existing literature (see e.g. [28]) on stochastic optimal control with SPDEs mainly considers
those which have a mild solutions, which is not available for problem (1.1). For this reason, a
minimizer π∗ of (1.3) may be constructed by variational methods. For a minimizing sequence of
weak admissible controls πn :=

(
Ωn,Fn, {Fnt }, Pn,Wn,mn, un

)
, we are looking for tightness of the

laws of the process {mn}n∈N in the path space C([0, T ];L2) and therefore need to obtain uniform
bounds in W γ,p(0, T ;L2)b for γ ∈ (0, 1

2 ), p ∈ [2,∞) such that pγ > 1. This constraint is in
particular fulfilled for p = 4, which is why we focus on q = 2 in (1.3) in some parts below.

Once a minimizer π∗ of problem (1.3) has been found we ask for its computation; in the deter-
ministic setting (see e.g. [13]), a common numerical strategy to accomplish this goal may be based
on Pontryagin’s maximum principle. While the maximum principle has been obtained for several
optimal control problems with prototypic SPDE constraints (see e.g. [19, 20]), a corresponding
argumentation is not immediate in (1.3) where the nonlinear drift in (1.1) is not Lipschitz. To
overcome this problem, we first show the convergence for a structure preserving finite element dis-
cretization (2.5) of (1.3) for d = 1, where the corresponding drift is then Lipschitz because the
(approximate) solutions of (1.1) are of unit length at the nodal points of the underlying mesh Th
covering D. To achieve this goal, we need a probabilistically strong solution of SLLG (1.1) with
improved regularity properties to prove rates of local strong convergence for the approximate SPDE
in (2.5) (see also (7.21)) towards (1.1), which is the key step to show the convergence of (2.5) to
(1.3). We remark that our approach would not work for a general Galerkin discretization of (1.1)
such as the one used in Subsection 7.1 where the preservation of the sphere property is not clear.

For the discretization (2.5) of (1.3), we then obtain Pontryagin’s maximum principle resulting in
a coupled forward-backward SDE system; cf. (2.7)-(2.8). For its solvability, we employ the control
constraint in (1.3). Then, the coupled forward-backward SDE system is numerically solved by the

(i) least squares Monte-Carlo method to approximate conditional expectations which need to
be computed at every time step to obtain approximate solutions of the adjoint equation,

(ii) and the stochastic gradient method from [14] to obtain updates of the feedback control u∗h
whose functional values monotonically decrease.

The rest of the paper is organized as follows. In Section 2, we give a proper definition of solvability
for (the relaxed version of) problem (1.3) and state the main results. An optimal relaxed control
for the relaxed version (3.3) of the problem (1.3) is constructed in Section 3 by using compactness
properties of random Young measures on a suitable Polish space. A weak solution of problem
(1.3) is then obtained in Section 4, which settles Theorem 2.3. Convergence of the value function
and (suitable) minimizers of the finite element approximation (2.5) of (1.3) (for d = 1) is shown
in Section 5, and the corresponding maximum principle is obtained. In Section 6, the stochastic
gradient method is detailed for discretization of (1.1), and simulations which approximately solve
(1.3) are reported.

2. Reformulation of (1.3), Pontryagin’s maximum principle, and main results

Throughout this paper, we use the letter C > 0 to denote various generic constants. In the
sequel, we denote by Lp the space Lp(D;R3), and by Wl,p the space W l,p(D;R3) for any l ≥ 0 and
p ≥ 1. We use 〈, 〉 for an inner product in R3, and the euclidean norm is denoted by | · |.

aH1(DT ; S2) :=
{
v(t) ∈ H1 : v(t, x) ∈ S2 for almost every x ∈ D and for all t ∈ [0, T ]

}
.

b W γ,p(0, T ;X) :=
{
u ∈ Lp(0, T ;X) :

∫ T

0

∫ T

0

‖u(t)− u(s)‖pX
|t− s|1+γp

ds dt < +∞
}
.
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2.1. Stochastic optimal control problem (1.3): reformulation and main results. Without
loss of generality, we may assume in the following that the Wiener process W is of the form aβ(t),
where a ∈W1,∞ and {β(t) : t ≥ 0} is a real-valued Brownian motion. In view of the effective field
Heff in (1.2) with A = 1, and avoiding the exchange energy in the phenomenological damping term
of SLLG, equation (1.1) has the form

dm(t) =
[
m(t)×∆m(t) +m(t)× u(t)− αm(t)× (m(t)×∆m(t))

]
dt+ ιm(t)× a ◦ dβ(t)

∂m

∂ν
= 0 on ∂DT

m(0, ·) = m0(·) on D.

(2.1)

Note that SLLG is a stochastic PDE with non-Lipschitz drift function and in general lacks a
stochastically strong solution for d ≥ 2. In [8], an (analytically) weak martingale solution is
constructed for (2.1) with u = 0, which may easily be generalized to deterministic u ∈ L4(0, T ;L2):
there exists a 6-tuple

(
Ω,F , {Ft}, P, β,m

)
such that

• (Ω,F , {Ft}, P ) is a filtered probability space satisfying the usual hypotheses.
• β is an R-valued Ft-adapted Wiener process.
• m is an H1-valued Ft-adapted stochastic process such that for P -a.e. ω ∈ Ω,

a). m(ω, ·) ∈ C([0, T ];L2) and |m(ω, t, x)| = 1 for a.e. x ∈ D and all t ∈ [0, T ].
b). For all t ∈ [0, T ], and φ ∈ C∞(D;R3), the following equality holds: P -a.s.,(

m(t), φ
)
L2 −

(
m0, φ

)
L2

=

∫ t

0

(
∇m(s),m(s)×∇φ

)
L2
ds+ α

∫ t

0

(
∇m(s),∇(φ×m(s))×m(s)

)
L2
ds

+

∫ t

0

(
m(s)× u(s), φ

)
L2
ds+ ι

(∫ t

0

m(s)× a ◦ dβ(s), φ
)
L2
. (2.2)

Here, the first two terms of the right hand side of (2.2) are understood as∑
i

∫ t

0

( ∂

∂xi
m(s),m(s)× ∂

∂xi
φ
)
L2
ds and α

∑
i

∫ t

0

( ∂

∂xi
m(s),

∂

∂xi
(φ×m(s))×m(s)

)
L2
ds

respectively. Next to the martingale representation theorem, its construction in particular uses
the Skorokhod lemma which changes the underlying probability space to study sequences of ap-
proximate solutions with improved convergence properties. To solve (2.1) for an applied stochastic
process u 6= 0 requires an extended argument in case only its law µ = L(u) is prescribed. The
following result is a generalization of [8, Theorem 2.11] whose proof is postponed to Subsection 7.1.

Theorem 2.1. Let D ⊂ Rd (1 ≤ d ≤ 3) be a bounded Lipschitz domain, q ≥ 2, T > 0, l ∈ {0, 1},
and m0 ∈ W1,2(D,S2)c. Let

(
Ω,F , {Ft}t≥0, P

)
be a given filtered probability space satisfying the

usual hypotheses and β is a Ft-adapted real-valued Wiener process on it. Let µ be a probability
measure on L2(0, T ;L2) such that

∫
L2(0,T ;L2)

Φ(v)µ(dv) < +∞ where Φ(v) = ‖v‖L2q(0,T ;Wl,2) and

µ
{
v : ‖v‖L∞(0,T ;L2) < K

}
= 1 for some given constant K > 0. Then for problem (2.1), there

exist a weak martingale solution π̃ =
(
Ω̃, F̃ , {F̃t}, P̃ , β̃, m̃

)
d and a F̃t-predictable stochastic process

ũ : Ω̃×DT 7→ R3 in the sense given above such that (2.2) is valid, and i) µ = L(ũ) on L2(0, T ;L2)
and

P̃ -a.s., ‖ũ(t)‖L2 ≤ K for a.e. t ∈ [0, T ]; Ẽ
[ ∫ T

0

‖ũ(t)‖2qWl,2 dt
]
< +∞. (2.3)

ii) There exist positive constants C1, C2 such that

Ẽ
[

sup
0≤t≤T

‖∇m̃(t)‖2qL2 +
(∫ T

0

‖m̃(s)×∆m̃(s)‖2L2 ds
)q]
≤ C1 + C2Ẽ

[ ∫ T

0

‖ũ(t)‖2qL2 dt
]
.

As a by-product of the above theorem, we have the following corollary.

c W1,2(D, S2) =
{
ϕ ∈W 1,2(D;R3) : ϕ(x) ∈ S2 for almost every x ∈ D

}
d The associated expectation with P (resp. P̃ ) is denoted by E (resp. Ẽ).
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Corollary 2.2. Let D ⊂ R be bounded, m0 ∈W1,2(D,S2), and l ∈ {0, 1}. Let
(
Ω,F , {Ft}, P

)
be a

given filtered probability space and u an Wl,2-valued {Ft}-predictable stochastic process on it whose
law L(u) satisfies the properties given in Theorem 2.1 for q ≥ 4. Then there exists a unique strong
solution π =

(
Ω,F , {Ft}, P, β,m, u

)
for the problem (2.1) satisfying the bounds as in Theorem 2.1.

Moreover

E
[ ∫ T

0

‖∆m(t)‖2L2 dt
]
< +∞.

Note that a weak martingale solution to the problem (2.1) is not unique for a given control process
u satisfying (2.3) for d = 2, 3. We denote by Uwad(m0, T ) the set of weak admissible solutions to the
problem (2.1) in the sense of Theorem 2.1. From now onwards, we consider l = 1 in Theorem 2.1.
The stochastic optimal control problem (1.3) may be rewritten as follows.

Definition 2.1. Let 0 < T <∞. Assuming the setup of data from Theorem 2.1, let ψ be a given
Lipschitz continuous function on L2. A weak optimal solution for the control problem (1.3) is a
7-tuple π∗ =

(
Ω∗,F∗, {F∗t }, P ∗, β∗,m∗, u∗

)
∈ Uwad(m0, T ) such that

J(π∗) = inf
π∈Uwad(m0,T )

J(π). (2.4)

The associated control u∗ in π∗ is called weak optimal control of the underlying control problem.
Our first main result is the following.

Theorem 2.3. There exists a weak optimal solution π∗ of (1.3) in the sense of Definition 2.1.

The proof is detailed in Sections 3 and 4, and uses the variational solution concept for the SPDE
(2.1). Note that there is no convenient compactness structure for the control sets, which is why we
follow the strategy introduced by Fleming [17] to embed admissible controls into a larger space with
proper compactness properties. We therefore consider a relaxed form of (1.3) first by considering
the given control as a Young measure-valued control process taking values in the Polish space
L2. Using compactness properties of Young measure-valued controls and Skorokhod’s theorem, we
establish the existence of a weak relaxed optimal control (cf. Theorem 3.1). Then, we exploit the
convexity property of J with respect to the control variable, and linearity in (2.1) to settle Theorem
2.3. An alternative construction avoiding Young measures, which exploits Jakubowski’s extension
of Skorokhod’s lemma to certain non-Polish spaces to verify Theorem 2.3 is discussed in Remark
4.1.

2.2. Pontryagin’s maximum principle for a finite element approximation of problem
(1.3) for q ≥ 4 and d=1. Theorem 2.3 shows the existence of an optimal control in problem
(2.4). In general cases, the optimal control may not be explicitly calculated and hence a numerical
gradient descent method which is based on Pontryagin’s maximum principle may be applied to
approximately solve (1.3). Unfortunately, its validation is non-trivial due to the presence of the
non-Lipschitz nonlinearities in (1.3), excluding its standard derivation via spike variations. For
this reason, we proceed differently and discretize problem (1.3) first, to then validate a discrete
maximum principle (and not vice versa). It turns out that convergence properties of a Galerkin
method for (1.3) crucially depend on its respectation of the sphere property of states in (1.1). As a
consequence, a particular Galerkin method is needed which preserves this property accordingly. For
this purpose, we employ numerical concepts from [4, Chapter 2] to obtain the structure preserving
finite element approximation (2.5) of the problem (1.3), and show its convergence when h→ 0, for
h being the mesh size of the quasi-uniform triangulation Th of D; cf. [7]. Let Vh be the lowest order
H1-conforming finite element space, Ih its (affine) nodal interpolation operator, and ∆h : Vh → Vh
the discrete Laplacian; see Subsection 7.4 for further details. For every h > 0, the finite dimensional
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version of (1.3) then reads as follows: minimize

Jh(πh) = E
[∫ T

0

(∥∥m(t)− Ih[m̄(t)]
∥∥2

h
+ ‖u(t)‖2qH1

)
dt+ ψ(m(T ))

]
with πh =

(
Ω,F , {Ft}, P, β,m, u

)
, subject to the SDE

dm(t) =
[
Ih
[
m(t)×∆hm(t)

]
+ Ih

[
m(t)× u(t)

]
− α Ih

[
m(t)× (m(t)×∆hm(t))

]]
dt

+ ι Ih
[
m(t)× a

]
◦ dβ(t), t > 0,

m(0) = Ih[m0], and u(t, ·) ∈ Uh :=
{
v ∈ Vh : ‖v‖L2 ≤ K

}
for a.e. t ∈ [0, T ], P -a.s.

(2.5)

Here, m is a Vh-valued process on a given filtered probability space which takes values in S2 at
nodal points {xl}Ll=1 of the mesh Th, and β is a given R-valued Wiener process on it. There
are several issues which need to be dealt with to validate the convergence of the value functions
Jh(π∗h) to J(π∗): our argumentation requires probabilistically strong solutions of SLLG, and higher
spatial regularity properties of solutions of (2.1) for it to be valid. According to Corollary 2.2, a
unique probabilistically strong solution of (2.1) exists for d = 1, q ≥ 4, and it exhibits improved
spatial regularity properties. We denote the set of Uh-valued controls to the problem (2.5) by
Uwad,h(m0, T ). By following the proof of Theorem 2.3, one can show that there exists a 7-tuple

π∗h =
(
Ωh,Fh, {Fht }, Ph, β∗h,m∗h, u∗h

)
such that

Jh(π∗h) = inf
π∈Uwad,h(m0,T )

Jh(π), while already J(π∗) = inf
π∈Uwad(m0,T )

J(π). (2.6)

Theorem 2.4. Let d = 1, q ≥ 4, and m0 ∈ W1,2(D,S2). Let π∗ and π∗h be 7-tuples as described
above. Assume that ψ is Lipschitz continuous on L2. Then

Jh(π∗h)→ J(π∗) (h→ 0).

The proof uses the strong convergence of some related control processes in H1: we first consider
the strong solution mh of the finite dimensional equation in (2.5) for u = Rhu∗ on the filtered
probability space

(
Ω∗,F∗, {F∗t }, P ∗

)
, whereRh is the Ritz projection defined in (7.11), and estimate

the expected value of the L2-difference of the solutionsmh andm∗ on a large subset of Ω∗ (cf. Lemma
5.1). For this purpose, we use

• the reformulation of the PDE (2.1) as a semi-linear PDE by the identity m∗×(m∗×∆m∗) =
−∆m∗ − |∇m∗|2m∗ which exploits the unit-length property of its solution,

• a corresponding reformulation of the equation in (2.5) where we benefit from the numerical
quadrature and the discrete sphere condition as relevant features of the equation in (2.5),
and the (uniform) stability for the solution of it (resp. (7.21)) in Lemma 7.3 which is based
on the discrete Gagliardo-Nirenberg inequality in Lemma 7.2.

As a result, we obtain the convergence of Jh(π̄h) to J(π∗) for h→ 0 where
π̄h =

(
Ω∗,F∗, {F∗t }, P ∗, β∗,mh,Rhu∗

)
; in a next step, we employ a standard variational argument

to show J(π∗) ≤ Jh(π∗h) ≤ Jh(π̄h) which then settles Theorem 2.4.

A consequence of Theorem 2.4 is the strong convergence of related optimal controls on some
probability space.

Corollary 2.5. Let d = 1, q ≥ 4, and m0 ∈ W1,2(D,S2). For every h > 0, there exists a weak

optimal solution π̃∗h =
(
Ω̃, F̃ , {F̃ht }, P̃ , β̃∗h, m̃∗h, ũ∗h

)
∈ Uwad,h(m0, T ) of (2.5). Moreover, there exists

a weak optimal solution π̃∗ =
(
Ω̃, F̃ , {F̃t}, P̃ , β̃∗, m̃∗, ũ∗

)
∈ Uwad(m0, T ) of (1.3) such that for h→ 0

P̃ -a.s., m̃∗h → m̃∗ in C([0, T ];L2); β̃∗h → β̃∗ in C([0, T ];R),

and Jh(π̃∗h)→ J(π̃∗); ũ∗h → ũ∗ in L2q(Ω̃× (0, T );H1).
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For every h > 0, the necessary first order optimality conditions for the 7-tuple π∗h satisfying (2.6)
involve a backward stochastic differential equation (BSDE in short) as adjoint equation:

dPh(t) =

{
2
(
m∗h(t)− Ih[m̄(t)]

)
+ Ih[Ph(t)×∆hm

∗
h(t)]−∆hIh[Ph(t)×m∗h(t)]

+ α∆hIh[m∗h(t)〈m∗h(t), Ph(t)〉 − |m∗h(t)|2Ph(t)] + Ih[Ph(t)× u∗h(t)]

− αIh[∆hm
∗
h(t)× (m∗h(t)× Ph(t))]− αIh[Ph(t)× (m∗h(t)×∆hm

∗
h(t))]

+ ιIh[Qh(t)× a]− ι2

2
Ih[(Ph(t)× a)× a]

}
dt+Qh(t)dβ∗h(t) + dNh(t), 0 ≤ t < T,

Ph(T ) = −Ih[Dψ(m∗h(T ))].

(2.7)

We refer again to Subsection 7.4 for the used notation. In our case, the filtration {Fht }t≥0 is
in general larger than the natural filtration generated by the Wiener process β∗h, augmented by
all the Ph- null sets in Fh, leading to the additional Vh-valued Fht -martingale Nh in (2.7) (see
e.g. [26] and the references therein). We may use the boundedness of m∗h and of the control u∗h
to verify that the drift function in (2.7) is Lipschitz continuous from Vh onto Vh for every fixed
h > 0. Following [26, 31], equation (2.7) then admits a unique predictable solution (Ph, Qh,Nh) ∈
L2
Fh(Ωh;C([0, T ];Vh))× L2

Fh(Ωh;L2(0, T ;Vh))× L2
Fh(Ωh;L2(0, T ;Vh)) such that

Eh

[(
Nh,

∫ T

0

Qh(t)dβ∗h(t)
)
L2

]
= 0.

Moreover, the following maximum principle holds: Ph-a.s. and for a.e. t ∈ [0, T ],(
P ∗h (t)×m∗h(t), ϕ− u∗h(t)

)
h
− 4q‖u∗h(t)‖2q−2

H1

(
u∗h(t), ϕ− u∗h(t)

)
H1 ≤ 0 (2.8)

for all ϕ ∈ Uh, where the Hamiltonian Hh : Vh × Uh × Vh × Vh 7→ R is defined as

Hh(m,u, Ph, Qh) =−
∥∥m− Ih[m̄]

∥∥2

h
− ‖u‖2qH1 +

(
Ih[m×∆hm], Ph

)
h

+
(
Ih[m× u], Ph

)
h

− α
(
Ih[m× (m×∆hm)], Ph

)
h

+ ι
(
Ih[m× a], Qh

)
h

+
ι2

2

(
Ih[(m× a)× a], Ph

)
h
,

and (Ph, Qh,Nh) is the unique solution to the adjoint equation (2.7).

Note that the corresponding moment estimates for the solution of (2.7) depend on h which is
essentially due to the quadratic and cubic cross-product terms in Hh. Therefore, passing to the
limit in (2.8) is not clear, but the coupled forward-backward SDE system (FBSDE for short) (2.5),
(2.7)-(2.8) is now amenable to numerical techniques which are discussed next.

Remark 2.6. From a mathematical view point, the inequality constraint on the controls in Theo-
rem 2.1 is only used to show the existence of a solution of the adjoint equation, cf. (2.7), to validate
Pontryagin’s maximum principle.

2.3. The least squares Monte-Carlo method and the stochastic gradient method to
approximately solve (2.6). The starting point to simulate an approximate minimizer of (1.3)
is the FBSDE system (2.5), (2.7)–(2.8), but further steps are needed to obtain an implementable
scheme. We start with the time discretization of the equation in (2.5), where the midpoint rule
is used on a mesh Ik := {tj}Jj=0 ⊂ [0, T ] to obtain a scheme where Vh-valued random variables

{M j}Jj=0 take again values in S2 at nodal points {xl}Ll=1 ⊂ D of Th. We denote M j+ 1
2 := 1

2 (M j+1 +

M j).

Algorithm 2.7. Let M0 be a Vh-valued random variable, with {M0(xl)}Ll=1 ⊂ S2. Let {U j ; 0 ≤
j ≤ J − 1} ⊂ L2(Ω;Vh) be given, as well as ∆jβ := β(tj+1) − β(tj) ∼ N (0, k). For every
0 ≤ j ≤ J − 1, find the Vh-valued random variable M j+1, such that(

M j+1 −M j , φ
)
h

= k
(
M j+ 1

2 ×
[
∆hM

j+1 + U j
]
, φ
)
h
− αk

(
M j+ 1

2 ×
[
M j+ 1

2 ×∆hM
j+1
]
, φ
)
h

+ ι
(
M j+ 1

2 × a, φ
)
h
∆jβ ∀φ ∈ Vh. (2.9)
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For every j, Equation (2.9) is a coupled nonlinear system of equations which is solved by New-
ton’s method, where the Jacobian is approximated by finite differences. Again, for computational
purposes, we approximate the Hamiltonian Hh by

H̃h(m,u, Ph, Qh) =− ‖m− m̄‖2L2 − ‖u‖2qH1 +
(
∇m,m× Ph

)
L2 +

(
m× u, Ph

)
L2 − α

(
∇m,∇Ph

)
L2

+ α
(
|∇m|2m,Ph

)
L2 + ι

(
m× a,Qh

)
L2 +

ι2

2

(
(m× a)× a, Ph

)
L2 ,

which is suggested by

• using the discrete sphere property of the computed magnetization; e.g., m× (m×∆hm) in
Hh is replaced by −∆hm− |∇m|2m, and

• replacing
(
·
)
h

by the scalar product in L2.

The associated adjoint equation and its maximum principle for π∗h are then given by{
dPh(t) = − ∂

∂mH̃h(m∗h(t), u∗h(t), Ph(t), Qh(t)) dt+Qh(t)dβ∗h(t) + dNh(t), 0 ≤ t < T,

Ph(T ) = −Dψ(m∗h(T )),
(2.10)

Ph-a.s., and for a.e. t ∈ [0, T ],(
P ∗h (t)×m∗h(t), ϕ− u∗h(t)

)
L2 − 4q‖u∗h(t)‖2q−2

H1

(
u∗h(t), ϕ− u∗h(t)

)
H1 ≤ 0 ∀ϕ ∈ Uh. (2.11)

For the time discretization of the backward equation (2.10) we use a semi-implicit scheme; see
e.g. [6] for the time discretization of BSDEs.

Algorithm 2.8. Let {M j ; 0 ≤ j ≤ J} ⊂ L2(Ωh;Vh) and {U j ; 0 ≤ j ≤ J − 1} ⊂ L2(Ωh;Vh) be
given. Let

(
P J , φ

)
L2 = −

(
DΨ(MJ), φ

)
L2 for every φ ∈ Vh. For every 0 ≤ j ≤ J − 1, find the

Vh-valued random variables (P j , Qj), such that(
Qj , φ

)
L2 = Eh

[∆jβ

k

(
P j+1, φ

)
L2

∣∣Fhtj] ∀φ ∈ Vh, (2.12)

and (
P j , φ

)
L2 + αk

(
∇P j ,∇φ

)
L2 − αk

(
|∇M j |2P j , φ

)
L2 − k

(
M j ×∇P j ,∇φ

)
L2

+ k
(
∇M j ×∇P j , φ

)
L2 − k

(
U j × P j , φ

)
L2

= Eh

[{(
P j+1, φ

)
L2 − 2k

(
M j+1 − M̄(tj+1), φ

)
L2 + 2αk

(
〈P j+1,M j+1〉∇M j+1,∇φ

)
L2

+
ι2

2
k
(
(P j+1 × a)× a, φ

)
L2

}∣∣∣Fhtj]− ιk(Qj × a, φ)L2 ∀φ ∈ Vh. (2.13)

For every 0 ≤ j ≤ J , we may represent the solution (P j , Qj) of (2.12)–(2.13) by two measurable,
deterministic, but unknown functions Pj : Vh → Vh and Qj : Vh → Vh, such that P j = Pj(M j),
and Qj = Qj(M j). By the least squares Monte-Carlo method, see e.g. [21], these functions are

approximated by (PjR(·),QjR(·)) using the finite dimensional space span{1Cjr (·); r = 1, . . . , R} and

coefficients {pjr}Rr=1 resp. {qjr}Rr=1. It is due to the high dimensionality of Vh that an adaptive
partitioning of it is needed for this purpose. This computation is the bottleneck in the simulation
of the BSDE (2.12)–(2.13) as part of the overall stochastic control problem, since it poses severe
demands on computational times as well as memory storage. In order to weaken these demands
and thus allow for the simulation of larger spin systems, we choose an approach similar to the
stratified regression algorithm in [22], which allows for an efficient parallel implementation; see
Section 6 for details. Algorithm 2.8 in combination with the least squares Monte-Carlo method
then approximates (2.7) as part of the stochastic control problem (2.5), (2.7)–(2.8) which is now
solved by the stochastic gradient method. This iterative scheme was proposed in [14] (in a related

setting) to compute deterministic coefficient functions {u(v),j
r }Rr=1 on a given sequence of partitions

{C(v),j
r }Rr=1 of Vh to generate a sequence of approximate feedback functions

U (v),j
R (·) =

∑R

r=1
u(v),j
r 1

C
(v),j
r

(·), (2.14)
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such that the cost functional v 7→ J
(
M (v),·,U (v),·

R (M (v),·)
)

monotonically decreases. Hence, the
overall algorithm to approximately solve (2.5), (2.7)–(2.8) consists in each iteration of the following
steps:

(1) Simulate realizations of equation (2.5) using Algorithm 2.7 and the approximate feedback

control function U (v−1),·
R (·).

(2) Use these realizations to estimate the coefficients in Algorithm 2.8 where again the con-

trol U (v−1),·
R (·) is used.

(3) Use these coefficients to proceed with an update step with Armijo step size rule to obtain

U (v),·
R (·) for the control, which is based on the maximum principle (2.11).

This procedure has been carried out in [15] for a simpler cost function in the case of one and three
nanomagnetic particles. The present work deals with (1.3) which involves a SPDE and thus is far
more complex to solve. Also, in the present context, the explicit time discretization of the state
equation used in [15] is unfavorable, since multiple particles require a smaller time step size, which
results in more computational effort in the simulation of the backward equation. To allow for larger
time step sizes k, we use the midpoint rule in Algorithm 2.7, at the expense of solving a system of

nonlinear equations per iteration step. Also, the present SPDE case requires more regions {C(v),j
r }

to resolve the high dimensional state space. Finally, we modify the computation of the coefficients
in the adjoint equation (BSDE) similar to [22], such that the computation can be done in parallel;
see Section 6 for details.

3. Optimal relaxed controls in the weak formulation

Relaxation is a common strategy for optimal control problems to provide a necessary compactness
structure for the control sets in (2.4). While taking primary motivation from [10], our construction
of a relaxed control which minimizes the relaxed version of (2.4) bases on variational methods.

Let P(L2) denote the set of all probability measures on B(L2), the Borel σ-algebra on L2, and
Y(0, T,L2) denotes e the set of all Young measures on L2. Let {qt}t∈[0,T ] be a P(L2)-valued relaxed

control process defined on the filtered probability space
(
Ω,F , {Ft}, P

)
. We define the associated

relaxed functional: for q ≥ 2

Ĵ(π̂) = E
[ ∫ T

0

(
‖m(t)− m̄(t)‖2L2 + ‖v‖2qH1qt(dv)

)
dt+ ψ(m(T ))

]
, (3.1)

with π̂ =
(
Ω,F , {Ft}, P, β,m, {qt}t∈[0,T ]

)
, where m is a weak martingale solution of the relaxed

version of SLLG; see (3.2) below.

Definition 3.1. Let T > 0 be fixed and m0 ∈W1,2(D;S2). A weak admissible relaxed solution of
(2.1) is a 7-tuple π̂ =

(
Ω,F , {Ft}, P, β,m, {qt}t∈[0,T ]

)
such that

• (Ω,F , P ) is a complete probability space endowed with the filtration {Ft} satisfying the
usual hypotheses, and β(·) is an R-valued Ft-adapted Wiener process.

• {qt}t∈[0,T ] is a P(L2)-valued Ft-predictable relaxed control stochastic process.

• m is a H1-valued Ft-predictable stochastic process such that for P -a.e ω ∈ Ω,
a). m(ω, ·) ∈ C([0, T ];L2) and |m(ω, t, x)| = 1 for a.e. x ∈ D and for all t ∈ [0, T ].
b). For every φ ∈ C∞(D;R3) and every t ∈ [0, T ], there holds for P -a.e. ω ∈ Ω

(m(t), φ)L2 − (m0, φ)L2

=

∫ t

0

(
∇m(s),m(s)×∇φ

)
L2 ds+ α

∫ t

0

(
∇m(s),∇

(
φ×m(s)

)
×m(s)

)
L2
ds

+

∫ t

0

(∫
L2

m(s)× vqs(dv), φ
)
L2
ds+ ι

(∫ t

0

m(s)× a ◦ dβ(s), φ
)
L2
. (3.2)

e We refer to [11, 18] and references therein for the definition of Young measures.
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We denote the set of weak admissible relaxed solutions by Ûad,w(m0, T ). The relaxed optimal
control problem is then to find a weak admissible relaxed solution π̂∗ such that

Ĵ(π̂∗) = inf
π̂∈Ûad,w(m0,T )

Ĵ(π̂) := Λ2. (3.3)

We say that π̂∗ as in (3.3) (resp. q∗, the associated control in π̂∗) is a weak optimal relaxed solution
(resp. weak optimal relaxed control ) for (3.1)-(3.2).

Theorem 3.1. Let T > 0 be fixed, and m0 ∈W1,2(D;S2). Then the relaxed control problem (3.3)
admits a weak optimal relaxed control.

Proof. Thanks to Corollary 2.2, there exists a weak martingale solution of SLLG (2.1) for u = 0,
and hence Λ2 is finite since ψ is Lipschitz-continuous and the solution m satisfies |m(t)| = 1. Let
π̂n =

(
Ωn,Fn, {Fnt }, Pn, βn,mn, {qnt }t∈[0,T ]

)
, n ∈ N, be a minimizing sequence of weak admissible

relaxed controls, i.e., limn→∞ Ĵ(π̂n) = Λ2. We will prove the theorem in several steps.

Step 1: For each n ∈ N, we define the random Young measure λn on
(
Ωn,Fn, Pn

)
by

λn(dv, dt) = qnt (dv)dt.

Since Λ2 is finite, there exists R > 0 such that

En
[ ∫ T

0

∫
L2

‖v‖2qH1λn(dv, dt)
]

= En
[ ∫ T

0

∫
L2

‖v‖2qH1 q
n
t (dv) dt

]
≤ R. (3.4)

Define η : [0, T ]× L2 → [0,∞] as

η(t, v) =

{
‖v‖2qH1 , if v ∈ H1

+∞ otherwise

In view of [10, Example 2.12], we see that η is measurable such that η(t, ·) is an inf-compact function

on L2 for all t ∈ [0, T ]. Thus, by (3.4), we get En
[ ∫ T

0

∫
L2 η(t, v)λn(dv, dt)

]
≤ R, and hence thanks

to [3, Definition 3.3] and [11, Theorem 4.3.5], we conclude that the family of laws of {λn}n∈N is
tight on Y(0, T ;L2).

Step 2: Since {π̂n}n is a sequence of weak admissible relaxed controls, one has

En
[

sup
0≤t≤T

‖∇mn(t)‖2qL2

]
+ En

[( ∫ T

0

‖mn(s)×∆mn(s)‖2L2ds
)q]

≤ C1 + C2E
n
[ ∫ T

0

∫
L2

‖v‖2qH1q
n
t (dv) dt

]
≤ C, (3.5)

where the last inequality follows from (3.4). Again, Pn a.s., and for all t ∈ [0, T ], the following
reformulation of (3.2) with Stratonovich correction term holds

mn(t) = m0 +

∫ t

0

mn(s)×∆mn(s) ds− α
∫ t

0

mn(s)×
(
mn(s)×∆mn(s)

)
ds

+

∫ t

0

∫
L2

mn(s)× vqns (dv) ds+
ι2

2

∫ t

0

(mn(s)× a)× a ds+ ι

∫ t

0

mn(s)× a dβn(s)

≡ m0 +

5∑
i=1

Bn,i(t). (3.6)

We want to establish tightness for the sequence of processes {mn}n∈N. It is due to (3.5) that there
remains to validate a uniform bound in ‖ · ‖Wγ,4(0,T ;L2) for some suitable 0 < γ < 1 to apply

Prokhorov’s lemma. By long but elementary estimates there follows for 0 < γ < 1
2 ,

sup
n
En
[
‖Bn,i‖4Wγ,4(0,T ;L2)

]
≤ C ∀ 1 ≤ i ≤ 5.
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In view of the above estimates along with (3.6) and the moment estimate (3.5), we see that for
0 < γ < 1

2 , there exists a constant C > 0, independent of n such that

sup
n
En
[
‖mn‖4L4(0,T ;H1)∩Wγ,4(0,T ;L2)

]
≤ C.

Let us choose γ ∈ (0, 1
2 ) such that 4γ > 1. Then, by [16, Theorems 2.2 and 2.1], W γ,4(0, T ;L2)

is compactly embedded into C([0, T ]; (H1)∗), and the embedding of L4(0, T ;H1) ∩W γ,4(0, T ;L2)
into L4(0, T ;L2) is compact. Moreover, for γ > 1

4 , we can apply [30, Lemma 5 and Theorem 3] to

conclude that the family of the laws of the processes {mn}n∈N is tight on C([0, T ];L2). Also, for i =
1, 2, · · · , 5, the family of the laws of the processes {Bn,i}n∈N is tight in C([0, T ]; (H1)∗). Hence, by
Prokhorov’s theorem, there exist a probability measure µ on X := C([0, T ];L2)×C([0, T ]; (H1)∗)5×
Y(0, T ;L2) and a subsequence of {mn,Bn,1,Bn,2,Bn,3,Bn,4,Bn,5, λn}n, still denoted by same index
n, such that

L
(
mn,Bn,1,Bn,2,Bn,3,Bn,4,Bn,5, λn

)
→ µ weakly as n→∞.

Step 3: The space X is separable and metrizable. Thus, by Dudley’s generalization of the
Skorokhod representation theorem, there exist a probability space (Ω̃, F̃ , P̃ ) and a sequence of

random variables {m̃n, B̃n,1, B̃n,2, B̃n,3, B̃n,4, B̃n,5, λ̃n}n and
(
m̃, B̃1, B̃2, B̃3, B̃4, B̃5, λ̃

)
with values

in X, which are defined on (Ω̃, F̃ , P̃ ) and satisfy P̃ -a.s.,
m̃n → m̃ in C([0, T ];L2),

B̃n,i → B̃i in C([0, T ]; (H1)∗) (1 ≤ i ≤ 5),

λ̃n → λ̃ stably in Y(0, T ;L2),

(3.7)

and(
m̃n, B̃n,1, B̃n,2, B̃n,3, B̃n,4, B̃n,5, λ̃n

) d
=
(
mn,Bn,1,Bn,2,Bn,3,Bn,4,Bn,5, λn

)
∀ n ∈ N. (3.8)

The sequence {m̃n}n satisfies the same estimates as the original sequence {mn}n. In particular,
P̃ -a.s., |m̃n(t, x)| = 1, for a.e. x ∈ D and for all t ∈ [0, T ],

sup
n
Ẽ
[

sup
0≤t≤T

‖m̃n(t)‖2qH1 +
(∫ T

0

‖m̃n(t)×∆m̃n(t)‖2L2 dt
)q]
≤ C.

(3.9)

Furthermore, in view of (3.6) and (3.8), one can conclude that P̃ -a.s.,

m̃n(t) = m0 +

5∑
i=1

B̃n,i(t), with


B̃n,1(t) =

∫ t
0
m̃n(s)×∆m̃n(s) ds

B̃n,2(t) = −α
∫ t

0
m̃n(s)×

(
m̃n(s)×∆m̃n(s)

)
ds

B̃n,3(t) =
∫ t

0

∫
L2 m̃n(s)× v λ̃n(dv, ds)

B̃n,4(t) = ι2

2

∫ t
0
(m̃n(s)× a)× a ds.

(3.10)

Step 4: In view of the disintegration theory of measures, since λ̃n : Ω̃→ Y(0, T ;L2) is a random

Young measure such that for every A ∈ B([0, T ] × L2), the mapping ω̃ 7→ λ̃n(ω̃)(A) is measurable

and there exists a relaxed control process q̃n = {q̃nt }t∈[0,T ] defined on probability space (Ω̃, F̃ , P̃ )

such that P̃ -a.s., λ̃n(dv, dt) = q̃nt (dv) dt. Therefore, we can rewrite the term B̃n,3(t) as

B̃n,3(t) =

∫ t

0

∫
L2

m̃n(s)× vq̃ns (dv) ds, P̃ -a.s., and for all t ∈ [0, T ].

Revisiting (3.6), for each n ∈ N and t ∈ [0, T ] we define the process Mn(t) on (Ωn,Fn, Pn) as

Mn(t) = mn(t)−m0 −
4∑
i=1

Bn,i(t) = ι

∫ t

0

mn(s)× a dβn(s).

Note that Mn(·) is adapted to the filtration generated by the processes {mn, q
n}, and hence is

adapted to the filtration {Fnt }. Moreover, it is a {Fnt }t∈[0,T ]-martingale with quadratic variation

Qn(t) = ι2
∫ t

0

|mn(s)× a|2 ds.
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For t ≥ 0, we now define the processes M̃n(t) and M̃ on the probability space (Ω̃, F̃ , P̃ ) via

M̃n(t) = m̃n(t)−m0 −
4∑
i=1

B̃n,i(t) ∀n ∈ N, (3.11)

M̃(t) = m̃(t)−m0 −
4∑
i=1

B̃i(t). (3.12)

Define a filtration {F̃nt }t∈[0,T ] as

F̃nt = σ
{
m̃n(s), q̃ns : 0 ≤ s ≤ t

}
∀t ∈ [0, T ].

Observe that thanks to the expressions in (3.10), M̃n is an {F̃nt }t∈[0,T ]-adapted process. Define

Q̃n(t) = ι2
∫ t

0

|m̃n(s)× a|2 ds.

Since (mn, q
n)

d
= (m̃n, q̃

n), we see that ∀t ∈ [0, T ], Mn(t)
d
= M̃n(t) and Qn(t)

d
= Q̃n(t). Thus,

we infer that M̃n is an {F̃nt }t∈[0,T ]-adapted martingale with quadratic variation Q̃n.

Step 5: We know that P̃ -a.s., m̃n → m̃ in C([0, T ];L2) as n→∞. Now we claim that

Ẽ
[

sup
t∈[0,T ]

‖m̃n(t)− m̃(t)‖2L2

]
→ 0

(
n→∞

)
. (3.13)

To prove this claim, define An := sup
t∈[0,T ]

‖m̃n(t) − m̃(t)‖2L2 . Then An → 0, P̃ -a.s. as n → ∞.

Invoking Fatou’s lemma and the uniform moment estimate (3.9), we have

Ẽ
[
|An|2

]
≤ CẼ

[
sup
t∈[0,T ]

‖m̃n(t)‖4L2 + sup
t∈[0,T ]

‖m̃(t)‖4L2

]
≤ C

{
Ẽ
[

sup
t∈[0,T ]

‖m̃n(t)‖4L2

]
+ lim inf

n
Ẽ
[

sup
t∈[0,T ]

‖m̃n(t)‖4L2

]}
≤ C sup

n
Ẽ
[

sup
t∈[0,T ]

‖m̃n(t)‖4L2

]
≤ C.

This implies that the family {An}n∈N is uniformly integrable. Hence, we may use Vitali’s conver-

gence theorem to validate (3.13). Again, in view of (3.7) and the definition of M̃n(t), we have that

P̃ -a.s., M̃n → M̃ in C([0, T ]; (H1)∗) as n→∞. Now we claim that

Ẽ
[

sup
t∈[0,T ]

‖M̃n(t)− M̃(t)‖2(H1)∗

]
→ 0

(
n→∞

)
. (3.14)

To show that (3.14) holds, we define Bn := sup
t∈[0,T ]

‖M̃n(t) − M̃(t)‖2(H1)∗ . Then Bn → 0, P̃ -a.s. for

n→∞. By using the uniform moment estimate (3.9) along with (3.11), we see that

sup
n
Ẽ
[

sup
t∈[0,T ]

‖M̃n(t)‖4(H1)∗

]
≤ C. (3.15)

Again, we may invoke Fatou’s lemma and (3.15) to establish (3.14) by Vitali’s convergence theorem.

Step 6: In this step, we will identify the limiting processes B̃1, B̃2, B̃3 and B̃4 in (3.12). First we

want to identify B̃3. Since λ̃(ω̃) ∈ Y(0, T ;L2), like in Step 4, there exists a relaxed control process

{q̃t}t∈[0,T ] defined on
(
Ω̃, F̃ , P̃

)
such that P̃ -a.s., λ̃(dv, dt) = q̃t(dv) dt. Let

f̃n(t) =

∫
L2

m̃n(t)× v q̃nt (dv), f̂n(t) =

∫
L2

m̃(t)× v q̃nt (dv), and f̃(t) =

∫
L2

m̃(t)× v q̃t(dv).

By using (3.13) and

|m̃(t, x)| ≤ |m̃n(t, x)| = 1, for a.e. x ∈ D, and all t ∈ [0, T ], P̃ -a.s., (3.16)
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we easily find

f̃n − f̂n → 0 in L2(Ω̃× [0, T ];L2).

Next we infer that

f̂n ⇀ f̃ in L2(Ω̃× [0, T ]; (H1)∗)
(
n→∞

)
. (3.17)

To prove this, let ψ ∈ (L2(Ω̃× [0, T ]; (H1)∗))∗ = L2(Ω̃× [0, T ];H1) be fixed. We need to show that

Ẽ
[ ∫ T

0

∫
L2

〈
m̃(t)× v, ψ(t)

〉
λ̃n(dv, dt)

]
n→∞−→ Ẽ

[ ∫ T

0

∫
L2

〈
m̃(t)× v, ψ(t)

〉
λ̃(dv, dt)

]
,

where
〈
·
〉

denotes the duality pairing between (H1)∗ and H1. For this purpose, denote by Tk ∈
C∞(R) a truncation such that

1[−k,k] ≤ Tk ≤ 1[−k−1,k+1].

Thus, one gets that∣∣∣Ẽ[ ∫ T

0

∫
L2

〈
m̃(t)× v, ψ(t)

〉
λ̃n(dv, dt)

]
− Ẽ

[ ∫ T

0

∫
L2

〈
m̃(t)× v, ψ(t)

〉
λ̃(dv, dt)

]∣∣∣
≤

∣∣∣∣∣Ẽ[
∫ T

0

∫
L2

Tk(‖v‖L2)
〈
m̃(t)× v, ψ(t)

〉
λ̃n(dv, dt)

]
− Ẽ

[ ∫ T

0

∫
L2

Tk(‖v‖L2)
〈
m̃(t)× v, ψ(t)

〉
λ̃(dv, dt)

]∣∣∣∣∣
+
∣∣∣Ẽ[ ∫ T

0

∫
L2

[1− Tk(‖v‖L2)]‖v‖L2‖ψ(t)‖H1 λ̃n(dv, dt)
]∣∣∣

+
∣∣∣Ẽ[ ∫ T

0

∫
L2

[1− Tk(‖v‖L2)]‖v‖L2‖ψ(t)‖H1 λ̃(dv, dt)
]∣∣∣.

Note that ∣∣∣Ẽ[ ∫ T

0

∫
L2

[1− Tk(‖v‖L2)]‖v‖L2‖ψ(t)‖H1 λ̃n(dv, dt)
]∣∣∣

≤
∣∣∣Ẽ[ ∫ T

0

‖ψ(t)‖H1

∫
‖v‖L2>k

‖v‖L2 λ̃n(dv, dt)
]∣∣∣

≤ C‖ψ‖L2(Ω̃×[0,T ];H1)

(∫
Ω̃

∫ T

0

∫
{v∈L2:‖v‖L2>k}

‖v‖2L2 λ̃n(ω̃)(dv, dt)P̃ (dω̃)

) 1
2

≤ C‖ψ‖L2(Ω̃×[0,T ];H1)

1

k

(
Ẽ
[ ∫ T

0

∫
{v∈L2:‖v‖L2>k}

‖v‖4L2 λ̃n(dv, dt)
]) 1

2

≤ C

k
‖ψ‖L2(Ω̃×[0,T ];H1) (3.18)

which holds uniformly with respect to n ∈ N. Note that L2 3 v 7→ ‖v‖4L2 is lower semi-continuous.

Thus, as λ̃n → λ̃ stably in Y(0, T ;L2), we obtain P̃ − a.s.,∫ T

0

∫
L2

‖v‖4L2 λ̃(dv, dt) ≤ lim inf

∫ T

0

∫
L2

‖v‖4L2 λ̃n(dv, dt),

and hence, thanks to Fatou’s lemma,

Ẽ
[ ∫ T

0

∫
L2

‖v‖4L2 λ̃(dv, dt)
]
≤ lim inf Ẽ

[ ∫ T

0

∫
L2

‖v‖4L2 λ̃n(dv, dt)
]
≤ C.

Therefore, (3.18) holds if we replace λ̃n by λ̃ on the left-hand side. In other words, one has

Ẽ
[ ∫ T

0

∫
{v∈L2:‖v‖L2>k}

〈
m̃(t)× v, ψ(t)

〉
λ̃n(dv, dt)

]
≤ C

k
‖ψ‖L2(Ω̃×[0,T ];H1).
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Finally, in view of [10, Theorem 2.16], one gets

lim sup
n

∣∣∣Ẽ[ ∫ T

0

∫
L2

〈
m̃(t)× v, ψ(t)

〉
λ̃n(dv, dt)

]
− Ẽ

[ ∫ T

0

∫
L2

〈
m̃(t)× v, ψ(t)

〉
λ̃(dv, dt)

]∣∣∣
≤ C

k
‖ψ‖L2(Ω̃×[0,T ];H1)

for any k, and then (3.17) holds by passing to the limit with respect to k.

We are now in a position to identify the limiting process B̃3(t). As, P̃ -a.s., B̃n,3 → B̃3 in
C([0, T ]; (H1)∗), in view of the above discussion, we get that for all t ∈ [0, T ]

B̃3(t) =

∫ t

0

∫
L2

m̃(s)× v q̃s(dv) ds, P̃ -a.s.

Again, one can show by arguments similar to those in [8, Lemmas 4.5 and 4.9] that for all t ∈ [0, T ]

and P̃ -a.s.,
B̃n,1(t) ⇀ B̃1(t) =

∫ t
0
m̃(s)×∆m̃(s) ds

B̃n,2(t) ⇀ B̃2(t) = −α
∫ t

0
m̃(s)×

(
m̃(s)×∆m̃(s)

)
ds in L2(Ω̃× [0, T ]; (H1)∗)

(
n→∞

)
B̃n,4(t) ⇀ B̃4(t) = ι2

2

∫ t
0
(m̃(s)× a)× a ds.

Step 7: Define a right continuous filtration {F̃t}t∈[0,T ] by

F̃t = σ
{

(m̃(s), q̃s) : 0 ≤ s ≤ t
}
, t ∈ [0, T ].

In view of the definition of M̃ along with the identification of the terms B̃1, B̃2, B̃3 and B̃4, it is

obvious that M̃ is an {F̃t}t∈[0,T ] -adapted stochastic process with values in (H1)∗. Next we claim

that M̃(·) is an F̃t-martingale with quadratic variation

Q̃(t) = ι2
∫ t

0

|m̃(s)× a|2 ds. (3.19)

Let 0 < s < t ≤ T and φ ∈ Cb
(
C([0, s]; (H1)∗) × Y(0, s;L2)

)
. Note that, since M̃n is an F̃nt -

martingale, we have

Ẽ
[(
M̃n(t)− M̃n(s)

)
φ(m̃n, λ̃n)

]
= 0.

Moreover, we use (3.13) and (3.14) to have

0 = Ẽ
[(
M̃n(t)− M̃n(s)

)
φ(m̃n, λ̃n)

]
n→∞−→ Ẽ

[(
M̃(t)− M̃(s)

)
φ(m̃, λ̃)

]
.

This gives the martingale property of M̃ with respect to the filtration F̃t. Again, since a ∈W1,∞,
thanks to (3.16) and (3.13), we verify

Ẽ
[

sup
t∈[0,T ]

‖Q̃n(t)− Q̃(t)‖2L2(D)

]
≤ C(ι, a)Ẽ

[
sup

0≤t≤T
‖m̃n(s)− m̃(s)‖2L2

]
→ 0

(
n→∞

)
.

Combining these results, as M̃n is an F̃nt -martingale with quadratic variation Q̃n, we have for any
φ ∈ Cb

(
C([0, s]; (H1)∗)× Y(0, s;L2)

)
with 0 < s < t ≤ T ,

0 =Ẽ
[(
M̃2

n(t)− M̃2
n(s)− (Q̃n(t)− Q̃n(s))

)
φ(m̃n, λ̃n)

]
n→∞−→ Ẽ

[(
M̃2(t)− M̃2(s)− (Q̃(t)− Q̃(s))

)
φ(m̃, λ̃)

]
.

Thus, noting the martingale property of M̃, we conclude that Q̃ is the quadratic variation of M̃
where Q̃ is defined by (3.19).

Step 8: We have shown that P̃ -a.s.,

M̃(t) = m̃(t)−m0 −
∫ t

0

m̃(s)×∆m̃(s) ds+ α

∫ t

0

m̃(s)×
(
m̃(s)×∆m̃(s)

)
ds

−
∫ t

0

∫
L2

m̃(s)× v q̃s(dv) ds− ι2

2

∫ t

0

(m̃(s)× a)× a ds (3.20)
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is a F̃t-adapted martingale with quadratic variation Q̃(t). Thus, by the martingale representation

theorem, there exist an extension of probability space (Ω̃, F̃ , P̃ ), still denoted by (Ω̃, F̃ , P̃ ), and a

R-valued Wiener process β̃ defined on (Ω̃, F̃ , P̃ ) such that

M̃(t) = ι

∫ t

0

m̃(s)× a dβ̃(s). (3.21)

Combining (3.20) and (3.21), we conclude that P̃ -a.s.,

m̃(t) = m0 +

∫ t

0

m̃(s)×∆m̃(s) ds− α
∫ t

0

m̃(s)×
(
m̃(s)×∆m̃(s)

)
ds

+

∫ t

0

∫
L2

m̃(s)× v q̃s(dv) ds+ ι

∫ t

0

m̃(s)× a ◦ dβ̃(s) in (H1)∗. (3.22)

i.e., π̂ =
(
Ω̃, F̃ , {F̃t}, P̃ , β̃, m̃, {q̃t}t∈[0,T ]

)
∈ Ûad,w(m0, T ) if we show that P̃ -a.s.,

|m̃(t, x)| = 1 ∀ t ∈ [0, T ], and a.e. x ∈ D. (3.23)

We can achieve (3.23) in the following way: Let φ ∈ C∞0 (D). We apply Itô’s formula to the function
L2 3 u 7→

(
u, φu

)
L2 and arrive at (cf. [8, Proof of (2.11)] under small changes)(

m̃(t), φm̃(t)
)
L2 =

(
m0, φm0

)
L2 .

for all t ∈ [0, T ]. Since φ is arbitrary and |m0(x)| = 1 for a.e. x ∈ D, we infer that P̃ -a.s.,
|m̃(t, x)| = 1, for a.e. x ∈ D and for all t ∈ [0, T ].

Step 9: Observe that

S : [0, T ]× L2 −→ [0,∞]

(t, v) 7−→ ‖v‖2qH1

is a measurable, non-negative, and lower semi-continuous convex function. Thus, since λ̃n → λ̃
stably in Y(0, T ;L2), invoking [11, Proposition 2.1.12], (3.7), and the property (3.8) along with
Fatou’s lemma, we get

Ĵ(π̂) = Ẽ
[ ∫ T

0

‖m̃(t)− m̄(t)‖2L2 dt+

∫ T

0

∫
L2

‖v‖2qH1 λ̃(dv, dt)
]

+ Ẽ
[
ψ(m̃(T ))

]
≤ lim inf

n→∞

{
Ẽ
[ ∫ T

0

‖m̃n(t)− m̄(t)‖2L2 dt+

∫ T

0

∫
L2

‖v‖2qH1 λ̃n(dv, dt)
]

+ Ẽ
[
ψ(m̃n(T ))

]}

= lim inf
n→∞

{
En
[ ∫ T

0

∫
L2

(
‖mn(t)− m̄(t)‖2L2 + ‖v‖2qH1

)
λn(dv, dt)

]
+ En

[
ψ(mn(T ))

]}
= lim inf

n→∞
Ĵ(π̂n) = Λ2.

This implies that π̂ is a weak optimal relaxed solution for the control problem (3.3) and this finishes
the proof. �

4. Proof of Theorem 2.3

With the help of Theorem 3.1, we may now prove Theorem 2.3.
For π1

n =
(
Ωn,Fn, {Fnt }, Pn, βn,mn, un

)
, let {π1

n;n ∈ N} be a minimizing sequence of weak admis-
sible controls i.e.,

lim
n→∞

J(π1
n) = Λ1. (4.1)

Define qnt (dv) = δun(t)(dv) in the weak relaxed control problem. Then {π̂2
n;n ∈ N} where

π̂2
n =

(
Ωn,Fn, {Fnt }, Pn, βn,mn, {qnt }t∈[0,T ]

)
is a decreasing sequence of weak admissible relaxed

controls for the same underlying problem. By evidence, J(π1
n) = Ĵ(π̂2

n). By the proof of Theorem
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3.1, there exists a weak solution π̂ =
(
Ω̃, F̃ , {F̃t}, P̃ , β̃, m̃, {q̃t}t∈[0,T ]

)
such that (3.22) holds. We

now define the {F̃t}t∈[0,T ]-predictable stochastic process ũ via

ũ(t) =

∫
L2

v q̃t(dv). (4.2)

Evidently Ẽ
[ ∫ T

0
‖ũ(s)‖2qH1 ds

]
≤ Ẽ

[ ∫ T
0

∫
L2 ‖v‖2qH1 q̃s(dv) ds

]
< +∞. Moreover, we have P̃ -a.s.,

‖ũ(t)‖L2 ≤ K for a.e. t ∈ [0, T ]. (4.3)

To prove this, let Ψ : x 7→ (|x| − K)+. For λ̃ = q̃s(dv) ds, and λ̃n = q̃ns (dv) ds, we have λ̃n → λ̃

stably in Y(0, T ;L2) and λ̃n
d
= λn

(
= δun(t,·)(dv)dt

)
(see (3.7) ). Thus by Jensen inequality, stable

convergence of Young measures, and then equality of laws, one has that

Ẽ
[ ∫ T

0

Ψ
(
‖ũ(t)‖L2

)
ds
]
≤ Ẽ

[ ∫ T

0

∫
L2

Ψ
(
‖v‖L2

)
q̃s(dv) ds

]
≤ lim inf

n
Ẽ
[ ∫ T

0

∫
L2

Ψ
(
‖v‖L2

)
q̃ns (dv) ds

]
≤ lim inf

n
En
[ ∫ T

0

∫
L2

Ψ
(
‖v‖L2

)
qns (dv) ds

]
= lim inf

n
En
[ ∫ T

0

Ψ
(
‖un(s)‖L2

)
ds
]

= 0,

since ‖un(s)‖L2 ≤ K for a.e. s ∈ [0, T ] and Pn- a.s. This validates (4.3). Now, since the control
acts linearly, we have∫ t

0

∫
L2

m̃(s)× v q̃s(dv) ds =

∫ t

0

(
m̃(s)×

∫
L2

v q̃s(dv)
)
ds =

∫ t

0

m̃(s)× ũ(s) ds.

Thus, we see that the following stochastic PDE holds: P̃ -a.s. and for all t ∈ [0, T ]

m̃(t) = m0 +

∫ t

0

m̃(s)×∆m̃(s) ds− α
∫ t

0

m̃(s)×
(
m̃(s)×∆m̃(s)

)
ds

+

∫ t

0

m̃(s)× ũ(s) ds+ ι

∫ t

0

m̃(s)× a ◦ dβ̃(s).

Hence π∗ =
(
Ω̃, F̃ , {F̃t}, P̃ , β̃, m̃, ũ

)
∈ Uwad(m0, T ). Now, in view of Jensen’s inequality, we obtain

J(π∗) = Ẽ
[ ∫ T

0

(
‖m̃(t)− m̄(t)‖2L2 + ‖ũ(t)‖2qH1 dt

]
+ Ẽ

[
ψ(m̃(T ))

]
= Ẽ

[ ∫ T

0

(
‖m̃(t)− m̄(t)‖2L2 + ‖

∫
L2

vq̃t(dv)‖2qH1 dt
]

+ Ẽ
[
ψ(m̃(T ))

]
≤ Ẽ

[ ∫ T

0

∫
L2

(
‖m̃(t)− m̄(t)‖2L2 + ‖v‖2qH1

)
λ̃(dv, dt)

]
+ Ẽ

[
ψ(m̃(T ))

]
≤ lim inf

n→∞
Ĵ(π̂2

n) = lim
n→∞

J(π1
n) = Λ1.

In other words, π∗ =
(
Ω̃, F̃ , {F̃t}, P̃ , β̃, m̃, ũ

)
is a weak optimal solution for the control problem

(2.1)-(2.4) and this finishes the proof of Theorem 2.3.

Remark 4.1. We proved Theorem 2.3 by constructing an optimal relaxed solution π̂∗ of (3.3)
first via the compactness of Young measures on Y(0, T ;L2), and then the process defined in (4.2)
was shown to be part of a weak optimal solution π∗ of the problem (1.3) where we exploited
the fact that the control acts linearly in the PDE (2.1). A different strategy to verify Theorem
2.3, which is also based on the linearity of control in (2.1), is to use the Jakubowski-Skorokhod
representation theorem (cf. [25]) instead of the classical Skorokhod representation theorem. Let

{πn}n be such that (4.1) holds. Then sup
n
En
[ ∫ T

0
‖un(t)‖2qH1 dt

]
< R for some R > 0. Following

Step 2 in the proof of Theorem 3.1, we see that
{
L(mn,Bn,1,Bn,2,Bn,3,Bn,4,Bn,5, un)

}
n∈N is
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tight on the space X := C([0, T ];L2)×C([0, T ]; (H1)∗)5× (L2q(0, T ;H1), w)f; see Step 2 in the proof

of Theorem 3.1 for notation, where Bn,3 is replaced by
∫ t

0
mn(s) × un(s) ds. Note that (X, w) is

not Polish but a separable space endowed with the weak topology. We may apply the Jakubowski-
Skorokhod representation theorem on the space (X, w) to ensure the existence of a probability space

(Ω̃, F̃ , P̃ ), and X-valued Borel-measurable random variables {m̃n, B̃n,1, B̃n,2, B̃n,3, B̃n,4, B̃n,5, ũn}n
and

(
m̃, B̃1, B̃2, B̃3, B̃4, B̃5, ũ

)
such that(

m̃n, B̃n,1, B̃n,2, B̃n,3, B̃n,4, B̃n,5, ũn
) d

=
(
mn,Bn,1,Bn,2,Bn,3,Bn,4,Bn,5, un

)
∀ n ∈ N

and P̃ -a.s.,
(
m̃n, B̃n,1, B̃n,2, B̃n,3, B̃n,4, B̃n,5, ũn

)
converges to

(
m̃, B̃1, B̃2, B̃3, B̃4, B̃5, ũ

)
in the

topology of X. One may now go through the following Steps 4-5 and identity the limiting processes
B̃i : i = 1, 2, 4 as before. Since the control acts linearly in the equation (2.1), by using the weak

convergence of ũn and the strong convergence of m̃n, it is easy to see that B̃3(t) =
∫ t

0
m̃(s)×ũ(s) ds.

The argumentation in Steps 7-9 then establishes that π̃ :=
(
Ω̃, F̃ , {F̃t}, P̃ , β̃, m̃, ũ

)
is a weak optimal

solution for the control problem (2.1)-(2.4).

5. Finite element approximation of the optimal control problem

In this section, we prove Theorem 2.4 for the finite element approximation of problem (1.3) and
d = 1, q ≥ 4. We already pointed out that probabilistically strong solutions of SLLG (2.1), and their
higher spatial regularity properties are needed for this purpose, which exist thanks to Corollary 2.2.
Let π∗ =

(
Ω∗,F∗, {F∗t }, P ∗, β∗,m∗, u∗

)
be a 7-tuple from Theorem 2.4. By Corollary 2.2, (m∗, u∗)

satisfies the following estimates:
P ∗-a.s., |m∗(t, x)| = 1, for all t ∈ [0, T ] and every x ∈ D,
E∗
[

sup
0≤t≤T

‖m∗(t)‖2qH1 +
∫ T

0
‖∆m∗(t)‖2L2 dt

]
< +∞,

P ∗-a.s., ‖u∗(t)‖L2 ≤ K for a.e. t ∈ [0, T ] and E∗
[ ∫ T

0
‖u∗(t)‖2qH1 dt

]
< +∞.

(5.1)

Consider also (7.21), where u is replaced by Rhu∗ on the stochastic basis
(
Ω∗,F∗, {F∗t }, P ∗

)
and

by β∗. By Lemma 7.3, the SDE (7.21) with u = Rhu∗ has a unique continuous, {F∗t }-adapted
strong solution mh. Below, we use the L2-projection Ph defined in (7.9).

Lemma 5.1. Let
(
Ω∗,F∗, {F∗t }, P ∗, β∗,m∗, u∗

)
be a 7-tuple as stated in Theorem 2.4. Let mh be a

strong solution of (7.21) with u = Rhu∗ on the same filtered probability space
(
Ω∗,F∗, {F∗t }, P ∗

)
.

Set

Ω∗,hR,t =
{
ω ∈ Ω∗ : sup

s∈[0,t]

‖m∗(s)‖4H1 ≤ R
}
∩
{
ω ∈ Ω∗ : sup

s∈[0,t]

‖mh(s)‖4H1 ≤ R
}

where R > 0 is fixed. Then, there exists a constant C > 0, independent of h and R such that

sup
0≤t≤T

E∗
[
1Ω∗,hR,t

‖Ph(mh −m∗)(t)‖2L2

]
≤ ChR exp(CTR).

Proof. Step 1: Error equation and its estimate. Define ξh = mh −m∗. Then Phξh satisfies the
SDE

dPhξh(t) =
{
− α

(
Ih[mh(t)× (mh(t)×∆hmh(t))]− Ph[m∗(t)× (m∗(t)×∆m∗(t))]

)
+
(
Ih[mh(t)×∆hmh(t)]− Ph[m∗(t)×∆m∗(t)]

)
+
(
Ih[mh(t)×Rhu∗(t)]− Ph[m∗(t)× u∗(t)]

)
+
ι2

2

(
Ih[(mh(t)× a)× a]− Ph[(m∗(t)× a)× a]

)}
dt

+ ι
(
Ih[mh(t)× a]− Ph[m∗(t)× a]

)
dβ∗(t),

(5.2)

and Phξh(0) = Ih[m0]− Ph[m0]. Apply Itô’s formula to the function x→ ‖x‖2L2 to get

‖Phξh(t)‖2L2

fWe denote by (X, w) the topological space X equipped with the weak topology.



ON STOCHASTIC OPTIMAL CONTROL OF FERROMAGNETISM 17

= ‖Phξh(0)‖2L2 + 2

∫ t

0

(
Ih[mh(s)×∆hmh(s)]− Ph[m∗(s)×∆m∗(s)],Phξh(s)

)
L2
ds

+ 2

∫ t

0

(
Ih[mh(s)×Rhu∗(s)]− Ph[m∗(s)× u∗(s)],Phξh(s)

)
L2
ds

− 2α

∫ t

0

(
Ih[mh(s)× (mh(s)×∆hmh(s))]− Ph[m∗(s)× (m∗(s)×∆m∗(s))],Phξh(s)

)
L2
ds

+ ι2
∫ t

0

(
Ih[(mh(s)× a)× a]− Ph[(m∗(s)× a)× a],Phξh(s)

)
L2
ds

+ 2ι

∫ t

0

(
Ih[mh(s)× a]− Ph[m∗(s)× a],Phξh(s)

)
L2
dβ∗(s)

+ ι2
∫ t

0

∥∥Ih[mh(s)× a]− Ph[m∗(s)× a]
∥∥2

L2 ds

≡ ‖Phξh(0)‖2L2 +

6∑
i=1

Bi(t). (5.3)

Observe that, thanks to (7.5), the boundedness of mh in L∞, the H1- stability of Ih(cf. [7, Theorem
4.4.4]), the interpolation error estimate (7.6), and the inverse estimate (7.7)

− 2α
(
Ih[mh(s)× (mh(s)×∆hmh(s))],Phξh(s)

)
L2

= −2α
{(
Ih[mh(s)× (mh(s)×∆hmh(s))],Phξh(s)

)
L2

−
(
Ih[mh(s)× (mh(s)×∆hmh(s))],Phξh(s)

)
h

}
− 2α

(
Ih[mh(s)× (mh(s)×∆hmh(s))],Phξh(s)

)
h

≤ C(α)h
(
‖(Ih − Id)[mh(s)× (mh(s)×∆hmh(s))]‖L2 + ‖∆hmh(s)‖L2

)
‖∇Phξh(s)‖L2

− 2α
(
Ih[mh(s)× (mh(s)×∆hmh(s))],Phξh(s)

)
h

≤ C(α)h‖∆hmh(s))‖L2‖∇Phξh(s)‖L2 − 2α
(
Ih[mh(s)× (mh(s)×∆hmh(s))],Phξh(s)

)
h

≡ B3,1(s) + B3,2(s).

By using the vector identity b×(c×e) = c〈e, b〉−e〈b, c〉 ∀ b, c, e ∈ R3, the discrete sphere property
and the definition of the discrete Laplacian ∆h, we rewrite B3,2(s) as

B3,2(s) = −2α
(

∆hmh(s),mh(s)× (mh(s)× Phξh(s))
)
h

= −2α
(

∆hmh(s),mh(s)
〈
mh(s),Phξh(s)

〉
− Phξh(s)|mh(s)|2

)
h

= 2α
(
∆hmh(s),Phξh(s)

)
h
− 2α

(
∆hmh(s), Ih[mh(s)

〈
mh(s),Phξh(s)

〉
]
)
h

= −2α
(
∇mh(s),∇Phξh(s)

)
L2 + 2α

(
∇mh(s),∇Ih[mh(s)

〈
mh(s),Phξh(s)

〉
]
)
L2

= −2α
(
∇mh(s),∇Phξh(s)

)
L2 + 2α

(
∇mh(s),∇[mh(s)

〈
mh(s),Phξh(s)

〉
]
)
L2

+ 2α
(
∇mh(s),∇(Ih − Id)[mh(s)

〈
mh(s),Phξh(s)

〉
]
)
L2

= −2α
(
∇mh(s),∇Phξh(s)

)
L2 + 2α

(
|∇mh(s)|2mh(s),Phξh(s)

)
L2

+ 2α
(〈
mh(s),∇mh(s)

〉
,∇
〈
mh(s),Phξh(s)

〉)
L2

+ 2α
(
∇mh(s),∇(Ih − Id)[mh(s)

〈
mh(s),Phξh(s)

〉
]
)
L2

≡ −2α
(
∇mh(s),∇Phξh(s)

)
L2 + 2α

(
|∇mh(s)|2mh(s),Phξh(s)

)
L2 + B1

3,1(s) + B2
3,1(s).
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On the other hand, thanks to (7.9), and unit length property of m∗, we infer for the other term in
B3 that (

Ph[m∗(s)× (m∗(s)×∆m∗(s))],Phξh(s)
)
L2

=
(
∇m∗(s),∇Phξh(s)

)
L2 −

(
|∇m∗(s)|2m∗(s),Phξh(s)

)
L2 .

A combination of these considerations yields

B3(t) ≤ −2α

∫ t

0

(
∇ξh(s),∇Phξh(s)

)
L2
ds+ 2α

∫ t

0

(
|∇mh(s)|2ξh(s),Phξh(s)

)
L2
ds

+ 2α

∫ t

0

((
|∇mh(s)|2 − |∇m∗(s)|2

)
m∗(s),Phξh(s)

)
L2
ds+

2∑
i=1

∫ t

0

Bi
3,1(s) ds

+ C(α)h

∫ t

0

‖∆hmh(s)‖L2‖∇Phξh(s)‖L2 ds

≡
3∑
i=1

B3,i(t) +

2∑
i=1

∫ t

0

Bi
3,1(s) ds+

∫ t

0

B3,1(s) ds.

In view of (7.10), and Young’s inequality, we have for ε > 0

B3,1(t) = −2α

∫ t

0

‖∇ξh(s)‖2L2 ds+ 2α

∫ t

0

(
∇ξh(s),∇[m∗(s)− Phm∗(s)]

)
L2 ds

≤ −2α

∫ t

0

‖∇ξh(s)‖2L2 ds+ C(α)h

∫ t

0

‖∇ξh(s)‖L2‖∆m∗(s)‖L2 ds

≤ (−2α+ ε)

∫ t

0

‖∇ξh(s)‖2L2 ds+ C(α, ε)h

∫ t

0

‖∆m∗(s)‖2L2 ds.

By elementary estimates, we easily obtain (ε1, ε2 > 0)

B3,2(t) ≤ ε1

∫ t

0

‖∇ξh(s)‖2L2 ds+ C(α, ε1)
(

1 + sup
0≤s≤t

‖∇mh(s)‖4L2

)∫ t

0

‖ξh(s)‖2L2 ds,

B3,3(t) ≤ ε2

∫ t

0

‖∇ξh(s)‖2L2 ds+ C sup
0≤s≤t

(
1 + ‖∇mh(s)‖4L2 + ‖∇m∗(s)‖4L2

)∫ t

0

‖Phξh(s)‖2L2 ds.

An argumentation similar to A3,1 (cf. (7.26)), reveals that∫ t

0

B1
3,1(s) ds ≤ C(α)h

∫ t

0

(
‖∇ξh(s)‖L2‖∇mh(s)‖2L4 + ‖∇mh(s)‖2L4‖Phξh(s)‖L∞‖∇mh(s)‖L2

)
ds

≤ ε3

∫ t

0

‖∇ξh(s)‖2L2 ds+ C(ε3, α)h2

∫ t

0

‖∇mh(s)‖4L4 ds

+ C

∫ t

0

h‖∇mh(s)‖2L4‖Phξh(s)‖L∞‖∇mh(s)‖L2 ds

≤ ε3

∫ t

0

‖∇ξh(s)‖2L2 ds+ C(ε3, α)h

∫ t

0

‖∇mh(s)‖4L2 ds+ B1,1
3,1(t),

where in the last line we invoked the inverse estimate (7.7). In view of the inverse estimate (7.7),
Young’s inequality, the Gagliardo-Nirenberg inequality for d = 1, and the H1-stability of the pro-
jection operator Ph, we obtain for ε4 > 0

B1,1
3,1(t) ≤ C

∫ t

0

h
1
2 ‖Phξh(s)‖L∞‖∇mh(s)‖3L2 ds

≤ Ch
∫ t

0

‖∇mh(s)‖6L2 ds+ C

∫ t

0

‖Phξh(s)‖L2‖ξh(s)‖H1 ds

≤ Ch
∫ t

0

‖∇mh(s)‖6L2 ds+ ε4

∫ t

0

‖ξh(s)‖2H1 ds+ C(ε4)

∫ t

0

‖Phξh(s)‖2L2 ds.
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Next we estimate B2
3,1(s). Let ψ = mh(s)〈mh(s),Phξh(s)〉 and φ = [Ih − Id]ψ. By the definition

of Rh in (7.11), and of discrete Laplacian ∆h, we may rewrite B2
3,1(s) in the form

B2
3,1(s) = 2α

(
∇mh(s),∇Rhφ

)
L2 − 2α

(
mh(s), (Id−Rh)φ

)
L2

= −2α
(
∆hmh(s),Rhφ

)
h
− 2α

(
mh(s), [Id−Rh]φ

)
L2

= B2,1
3,1(s) + B2,2

3,1(s).

We first consider B2,2
3,1(s). By the estimate (7.13), the H1-stability of Rh, interpolation estimate

(7.6), the H1- stability of Ph, and the inverse estimate (7.7), Young’s inequality, and the fact that
∇2φh

∣∣
K

= 0 for all φh ∈ Vh, we have for ε5 > 0

B2,2
3,1(s) ≤ C(α)h‖∇[Rh − Id]φ‖L2 ≤ C(α)h‖[Ih − Id]ψ‖H1

≤ C(α)h2‖∇2[mh(s)〈mh(s),Phξh(s)〉]‖L2

≤ C(α)h2
(
‖∇mh(s)‖L∞‖∇Phξh(s)‖L2 + ‖|∇mh(s)|2‖L2‖Phξh(s)‖L∞

)
≤ C(α)h2‖∇mh(s)‖L∞‖∇ξh(s)‖L2 + C(α)h2

(
‖Phξh(s)‖L2‖∇ξh(s)‖L2 + ‖∇mh(s)‖4L4

)
≤ ε5‖∇ξh(s)‖2L2 + C(ε5)h

(
‖∇mh(s)‖2L2 + ‖Phξh(s)‖2L2

)
+ C(α)h‖∇mh(s)‖4L2 .

We use (7.13), (7.5), (7.8), the H1- stabilities of Rh and Ph, the interpolation error estimate (7.6),
and the inverse estimate (7.7) in combination with discrete sphere property to conclude

B2,1
3,1(s) ≤ C(α)‖∆hmh(s)‖h

(
‖[Id−Rh]φ‖L2 + ‖φ‖L2

)
≤ C(α)‖∆hmh(s)‖L2

(
h‖[Ih − Id]ψ‖H1 + ‖[Ih − Id]ψ‖L2

)
≤ C(α)h2‖∆hmh(s)‖L2‖∇2[mh(s)〈mh(s),Phξh(s)〉]‖L2

≤ C(α)h2‖∆hmh(s)‖L2

(
‖∇mh(s)‖L∞‖∇ξh(s)‖L2 + ‖∇mh(s)‖2L4‖Phξh(s)‖L∞

)
≤ C(α)h

1
2 ‖∇mh(s)‖2L2‖∇ξh(s)‖L2 + C(α)h‖∇mh(s)‖L2‖∇mh(s)‖2L4‖Phξh(s)‖L∞

≤ C(α)h
1
2 ‖∇mh(s)‖2L2‖∇ξh(s)‖L2 + C(α)h

1
2 ‖∇mh(s)‖3L2‖Phξh(s)‖L∞

≤ C(α)h
1
2 ‖∇mh(s)‖2L2‖∇ξh(s)‖L2 + C‖Phξh(s)‖L2‖∇ξh(s)‖L2 + C(α)h‖∇mh(s)‖6L2

≤ ε6‖∇ξh(s)‖2L2 + C(ε6, α)
(
‖Phξh(s)‖2L2 + h‖∇mh(s)‖4L2

)
+ C(α)h‖∇mh(s)‖6L2 .

Combining all the above estimates, we obtain

B3(t) ≤
(
− 2α+ ε+

6∑
i=1

εi
) ∫ t

0

‖∇ξh(s)‖2L2 ds+
(
C + C(ε4, ε5, ε6, α)

) ∫ t

0

‖Phξh(s)‖2L2 ds

+ C sup
0≤s≤t

(
‖∇mh(s)‖4L2 + ‖∇m∗(s)‖4L2

)∫ t

0

‖Phξh(s)‖2L2 ds

+ Ch

∫ t

0

{(
1 + C(ε3, ε4, ε6)

)
‖∇mh(s)‖4L2 + ‖∇mh(s)‖6L2 + C(ε5)‖∇mh(s)‖2L2

+ ‖∆m∗(s)‖2L2

}
ds+ C(ε1)h sup

0≤s≤t
‖∇mh(s)‖4L2

∫ t

0

‖∇m∗(s)‖2L2 ds+

∫ t

0

B3,1(s) ds. (5.4)

Next we consider B1(t). Notice that in view of (7.5), and the definitions of the discrete Laplacian
and projection operator Ph (cf. (7.9)), one has(

Ih[mh(s)×∆hmh(s)],Phξh(s)
)
L2

=
{(
Ih[mh(s)×∆hmh(s)],Phξh(s)

)
L2 −

(
Ih[mh(s)×∆hmh(s)],Phξh(s)

)
h

}
+
(
Ih[mh(s)×∆hmh(s)],Phξh(s)

)
h
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≤ Ch‖∇Phξh(s)‖L2

(
‖(Ih − Id)[mh(s)×∆hmh(s)]‖L2 + ‖∆hmh(s)‖L2

)
+
(
Ih[mh(s)×∆hmh(s)],Phξh(s)

)
h

≤
(
∇mh(s),∇[mh(s)× Phξh(s)]

)
L2 + Ch‖∆hmh(s)‖L2 ‖∇Phξh(s)‖L2

=
(
∇mh(s),mh(s)×∇Phξh(s)]

)
L2 + B3,1(s),

and
(
Ph[m∗(s)×∆m∗(s)],Phξh(s)

)
L2 =

(
∇m∗(s),m∗(s)×∇Phξh(s)]

)
L2 .

As a consequence, we obtain the bound

B1(t) ≤ 2

∫ t

0

(
∇ξh(s),mh(s)×∇Phξh(s)]

)
L2 ds+

∫ t

0

B3,1(s) ds

+ 2

∫ t

0

(
∇m∗(s), ξh(s)×∇Phξh(s)]

)
L2 ds

≡ B1,1(t) +

∫ t

0

B3,1(s) ds+ B1,2(t).

Since
(
∇ξh(s),mh(s)×∇ξh(s)

)
L2 = 0, in view of a Gagliardo-Nirenberg inequality for d = 1, (7.10),

the H1- stability of Ph and Young’s inequality, we obtain the following bounds for B1,i(t) (i = 1, 2)

B1,1(t) = 2

∫ t

0

(
∇ξh(s),mh(s)×∇[m∗(s)− Phm∗(s)]

)
L2 ds

≤ Ch
∫ t

0

‖∇ξh(s)‖L2‖∆m∗(s)‖L2 ds ≤ ε7

∫ t

0

‖∇ξh(s)‖2L2 ds+ C(ε7)h2

∫ t

0

‖∆m∗(s)‖2L2 ds,

B1,2(t) ≤ C
∫ t

0

‖∇m∗(s)‖L2‖ξh(s)‖L∞‖∇ξh(s)‖L2 ds

≤ ε8

∫ t

0

‖∇ξh(s)‖2L2 ds+ C(ε8)
(

1 + sup
0≤s≤t

‖∇m∗(s)‖4L2

)∫ t

0

‖ξh(s)‖2L2 ds

≤ ε8

∫ t

0

‖∇ξh(s)‖2L2 ds+ C(ε8)
(

1 + sup
0≤s≤t

‖∇m∗(s)‖4L2

)∫ t

0

‖Phξh(s)‖2L2 ds

+ C(ε8)h
(

1 + sup
0≤s≤t

‖∇m∗(s)‖4L2

)∫ t

0

‖m∗(s)‖2H1 ds,

where ε7, ε8 > 0. Thus, we have

B1(t) ≤ (ε7 + ε8)

∫ t

0

‖∇ξh(s)‖2L2 ds+ C(ε8)
(

1 + sup
0≤s≤t

‖∇m∗(s)‖4L2

)∫ t

0

‖Phξh(s)‖2L2 ds

+ C(ε8)h
(

1 + sup
0≤s≤t

‖∇m∗(s)‖4L2

)∫ t

0

‖m∗(s)‖2H1 ds+ C(ε7)h2

∫ t

0

‖∆m∗(s)‖2L2 ds. (5.5)

Now we estimate B2(t). Thanks to (7.9)(
Ih[mh(s)×Rhu∗(s)]− Ph[m∗(s)× u∗(s)],Phξh(s)

)
L2

=
(
ξh(s)×Rhu∗(s),Phξ(s)

)
L2

+
(
m∗(s)× (Rhu∗(s)− u∗(s)),Phξ(s)

)
L2

+
(

(Ih − Id)[mh(s)×Rhu∗(s)],Phξh(s)
)
L2

≡ B2,1(s) + B2,2(s) + B2,3(s).

We use the interpolation error estimate (7.6), i) of Lemma 7.3, the H1- stability of Rh, and the
inverse estimate (7.7) to estimate

B2,3(s) ≤ Ch‖Phξh(s)‖L2‖∇(mh(s)×Rhu∗(s))‖L2

≤ Ch‖Phξh(s)‖L2

(
‖u∗(s)‖H1 + ‖∇mh(s)‖L∞‖Rhu∗(s)‖L2

)
≤ C‖Phξh(s)‖L2

(
h‖u∗(s)‖H1 + h

1
2 ‖∇mh(s)‖L2‖u∗(s)‖H1

)
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≤ C‖Phξh(s)‖2L2 + Ch
(
‖u∗(s)‖4H1 + ‖∇mh(s)‖4L2 + ‖u∗(s)‖2H1

)
.

Similarly,

B2,1(s) =
(
ξh(s)×Rhu∗(s),Phξh(s)− ξh(s)

)
L2 ≤ Ch

(
‖u∗(s)‖2H1 + ‖m∗(s)‖2H1

)
,

B2,2(s) ≤ C‖Phξh(s)‖L2‖(Id−Rh)u∗(s)‖L2 ≤ Ch2‖u∗(s)‖2H1 + C‖Phξh(s)‖2L2 ,

where in the last inequality, we invoked (7.13) and the H1- stability of Rh. Therefore, we obtain

B2(t) ≤ Ch
∫ t

0

(
‖∇mh(s)‖4L2 + ‖u∗(s)‖4H1 + ‖u∗(s)‖2H1 + ‖m∗(s)‖2H1

)
ds+ C

∫ t

0

‖Phξh(s)‖2L2 ds.

(5.6)

Since a ∈W1,∞, by the interpolation error estimate (7.6), i) of Lemma 7.3, and (7.10), we obtain(
Ih[(mh(s)× a)× a]− Ph[(m∗(s)× a)× a],Phξh(s)

)
L2

=
(

(Ih − Id)[(mh(s)× a)× a],Phξh(s)
)
L2

+
(

(ξh(s)× a)× a,Phξh(s)
)
L2

≤ C‖Phξh(s)‖2L2 + Ch
(
‖∇mh(s)‖2L2 + ‖∇a‖2L2 + ‖m∗(s)‖2H1

)
,

and therefore

B4(t) ≤ C
∫ t

0

‖Phξh(s)‖2L2 ds+ Ch

∫ t

0

(
‖∇mh(s)‖2L2 + ‖∇a‖2L2 + ‖m∗(s)‖2H1

)
ds. (5.7)

We continue with B6(t). Thanks to the boundedness of the solutions in L∞, (7.6), (7.10), and
keeping in mind that a ∈W1,∞ we get

B6(t) ≤ ι2
∫ t

0

(∥∥(Ih − Id)[mh(s)× a]
∥∥2

L2 +
∥∥(Id− Ph)[m∗(s)× a]

∥∥2

L2 +
∥∥ξh(s)× a

∥∥2

L2

)
ds

≤ Ch
∫ t

0

(
‖∇[mh(s)× a]‖2L2 + ‖∇[m∗(s)× a]‖2L2

)
ds+ C

∫ t

0

‖ξh(s)‖2L2 ds

≤ Ch
∫ t

0

(
‖∇mh(s)‖2L2 + ‖m∗(s)‖2H1 + ‖∇a‖2L2

)
ds+ C

∫ t

0

‖Phξh(s)‖2L2 ds. (5.8)

Thanks to Young’s inequality, for ε9 > 0∫ t

0

B̄3,1(s) ds ≤ ε9

∫ t

0

‖∇ξh(s)‖2L2 ds+ C(ε9)h

∫ t

0

‖∆hmh(s)‖2L2 ds. (5.9)

Step 2: Estimates on Ω∗,hR,t and Gronwall’s lemma. We combine (5.4),(5.5), (5.6), (5.7), and

(5.8) along with (5.9) in (5.3) and choose ε, ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8 and ε9 > 0 such that 2α >

ε+
∑9
i=1 εi. Then

‖Phξh(t)‖2L2 ≤ Ch‖m0‖2H1 + C sup
0≤s≤t

(
‖∇mh(s)‖4L2 + ‖∇m∗(s)‖4L2

)∫ t

0

‖Phξh(s)‖2L2 ds

+ C

∫ t

0

‖Phξh(s)‖2L2 ds+ Ch sup
0≤s≤t

(
1 + ‖∇mh(s)‖4L2 + ‖∇m∗(s)‖4L2

)∫ t

0

‖m∗(s)‖2H1 ds

+ Ch

∫ t

0

{
‖∇a‖2L2 + ‖u∗(s)‖2H1 + ‖u∗(s)‖4H1 + ‖m∗(s)‖2H1 + ‖∆m∗(s)‖2L2

+ ‖∆hmh(s)‖2L2 + ‖mh(s)‖2H1 + ‖∇mh(s)‖4L2 + ‖∇mh(s)‖6L2

}
ds

+ 2ι

∫ t

0

(
Ih[mh(s)× a]− Ph[m∗(s)× a],Phξh(s)

)
L2
dβ∗(s). (5.10)
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We now restrict the estimate on Ω∗,hR,t. Note that

Ω∗,hR,t ⊂ Ω∗,hR,s (0 ≤ s < t). (5.11)

Thanks to (5.1), i)-iii) of Lemma 7.3, and (5.11), we obtain from (5.10)

E∗
[
1Ω∗,hR,t

‖Phξh(t)‖2L2

]
≤ Ch+ CRh+ CRE∗

[ ∫ t

0

1Ω∗,hR,s
‖Phξh(s)‖2L2 ds

]
+ 2ι E∗

[
1Ω∗,hR,t

∫ t

0

(
Ih[mh(s)× a]− Ph[m∗(s)× a],Phξh(s)

)
L2
dβ∗(s)

]
.

By using (7.6), (7.9), (7.10), the boundedness of the solutions in L∞, Itô’s-isometry, Cauchy-Schwarz
inequality, the L2-stability of Ph, and the fact that

(
ξh(s)× a, ξh(s)

)
L2 = 0, we get∣∣∣E∗[1Ω∗,hR,t

∫ t

0

(
Ih[mh(s)× a]− Ph[m∗(s)× a],Phξh(s)

)
L2
dβ∗(s)

]∣∣∣
≤
{
E∗
[ ∫ t

0

∣∣∣(Ih[mh(s)× a]− Ph[m∗(s)× a],Phξh(s)
)
L2

∣∣∣2 ds]} 1
2

≤ C
{
E∗
[ ∫ t

0

∣∣∣((Ih − Id)[mh(s)× a],Phξh(s)
)
L2

+
(
ξh(s)× a,Phξh(s)− ξh(s)

)
L2

∣∣∣2 ds]} 1
2

≤ Ch
{
E∗
[ ∫ t

0

(
‖∇mh(s)‖4L2 + ‖∇a‖4L2 + ‖m∗(s)‖4H1 + ‖ξh(s)‖4L2

)
ds
]} 1

2 ≤ Ch.

Thus,

E∗
[
1Ω∗,hR,t

‖Phξh(t)‖2L2

]
≤ CRh+ CRE∗

[ ∫ t

0

1Ω∗,hR,s
‖Phξh(s)‖2L2 ds

]
.

Hence, thanks to Gronwall’s inequality, we obtain

sup
0≤t≤T

E∗
[
1Ω∗,hR,t

‖Phξh(t)‖2L2

]
≤ ChR exp(CRT ),

for some constant C > 0, independent of h and R. This completes the proof. �

5.1. Proof of Theorem 2.4. With the help of Lemma 5.1, we will prove this theorem in three
steps.
Step 1: Let π̄h =

(
Ω∗,F∗, {F∗t }, P ∗, β∗,mh,Rhu∗

)
∈ Uwad,h(m0, T ) and

π∗ =
(
Ω∗,F∗, {F∗t }, P ∗, β∗,m∗, u∗

)
∈ Uwad(m0, T ) such that J(π∗) = inf

π∈Uwad(m0,T )
J(π). In this step,

we show that Jh(π̄h) → J(π∗) as h → 0. Let C > 0 be the constant in Lemma 5.1. We set
R = 1

CT log(h−δ) for some constant δ > 0 which will be chosen later. Then,

sup
0≤t≤T

E∗
[
1Ω∗,hR,t

‖Phξh(t)‖2L2

]
≤ h1−δ

T
log(h−δ). (5.12)

For 0 ≤ t ≤ T , let us calculate P ∗((Ω∗,hR,t)
c), where (Ω∗,hR,t)

c denotes the complement of Ω∗,hR,t in Ω∗ .
In view of Chebyshev’s inequality, and the special choice of R,

P ∗((Ω∗,hR,t)
c) ≤ P ∗

({
ω ∈ Ω∗ : sup

s∈[0,t]

‖m∗(s)‖4H1 > R
})

+ P ∗
({
ω ∈ Ω∗ : sup

s∈[0,t]

‖mh(s)‖4H1 > R
})

≤ CT

log(h−δ)
E∗
[

sup
0≤s≤T

(
‖mh(s)‖4H1 + ‖m∗(s)‖4H1

)]
≤ C̃

log(h−δ)
. (5.13)

Next we compute P ∗
(
‖Phξh(t)‖L2 > Chτ

)
for some τ > 0, which we will use to estimate the

functional in (5.15). By using Chebyshev’s inequality, estimates (5.12), and (5.13), we get

P ∗
(
‖Phξh(t)‖L2 > Chτ

)
≤ P ∗

(
{‖Phξh(t)‖L2 > Chτ} ∩ Ω∗,hR,t

)
+ P ∗

(
(Ω∗,hR,t)

c
)

≤ 1

C2h2τ
E∗
[
1Ω∗,hR,t

‖Phξh(t)‖2L2

]
+ P ∗

(
(Ω∗,hR,t)

c
)
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≤ h1−δ−2τ

TC2
log(h−δ) +

C̃

log(h−δ)
,

which yields that

sup
0≤t≤T

P ∗
(
‖Phξh(t)‖L2 > Chτ

)
≤ h1−δ−2τ

TC2
log(h−δ) +

C̃

log(h−δ)
. (5.14)

Note that P ∗-a.s., |mh(t, x)| ≤ 1 and |m∗(t, x)| = 1 for all t ∈ [0, T ] and every x ∈ D. Thus, since
ψ is Lipschitz continuous on L2 by using the triangle inequality, and the binomial formula, we have∣∣Jh(π̄h)− J(π∗)

∣∣ ≤ E∗[ ∫ T

0

∣∣∣∥∥mh(s)− m̄(s)
∥∥2

L2 −
∥∥m∗(s)− m̄(s)

∥∥2

L2

∣∣∣ ds
+ E∗

[ ∫ T

0

∣∣∣∥∥mh(s)− Ih[m̄(s)]
∥∥2

L2 −
∥∥mh(s)− m̄(s)]

∥∥2

L2

∣∣∣ ds]
+ E∗

[ ∫ T

0

∣∣∣∥∥mh(s)− Ih[m̄(s)]
∥∥2

h
−
∥∥mh(s)− Ih[m̄(s)]

∥∥2

L2

∣∣∣ ds]
+ E∗

[ ∫ T

0

∣∣∣‖Rhu∗(s)‖2qH1 − ‖u∗(s)‖2qH1

∣∣∣ ds]+
∣∣ψ(mh(T ))− ψ(m∗(T ))

∣∣]
≡ J1 + J2 + J3 + J4 + J5. (5.15)

Let us first consider the term J1. Thanks to the estimate (5.14), the L2-stability of the projection
operator Ph, and the boundedness of m∗ and mh in L∞, we have

J1 ≤ CE∗
[ ∫ T

0

‖mh(s)−m∗(s)‖L2 ds
]
≤ CE∗

[ ∫ T

0

‖Phξh(s)‖L2 ds
]

+ Ch

≤ C
∫ T

0

{∫
{ω:‖Phξh(s)‖L2>Chτ}

+

∫
{ω:‖Phξh(s)‖L2≤Chτ}

}
‖Phξh(s)‖L2 dP ∗(ω) ds+ Ch

≤ h1−δ−2τ

TC
log(h−δ) +

C̃

log(h−δ)
+ Chτ + Ch.

We proceed similarly with J5 and find the same bound. Since m̄ ∈ H1(DT ;S2), by using the
interpolation error estimate (7.6), and the fact that ‖Ihφ‖L∞ ≤ ‖φ‖L∞ for all φ ∈ C(D;R3), we
find that J2 ≤ Ch. Again in view of (7.5) and (7.6), one can find the same bound for J3. Next
we estimate J4. Note that for a.s. ω ∈ Ω∗, Rhu∗(s) converges to u∗(s) in H1 for all s ∈ [0, T ], and

therefore ‖Rhu∗(s)‖2qH1 converges to ‖u∗(s)‖2qH1 . Thanks to the H1- stability of Rh and (5.1), one
can use the dominated convergence theorem to conclude that J5 → 0 as h→ 0.

Let us choose δ, τ > 0 such that 2τ + δ < 1. Now, we combine these results in (5.15), and choose
δ and τ as in the above discussion. The result is∣∣Jh(π̄h)− J(π∗)

∣∣ ≤ h1−δ−2τ

TC
log(h−δ) +

C̃

log(h−δ)
+ Chτ + Ch+ J5 −→ 0 (h→ 0).

i.e.,

Jh(π̄h)→ J(π∗) (h→ 0). (5.16)

Step 2: Fix h > 0. Let π∗h =
(
Ωh,Fh, {Fht }, Ph, β∗h,m∗h, u∗h

)
∈ Uwad,h(m0, T ) be such that

Jh(π∗h) = inf
π∈Uwad,h(m0,T )

Jh(π).

In this step, we show that J(π∗) ≤ Jh(π∗h). Note that problem (7.21) has a probabilistically strong
solution on a given filtered probability space for u = 0. Thus, there exists R > 0 such that

Eh
[ ∫ T

0

‖u∗h(t)‖2qH1 dt
]
≤ R. (5.17)
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Moreover, m∗h satisfies the bounds from Lemma 7.3. Furthermore, Ph- a.s., and for all t ∈ [0, T ],
we have

m∗h(t) = Ih[m0] +

∫ t

0

Ih[m∗h(s)×∆hm
∗
h(s)] ds+

∫ t

0

Ih[m∗h(s)×
∫
L2

vδu∗h(s,·)(dv)] ds

− α
∫ t

0

Ih[m∗h(s)×
(
m∗h(s)×∆hm

∗
h(s)

)
] ds+

ι2

2

∫ t

0

Ih[(m∗h(s)× a)× a] ds

+ ι

∫ t

0

Ih[m∗h(s)× a] dβ∗h(s).

Define the associated Young measure λh(dv, dt) = δu∗h(t,·)(dv) dt. Then, repeating the same argu-

ments (cf. Step 1 of the proof of Theorem 3.1) we infer that the family of laws of {λh}h>0 is tight on
Y(0, T ;L2). Moreover, by proceeding similar to Steps 2-3 of the proof of Theorem 3.1, there exist

a probability space (Ω̃, F̃ , P̃ ), a sequence of random variables
{(
m̃∗h, λ̃h, β̃

∗
h

)}
h>0

and
(
m̃∗, λ̃, β̃∗

)
defined on (Ω̃, F̃ , P̃ ) with values in C([0, T ];L2)×Y(0, T ;L2)×C([0, T ];R), such that for all h > 0

(
m̃∗h, λ̃h, β̃

∗
h

) d
=
(
m∗h, λh, β

∗
h

)
, and P̃ -a.s.,


m̃∗h → m̃∗ in C([0, T ];L2),

λ̃h → λ̃ stably in Y(0, T ;L2),

β̃∗h → β̃∗ in C([0, T ];R).

(5.18)

Since P̃ -a.s., λ̃h, λ̃ ∈ Y(0, T ;L2), there exist relaxed control processes {q̃ht }t∈[0,T ] and {q̃t}t∈[0,T ]

defined on the probability space (Ω̃, F̃ , P̃ ) such that P̃ -a.s.,

λ̃h(dv, dt) = q̃ht (dv) dt, and λ̃(dv, dt) = q̃t(dv) dt.

We define the filtrations: for t ∈ [0, T ]

F̃ht = σ
{(
m̃∗h(s), q̃hs , β̃

∗
h(s)

)
: 0 ≤ s ≤ t

}
, and F̃t = σ

{(
m̃∗(s), q̃s, β̃

∗(s)
)

: 0 ≤ s ≤ t
}
.

Thanks to (5.18), we have π̃h =
(
Ω̃, F̃ , {F̃ht }, P̃ , β̃∗h, m̃∗h, ũ∗h

)
∈ Uwad,h(m0, T ) and

Jh(π̃h) = Jh(π∗h), (5.19)

where ũ∗h(t) =
∫
L2 v q̃

h
t (dv) satisfies (2.3). One can use (5.18), i)-iii) of Lemma 7.3, and adapt

a similar argument as in Steps 5, 6 and 8 of the proof of Theorem 3.1 along with [8, Lemma

5.2] to obtain a 7-tuple π̃∗ =
(
Ω̃, F̃ , {F̃t}, P̃ , β̃∗, m̃∗, ũ∗

)
∈ Uwad(m0, T ), where ũ∗ is defined by

ũ∗(t) =
∫
L2 v q̃t(dv) satisfying (2.3), and β̃∗ is a {F̃t}-adapted real-valued Brownian motion.

Next we calculate J(π̃h). We see that

J(π̃h) = Ẽ
[ ∫ T

0

(∥∥m̃∗h(t)− m̄(t)
∥∥2

L2 + ‖ũ∗h(t)‖2qH1

)
dt
]

+ Ẽ
[
ψ(m̃∗h(T ))

]
= Ẽ

[ ∫ T

0

(∥∥m̃∗h(t)− Ih[m̄(t)]
∥∥2

h
+ ‖ũ∗h(t)‖2qH1

)
dt
]

+ Ẽ
[
ψ(m̃h(T ))

]
+ Ẽ

[ ∫ T

0

(∥∥m̃∗h(t)− m̄(t)
∥∥2

L2 −
∥∥m̃∗h(t)− Ih[m̄(t)]

∥∥2

h

)
dt
]

= Jh(π̃h) + Ẽ
[ ∫ T

0

(∥∥m̃∗h(t)− m̄(t)
∥∥2

L2 −
∥∥m̃∗h(t)− Ih[m̄(t)]

∥∥2

h

)
dt
]

:= Jh(π̃h) + Jerror(π̃h).

We proceed similarly (cf. J3 and J4) to have Jerror(π̃h) ≤ Ch yielding J(π̃h) = Jh(π̃h) +O(h). We
may then adapt the arguments in Step 9 of the proof of Theorem 3.1 to obtain

J(π∗) ≤ J(π̃∗) ≤ lim inf
h

J(π̃h) = lim inf
h

(
Jh(π̃h) +O(h)

)
= lim inf

h
Jh(π̃h) = lim inf

h
Jh(π∗h) ≤ Jh(π∗h),

where the first inequality follows from the fact that J(π∗) = inf
π∈Uwad(m0,T )

J(π).
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Step 3: Since Jh(π∗h) = inf
π∈Uwad,h(m0,T )

Jh(π), by Steps 1 and 2 we have

J(π∗) ≤ Jh(π∗h) ≤ Jh(π̄h)→ J(π∗) as h→ 0,

where we have invoked (5.16) to have the last expression. In other words, Jh(π∗h)→ J(π∗) as h→ 0.
This completes the proof.

5.2. Proof of Corollary 2.5. Following the proof of Theorem 2.4, we see that there exist a
probability space

(
Ω̃, F̃ , P̃

)
, and related weak optimal solutions π̃∗h =

(
Ω̃, F̃ , {F̃ht }, P̃ , β̃∗h, m̃∗h, ũ∗h

)
∈

Uwad,h(m0, T ) and π̃∗ =
(
Ω̃, F̃ , {F̃t}, P̃ , β̃∗, m̃∗, ũ∗

)
∈ Uwad(m0, T ) such that P̃ -a.s.,

m̃∗h → m̃∗ in C([0, T ];L2); β̃∗h → β̃∗ in C([0, T ];R).

for h→ 0. Moreover

ũ∗h ⇀ ũ∗ in L2q(Ω̃× (0, T );H1), and Jh(π̃∗h)→ J(π̃∗) = J(π∗) (h→ 0).

Therefore, it remains to show the strong convergence of ũ∗h to ũ∗. Define

Θ(ũ∗h) := Ẽ
[ ∫ T

0

‖ũ∗h(s)‖2qH1 ds
]
, and Θ(ũ∗) := Ẽ

[ ∫ T

0

‖ũ∗(s)‖2qH1 ds
]
.

Since Jh(π̃∗h) → J(π̃∗) (h → 0), we have Θ(ũ∗h) → Θ(ũ∗) (h → 0). The weak convergence, and

uniform convexity of the space L2q(Ω̃× (0, T );H1) then leads to the conclusion.

6. Discretization of Pontryagin’s maximum principle

In this section, we detail steps to obtain an implementable algorithm to approximately solve
equations (2.5), (2.7)–(2.8). Key tools next to the structure preserving discretization in time
(Algorithm 2.7) of (2.5) and the semi-implicit time discretization for the approximation of the
BSDE (2.7) are the least-squares Monte Carlo method to approximate conditional expectations in
Algorithm 2.8, and the stochastic gradient method to generate a convergent sequence of control
processes. We are interested in moving a initial profile along a ferromagnetic wire:

Example 6.1. Fix T > 0, α > 0, and let δ, ι, κ, λ1, λ2 ≥ 0. Find a tuple (m,u), which minimizes

J(π) = E
[∫ T

0

(
δ‖m− m̄‖2L2 +

(
1 + λ1‖u‖2L2 + λ2‖∇u‖2L2

)4)
dt+ κψ(m(T ))

]
(6.1)

subject to (1.1) with periodic boundary conditions, and the control constraint P -a.s. ‖u(t)‖L2 ≤ K
for a.e. t ∈ [0, T ].

6.1. Approximation of the adjoint equation. If compared to Section 2.3, we use ‘algebraic
versions’ of Algorithms 2.7, and 2.8, since the finite element space Vh may be identified with (R3)L.
Since nodal values of iterates of (2.9) are in S2, each M j(ω) ∈ Vh can be represented by a vector
−→
M j(ω) ∈ (S2)L. We denote by ‘Stiff‘ the stiffness matrix consisting of entries (∇φl,∇φk)L2 , while
‘Mass‘ denotes the mass matrix with entries (φl, φk)L2 . The P1-finite element projection of the

deterministic target profile at time tj is denoted by
−→
M

j
.

The stochastic gradient method in Subsection 6.2 generates a sequence of approximating feedback

functions {U (v),j
R ; v ∈ N} which then enter the adjoint equation in Algorithm 2.8 in the next

iteration. Hence, suppose for the following that the approximation of the control
−→
U j may be written

in terms of
−→
M j , i.e.

−→
U j = U j(

−→
M j), where U j : (S2)L → (R3)L is a given deterministic function.

Then
−→
M j+1 can be expressed by

−→
M j+1 = F j+1(

−→
M j ,∆jβ), where F j+1 : (S2)L × R → (R3)L is a

deterministic function.

Algorithm 6.2. Let
−→
P J := −κDΨ(

−→
MJ). For every j = J − 1, . . . , 0 determine

Mass
−→
Q j = E

[−→
Ψ j
Q(∆jβ,

−→
P j+1)

∣∣Ftj], (6.2)

and

LS(
−→
M j ,
−→
U j) ·

−→
P j = E

[−→
Ψ j
P (
−→
P j+1,

−→
M j+1, a)

∣∣Ftj]− ιkB3(
−→
Q j , a), (6.3)
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where

−→
Ψ j
Q(∆jβ,

−→
P j+1) :=

∆jβ

k
Mass

−→
P j+1,

−→
Ψ j
P (
−→
P j+1,

−→
M j+1, a) := Mass

−→
P j+1 − 2δkMass

(−→
M j+1 −

−→
M

j+1)
+ 2αkB1(

−→
P j+1,

−→
M j+1)

+
ι2

2
kB2(

−→
P j+1, a).

Moreover, the matrix LS is given by

LS(
−→
M j ,
−→
U j) := Mass +αk Stiff −αkA1(

−→
M j)− kA2(

−→
M j) + kA3(

−→
M j)− kA4(

−→
U j).

The objects A1(·) to A4(·) are matrices, whose (l, k)-th entry is

A1(M) :=
(
|∇M |2φl, φk

)
L2 , A2(M) :=

(
M ×∇φl,∇φk

)
L2 ,

A3(M) :=
(
∇M ×∇φl, φk

)
L2 , A4(U) :=

(
U × φl, φk

)
L2 ,

and B1(·) to B3(·) are vectors, whose k-th entry consists of

B1(P,M) :=
(
〈P,M〉R3∇M,∇φk

)
L2 , B2(M,a) :=

(
(M × a)× a, φk

)
L2 ,

B3(Q, a) :=
(
Q× a, φk

)
L2 .

Thanks to
−→
M j+1 = F j+1(

−→
M j ,∆jβ), we may represent the solution of (6.2)–(6.3) by two mea-

surable, deterministic, but unknown functions
−→
P j : (S2)L → (R3)L and

−→
Qj : (S2)L → (R3)L, such

that
−→
P j =

−→
P j(
−→
M j) and

−→
Q j =

−→
Qj(
−→
M j) , (6.4)

where

−→
Qj(
−→
X ) = E

[∆jβ

k

−→
P j+1(

−→
M j+1)

−→
M j =

−→
X
]
, (6.5)

−→
P j(
−→
X ) = E

[(
LS(
−→
M j ,
−→
U j(
−→
X ))

)−1

·
(

Mass
−→
P j+1(

−→
M j+1)− 2kMass

(−→
M j+1 −

−→
M

j+1)
+ 2αkB1(

−→
P j+1(

−→
M j+1),

−→
M j+1) +

ι2

2
kB2(

−→
P j+1(

−→
M j+1), a)

) −→
M j =

−→
X
]

(6.6)

− ιk
(

LS(
−→
M j ,
−→
U j(
−→
X ))

)−1

· B3(
−→
Qj(
−→
X ), a).

Our aim is to approximate and simulate the deterministic functions
−→
Qj(·) and

−→
P j(·) of the

feedback representation given in (6.4). This is carried out using the partition estimation method,
which is a special case of the least squares Monte-Carlo method; cf. [21]. This method approximates
−→
Qj(·) and

−→
P j(·) by

−→
QjR(·) and

−→
P jR(·) using the finite dimensional space span

{
1Cjr

(·); r = 1, . . . , R
}

,

where the regions {Cjr}Rr=1 form a partition of (S2)L, i.e.
⋃R
r=1 C

j
r =

−→
M j [Ω] = (S2)L. Let ΘQ

j

resp. ΘP
j

denote a component of the argument in the conditional expectation in (6.5) resp. (6.6).

The r-th coefficient qjr of
−→
QjR(·) may then be computed using

qjr =
1

#
{−→
M j

m ∈ Cjr
} M∑
m=1

1Cjr
(
−→
M j

m)ΘQ
j

m , (6.7)

where M � R many independent samples (
−→
M j

m,Θ
Qj
m ) of (

−→
M j ,ΘQ

j

) are used. The computation of
the coefficients in (6.7) at a fixed time iteration point j ∈ {T/k− 1, . . . , 0} consists of the following
steps:

(A) Simulate M many paths of the forward SPDE via Algorithm 2.7 starting at t0 up to tj+1.
(B) Evaluate in which region Cjr each path at time tj has been fallen into.

(C) Compute for each region Cjr the mean value of those ΘQ
j

resp. ΘP
j

, whose path at time
tj is contained in it.
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Simulating a nonlinear system of equations in Algorithm 2.7 from t0 up to tj+1 in step (A) and
locating the region Cjr which contains the specific realization at time tj in step (B) is time consuming;
in addition, all R coefficients {qjr}Rr=1 resp. {pjr}Rr=1 are computed at once, requiring the storage

of M realizations of (
−→
M j

m,Θ
Qj
m ) resp. (

−→
M j

m,Θ
Pj
m ). To weaken these limitations, we use a further

approximation: For each 1 ≤ r ≤ R, choose a representative element
−→
M j

repr,r ∈ Cjr , and then

proceed for each region Cjr as follows:

(A’) Simulate M/R many paths of the forward SPDE using Algorithm 2.7 starting at tj to tj+1

using the (local) start value
−→
M j

r,repr.

(B’) Compute the mean value of ΘQ
j

resp. ΘP
j

for this region Cjr .

Both steps (A’)–(B’) correspond only to one region Cjr . This allows to compute different regions in
parallel, and moreover, reduces the huge computational memory demands otherwise needed, since

only M/R many realizations (
−→
M j

m,Θ
Qj
m ) resp. (

−→
M j

m,Θ
Pj
m ) of the r-th region Cjr have to be stored.

This approach was suggested in [22], using a hypercube partition in combination with drawing the

(local) start values
−→
M j

repr,r from a logistic distribution. In our context, a partition by hypercubes
is not suitable, since the discretization of a SPDE is a high dimensional problem (3L dimensions).

Instead we proceed as in [14] adaptively to partition
−→
M j [Ω]:

(1) Simulate R additional realizations
{−→
M j

add,r}Rr=1 of the (S2)L-valued random variable
−→
M j .

(2) Define the region Cjr by

Cjr :=
{−→
X ∈ (S2)L; |

−→
X −

−→
M j

add,r|(R3)L < inf
r 6=s
|
−→
X −

−→
M j

add,s|(R3)L
}
.

(3) Define the local basis function ηjr(·) := 1Cjr
(·).

This strategy decomposes (S2)L according to the distribution of
−→
M j : it creates more regions in areas

where
−→
M j is more likely to take values, and may be quickly realized in actual simulations. We use

the center
−→
M j

add,r of the region Cjr as the (local) starting value
−→
M j

repr,r in the local computation
instead of drawing the starting value by some distribution. This choice has the advantage that we

have only to build the matrix LS(
−→
M j

add,r,
−→
U j
r) and a corresponding LR-decomposition of it at one

time for each region, instead of for each realization, and thus saves computation time.

6.2. The stochastic gradient method. The stochastic gradient method which was introduced
in [14, 15] is an iterative scheme which generates a sequence of approximate feedback control

functions U (v),j
R (·) on a sequence of partitions {C(v),j

r }Rr=1 of Vh, which decrease monotonically

the cost functional v 7→ J(M (v),·,U (v),·
R (M (v),·)). The stochastic gradient method updates the

coefficients of the feedback function U (v),j
R (·) (2.14) according to an approximation of the maximum

principle (2.11), where (local) approximations of the state, the adjoint, and the control considered

in each region C
(v),j
r are involved. By a similar calculation as in [15], the (local) gradient step

−→
G

(v−1),j
r for region r = 1, . . . , R is given by

−→
G (v−1),j
r := −8

(
1 + λ1

−→
U (v−1),j
r Mass

−→
U (v−1),j
r + λ2

−→
U (v−1),j
r Stiff

−→
U (v−1),j
r

)7

×
(

2λ1 Mass
−→
U (v−1),j
r + 2λ2 Stiff

−→
U (v−1),j
r

)
+ A4(

−→
M

(v),j
add,r)

−→
P (v),j
r .

Scheme 6.3 (Stochastic gradient method for the stochastic control problem).

(1) Set
−→
U (0),j ≡

−→
U j

init for each j = 0, . . . , J , and for each basis region indexed by r = 1, . . . , R
in the first gradient iteration step.

(2) Iterate v = 1, 2, . . . until a stopping criterion is met:
(i) Forward SPDE: For each j = 0, . . . , J−1 simulate the (S2)L-valued random variable
−→
M (v),j+1 by Algorithm 2.7 using

−→
U (v−1),j
R (·) and

−→
M (v),j .
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(ii) Backward SPDE: Set
−→
U (v),J
R (

−→
X ) := −2κ

(−→
X −

−→
M

J)
. For each j = J − 1, . . . , 0,

approximate
−→
Q(v),j
R (·) and

−→
P (v),j
R (·) from (6.5)–(6.6) using the least squares Monte-

Carlo method, as well as
−→
U (v−1),j
R (·),

−→
P (v),j+1
R (·),

−→
M (v),j+1, and

−→
M (v),j .

Obtain
−→
P (v),j
R (·), resp.

−→
Q(v),j
R (·) with coefficients {

−→
P

(v),j
r }Rr=1, resp. {

−→
Q

(v),j
r }Rr=1.

(iii) Gradient step: Compute the coefficients {
−→
U

(v),·
r }Rr=1 according to

−→
U

(v),·
· = PŪ

[−→
U

(v−1),·
· + σ(v) ·

−→
G

(v−1),·
·

]
, (6.8)

using a suitable step size σ(v).

(iv) Evaluate the cost function J(·) or the gradient
−→
G

(v−1),·
· to decide if a stopping criterion

is met.

The projection PŪ in (6.8) is understood as a projection in each time step j, each region r,
and each position in space xl to the ball BŪ (xl). For the computation of the step size σ(v) in
equation (6.8) we use a modification of Armijo’s rule:

• Approximate the current cost function J (v−1) using the coefficients
−→
U

(v−1),·
· .

• Iterate s = 0, 1, 2, . . . until a stopping criterion is met:

– Set
−→
U

(v),·,s
· = PŪ

[−→
U

(v−1),·
· + σ?βs

−→
G

(v−1),·
·

]
.

– Approximate the cost function J (v),s using the coefficients
−→
U

(v),·,s
· .

– Stop, if J (v),s − J (v−1) ≤ −σσ?βskR−1
∑J−1
j=0

∑R
r=1 ‖

−→
G

(v−1),j
r ‖2(R3)L .

6.3. Computational studies. In Example (6.1), we fix T = 0.5, α = 0.02, and ψ(x) := ‖x −
m̄(T )‖2L2 . The initial value m0 is different on the two disjoint regions, which supports a plateau

(orange in Figure 1) where m0 attains the value (0, 0, 1)T , while the other supports a rotation on
the sphere using sine and cosine functions. This plateau is moved in space at a constant speed; see
Figure 2, where the deterministic target profile m̄ is shown. In the cost functional (6.1), we use the
parameters δ = 1.0, (λ1, λ2) = (10−5, 10−8) and κ = 0.1.

Figure 1. Initial value m0: at each of the three red spins an independent three-
dimensional Wiener noise is applied, which is scaled by ι. Positions xA, resp. xB ,
which are considered in Figure 4, resp. Figure 5, below.

Figure 2. Deterministic target profile m̄ at final time T (dark): the orange
plateau region is moved at constant speed from the initial state m0 (shaded) to
the illustrated state.
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gradient iteration v

(a) Cost functional (b) A single realization of M (0) (top) and M? (bottom) at final time T

Figure 3. Iterates of the stochastic gradient method: the cost functional

J (v) ( ) and its parts E
[
δk
∑J
j=0 ‖M (v),j − M̄ (v)(tj)‖2L2

]
( ), E

[
k
∑J−1
j=0

(
1 +

λ1‖U (v),j‖2L2 + λ2‖∇U (v),j‖2L2

)4]
( ), and E

[
κ‖M (v),J − M̄ (v)(T )‖2L2

]
( ).

We use Scheme 6.3 (k = 0.005, h = 0.05, M = 250000, R ∈ {500, 1000}) and the partition

estimation method to simulate an optimal control of Example 6.1. M̃ = 1000 paths are simulated
to approximate the expectation value of the cost functional (6.1), which are independent of those
before. The initial value of the stochastic gradient method is the optimal control of the correspond-
ing deterministic optimal control problem, i.e., Example 6.1 with ι = 0. We stop the stochastic
gradient method when the difference of two successive values of the cost function is less than a given
tolerance tol = 10−8. In our simulations we use Ū = 103 which was not met in all realizations. The
simulations require huge storage capabilities and computation times and are carried out in parallel
on a cluster.

The decay of the cost functional in the procedure of the stochastic gradient method is illustrated
in Figure 3(a). In the case without any control, i.e., u ≡ 0, the cost functional attains the value
J = 0.9385. By using the stochastic gradient method we are able to find a stochastic control which
yields the value J = 0.2323 for the cost functional in the case of R = 500 regions. This value can be
further reduced by increasing the amount of regions R. We use the deterministic optimal control as
starting value for the stochastic gradient method; its value is J = 0.4899, see Figure 3(a) at v = 0.
This large value of the cost functional can be explained by Figure 3(b), where the illustration at
the top shows a single realization of the state M (0) at final time T , which was controlled by the
deterministic optimal control. Here, the deterministic optimal control is not sufficient to enforce
the shape of the target profile in the presence of noise; in contrast, the stochastic gradient method
yields a stochastic control which forces realizations for the magnetization to approximate the target
profile m̄; see e.g. Figure 3(b) (bottom).

The evolution of one path at the certain positions xA = 0.3, resp. xB = 0.75, in the case of
ι ∈ {0.0, 1.0, 1.5} are shown in Figure 4, resp. Figure 5. The position xA is within the range where
the Wiener process acts directly; see Figure 1. We observe in Figure 4 abrupt changes in the
direction of the optimal control at position xA to compensate for noise effects; the magnitude of
the control varies slightly. A less pronounced dependence of controls on growing noise intensity ι
is observed at the distant point xB due to exchange effects in the SPDE; see Figure 5.

7. Appendix

7.1. Proof of Theorem 2.1. Let
(
Ω,F , {Ft}t≥0, P

)
be a given filtered probability space satisfying

the usual hypotheses and β is a Ft-adapted real-valued Wiener process. Thanks to the assumption
on µ, by Skorokhod’s theorem, there exist a probability space (Ω̄, F̄ , P̄ ), and random variables
(ū, β̄) defined on (Ω̄, F̄ , P̄ ) with values in L2q(0, T ;Wl,2) × C([0, T ];R), l ∈ {0, 1} and q ≥ 2 such
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(a) ι = 0.0: t 7→ u(xA,t)
|u(xA,t)|R3

(b) ι = 0.5: t 7→ u(xA,t)
|u(xA,t)|R3

(c) ι = 1.5: t 7→ u(xA,t)
|u(xA,t)|R3

0 0.2 0.4

1

2

time

(d) ι = 0.0: t 7→ |u(xA, t)|R3

0 0.2 0.4

1

2

time

(e) ι = 0.5: t 7→ |u(xA, t)|R3

0 0.2 0.4
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time

(f) ι = 1.5: t 7→ |u(xA, t)|R3

Figure 4. Time evolution of the direction of the optimal control at position xA
and its magnitude in the case of different intensities of the noise.

(a) ι = 0.0: t 7→ u(xB ,t)
|u(xB ,t)|R3

(b) ι = 0.5: t 7→ u(xB ,t)
|u(xB ,t)|R3

(c) ι = 1.5: t 7→ u(xB ,t)
|u(xB ,t)|R3
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(d) ι = 0.0: t 7→ |u(xB , t)|R3
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(e) ι = 0.5: t 7→ |u(xB , t)|R3

0 0.2 0.4
0

2

4

time

(f) ι = 1.5: t 7→ |u(xB , t)|R3

Figure 5. Time evolution of the direction of the optimal control at position xB
and its magnitude in the case of different intensities of the noise.
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that L(ū) = µ on L2(0, T ;L2). Now define the filtration

F̄t := σ
{(
ū(s), β̄(s)

)
: 0 ≤ s ≤ t

}
Then ū is a Wl,2-valued F̄t-predictable stochastic process satisfying

P̄ -a.s., ‖ū(t)‖L2 ≤ K for a.e. t ∈ [0, T ] and Ē
[ ∫ T

0

‖ū(t)‖2qWl,2 dt
]
< +∞, (7.1)

and β̄ is an F̄t-adapted Wiener process. For each fixed n ∈ N, define

Tn(ū) =

{
ū, if |ū| < n

0, otherwise

For each n ∈ N, let Hn be a finite-dimensional subspace of L2, and Pn : L2 → Hn is an orthonormal
projection. Following [8], we consider the Faedo-Galerkin equation in Hn:

dm(t) =
[
Pn
(
m(t)×∆m(t)

)
+ Pn

(
m(t)× Tn(ū(t))

)
− αPn

(
m(t)× (m(t)×∆m(t))

)
+
ι2

2
Pn
(
Pn(m(t)× a)× a

)]
dt+ ι Pn

(
m(t)× a

)
β(t), t > 0, (7.2)

m(0) = Pn(m0).

Note that P̄ -a.s., ‖un(t)‖L∞ ≤ C(n), and hence for each fixed n ∈ N the drift function of the
Galerkin equation (7.2) is locally Lipschitz from Hn into Hn. Consequently, there exists a unique
continuous, F̄t-adapted strong solution mn on

(
Ω̄, F̄ , {F̄t}, P̄

)
under un := Tn(ū). Itô’s formula for

the functions x 7→ ‖x‖2L2 , x 7→ ‖∇x‖2L2 then yields the following bounds (see e.g. [8, Theorem 3.5]):P̄ -a.s., and for all t ∈ [0, T ], ‖mn(t)‖L2 ≤ ‖m0‖L2

Ē
[

sup
0≤t≤T

‖∇mn(t)‖2qL2

]
+ Ē

[( ∫ T
0
‖mn(s)×∆mn(s)‖2L2 ds

)q]
≤ C, (7.3)

where C > 0 is a constant, independent of n. We remark here that mn does not preserve the sphere
condition, in contrast to i) of Lemma 7.3.

Note that un → ū in L2(Ω̄×DT ) and un satisfies (7.1). We may then adapt the arguments in [8,

Sections 4 and 5] along with (7.3) to have the existence of a 7-tuple π̃ :=
(
Ω̃, F̃ , {F̃t}, P̃ , β̃, m̃, ũ

)
∈

Uad,w(m0, T ) such that L(ũ) = µ on L2(0, T ;L2), and ũ satisfies (7.1). Moreover, the bounds stated
in ii) of Theorem 2.1 is satisfied by (m̃, ũ). In other words, π̃ is a weak martinagle solution to the
problem (2.1). This completes the proof.

7.2. On pathwise uniqueness of weak martingale solutions for (2.1). We show pathwise
uniqueness of weak martingale solutions in some appropriate path space for d = 1 and a given
control ũ. Let

(
Ω̃, F̃ , {F̃t}, P̃ , β̃, m̃1, ũ

)
and

(
Ω̃, F̃ , {F̃t}, P̃ , β̃, m̃2, ũ

)
be two weak solutions for the

problem (2.1) such that paths of m̃i : i = 1, 2 lie in C([0, T ];L2)∩L8(0, T ;H1). Note that for q ≥ 4
in Theorem 2.1, paths of weak solutions for the problem (2.1) lie in C([0, T ];L2)∩L8(0, T ;H1). Let

m = m̃1 − m̃2. Since P̃ -a.s., |m̃i(t, x)| = 1 for all x ∈ D and t ∈ [0, T ], we see that m satisfies the

following equation: P̃ -a.s.

m(t) = α

∫ t

0

∆m(s) ds+ α

∫ t

0

|∇m̃1(s)|2R3m(s) ds+

∫ t

0

m(s)× ũ(s) ds+

∫ t

0

m(s)×∆m̃1(s) ds

+ α

∫ t

0

(
|∇m̃1(s)|R3 − |∇m̃2(s)|R3

)(
|∇m̃1(s)|R3 + |∇m̃2(s)|R3

)
m̃2(s) ds

+

∫ t

0

m̃2(s)×∆m(s) ds+
ι2

2

∫ t

0

(
m(s)× a

)
× a ds+ ι

∫ t

0

m(s)× a dβ̃(s).

Application of Itô’s formula for ‖m(t)‖2L2 and the use of Gagliardo-Nirenberg, Cauchy-Schwarz and
Young inequalities, the boundedness property |m̃i(t, x)| = 1 for all x ∈ D and t ∈ [0, T ], and the
fact that 〈b× c, b〉 = 0 for any b, c ∈ R3 then yield

‖m(t)‖4L2 ≤ C
∫ t

0

‖m(s)‖4L2

(
1 +

∫ t

0

‖m̃1(s)‖8H1 ds+

∫ t

0

‖m̃2(s)‖8H1 ds
)
.
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Now, for each n ∈ N, we define the F̃t-stopping time:

τn := inf
{
r ∈ [0, T ] :

∫ r

0

‖m̃1(s)‖8H1 ds+

∫ r

0

‖m̃2(s)‖8H1 ds ≥ n
}
∧ T.

Then, P̃ -a.s., and for all t ∈ [0, T ], we have

sup
r∈[0,t]

‖m(r ∧ τn)‖4L2

≤ C
∫ t

0

1[0,τn](s) sup
r∈[0,s]

‖m(r ∧ τn)‖4L2

(
1 +

∫ t∧τn

0

‖m̃1(s)‖8H1 ds+

∫ t∧τn

0

‖m̃2(s)‖8H1 ds
)
.

Taking expectation, and using Gronwall’s lemma, we arrive at Ẽ
[

supr∈[0,T ] ‖m(r ∧ τn)‖4L2

]
= 0.

Since P̃ -a.s., τn increases to T , by monotone convergence theorem we get Ẽ
[

supr∈[0,T ] ‖m(r)‖4L2

]
=

0. This implies that P̃ -a.s., m̃1 = m̃2 on C([0, T ];L2) ∩ L8(0, T ;H1).

7.3. Proof of Corollary 2.2. We use Gyöngy-Krylov’s characterization of convergence in prob-
ability introduced in [23] along with pathwise uniqueness of weak martingale solutions from Sub-
section 7.2 to prove Corollary 2.2. The following result is the Gyöngy-Krylov characterization of
convergence in probability.

Lemma 7.1. Let (G, ρ) be a Polish space equipped with Borel σ-algebra. A sequence of G-valued
random variables {Xn : n ∈ N} converges in probability to a G-valued random element if and only
if for every subsequence of joint laws {µpk,nk : k ∈ N} of the pairs of sequences Xpk and Xnk , there
exists a further subsequence which converges weakly to a probability measure µ such that

µ
(
(x, y) ∈ G×G : x = y

)
= 1.

To apply Lemma 7.1, we follow the setup as in [24]. Let G = C([0, T ];L2) × L2(0, T ;L2), and
µn,p be the joint law of (mn, un,mp, up) on G×G, and νn,p the joint law of (mn, un,mp, up, β).

A similar argument as in Subsection 7.1 yields tightness of the family
{
νn,p : n, p ∈ N

}
on

G × G × C([0, T ];R). Let us consider any subsequence
{
νnk,pk : k ∈ N

}
of the family

{
νn,p :

n, p ∈ N
}

. Then, by the Prokhorov theorem, it has a weakly convergent subsequence. Without

loss of generality we may assume that the original sequence
{
νnk,pk : k ∈ N

}
itself converges

to a measure ν. Thus, by the Skorokhod representation theorem, there exist a probability space
(Ω̄, F̄ , P̄ ) and a sequence of random variables

{(
m̃nk , ũnk , m̂pk , ûpk , β̄k

)}
k∈N converging almost

surely in G×G× C([0, T ];R) to a random element
(
m̃, ũ, m̂, û, β̄

)
such that

P̄
((
m̃nk , ũnk , m̂pk , ûpk , β̄k

)
∈ ·
)

= νnk,pk(·), P̄
((
m̃, ũ, m̂, û, β̄

)
∈ ·
)

= ν(·).

Moreover, there exists a sequence of perfect functions φk : Ω̄ → Ω such that ũnk = unk ◦ φk and
ûpk = upk ◦ φk. Since un(t) = Tn(u), we have un → u in L2(Ω×DT ). As a consequence,

Ē
[ ∫ T

0

‖ũnk(t)− ûpk(t)‖2L2 dt
]

= E
[ ∫ T

0

‖unk(t)− upk(t)‖2L2 dt
]
−→ 0 (k →∞)

which yields ũ = û. Notice that µnk,pk converges weakly to a measure µ where µ is defined as

µ(·) = P̄
((
m̃, ũ, m̂, û

)
∈ ·
)
.

As before, we can show that (m̃, ũ, β̄) and (m̂, û, β̄) are martingale solutions defined on the filtered
probability space (Ω̄, F̄ , {F̄t}, P̄ ) where {F̄t}t∈[0,T ] is the filtration given by

F̄t = σ
{(
m̃(s), ũ(s), m̂(s), û(s), β̄(s)

)
: 0 ≤ s ≤ t

}
.

Now, in view of a priori estimates, regularity of solution, and pathwise uniqueness of martingale
solutions (cf. Subsection 7.2), we have

µ
(
(x, y) ∈ G×G : x = y

)
= P̄

(
m̃ = m̂ in C([0, T ];L2)

)
= 1.

Thus, by using Lemma 7.1, we conclude that the original sequence {mn} defined on the given
probability space

(
Ω,F , {Ft}t≥0, P

)
converges in probability on C([0, T ];L2) to a random variable,
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say m. Without loss of generality we may assume P - almost sure convergence. Hence one can repeat
the arguments as we have done for the sequence {m̃n} in Subsection 7.1 and conclude that (m,u)
is a pathwise strong solution to the problem (2.1) on the given stochastic basis

(
Ω,F , {Ft}, P

)
.

Since m ∈ S2, we may reformulate the damping term m× (m×∆m) as −∆m−m|∇m|2 and argue
similarly as in the proof of [9, Theorem 5.3] to conclude that ∆m ∈ L2(Ω× [0, T ];L2).

7.4. Finite element discretization and its stability. Let {Th}h>0 be a family of quasi-uniform
triangulations of D ⊂ R a bounded Lipschitz domain, cf. [7]. We denote by Eh := {xl; l ∈ L} the
set of nodes of the triangulation Th. Consider the finite element space Vh ⊂ H1,

Vh =
{
φh ∈ C(D;R3) : φh

∣∣
K
∈ P1(K;R3) ∀K ∈ Th

}
,

where P1(K;R3) is the space of R3-valued functions on K which are polynomials of degree less or
equal to one in each component. Define the nodal interpolation operator Ih : C(D;R3)→ Vh as a
bounded linear operator such that for every φ ∈ C(D;R3),

Ihφ(xl) = φ(xl) ∀ l ∈ L.

Let Ṽh be the counterpart of Vh for real-valued mappings. For each l ∈ L, let ϕl ∈ Ṽh be the
nodal basis function i.e., ϕl(xl) = 1, and ϕl(xm) = 0 for all m ∈ L \ {l}. Define the bilinear form(
·, ·
)
h

: C(D;R3)× C(D;R3)→ R by(
φ, ψ

)
h

=
∑
l∈L

ζl〈φ(xl), ψ(xl)〉 ∀ φ, ψ ∈ C(D;R3),

where ζl =
∫
D
ϕl dx. Note that the induced mapping

‖φ‖h =
√(

φ, φ
)
h

∀ φ ∈ C(D;R3)

is a norm on Vh. One can show that (see [4]) for all φh, ψh ∈ Vh
‖φh‖L2 ≤ ‖φh‖h ≤ C‖φh‖L2 (7.4)∣∣∣(φh, ψh)h − (φh, ψh)L2

∣∣∣ ≤ Ch‖φh‖L2‖∇ψh‖L2 . (7.5)

We define the discrete Laplacian ∆h : Vh → Vh by the variational identity

−
(
∆hφh, ψh

)
h

=
(
∇φh,∇ψh

)
L2 ∀ φh, ψh ∈ Vh.

The following interpolation error estimates are well-known, see e.g. [7, Chapter 4]: for all p ≥ 1
and m ∈ {0, 1, 2}

‖φ− Ihφ‖Wm,p ≤ Ch2−m∣∣φ∣∣W2,p ∀φ ∈W2,p, (7.6)

with the semi-norm
∣∣φ∣∣Wm,p :=

(∑
|γ|=m ‖∇γφ‖

p
Lp

) 1
p

. We frequently use inverse estimates [7,

Chapter 4]: for any 1 ≤ r, p ≤ ∞, there exists a constant C = C(p, r) > 0 independent of h such
that ∀φh ∈ Vh

‖∇φh‖Lr ≤ Chl−1+min{0, 1r−
1
p}
∣∣φh∣∣Wl,p (l = 0, 1). (7.7)

In view of (7.7) with l = 0, one also has the following inverse estimate

‖∆hφh‖L2 ≤ Ch−1‖∇φh‖L2 ∀φh ∈ Vh. (7.8)

We consider the L2-orthonormal projection Ph : L2 → Vh i.e., for all f ∈ L2(
f − Phf, φh

)
L2 = 0 ∀φh ∈ L2 (7.9)

with the following well-known properties:{
‖f − Phf‖L2 ≤ Ch‖f‖H1 ∀f ∈ H1

‖f − Phf‖L2 + h‖∇[f − Phf ]‖L2 ≤ Ch2‖∆f‖L2 ∀f ∈ H2.
(7.10)

Now consider the Ritz projection Rh : H1 → Vh via

(ψ −Rhψ,ϕh)L2 + (∇[ψ −Rhψ],∇ϕh)L2 = 0 ∀ϕh ∈ Vh. (7.11)
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A similar argument as in [29] reveals that there exists a constant 0 < C = C(p) <∞, independent
of h, such that

‖Rhφ‖W1,p ≤ C‖φ‖W1,p ∀φ ∈W1,p (2 ≤ p ≤ ∞). (7.12)

Moreover, a relevant property of the Ritz projection Rh, whose proof uses a duality argument
similar to [7, Theorem 5.4.4] is as follows: for sufficiently small h > 0, there holds∥∥(Id−Rh)φ

∥∥
L2 ≤ Ch

∥∥∇[Id−Rh]φ
∥∥
L2 ∀φ ∈ H1. (7.13)

Let us prove the following discrete Gagliardo-Nirenberg inequality.

Lemma 7.2. Let d = 1. For any 2 ≤ p ≤ ∞, there exists a constant C = C(p) > 0, independent
of h such that

‖∇φh‖Lp ≤ C‖φh‖
p+2
2p

H1

(
‖φh‖H1 + ‖∆hφh‖L2

) p−2
2p ∀φh ∈ Vh. (7.14)

Proof. To prove (7.14), we use an auxiliary problem: Fix φh ∈ Vh. Let ψ ∈ H1 be the unique
solution of

ψ −∆ψ = φh −∆hφh in D , ∂νψ = 0 on ∂D . (7.15)

Fix 2 ≤ p <∞. We use the following decomposition, and the inverse estimate (7.7) along with the
W1,p-stability of the Ritz projection (7.12) to have

‖∇φh‖Lp ≤ ‖∇[φh −Rhψ]‖Lp + ‖∇Rhψ‖Lp

≤ Ch−
p−2
2p ‖∇[φh −Rhψ]‖L2 + C‖ψ‖W1,p =: I + II. (7.16)

We bound the term II in (7.16) with the help of Gagliardo-Nirenberg’s estimate (d = 1)

‖∇ψ‖Lp ≤ C1‖ψ‖
p+2
p

H1 ‖ψ‖
p−2
2p

H2 + C2‖ψ‖H1 (7.17)

To estimate ‖ψ‖Hl (l = 1, 2), we consider (7.15) in weak form: for every φ ∈ H1, let∣∣∣(ψ − φh, φ)L2 +
(
∇[ψ − φh],∇φ

)
L2

∣∣∣
≤
∣∣∣(−∆hφh, [Ih − Id]φ

)
L2

∣∣∣+
∣∣∣(∆hφh, Ihφ

)
h
−
(
∆hφh, Ihφ

)
L2

∣∣∣+
∣∣∣(∇φh,∇[Ih − Id]φ

)
L2

∣∣∣ (7.18)

≤ III + IV + C‖∇φh‖L2‖φ‖H1

by definition of the discrete Laplacian. Thanks to the interpolation estimate (7.6), and the in-
verse estimate (7.8) we see that III ≤ C‖∇φh‖L2‖φ‖H1 . Again, by the H1- stability of the
Lagrange interpolation operator Ih and (7.5), along with the inverse estimate (7.8) we obtain
IV ≤ C‖∇φh‖L2‖φ‖H1 . Taking φ = ψ in (7.18) and using Young’s inequality lead to the estimate

‖ψ‖2H1 ≤ C
(
‖φh‖2L2 + ‖φh‖2H1

)
. (7.19)

Next, consider the strong form (7.15), multiply with −∆ψ, and ψ and then integrate. Due to the
Neumann boundary condition, by addition, we have

‖ψ‖2H2 ≤ C
(
‖∆hφh‖2L2 + ‖φh‖2L2

)
. (7.20)

We combine (7.19), (7.20) in (7.17), and use Gagliardo-Nirenberg inequality to obtain

II ≤ C‖ψ‖H1 + C1‖ψ‖
2+p
2p

H1 ‖ψ‖
p−2
2p

H2 ≤ C‖φh‖H1 + ‖φh‖
p+2
2p

H1

(
‖∆hφh‖L2 + ‖φh‖L2

) p−2
2p

.

To bound I in (7.16), we decompose the error and use a standard error estimate for Rhψ,

‖∇[φh −Rhψ]‖L2 ≤ ‖∇[φh − ψ]‖L2 + ‖∇[ψ −Rhψ]‖L2 ≤ ‖∇[φh − ψ]‖L2 + Ch‖∆ψ‖L2 .

Note that, setting φ = ψ − φh in (7.18) we get ‖ψ − φh‖2H1 ≤ Ch2‖∆hφh‖2L2 , and thanks to (7.20),
we obtain

‖∇[φh −Rhψ]‖L2 ≤ Ch
(
‖∆hφh‖L2 + ‖φh‖L2

)
.

From (7.16), we may now conclude that

‖∇φh‖pLp ≤ Ch
p+2
2

(
‖∆hφh‖pL2 + ‖φh‖pL2

)
+ C‖φh‖

p+2
2

H1

(
‖∆hφh‖L2 + ‖φh‖L2

) p−2
2

+ C‖φh‖pH1
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:= V + C‖φh‖
p+2
2

H1

(
‖∆hφh‖L2 + ‖φh‖L2

) p−2
2

+ C‖φh‖pH1 .

We use the inverse estimate (7.8) to get V ≤ C
(
‖φh‖

p+2
2

H1 ‖∆hφh‖
p−2
2

L2 + ‖φh‖pL2

)
. Finally, we obtain

‖∇φh‖Lp ≤ C‖φh‖
p+2
2p

H1

(
‖∆hφh‖L2 + ‖φh‖H1

) p−2
2p

.

Estimate (7.14) is also easily seen to hold for p =∞. This completes the proof. �

The following SDE is a part of the optimal control problem (2.5);

dmh(t) =
{
Ih[mh(t)×∆hmh(t)] + Ih[mh(t)× u(t)]− αIh[mh(t)× (mh(t)×∆hmh(t))]

+
ι2

2
Ih[(mh(t)× a)× a]

}
dt+ Ih[mh × a] dβ(t),

mh(0) = Ih[m0].

(7.21)

Lemma 7.3. Let D ⊂ R be a bounded interval, q ≥ 1, T > 0, and m0 ∈ W1,2(D,S2). Let(
Ω,F , {Ft}, P

)
be a given filtered probability space, and u a H1-valued {Ft}-predictable stochastic

process on it such that E
[ ∫ T

0
‖u(t)‖2qH1 dt

]
< +∞, and β is a {Ft}-adapted real-valued Wiener

process on
(
Ω,F , {Ft}, P

)
. Then the SDE (7.21) has a unique strong global solution mh = {mh(t) :

t ≥ 0}. Moreover, the following estimates hold:

i) P -a.s., and for all t ∈ [0, T ], |mh(t, xl)| = 1 for all xl ∈ Eh.

ii) E
[

sup
t∈[0,T ]

∥∥∇mh(s)
∥∥2q

L2 +
( ∫ T

0

∥∥Ih[mh(s)×∆hmh(s)]
∥∥2

L2 ds
)q]
≤ C.

iii) For q ≥ 3, E
[ ∫ T

0

∥∥∆hmh(s)
∥∥2

L2 ds
]
≤ C.

Proof. Since the drift of the SDE (7.21) is locally Lipschitz, by a continuation argument using the
Lyapunov structure of the problem (7.21) we easily conclude the existence and uniqueness of a
global strong solution mh = {mh(t) : t ≥ 0}.
i). Fix 1 ≤ l ≤ L. Apply Itô’s formula to the functional

(
mh, ϕlmh

)
h

which involves the nodal

basis function ϕl ∈ Ṽh and use the identity 〈b× c, b〉 = 0 ∀ b, c ∈ R3 to have(
mh(t), ϕlmh(t)

)
h

=
(
Ih[m0], ϕlIh[m0]

)
h
∀t ∈ [0, T ].

Since m0(xl) ∈ S2, we infer that P -a.s., |mh(t, xl)| = 1 for all xl ∈ Eh and for all t ∈ [0, T ]. Since
mh is Vh-valued, we see that P -a.s., ‖mh(t, ·)‖L∞ ≤ 1 ∀ t ∈ [0, T ].

ii). Apply Itô’s formula to the functional x 7→ ‖∇x‖2L2 to get

‖∇mh(t)‖2L2 = ‖∇Ih[m0]‖2L2 − 2

∫ t

0

{(
Ih[mh(s)×∆hmh(s)] + Ih[mh(s)× u(s)],∆hmh(s)

)
h

}
ds

+

∫ t

0

(
2αIh[mh(s)× (mh(s)×∆hmh(s))]− ι2Ih[(mh(s)× a)× a],∆hmh(s)

)
h
ds

+ ι2
∫ t

0

∥∥Ih[mh(s)× a]
∥∥2

L2 ds− 2

∫ t

0

(
Ih[mh(s)× a],∆hmh(s)

)
h
dβ(s).

Note that

(
Ih[mh(s)×∆hmh(s)],∆hmh(s)

)
h

= 0,

A :=
(
Ih[mh(s)× (mh(s)×∆hmh(s))],∆hmh(s)

)
h

= −
∥∥Ih[mh(s)×∆hmh(s)]

∥∥2

h
,

B :=
(
Ih[mh(s)× u(s)],∆hmh(s)

)
h

= −
(
Ih[u(s)], Ih[mh(s)×∆hmh(s)]

)
h

≤ θ
∥∥Ih[mh(s)×∆hmh(s)]

∥∥2

h
+ C(θ)

∥∥Ih[u(s)]
∥∥2

h
, for θ > 0.

(7.22)

Since a ∈W1,∞, by using the boundedness of mh in L∞, and the H1-stability of Ih, we have(
Ih[(mh(s)× a)× a],∆hmh(s)

)
h

=
(
∇Ih[(mh(s)× a)× a],∇mh(s)

)
L2
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≤ C
(
‖∇mh(s)‖L2 + ‖∇a‖L2

)
‖∇mh(s)‖L2

≤ C
(
‖∇mh(s)‖2L2 + ‖∇a‖2L2

)
.

Choosing θ > 0 such that 2α > θ, and (7.4) along with the H1- stability of Ih, we obtain

sup
r∈[0,t]

‖∇mh(s)‖2L2 + (2α− θ)
∫ t

0

‖Ih[mh(s)×∆hmh(s)]‖2L2 ds

≤ ‖∇m0‖2L2 + 2 sup
r∈[0,t]

∣∣∣ ∫ r

0

(
∇Ih[mh(s)× a],∇mh(s)

)
L2 dβ(s)

∣∣∣
+ C

∫ t

0

{
‖∇mh(s)‖2L2 + ‖u(s)‖2H1 + 1

}
ds. (7.23)

Thus invoking BDG and Jensen inequalities, and the H1- stability of Ih, we obtain for any t ∈ [0, T ]

E
[

sup
r∈[0,t]

‖∇mh(s)‖2qL2

]
≤CE

[ ∫ T

0

(
1 + ‖u(s)‖2qH1

)
ds
]

+ C

∫ t

0

E
[

sup
r∈[0,s]

‖∇mh(r)‖2qL2

]
ds

+ CE
[( ∫ t

0

(
∇Ih[mh(s)× a],∇mh(s)

)2
L2 ds

) q
2
]

≤CE
[ ∫ T

0

(
1 + ‖u(s)‖2qH1

)
ds
]

+ C

∫ t

0

E
[

sup
r∈[0,s]

‖∇mh(r)‖2qL2

]
ds.

Finally, we use Gronwall’s inequality to conclude

E
[

sup
t∈[0,T ]

‖∇mh(s)‖2qL2

]
≤ C. (7.24)

Furthermore, using (7.24) in (7.23) we obtain ii).

iii). We rewrite the term A in (7.22) and use i) to have

A = −
(
Ih[∆hmh(s)|mh(s)|2],∆hmh(s)

)
h

+
(
Ih[mh(s)〈mh(s),∆hmh(s)〉],∆hmh(s)

)
h

= −‖∆hmh(s)‖2h −
(
∇(Ih − Id)[mh(s)〈mh(s),∆hmh(s)〉],∇mh(s)

)
L2

−
(
∇[mh(s)〈mh(s),∆hmh(s)〉],∇mh(s)

)
L2

≡ −‖∆hmh(s)‖2h + A2 + A3.

We first consider A3. By using the product rule, i), and Hölder inequality, we have

A3 ≤ C‖∆hmh(s)‖L2‖∇mh(s)‖2L4 −
(
∇〈mh(s),∆hmh(s)〉, 〈mh(s),∇mh(s)〉

)
L2

= C‖∆hmh(s)‖L2‖∇mh(s)‖2L4 −
∑
K∈Th

(
∇
〈
mh(s),∆hmh(s)

〉
,

1

2
∇
(
|mh(s)|2R3 − 1

))
L2(K)

≡ C‖∆hmh(s)‖L2‖∇mh(s)‖2L4 + A3,1.

We want to estimate A3,1. Note that the function |mh(s)|2− 1 is continuous and zero at the nodal
points xl, l ∈ L. Thus, for every K ∈ Th, there exists a point ξK ∈ K such that

∇(|mh(s)|2R3 − 1)(ξK) = 2
〈
mh(s),∇mh(s)

〉
(ξK) = 0.

Thus, since mh ∈ Vh, and ∇mh

∣∣
K

is constant, we have for any x ∈ K〈
mh(s, x),∇mh(s, x)

〉
=
{〈
mh(s, x),∇mh(s, x)

〉
−
〈
mh(s, x),∇mh(s, ξK)

〉}
+
{〈
mh(s, x),∇mh(s, ξK)

〉
−
〈
mh(s, ξK),∇mh(s, ξK)

〉}
≤ |∇mh(s, x)−∇mh(s, ξK)|+ |mh(s, x)−mh(s, ξK)||∇mh(s, ξK)|
≤ h|∇mh(s, ζK)||∇mh(s, ξK)| ≤ h|∇mh(s, x)|2, (7.25)
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for some point ζK ∈ K. Therefore, by using (7.25), and the product rule along with the inverse
estimate (7.7), we obtain

A3,1 ≤ C
( ∑
K∈Th

‖∇mh(s)‖4L4(K)

) 1
2
( ∑
K∈Th

h2‖∇∆hmh(s)‖2L2(K)

) 1
2

+ C
( ∑
K∈Th

h2‖∇mh(s)‖6L6(K)

) 1
2
( ∑
K∈Th

‖∆hmh(s)‖2L2(K)

) 1
2

≤ C‖∇mh(s)‖2L4

( ∑
K∈Th

h2‖∇∆hmh(s)‖2L2(K)

) 1
2

+ C
( ∑
K∈Th

h2
(
h−

1
3 ‖∇mh(s)‖L2(K)

)6) 1
2
( ∑
K∈Th

‖∆hmh(s)‖2L2(K)

) 1
2

≤ C‖∆hmh(s)‖L2

(
‖∇mh(s)‖2L4 + ‖∇mh(s)‖3L2

)
. (7.26)

Next we consider A2. The interpolation error estimate (7.6), the inverse estimate (7.7), discrete
Gagliardo-Nirenberg inequality (7.14), the boundedness of mh in L∞, and Cauchy-Schwarz inequal-
ity along with the product rule (keeping in mind that ∇2φh

∣∣
K

= 0 ∀φh ∈ Vh) yields

A2 ≤ Ch‖∇mh(s)‖L2

( ∑
K∈Th

‖∇2[mh(s)〈mh(s),∆hmh(s)〉]‖2L2(K)

) 1
2

≤ Ch‖∇mh(s)‖L2

( ∑
K∈Th

‖∇mh(s)‖4L∞(K)‖∆hmh(s)‖2L2(K)

+ ‖∇mh(s)‖2L∞(K)‖∇∆hmh(s)‖2L2(K)

) 1
2

≤ C‖∇mh(s)‖3L2‖∆hmh(s)‖L2 + C‖∇mh(s)‖L2‖∇mh(s)‖L∞‖∆hmh(s)‖L2

≤ θ‖∆hmh(s)‖2L2 + C(θ)‖∇mh(s)‖2L2‖∇mh(s)‖2L∞ + C‖∇mh(s)‖3L2‖∆hmh(s)‖L2

≤ θ‖∆hmh(s)‖2L2 + C(θ)‖∇mh(s)‖2L2‖mh(s)‖H1

(
‖mh(s)‖H1 + ‖∆hmh(s)‖L2

)
+ C‖∇mh(s)‖3L2‖∆hmh(s)‖L2 ,

for θ > 0. Again, for θ0 > 0, by (7.4) we may write the term B in (7.22) as

B ≤ θ0‖∆hmh(s)‖2L2 + C(θ0)‖u(s)‖2H1 .

Itô’s formula to the functional x 7→ ‖∇x‖2L2 along with the above estimates then yields(
2α− θ0 − θ

)
E
[ ∫ T

0

‖∆hmh(s)‖2L2 ds
]

≤ C‖m0‖2H1 + CT + CE
[ ∫ T

0

‖∇mh(s)‖2L2 ds
]

+ C(θ0)E
[ ∫ T

0

‖u(s)‖2H1 ds
]

+ C(θ)E
[ ∫ T

0

‖mh(s)‖4H1 ds
]

+ CE
[ ∫ T

0

‖∆hmh(s)‖L2

(
‖∇mh(s)‖2L4 + ‖∇mh(s)‖3L2

)
ds
]

+ C(θ)E
[ ∫ T

0

‖∆hmh(s)‖L2‖mh(s)‖2H1 ds
]

≤ CT + CE
[ ∫ T

0

‖∇mh(s)‖2L2 ds
]

+ C(θ0)E
[ ∫ T

0

‖u(s)‖2H1 ds
]

+ C(θ, θ2)E
[ ∫ T

0

‖mh(s)‖4H1 ds
]

+
(
θ1 + θ2

)
E
[ ∫ t

0

‖∆hmh(s)‖2L2 ds
]

+ C(θ1)E
[ ∫ T

0

(
‖∇mh(s)‖4L4 + ‖∇mh(s)‖6L2

)
ds
]
. (7.27)

Thanks to the discrete Gagliardo-Nirenberg inequality (7.14) and Young’s inequality, we see that

E
[ ∫ T

0

‖∇mh(s)‖4L4 ds
]
≤ θ3E

[ ∫ T

0

‖∆hmh(s)‖2L2 ds
]

+ C(θ3)E
[ ∫ T

0

‖mh(s)‖6H1 ds
]
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+ CE
[ ∫ T

0

(
‖mh(s)‖4L2 + ‖mh(s)‖2L2

)
ds
]
, (7.28)

for θ3 > 0. Using (7.28) in (7.27) and choosing θ0, θ, θ1, θ2 and θ3 such that 2α − θ −
∑3
i=0 θi > 0

along with the H1- stability of interpolation operator Ih, and ii), we conclude the estimate iii). �
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