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1 INTRODUCTION

1 Introduction

Partial differential equations (PDEs) are used in a wide range of applications, particularly in
natural sciences.

A special class of such equations are surface partial differential equations, which operate on a
two-dimensional surface and arise in many applications such as fluid dynamics [3] or cell biology
[2]. Further applications can be found in [10].

Surface finite elements were first used on the Poisson problem with the Laplace-Beltrami operator
on a curved surface, as in [6]. This has later been extended to parabolic equations on stationary
surfaces, see |9]. Furthermore, in [8] a finite element method on evolving surfaces (ESFEM) has
been developed.

A natural extension of the usual surface PDEs is introduced by coupling the velocity to a PDE
on the surface. The space discretization of two different velocity laws were studied in [16].
By using BDF (backward differential formulae) as a time discretization, [17] then analyses full
discretizations of both velocity laws. The first velocity law studied was a regularized mean
curvature flow, i.e.

v - alApxyv + BHrx)yvrixy = 9(2, e x),

with a > 0,3 > 0 fixed parameters and g : R® x [0,7] - R smooth. If & = 0 and ¢g = 0 this
corresponds with to the mean curvature flow, for which convergence results for an ESFEM
discretization have been shown in [15].

Furthermore a dynamic velocity law was studied, in the form of

0*v +vVp(x) v - alpxyu = f(2,t)vpx),

with a > 0 and f: R3 x [0,7] - R smooth. In addition, a system that couples both PDEs was
then analyzed. In [17] full discretizations of both velocity laws were studied and optimal order
convergence results were given.

The purpose of this work is to combine the techniques to of [16] that gives an analysis of
the space discretization of the coupled system with the results from [17] to give a complete
convergence analysis of the fully discretized coupled system.

The main theorem of this work has already been formulated in [17], Theorem 8.1, however
without a concrete proof. This thesis gives a proof and in doing so formulates the techniques
used in greater detail. The following work is organized as follows.

In section 2 we describe the Problem and the weak formulation. The notation for ESFEM
is introduced and basic properties are recalled. A polynomial finite element space discretization
of order £ > 1 is combined with a linearly implicit BDF time discretization to construct a
numerical scheme. In doing so, a matrix-vector form is formulated which is used not only for the
implementation, but also plays a key role in the stability analysis later.

Section 3 collects auxiliary results from [16] and [17], which are central tools in the convergence
analysis later.

The stability analysis is found in section 4. The errors are estimated in terms of defects by
making use of the matrix-vector formulation and the auxiliary results. Furthermore, multiplier
techniques from [19] were used, therefore the proof is only applicable to BDF methods of order
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p < 5. Geometric estimates do not enter in this part. Three stability equations are derived and
then combined to prepare the convergence result.

Geometric estimates are collected in section 5, which are the necessary tools to later bound
the defects.

Section 6 contains the consistency error analysis, which bounds the defects defined in the
stability analysis. This is the part of the convergence analysis in which the geometry plays a
central role, in the form of the geometric estimates from the section before. The bounds of the
defects then proof convergence together with the results from the stability analysis.

The final section describes the implementation and numerical experiments. The reference
element technique that was used to implement the matrix assembly is described and a simple
class of test functions on an evolving sphere is constructed. Numerical results are presented and
illustrate the convergence results.

2 Problem formulation

In the following section, we recall some definitions and introduce the basic notation for the thesis,
which is taken mainly from [6],[10] and [16] .
2.1 Definition of a surface

We characterize a two-dimensional surface with the help of a distance function d: R® - R . We
define a surface ' c R?® by

I={zeR® | d(z)=0}. (2.1)
Generally, we do not need d to be defined on whole R?, but instead choose a subset U c R? as
domain for d, which then contains the surface I'.

2.2 Evolution of surfaces

In the following, we consider an evolving two-dimensional closed surface I'(t) c R as the image
of a sufficiently smooth map X : 'Y x [0,T] - R with X (p,0) = p, where I'’ is a smooth closed
initial surface. We define:

I'(t)={X(p,t) | pel}.

With this definition, X (-,¢) is the surface at a certain time ¢, whereas X (p,-) can be imagined
as the trajectory of a single particle p € T'? from the initial state. In the following, we mainly use
the notation

(X (1) =T(),

to indicate the dependence of X on the surface. When the time is clear from the context we will
omit t and write briefly I'(X).
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A real valued function f that operates on an evolving surface is then a function on the space-time
Gr, defined by

f:Gr= U {tH xI(X(,t)) >R

te[0,T]

Remark 1. The surface at a given time t is then defined by the image of a function X instead
of a distance function as in section 2.1 . For theoretical reasons it is sometimes useful to have
access to a distance function. For a given surface T'(X) we can define a signed distance function

ly
d — i I - f ()ll(Sl.d(i ()f 1—‘ ;K

—inf ep(x) |z —y| , otherwise,

where | -| denotes the euclidian norm, for all y e R®. On a computational level, we only need the
distance function to generate the initial surface and do not use it at any other time.
Without loss of generality we can always assume a distance function to have the above form.

Since the gradient of a distance function in the form of Remark 1 is normalized in a neighborhood
U c R? around T, we can define the outer normal vector at a point z € I' by

vr(z) = vd(z).

Therefore we can define a projection p: U — I', that is defined by being the unique solution of

x =p(x) +d(x)vr(p(x)), for zeU. (2.2)

For a function f:I" - R we define the surface gradient to be

vrf=vf-(Vf-vr)vr,

where V f denotes the gradient of an arbitrary extension f: U—->Rof f:T' > R. The Laplace—
Beltrami operator is then given by the surface divergence of the surface gradient, i.e.

Arf=vr-vrf.

2.3 Evolving surfaces

The definition of the surface now allows us to define the velocity v : G — R® simply by taking
the derivative of the trajectory of a particle from the initial position, i.e.

v(x,t) =0 X (q,t), (2.3)

for a point x = X(q,t) e I'(X). Given a velocity v : R® + R3 one can obtain the evolution X of
the surface by solving the ordinary differential equation (ODE) above.
For a function « : Gy - R we write the material derivative as
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0u(x,t) = %U(X(p,t),t) for = =X(p,t).

Applying the chain rule connects the material derivative with the regular time derivation by

O*u(x,t) = du(x,t) +v-Vu(z,t),

given these quantities exist. At a point z € I'(X), to a time ¢ € [0,7] we also define with
vp(x)(w,t) the outer normal, by Vp(xyu(w,t) the surface gradient and with Ap(xyu(z,t), the
Laplace-Beltrami operator applied to u. Furthermore we write Vr(x) v(x,t) as the surface
divergence of v.

As in [10] we define the mean curvature by

H = Vrx)  vrx)-
We use the identity
Arcxyzrx) = —Hrpx)y, (2.4)
from [6], where zp(x) : G7 = Gr denotes the identity map on the surface I'(X (%)) at all times

te[0,T].

2.4 Sobolev Spaces

We assume I'(X) to be sufficiently smooth at all times and define, for measurable functions
f:T(X) — R and a given time ¢ the Sobolev norms

100y = i 1744 for 15 < 00 and

[ fl e rxy) =ess sup |f(=)],
zel'(X)

where dA denotes the surface measure. In the following it is always clear by which measure we
integrate and therefore drop it from the notation to increase readability. A basic property of
integrals is Green’s formula, on a closed surface I'(X) it is given by

- A :[ Vre, 2.5
[F(X)( P(X)W)P F(X)VFU Vre (2.5)

for u, : T'(X) — R sufficiently smooth, for all expression above to exist. The boundary term
vanishes, since I'( X)) is closed.
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2.5 Leibniz formula

The Leibniz formula is a central tool in the theory of evolving surfaces, details can be found in
[10]. Let w:T'(X) x [0,T] - R a sufficiently smooth function on an evolving surface I'(X) with

velocity v: U I'(X(-t)) x {t} - R3. It is given by
te[0,T]

d
= - . v, 2.
g fr(x)u fr(x)a u+fF(X) uVr(x) v (2.6)

2.6 Coupled PDE with diffusion on the surface

The parabolic surface PDE coupled with a regularised velocity law, described in [16] is given by:

9%u +uVr(x) v —Arcoyu = f(u, Vrx)u), (2.7)
v = aArxyv + BHrxyvrix) = 9(u, Vrx)w)vrx),
atX(q’t) = U(X(qat)vt)v (29)

for all ¢ € I'%. Here f : RxR?®> > R and ¢ : RxR3 - R are given continuously differentiable
functions, a > 0, 8 > 0 are fixed parameters.

2.7 Weak formulation

Now all the necessary tools are introduced to recall the weak formulation of the above differential
equation, which is given in [16], Section 2. We multiply the surface PDE (2.7) with a test function
o(.,t) e H(T'(X(.,t))) with 0°p = 0 and the velocity law (2.8) with ¢(.,t) € HY(T'(X(.,t)))3.
Integration on both sides then yields:

/r(X) 3.U<P+[F(X) U‘PVF(X)'U_fF(X)AF(X)uSD:A(X)f(UaVF(X)U)@a (2.10)

[F(X)U'Q’Z)_afr(x) AF(X)U'¢+fF(X)ﬁHF(X)VF(X)'?/):fF(X)g(UaVF(X)U)VF(X)'¢, (2.11)

Since we assume 9°¢ = 0 we have with the product rule 9°*(up) = (0°u)¢. This merges the first
two summands of (2.10) with the Leibniz formula. Using Green’s formula on the last summand
then yields

d
dt ' = 2.12
dt A(X) we r'(X) Vreou: Vrx)$ /F(X) f(u, Vp(x)u)go, ( )

for the weak formulation of the surface PDE.
In the integrated velocity law (2.11) we use the definition of X on the surface (2.4) and then
Green’s formula on both the second and the third term to obtain
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A(X)U‘w+a./F(X) VF(X)U'VF(X)T,Z) (213)

+ /6 r(X) VF(X)X . VI‘(X)r(/] = (U, VF(X)U)VF(X) . ’lp (214)

F(X)g
The complete weak formulation is therefore:

Find u(-,t) e HY(T'(X(+,1))),v(-,t) e WH(T'(X (-, t)))? and X : T » R3 such that (2.12),(2.13)
and (2.9) hold for all ¢ e HY(I'(X (-,1))),v € H(T(X(-1)))3.

2.8 Finite element spaces

The spatial discretization we use is given by the surface finite element method, as in [7] and [8].
We use piecewise polynomial basis functions of degree k and simplificial elements as in [5] and
[13]. We triangulate the initial surface I'" by a suitable family of triangulations 7; where h is
the maximum element diameter defined by

h = maxper; (diam(7T)).

For a fixed h we collect the nodes of the triangulation into a vector x° = (29,...,2%;) € R3V,
By piecewise polynomial interpolation of degree k this defines an approximate surface F?L that
interpolates T'? in the points a:(;. We denote the time dependent nodes by the vector

x(t) = (z1(t),...,xn (1)) € R3V,

where z;(t) can be understood as the position of the particle 37? =2;(0) at a time ¢.
Under the assumption that x;(¢) is close enough to the exact trajectory of the same initial state
x4 (1) = X(x?,t) the nodal vector x(¢) corresponds to an admissible triangulation. Since the
dependence on ¢ is clear and omnipresent we omit the argument when no confusion can arise in
the context.

Given a nodal vector x we define I'y,[x] to be the piecewise polynomial surface of order k
that interpolates the nodes collected in x. We define finite element basis functions

(Zsj[x]:rh(x)%R’ j:]‘J"'?N?

where the pullback onto the reference triangle is a polynomial of degree k and satisfies

gbj[x](xk) = 6jk for all j, k= 1, ...,N.
The finite element space on I'y(x) is then given by the span of these functions by

Sh(x) = span{¢1[x], ..., on[x]}.

For a finite element function wuy, € S, (x) the tangential gradient is then defined piecewise.
We now set our approximation of X as
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N

h(qn,t Z i(0)o[x(0)](qn), qn el

which has the properties

N N
Xn(qr,t) = lej(t)qu[x(o)](pk) = lej(t)éjk =xp(t)  k=1,..,N,

N
Xn(qn,0) = Y 2;(0)¢;[x(0)](qn) = qn Van € T).
j=1

In the first equation we use the property of the basis function in the nodes, the second equation
follows through the definition of triangulation of the initial state I'Y. Furthermore, we define

L(Xn(.,1)) =Th(x(t)),

since both evolving surfaces are piecewise polynomial of order k and have the same nodes.
The discrete velocity vy, (z,t) € R® at a point z = X}, (pp,, t) is given by

on(Xn(qn,t),t) = 0 Xn(an,t).
A key feature of the basis function is given by the transport property

d
a(ﬁsj[x(t)](Xh(Qhat))) =0,
for details see [10]. Through integration from 0 to an arbitrary ¢ € [0,7] this yields

& [x()](Xn(aqn. 1)) = ¢;[x(0)(Xn(qn,t)), forall g, eI,

From this we can simplify the discrete velocity at a point x = Xp(qn,t) € T'(Xp(.,t)) using the
product rule

(1) = 0 X (1) = zxxtw x(O)(@) = wa x(O)Xn(ant)  (219)
—z:cxt)qsx(t)](Xh(qh,t)waj ) (SO ))  2.16)

N
Z’Uy(t)ﬁﬁ x()](Xn(gn, 1)), (2.17)
where we denote v;(t) = :Uj(t) and used the integrated transport property for the third inequality

and the original transport property in the last inequality.
The discrete material derivative is defined naturally for a finite element function

N
uh(w,t)=Z;Uj(tM[X(t)](w), for x ey (x(t)),

. d
Opun(z,t) = auh(Xh(Qhat)) for x=Xj(qn,t).
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2.9 ESFEM spatial semi-discretization

The finite element spatial semi-discretization is now through the weak formulation restricted
on the finite element spaces. Find the nodal vector x(t) € R3V, the finite element function
up(.,t) € Sp[x(t)] and the finite element function wvy(.,t) € Sp,[x(¢)]® such that, for all ¢ €

Sulx(t)], 9 € Su[x ()]’

d
dr u + v X Up - v X = / U 7V X u ’
dt frh(x) nh fph(x) Do) U VT, () Ph Fh(x)f( hs VT, (x) Uh) P

Vp, +« V1, (x)Vh * VT, (x
frh(x) b Yn frh(x) Ty (x)Vh * VT, (x)¥h

+3 T, (x) th(X)Xh . Vf‘h(x)d)h = ﬁ g(uh, th(X)uh)VFh[x] U,

n(x)
together with the ODE that relates the surface position to its velocity

O Xn(qn,t) = vn(Xn(gn,t),t),  Vanel}.
The initial values for up and x are values of the interpolation of the initial surface, i.e.

2;(0) = 29

5 “j(0)=u($?,0), for j=1,...,N.

2.10 Matrix-vector formulation

In the following we collect the coefficients of the basis functions for the Galerkin-approximations
wp, v, in respective nodal vectors u € RV and v e R3V.
With the definition of the basis functions we have

N
up = Y, ujdi[x], for u(zj)=wu;eR,
j=1

N
op = Y vji[x], for wv(zj)=vjeR’
j=1

By using the given basis functions we now define the usual mass and stiffness matrices on the
surface.

Since the surface is determined by the nodes x we denote this dependence as an argument. For
the basis (¢;[x] € Sy, [x]);\il we then define

M(x) |k, = /Fh(x) oi[x]or[x], Vjk=1,..,N,
A(x)|jn = /Fh(x) Vi, 0?5 [X] - Vi, () Pr[X], Vi k=1,.. N.

Since we have to work with three-dimensional finite element functions like vy, and X}, we need a
notation of the finite element matrices that allows matrix-vector operations on the nodal vectors
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x,v € R3V This is achieved in an easy way by the tensor notation for matrices. We let therefore
MBl(x) = I; ® M(x) and
ABl(x) = Lo Ax).
We furthermore define
K(x) = MBl(x) + AP (x).

When it is clear from the context we drop the upper index and write M(x) for MPl(x), A(x)
for Al¥l(x) and Il 2 (ry for | grr(rys and so on. With these matrices we can now formulate a
system of differential-algebraic equations (DAEs) which the nodal vectors u,v and x satisfy.
The matrix—vector formulation, as described in [16], is now given by choosing the finite element
basis as test functions and the linearity of the integrals and reads:

% (M(x)u) + A (x)u = f(x, u),
K(x)v+ fA(x)x = g(x,u),

X =V,

where the right-hand side vectors f(x,u),g(x,u) are given by

f(x,u); = /Fh[x] f(un, Vi, (x)un) 05[],

g(x,u)l3(j-1)+ = _/F : ]g(umVrh(x)uh)(Vrh[x])l%[X]a
h|X
for j=1,..,N and [ = 1,2,3.

2.11 Linearly implicit time discretization

We separate the interval [0,7] in equidistant ¢, = n7 < T and write u” € RV, x" v ¢ R*" for
the approximations of u(ty),x(t,) and v(t,).
For the p-step linearly implicit BDF discretization we use an extrapolation of the old position
vectors X7 for j = 1,..,p. The extrapolated position vector X" is then a linear combination of
old position vectors x" P, ..., x"1

p-1

X' = x"P (2.18)

§=0
with 7; € R for j = 0,...,p - 1. In the same way we define an extrapolated value vector U" and
later extrapolations X and U} of the exact nodal vectors X7 and u.

p . .
1 M GME 7 Hu + AR = £(X,T), (2.19)
T ]:0
K(X")V" + BA(X")x" = g(X", 1), (2.20)
p .
= Y ox" T =" (2.21)
T j=0

10
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The coefficients ¢; € R for j = 0,...,p and 7; e Rfor j = 0,...,p—1 are then given by the coefficients
of the polynomials

(0=260 =Y -0 10=yye =m0
=0 j=1J =0 ¢

We draw attention to the fact, that in the discretized scheme of the surface PDE (2.19) appear
mass matrices M(X" /), at extrapolated nodal values even at times where we already have
numerical solutions. This avoids the need to assemble the mass matrix twice for one time step.
While the computational cost is reduced quite a bit by this, since the matrix assembly is the
biggest computational challenge, the accuracy of the method is basically the same.

We have included some numerical tests, that compare numerical solutions that reuse the old
matrices M(X"7) and some that assembly the mass matrices again, once the numerical solution
is obtained (See Figure 7.4).

In the following we recall some notation from [17]. We denote with x” € R*" the exact nodal
vector, with corresponding (exact) velocities v € R3YN and evaluations of u by u” e RV, i.e.

(2.22)

X (t) = (25(£)) N € R¥Y with 2. ;() = X(gj,1). j=1,...N
Naturally, this induces the vector of the exact evaluations of u by
w(t) = (u(@e;(1)))5ts €RY.

The nodal vector defines a discrete surface ', (x. () ) that interpolates the exact surface I'( X (.,t))
for every t € [0,T']. We also collect the velocity in a nodal vector

vi(t) = (va () =% (1) e RN with v, j(t) =d.;(¢), j=1,..,N.

The interpolated exact velocity is then given by

N
Ve p(t) = z; V4 ()i [x(2)].
iz

Vectors at the discrete times ¢, given through the time discretization are denoted by
X} =X.(tn), ul=u.(t,) and v =v.(t,).

The errors of the numerical solutions at a point in the discrete time scheme are denoted with

n .,_ n n n ., _ n n n .,_ n n
e =X -Xx,, ej;=u'"-u, and e :=v' -V,

In the same way as in (2.18), we define extrapolated errors of x and u. Furthermmore, we set

p-1 . op-l
-~ ._ oSN __~n _ (N —D+] n—-p+Jy\ _ A n—p+j
€y =X _X*_ZIYJ(X - Xy )“ZVJex ’
Jj=0 J=0
p-1 .op-l
<N ._ =N =N _ n—-p+j n-p+jy\ _ n—-p+j
€,:=1 —u*—Z’yj(ll PR — g )—Z’Yjeup]'
J=0 Jj=0

We introduce a new notation, that denotes a continuous extrapolated surface that corresponds
to the nodal vector X7.

11
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2.11.1 A continuous extrapolated surface

Let X} : T9 x [0,7] - R? be the time discretized evolution with exact nodal values. Then we
define
~ p-1
Xi(0) = 2 i Xp(t=(G+1)7) , telrp,T]
j=0

This discrete surface corresponds, at a given time t,, with the nodal vector X7, since
. p-1 p-1 -
* * n—jy— ~
Kii(aistn) = %X @i tagr) = 33 ()27 = (R
i=0 i=0

We denote the material derivative on this surface with 5,; The finite element space and the
corresponding basis functions are defined in the same way as before and are denoted by ¢; for
j=1,...,N. The corresponding velocity to X, is denoted by ¥, and fulfills by construction

e d <, det p=loq
U (X5 (Phstn) tn) = aXh (Phstn) = T > v X (P tn-j-1) = 'VjaXh (Phstn-j-1)
=0 7=0
p-1

= > Yon( Xy (Phs tnjo1) s tnj-1).
7=0

2.12 Lifts

For a function 7y, : Ty (X)) - R we denote its lift by 5\ : T'(X) — R and define it, by using the
projection p from (2.2), in the following way:

mh(p(x)) = (x), for @ € Ty(X).

The projection is well defined for a neighborhood U c R? small enough, which makes the lift,
defined as above, well defined for h small enough.
For a function 7y, : T'y(Xp) = R, corresponding to a nodal vector 1 € RN we write

N
h = Zz‘)njcbj [x2]. (2.23)
=

We use this, to define its lift onto denote its lift onto I'(X) via the lift of the finite element
function on I'y (X)), i.e.

L _ =
M = Nh-

12
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2.13 Statement of the main result
We are now in the position to formulate our main result, which was formulated in [17].

Theorem 2.1. We consider the linearly implicit full discretization (ESFEM/BDF) (2.19)-(2.21)
of the coupled system (2.7)-(2.9). We use polynomial finite elements of order k > 2 and BDF
methods of order 2 < p <5. Furthermore, we assume the triangulation F?L of the initial surface T°
to be quasi-uniform and admissible. Suppose that the problem has sufficiently smooth solutions
u, X, v, such that the evact evolution X (-,t) : T? — I'(t) is non-degenerate for 0 <t <T and that
its interpolation X (-,t) F% admits an admissible triangulation for 0 <t <T. Suppose further,
that the starting values are sufficiently accurate and the mild step size restriction TP~! < coh and
the mild mesh size restriction h*' < c17 hold for co,c1 > 0. Then, there exist ho, 7o > 0, such that
for h < hg, T <79 the following error bound holds, on the exact surface T'(X(-,t,)), 0<t, <T':

2
up, (-t

1/2
n ; L_ » .
LQ(F(tn)E}) + (TJZP H(uh) 'LL( at]) Hl(r(tj))g) < C(h + 7—19)7 (224)
| = o)

| @ - 2reo |

k p
HU(T()9) <C(h" +7P), (2.25)

k D
HUT(6)°) <C(h" +7P). (2.26)

The constant C' does not depend on h, T or n, for nt <T. It depends on the Lipschitz constants
of the coupling terms f and g, bounds of higher derivatives of the exact solution (u,v,X) and
the length of the time interval T'.

Remark 2. The mild restrictions on the step and mesh sizes, as stated in Theorem 2.1, only
enter in the estimation of (4.23). For the rest of the proof it is sufficient to demand CTP < h.

In the following, C' will denote a constant that exists, while v will denote an arbitrary small
constant. For example:

ab < va® + Cb? (2.27)

reads as: for 7y > 0 arbitrary small, there exists a C' >0, such that (2.27) holds for all a,b € R.

3 Auxiliary results

The finite element matrices induce in a natural way discrete versions of the Sobolev norms. Let
w = (w;) € RN be an arbitrary real vector and wy, = Zj]\il w;j¢j[x] € Sp(x). We then have

[WlAngey = WME)W = [wn[72(r, 1))
2 2
HW”A(X) =wA(x)w = HVFh(x)whHm(rh[xJ) :

One of the main challenges in the stability analysis of ESFEM is the relation of different surfaces.
To overcome this we use an approach where one transforms two surfaces linearly into each other.

13



3 AUXILIARY RESULTS

Let x,y € R* be two nodal vectors, that each define a discrete surface I'y[x] and T',[y]. We
write e = x —y € R*. We introduce a parameter € [0,1] and consider the intermediate surface
Fz =T, (y + 0e). On this surface we have a finite element space Sy (y + fe) and therefore, the
finite element function, corresponding to e, is given by

N
¢h =2 ejd;ly +bel. (3.1)

In the following we collect some technical Lemma from [16], done as such in [17].
Lemma 3.1. Let w,z € RV be arbitrary vectors, with corresponding finite element functions

Wh, 2, € Sh(FZ). Then, the following statements hold.

(i) We have
1
Wl (M) -M()z= [ [, wl (Ve -ef)sfab,
h
T ! 0 0 0
w(AK) - Aw)z= [ [ (Frgul)(Drged)(Trg )b,

h

where we write Drgeﬁ =trace(E)I3 - (E + ET) with F = Vrzeg e R¥3,

(i) If HVFZ -efLH <u oand HDerfLH <p for0<O<1, then

Le(I7) Le=(T7)

”WHM(y+9e) < eM/Q HW”M(Y) and

[Wlacysey <2 [Wlag) ¥ 0<B<L

1
(1) If HVFh[y]e%HLw(FZ) < 3 then, for0<6<1

0
< Cp vagwh

0
1<p<
Hvrzwh Lo(r0) Ln(r) for 1<p<oo,

where Cy, only depends on p.

(iv) Let yj, € T}, be defined as yj, = £7% (y; +60e;)¢5[y](an), for an € Tuly].

1
If HVph[y]egHLw(Fg) < 3 then for the corresponding unit normal vectors it follows that
h
6
”/Fg (Yn) - vro (yp)l < C@\Vpgeg(yg)l,

14



3 AUXILIARY RESULTS

with C independent of h and qp, € Ty[y]. Furthermore, we have
Bfveo < CITra el ()] (32

Proof. The proofs can be found in [16]. However, to give an understanding of the structure of
the techniques used, we give a proof of (i).
With the notation above and the fundamental theorem of calculus we see

L d
wl (M(x) - M(y))z = '[F : ]w}llz}l_/rh[y] whzy = /(; T o wh 20dh.

h|X

Now we can use the Leibniz formula from [10|, Theorem 5.1, which yields

1 d 1 .
s e uhtan= 1 [ opCat +uf oy - s

However, the first part of the sum in the integral vanishes, since we obtain with the product rule
and the transport property

05 (whzh) = wh(h ) + 21, (Fwh)

N N
= wz(z zj65¢j[y+0e]) + 20 (Z wj85¢j[y+9e]) =0.
j=1 J=1

The second identity is shown in the same way, using formulas from [8] and [12, Lemma 3.1|. O

In the following we always let I'(X (.,t)),t € [0,T] be a smoothly evolving family of smooth
closed surfaces. The next result has been shown in [12, Lemma 4.1].

Lemma 3.2. For 0<s,t <T and arbitrary w,z we have

W (M(x4 (1)) = M(x4(5)))2 < C(t = 8) [W g, (6)) |2 o)) -
W (AG(1) ~ A(x(5))2< Ot =) [Wl A e, (1)) 12 A (x0 0 -

The norms for different times are uniformly equivalent for 0 < s,t < T, i.e.

IWlnigx (1)) € C W v s)) - Wl Aty < CIWI A, (5)) -
where the constant only depends on a bound of the WH*-norm of the surface velocity.

The next Lemma compares the finite element surfaces that are defined by the exact and extrap-
olated nodes.

Lemma 3.3. We denote the nodal vector with the exact nodes to the time t, by X} = X.(tn).
The extrapolated values are written by X = Zp;é ’ijf_l_] . Then we have the following estimates

J
for all w,z e RN
WT(M&ZL) -M(x}))z < CTP HWHM(XQ) HZHM(xQ)

wH(ARD) - AXD))z < CTP W] 5y 12l A grp)

15



3 AUXILIARY RESULTS

The Lemma above implies a norm equivalence for sufficiently small step sizes 7 > 0, between the
extrapolated K(X7}) and the exact K(x7) surface norms, i.e.

*

1 3
3 [Wlk ey < Wl sen) < 3 Wl ey - (3.3)

We introduce some further notation regarding difference quotients, by defining

n n—1 n n—1
X —X X, X
A VAL ‘ﬂ:: * * ERSN.
T T

This notation is extended to the extrapolated nodal vectors, i.e.

on _ on—1 sn _ on-1
~n X —X ~n X, —X
V=2 2 VI RV,

T T

The difference quotients of the position error vectors are denoted with
=n -n -on
Ey =V"-V] Eyv=V -V_.

The nodal vector corresponds to a finite element function on discrete surfaces in the usual way.
From [1] we take the identity

. 'éﬂ_m—l n-p .
n x x ~n— n—
B =SB oy (e e @),

with [x;| < ¥ for a constant 0 < ¥ < 1. Here, d"7 denotes the defect corresponding to the
extrapolated nodal vector of the past defects.

In the following, we present a new result, that estimates a discrete differential quotient, which
plays an important role in the stability analysis of the dynamic surface PDE.

Lemma 3.4. Let w,z ¢ RN be arbitrary, x™ the numerical approzimation of x(t,) and X" the
extrapolation of the p past values. Then we have

1 —_n —n— ~n ~n-
;WT(M(X ) - ME") - (M(X) -M(X))z
2 n 2 ~n |2 ~n—1 2
< C wn oo (1, xn) (thﬂm(rh[xg]) + HEva(ph[xg]) + [ o penyy + 125 HHl(Fh[xZ}]))’
for a v >0 arbitrary small but constant.

Proof. In the following we introduce an important idea taken from [16] and in this form [17],
that will play an important role here and throughout the stability analysis.
In order to use the auxiliary results from Lemma 3.1 we need to control the W1* norm of

the position error €, which is the finite element function corresponding to the nodal vector

16



3 AUXILIARY RESULTS

€ =X"-X. We assume that (2.26) holds true for p,...,n—1. Then we use an inverse inequality
and the norm equivalence from (3.3) to obtain

[9ras @l e oy gy < b7 [ Vi@ HL?(Fhr"])

<ch™ [ &l sy < eh™ &l

p .
<ch! Z ex HK(xf)

7=1
<ch™leyh<en,

for v > 0 arbitrary small, but constant. In view of this result we can use 3.1 (iii) and (iv) for
sufficiently small 4.

Let © = (0,£), T =T, [(1-0)X" +6%" '] and T =T},[(1 - 0)X} + 6%771].

Starting from Lemma 3.1 (i) we obtain 7

1
T(M(in) M) - (M(X)) -M(X ™))z
X —Xn_l Xn _Xn—l
_ 6.0 2k h _ 6.0 Tk *h
= A LZ thh (VFZ i ) ﬁz . 'U}hzh (VFZJI - d9
[ wd Y (V -‘7”’0) - wlzd (vpe -V™0) a6
= 0 Fg h*h FZ h th h~h Fz,h *,h )

where Vn Y and V h blmply denote the difference quotient, corresponding to the nodal vectors

V" and V*.

We now use the fundamental theorem of calculus, similarly to the proof of Lemma 3.1. To
simplify the notation we introduce two new nodal vectors. We choose ™ = =(1-0)x"+ 6x" !
and ¥ = (1 - 0)X? + 6%~ with an intermediate surface 9 =Tp[e5™ O (1-8)ye 9] A finite

element function wf € SP[EF™ b (1-6)yr 9], characterized by a nodal vector w € RV is then
given by

wy = Zwm (50 + (1- )7,

Furthermore, we denote

70,n N ~n,0 _ n,07 _ 770,n —=O.n
TOn = (V0 +€ (BY) ) ouler™ + (1-y2) = 75 + B

7=1

17



3 AUXILIARY RESULTS

Now, using the fundamental theorem of calculus with the notation above yields
1 0_0 ‘771,9 0._0 ‘771,9 4o 3.5
et (o 527)- ot (o, 03
S|
_ O _0 qe 7O,
- frg“’hzhas(vrf‘vh )
0,0 79, =0,
+ /Fﬁ) ’U}h Zh (VF? . Vh n) (VF?,]—L . ey TL) d@df
S|
_ O _0 e NAVASEL =0O,n
_ fo fo frg wf 2f02 (Vro - (VS +ED™)) (3.6)
0,0 79,n ~0,n
" ﬁg w2 (Vre - V™) (Vpe - 25 dodg (3.7)
where the in the last line the usual auxiliary results (Lemma 3.1) and norm equivalences were

used. We use [11, Lemma 2.6], which describes how the surface gradient and the material
derivative commute to obtain

. =0, «750, -0, T ~O,m\T =0,
agvl-\? . Vh "= VF? . 8§Vh " (VFg . ey " VF?(VFg) (VF}?ey n) )VFg . Vh "
70, ~0, T ~On\T 79, =0,
ZVFZ) E\/n_(vr? 'ey n_VF?(VF?) (VFS) -ey n) )VFS -(thn+£EV n)

We continue by estimating (3.6) with the Cauchy—Schwartz inequality to obtain

1 1
O _0 e ~50n ~On
[0 [0 [P? wy, 2, O (Vr?’h . (V*’h +EE ))d@d{‘

I

+ |w;?z,(? (Vrg?é?’n —vre(vpe )T(Vrgéf’n)T) Vre Vhe’n‘ dodg

1 1 —

+C Hwi?HLm(Fg) Hz,(? HL2(1“§>) H’éz’@ + ’ézil,@HHl(Fh[xf]) ‘

=0
w’(?zi?vr?h . EV{I'L

m@H
Uy

L= (T9)
2
L (o) \ dode

~n,0
‘er’

+C wa(‘?HL“(F(;?) HZI? HL2(F§>) HVF? +€:_1’®“W1v°°(1“§)) HECQ‘

L2(TR)

Now we intend to use Lemma 3.1 (ii) and (iii) to estimate the norms on the surface T'{ with
norms solely on I',[x7]. To achieve this we prove that the condition of Lemma 3.1 (iii) is fulfilled.
With Taylor’s theorem and Peano kernels we have

|90, x3 0y @) =Tt e <O

where 7} (t,) denotes the finite element function on I'y, (X (¢,)) that corresponds to the nodal

18



4 STABILITY ANALYSIS

vector X. We therefore can use Lemma 3.1(ii) on T'Y . to obtain
* h.*

HVF‘Z (3771 oo o)HLw(rg) <C HVFZ ((1-0)7" + 95:-1’9)“LM(FZ)
<Clveg (-0 vz )|

<O,

for v > 0 arbitrary small but constant. The last inequality is the same as (3.4). Now using
Lemma 3.1 (ii) twice, together with the norm equivalence from Lemma 3.3 yields for (3.6)

1 1 —~ ~
L[ f i w,?z,ﬁ?ag(vr? .(Vf,;%gESv" dedg‘

< Clwn] poor,xnyy 1201 20, xn )HEVHHl(F )

+CHwh”L°°(Fh )||Zh”L2(Fh )H +e 1”[{1(1"h )||U HL‘”(Fh[ n])

(kD)

~1 ~N— 2
< C w1, <) (HZhHL2(Fh[xZ}]) +y HEVHHl(Fh[xZ}]) o (o, ey + 5 1HHl(Fh[xz]))‘

+C n] ooy oy 120 2, ey 252+ 20 1HW1w<rh[ 2]

We furthermore estimate (3.7) by

St (g ) (g )

< Clwnl oo 0, xnyy 1200 220, x7) v

~n—
€x

L RN o PO

R

+C wa oo (0, x27) 1200 20, x27) HEVHHl(Fh[ n]
< CJnll gy (1ol Eoqraperny * 7 VB Lo oy ey *+ 18 Ui oy * 18 s )

Combining these results leaves us with

2 W (M(X) - M%) - (M(R2) - M(Z 7))z

=n (|2 ~n ~n—1]|2
< C leonl g oy ey (20022t + Y VB i oy ey + 18 u ey + 18 i oy )

O]

4 Stability Analysis

For the stability analysis we introduce defects by plugging in the interpolation of the exact
solution. Here we do not have access to a Ritz projection in a natural way, since the surface
evolution is part of the solution of the system itself.

With the notation above there exist d” ¢ RN and d?,d” € R*" such that
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3=

p . .
> oM )ul ™ + AXD)ul = f(X], 1)) + M(x))dy,,
§=0
K(X))vi + BA(XD)x) = g(X, Ty) + M(x})dy, (4.1)

1& .
- n n
=Y oxy =V +dy.

By subtracting (4.1) from (2.19) and adding multiple zeroes we obtain the first error equation

12 . 12 . .
M(xf); Y djen? + A(xY)en == Y6 (M(x: ) - M(xY}))en ™
j=0 7=0

-1 M) - MO el

L | - (42)
- ;5j(1\/1(§”—]) M) (ul 7 + el )
~ (AR - A(xD))el - (A(X") - ARD))(ul +el)
+ (XY, T - f(X, ) - M(x™)d”.

The defects subtracted from the velocity law yields

K(X)ey + BA(XY)ex = - (K(X") - K(XY))ey - (K(X") - K(X3)) v
- BAX") - A(XY))ex - B(AX") - A(XD))x: (4.3)
+g(X",u") - g(X1,w)) - M(x{)dy.

Finally, the defects subtracted from the ODE that connects the velocity to the position of the
surface gives

12 ;
=Y e’ = el - dy. (4.4)
T j=0

We need norms to estimate the defects. For the defect d € R*V with the corresponding finite
element function dj, € Sy, (x?)? we use the dual norm as in [[18]]

fr (xn)dh'wh
Hdh”H;l(rh[xg]) = sup WhH - .
0#9ppeSp(x3)3 IYhI (T, (x7))3

d"TM(x")z d"M(x?)K (x?) " Pw

= Sup —_—_—nm
0szer3N (ZTK(xD)2)1Y2  (awer3N (wlw)1/2

= [KG) ™ PMed] | = (d"MEDK () M)
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We then define the norm for the defect vector by
A2 o 2= 12+ gy = 47 MK () M)

Now we conclude energy estimates from the error equations and collect them in the following
proposition.

Proposition 1. Suppose that the defects of the p-step linearly implicit BDF method are bounded
as follows, with a sufficiently small ¥ > 0 independent of h and 7: for n>p, with nt <T

2], e < V. (4.5)

We also assume that the initial values fulfill the following error bounds for all k < p

Then the following error bound holds for n > p such that nt <T
P ) no
ey * b ey + 22 10 ggeny + 7 22 et fa e
T - (4.7)
n j 2 j 2 j 2 Pl j 2 j 2 '
<Cr Z (HdXHK(xi) + Hdv o T Hdu *,xi) +C Z(:) (HeXHK(xi) + HeUHM(xi)) ?
j=p Jj=

Proof. The stability result is the main challenge of the convergence analysis. The developed error
equations are tested, rearranged and then the right-hand side is bounded using the auxiliary
results.
The proof is divided into four subsections. In the first three subsections each of the error equations
is analyzed separately. The final subsection then combines the estimates to obtain the stated
result.

4.1 Estimates for the velocity law

In the following we denote with ¢ an arbitrary constant that is not depending on h or 7.
We test (4.3) with e} and obtain, after rearranging

(ev) 'K (X))ey = - (e)T (K(X") - K&V - (ey) (K(X") - K(X))ey
- Bey)" (A(X") ~ A(XD))x! - Bley) (AX") ~ A(XL))ek (4.8)
- B(eR) AR ey + (ey)" (8(X",T") - g(X1.TW)) - () 'M(x)dy.

We estimate the left-hand side with Lemma 3.1 from below by
n <N n n 1 n
(ev)TK(X*)ev = Hev”K(SEf) 2 5 Hev”K(xZ}) :

For 0 < 6§ < 1, we denote FZ:Fh[i’Z + ge’

~ ~ —1 —p+1 . .
©] where € = X" - X7 = Y!' vjex ™, which is the
position error in nodal form.

7=
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4.1 Estimates for the velocity law 4 STABILITY ANALYSIS

All finite element functions on FZ corresponding to vectors are denoted with a 6 as an additional
upper index, as defined in (3.1).

In the following we estimate the addends of the right hand side of 4.8 separately and in order.
(i)We start by using Lemma 3.1, which yields

(en)" (K(X") - K(&X))v:

f [1“9 vH(Vpe .““"a)vfed€+af f Vpee ’ (Dpee ’ )Vlﬂgv*

Furthermore, we see by the Cauchy—Schwarz inequality

1
(eg)T(K(in)_K(iZ))vzsfo He?ﬁ”ﬁ(rﬁ’z) ‘VF‘Z'@Zﬂ L2(F?)‘ f’GHLw(rZ)
! ,0 0 0
va [ [vrger £ | Droes \mrz) Vool HLw(Fz)de (4.9)

<e [ 1en Lo, 122
= 0 v H1 (Fi) T HI(F«Z

The outer integral can now be discarded by bounding the integrand with an auxiliary result. We
use Lemma 3.1(iii) to estimate

v Hle“(FfL) 40

(D) (KE") - KE))WVE <c ey, ey 18l g ey 192 e oo, im0y (4.10)
<cleglgeny [€klk @y (1 +er) [0 e, xn) -

where Lemma 3.3 was used to estimate the last term by the exact norm at the time t,.
Note that v} and Vr, (x)vy are bounded independently from h and 7, since v is the exact
velocity vector. By using this fact and the norm equivalence from Lemma 3.3 we arrive at

(e0)" (KX") - KXV < cllevlgsn) [l k)

< clevlxeer) [€ i

< Z ¢ llevl g
]_

iy

Using Young’s inequality on each summand now yields
n\T ~n ~n n 1 ni2 p n—j 2
()" (KE) - KEDVE < 3 letlicay + ¢ 2[5 laegur)
]:
(ii) Similarly to (4.9), with an L? — L™ — L? estimate, we obtain
() (KE) ~KEN < [ e ey, [Feg -7

+af |vroen?|

1
Scfo H QHHl(r )HNneHHl(F")de'

dé

~n,0

Droe
L2(r0)H I,

0
Vyoey ‘
’Lw(rg) ” Iy -v

L*(I7)
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4.1 Estimates for the velocity law 4 STABILITY ANALYSIS

As before, we use Lemma 3.1 (iii) to bound the integrand using the values at the start of
the transformation of the surface (6 = 0) and then use the norm equivalence from Lemma 3.3.
Together with the inverse estimate (3.4) we now obtain
~ ~ 2
()" (K&E") ~K(&)el < clle Iz 0,z 1€ o, o)
1
ny 2 n| 2
<l |ey)kzn < . lev )& (xn) -
The terms (iii) and (iv) are bounded using the same ideas as (i) and (ii).
(iii) Again, with Lemma 3.1 and an L? - L? — L*® estimate, we obtain

CORENCORNEDINEN &

0
o Jry

1 n,o
<c HV oe,’
A Fh v

<cleyl g,z 1€ e, mo) 125w (o, z) -

6
vrgegﬁ(prgé‘;ﬁ)vpf z™?d6
g3

n,0
x*

D, &Y

=3 ‘ H h H

r Vr oo
L2(rY9) H nollL2(rg) h L=(T9)

where the last term is similar to (4.10), since x7 is the exact solution, and therefore bounded
independently of h and 7. Using the same steps in the same order then yields as before

~n =~n n 1 n P n—j
() (AR") - AED)X! < < elicgen) * € 2l ey
J=

iv) Here we again use the inverse estimate (3.4), as in (ii), to control the '°- error of the
iv) H i the i timate (3.4 in (i), ¢ trol the W1 f th
position error 7. The same structure as before with an L? — L® — L? estimate then yields

1
(AR -AGDeL = [ [, Trgeh? (Dpyes®)vrger®ds
h

! 0
Sc[ HVFeeZ}’ |
0 h

<clegl g,z Ve g, z2
1 2 2
< s levikpe) +elleklipxe

0
Voew
‘Lw(rg) H Ly e

~n,0

L2(r?) HDF‘Z% do

L2(T'9)

(v) The Cauchy-Schwarz inequality, combined with Young’s inequality now yield
T ~
(ev)" A(XY)ex < clley|kxn) leklkpzn
1 2 2
< 18 levlkpxn + ¢ leklkxn -

where we also used the norm equivalence from Lemma 3.3.
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(vi) The coupling term is the most challenging in this section. We orientate at [16] where the
corresponding term in the semi-discrete case is estimated.

We define an intermediate finite element function of @y and @” ,, on the surface I'Y = T', [X +6&],
le.

N

a0 = SN+ 087 i [X0 + 087 =T+ 0210 € 5, [XT + 687
51 ’

The transport property then yields

og? =2t (4.11)

We start in the same way as in the proof of Lemma 3.1 by using a intermediate surface
IY = [6%™ + (1 - 0)X"], by using the fundamental theorem of calculus. Then we use the Leibniz
formula to obtain

()" (8" W) ~a(=L ) = [ g0 Ty e T, el

,0
) [Fhm] 9(e, Vo 1)V (=)

1d 0 —n,0 0
- [ =5 [, oG’ Vg g e®as
h

1 . n,0 n,0 n,0
= A AZ 69 (g(uh7 7vl—,zuh’ )Vl—\flevv )
~n.0 ~n.,0
+ (Q(UZ 7VFZUZ )Vrzeg’e(vrg ‘5’;79)d‘9»

where the Leibniz formula was used in the last equality. By the transport property we know that
o eﬁ’g = 0. Using the product rule twice then yields

(en)T( (~n ~ny ~n ~n _ 1 8. ~n,0 ~n,0 n,0 4.19
v gx,u ) g(x*,u*))— 0 o 0 g(uh 7VI“Zuh ) I/I‘zev ( : )
h
~n.,0 ~n.,0 . ,
+(g(u2’ ,Vrzuz )(691/FZ)639 (4.13)
+ (9@, Vrg@Z’Q)Vrgeﬁ’e(Vrg 20)do.  (4.14)

Now, we estimate each of the summands separately.

-n

The estimate of the extrapolated position error € can be extended to €; by using the exact

same steps as in (3.4). Therefore we obtain, for small enough h, 7 |

[Zul e <,

where v > 0 is an arbitrary small constant. The finite element function corresponding to u? € RV
is the finite element interpolation (on the exact surface) to u and therefore is arbitrary close to
the exact solution (see [5]), for h,7 small enough.
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4.1 Estimates for the velocity law 4 STABILITY ANALYSIS

Combined with the Lipschitz continuity of g(-,-) we therefore obtain

lo@@?, Vo) (4.15)

Le(T9) ™

With the smoothness of g we extend this estimate to the derivatives of | i.e

~n,0
0@y ey e g < C (4.16)

Now, we estimate (4.13) with (3.2) in Lemma 3.1 (iv) to arrive at

A 1 fr , 9@ Vo) (O ) €dd
<C,[ Hg(uh ’VFQ W )HL‘X’(FZ) Hvrg’é%”‘

< Cj(; "gooc’n"Hl(rg) Heg’eHHl(F;{)de

<c ”EZHHl(Fh %7]) HenHHl(FhV”])

1
< <€t +c2 e fer

de

L2 (F?L) Heﬁﬂ HL2 (Fz)

where the norm equivalence from Lemma 3.3 was used.
In a similar way we use an L™ — L® — L? — L? estimate to bound (4.14) by

1 —n.0 ~n,0 n,0 ~n,0
ro g(uh ’vl"euh )Vl"zev (VFZ "Gy )de

f TSN A P U

Scfo e} GHHl(FG) Hh‘nﬁHHl(F")de

1 p
< g lebligen ¢ 1o g

n,0
lev

~n,0
12(r9) | 7r -2

rllLe=(Th) L2(I7)

We estimate (4.12) by using the chain rule to obtain

1
. ~n,0 ~n,0 0
/ /1“9 0y g(uz ’VF“’L“Z ))yrzeﬁ dé

1,0\ e~n,0 ~n.0 1,0 e ~n,0 ,
f [F9 oyg(Ty ,VFGUZ )Our + Oy (g (T »Vrgu}f )0 (VFZ“Z ))VFZeZGdH

on, . ~n.,0 0
< /0 [FZ caguz +cp (VFZUZ ))Vrzeﬁ de,
where we used (4.16). We take the following identity from [11, Lemma 2.6] :

35Vrgﬂ2’9 = VF9 8552 (Vrgé";"e - VFZ(VFZ)T(Ver ) ) VF" u, ’ (4.17)
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4.1 Estimates for the velocity law 4 STABILITY ANALYSIS

Together with (4.11) and the definition of EZ’G we estimate (4.12) further by

1
. ~n,0 ~n,0 n,0
fo frzag (g(uh » Vo, ))upzev de
1
~n,0 ~n,0 ~n,0 T ~n,0\T *,0n n,0
Scfo frg (eu + Vo€, _(Vrgez —vro (vpe)” (Vo) )Vrguh )Vrgev
h
~n,0 T ~n,0\T 11 n,0
+(Vrg€x —vpo (vpe)” (Vo @y”) )(Vrg%u)’/rg@u de.

With the triangle inequality it is immediately clear that for 1 < p < oo

2
—~n,0 T o, ONT
HVF;’L%’ _VF‘Z(VF‘Z) (szex’) ‘

~n,0
Le(r0) = HVF‘Z% |

~n,9‘
o€
Le(I'Y) Hvrh z

+ HVFG
Lr(T9) h Lr(T9)

<l

Lr(r)’

since the unit normal vector Vo is bounded in the L®- norm. Multiple L? — L*° — L? estimates
now yield

1
° ~n,0 ~n,0 0
L 9 (o vegm?)) vageae
h

1
<c [ fee

n,0
e

0 ~n,0
v 9H er +HV 0€, ‘ HI/ 9”
L*(T7) ‘ DhllLee (1) v HLQ(FZ) T Nizzey 17T, LOO([‘Z)‘ £2(1Y)

~n.0 o,n n,0
+HV o€, HV ou.’ H Hl/ ) e’
Une Nipzey 17T bl peo (o) 17T R T Loo (19) H v HLQ(FZ)
~n,0 ~n,0 n,0
+HV o€, H ‘V oder ‘ Hl/ 0 e’ dé.
U@ lpeeqrey 10077 llp2rey 7wl Loe (10 e HL2(1“Z)

We use Lemma 3.1(iii) and the estimate for the position error 2% to arrive at

1
fo ./rg % (9(@'2’9’ VFZTZ’Z’G)) vre em?de
1
<C fo CRd P R B e

ez

LQ(F(;L) HGZ’G HL2 (FZ)

Vri“ﬁﬁ”m(ri) HeﬁﬂHLQ(FZ) " HVFZE?GHL“(FZ) H’éZﬁHHl(FZ) 2 HLZ(F‘?) a0

LQ(FZ)
1

S C_[O Heg’e Hp(pz) (HEZ’QHL2(FZ) + Hvrzg‘gﬂ‘

<Clelm ey (B m ey *+ 188 o)

1 n| 2 z n—j 2 L n-j 2
L= Hev”K[xQ] +C Z Hex HK[xZJ] +C Z Heu HK[XZ}] ’
48 j=1 =1

1,0 ~n,0
ety 17087 gy * 18 gy )0

where the same techniques as before were used to obtain the last bound. The estimates for
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4.1 Estimates for the velocity law 4 STABILITY ANALYSIS

(4.12)-(4.14) therefore yield the following estimate for the coupling term

(el (g(xX",T") - g(X2, ) < HevnK +OZHe"JHK
= (4.18)
+OZ Hen ]HK
7=1

(vii) The defect term is estimated by using the Cholesky decomposition K(x?)Y?, defined by
K(x?) = K(x?)Y?(K(x?)'/?)" and the Cauchy-Schwarz inequality in the following way:

() M) = (@) TR () V2K () M ()
= (RO 2)Tel)T (K () M)
< H(K(xl})l/%TecH [k My 419)

1
ey S HevHK(xn) refdy]?

= llevlg

Combining the terms (i) to (viii) together with the estimate for the left side yield the inequality

1 ni2 1 n2 L n—j 2 .
5 ”ev”K(xz) < ﬁ Hev”K(x’,}) + Cjzzjl Hex HK(xf) (1)
1 2 ..
+ Byl ”eg”K(ij) (ii)
1 2 D _in2
+ o ”e:l/”K(xf) +C Z:l He;l ’ HK(xZ}) (111)
* 18 ”ev”K 1+ C ekl psen (iv)
1
HG"IIK 1+ C ek pen (v)
3 2 p a2 p .
T levlkixpy +C 2. ex ]HK[ Z e JHK (vi)
J=1 J=1
1 2 2 ..
* o4 levlke) + Cldvl (vii)

2 2
<9 levlkxny + C leklkpxn
S n—j 2 z n—j 2 n| 2
O3 [y + € 3 el g + C 12 s
j=1 51
Now we absorb the velocity error on the right side and multiply both sides with 4 to obtain

p
€%k ) —C(Z e JHK ZlH ey ”HK + Hd"H*xn). (4.20)
-

In the following we recall two results that are essential for the stability results arising from the
surface PDE. The first one is from Dahlquist’s G-theory from [4].
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4.2 Estimates for the surface PDE 4 STABILITY ANALYSIS

Lemma 4.1 (Dahlquist [4]). Let 6(§) = L 6;¢7 and p(€) = Z] L 1¢7 be polynomials of degree
at most p (at least one of them of degree p) that have no common divisor. If

(¢
Re (C) >0,

then there exists a symmetric positive definite matriz G = (g;5) € RP*P such that for all wo, ..., wp, €

RN

for |¢] < 1,

p p p
(> 6iWpoiy Y WiWp—i) Z 9ii (Wi, wj) = > gij(wio1, wj).
=0 i=0 i,j=1 i,j=1

In our case §(¢) will be the characteristic polynomial of the BDF methods, defined in (2.22).
For p < 5 the following result from the multiplier technique of Nevanlinna and Odeh [19] and
gives a linear polynomial p(¢) that fulfills the conditions for the previous Lemma.

Lemma 4.2 (Nevanlinna & Odeh [19]). If p < 5, then there exists 0 < n < 1 such that for
5(¢) =X, 1(1-¢)

5(()
1 n¢

The smallest possible values of n are found to be n = 0,0,0.0836,0.2878,0.8160 for p = 1,...,5,
respectively.

>0, for |¢] < 1.

4.2 Estimates for the surface PDE

We recall the error equation (4.2) from the surface PDE and test it with e — ne? !, where
1 €[0,1) is the coefficient from the multiplier techniques.

12 :
(ey - neﬁ_l)TM(X?); Y djen + (ep —nep )T A(XD el
j=0

- T el e ) (M) MOl 0
e e ) (M) MG el (i
120 (el el )T (M(X™7) - M(R7 ) (w2 + i) (i)
(el el (AGE) - Al ~ (e el )T (AG?) - AR +e) (1)

© (TR ) - 2 50) - (- )M (¥)+ ()

In the following we write in short p™ for the right hand side of the error equation, i.e.
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4.2 Estimates for the surface PDE 4 STABILITY ANALYSIS

1 & ;
(el = el ) MO~ 3 djel + (e - ey )T Ay = " (4.21)
=0

4.2.1 Estimation of p"

Now, we estimate the terms on the right hand side in order. Most terms are bounded with the
same techniques as the terms in Section 4.1 and are therefore only discussed briefly. The main
term to estimate here is (iii), which is achieved by Lemma 3.4.

(i) With Lemma (3.2) and a triangle inequality we estimate the first term with

12

- Z §;(en —nen )T (M(x!™) - M(x7))en™
<22 8,05 et et |y et
e J U M(xz) 1€ iy
P / n—1
<C Z lewl v JHM(xn)J“He HM(x HM(XZ})
p 2
<C ZHQ HM(xf*f)v

where Young’s inequality and the norm equivalence from (3.2) were used.

(ii) This term is estimated using Lemma 3.3 and the same arguments as before by

5 — el )T (M(E!) - M(x7) ey

N =
in

IN

p .
h 2 e neu [nagersy e g
£

p .
<P e Ry + O ]; e Hi/[(xf_j) '
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4.2 Estimates for the surface PDE 4 STABILITY ANALYSIS

(iii) This term is the most challenging in this section and makes use of Lemma 3.4 . Using
bounded coefficients ; and the discrete product rule allows us to obtain

(e el ™) 3 0 (ME) - MRt

] =0
i Iu— _ I)T (M(in—])uz J M("’n J— 1)un 7-1 (M(’)‘('Z*])u M(~7L J— 1)u27‘7’71))
=0 T
pl M"Y - M1 — (M(Z" 7Y - M(F" 71 |
= 2 mi(en —ney )" D M )~ (ME) - M ))u’:m
j=0 -
= I B A |
» pi(el —ney! T<M('>E”_j)—M(SEZ‘J )“* Uy
j=0 T
'~ n—1 ~n o 2
< CJ:O (”6 ||L2(Fh[ ) He HLz(F [x71] + Y H HHl(Fh[x:}]) + Hex HHl(Fh[xZ‘j]))

,_n

Z A PR +CZ (CATRENENEY Co PRty
=

u*,h(tn—j) = U p(tn—j-1)
T

p-1
S e e

)

L (Da[x277])

where in the last inequality Lemma 3.4 and the norm equivalence from Lemma 3.3 were used. The
quotient in the last line is the L*°-norm of the normal difference quotient of u, j and therefore
bounded independent of A and 7, for 7 small enough. This finally leaves us with

T TIZOMM(%W) MR )

n n—12 ! n—-j|2 n—j||2
<C ||eUH%2(Fh[xZ]) +C Heu 1HL2(Fh[xQ’1]) + ]; v HEV JHHl(Fh[xffj]) +C Hex jHHl(Fh[Xf_j])

For the second summand of (iii) the stated restrictions on step and mesh size come into play.
Assuming that the error estimate from Theorem 2.1 holds for the past vectors we obtain

e <C(h* +7P) < Crh, forj=1,...,n-1,

e

for a constant C > 0 independent of 7 and h. This allows us to estimate the W1 *-norm of the
extrapolated position error €7 stronger than before, with the same structure as in (3.4). With
an inverse estimate we then obtaln
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4.2 Estimates for the surface PDE 4 STABILITY ANALYSIS

HVFh r€ HLoo(r [%7]) <cnt vah[if]ggum(rh[‘i?])

<Ch! “ém||K(i") < ON I8

(4.22)

<Ch” Z lex” JHK(X”)

<Ch™ l-ChTSCT.

In the following, we write I}/ = T,[X7 + 6877]. We use Lemma 3.1 (i) to deduce

(e —ney” 1)T1 25 (M(X"7) - M(XI7))eiy

2 frn o (€27 e 1) (9, 2790) 730

f e’ = ninL?(rZ*M) H’ézfj’euwlym(rzﬁﬂ) Heﬁfj’eum(r;;*j*") do

\1|Q

IN

\1 Sg

IN

P5. : .
j;)?ﬂ (HeZHLQ(Fh[ii”l]) * Hezfluy(rh[iz*l])) Heﬂ\\wl,m<rh[§m) Hezﬁuy(rh[&“f*j]) ’
where we used Lemma 3.1 (ii) and (iii) in the last inequality. Now, we use (4.22) to arrive at
u 6j n n—1 ~n—j n—j
¢ ]Z(:) E (”e“ N R HLQ(Fh[i’:’l])) [2: ”Wlﬁw(rh[%zﬂ'h ez Hm(rh[zzﬂ’n ’
P .
< CJZ(:](SJ (HeanQ(Fh[i?’l]) + Heﬁ_l HLQ(I‘h[')‘EQ’I])) Hez_j HLQ(I‘h[SEij]) ) (423)
P o
<C Z(:] en jHLZ(rh[x:“j]) ,
=

where in the last line we use Young’s inequality and the fact that the §; are bounded. By using
the definition of the matrix-norms we conclude

n n— 1 & Sn—j ~n—j n—j B n—j |2
(eu —TNey 1)T; Z 5J(M(X j) - M(X* j))eu <0 Z Heu jHM(xf‘j) :
j=0 j=0
(iv) The first summand of this term is bounded in the same way as before by Lemma 3.3 in the
following way:
(eq—nen ) (AR - A(x))el
e Rl N = e

<O (e [y + el ) < 077 (o™ aer-sy + el
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4.2 Estimates for the surface PDE 4 STABILITY ANALYSIS

Using the exact same techniques as in (4.8) (i), yields with an L? — L? — L estimate, for the
second term of (iv)

_IN\T ~ ~
(eq —nei ) (AR") - A(XD)ul
1
70 97 -1 ,9 ,0
= /(; o sz(ez —-ne, " )(Drz’éq; )szuz de

1
< [ len? =l ey 2 o |

<C HGZ - 77€Z_lHHl(ph[—,;g]) ||52||H1(rh[§f]) ”uZ”WLN(Fh[if])

un,@H
*
Whe(T9)

p-1 )
<C (Il qeaen + 1 len™ o, izm) Zo e P,
j=

-1
2 12 R 12
<C (’Y Heﬁ”K(xg) + Heﬁ HK(xj}‘l) + Z(:] Hez jHK(x’;lj)) .
j:
With the same structure, using a L? — L® — L? estimate we see,
(el -ne HT(AX") - A(X)))el;
2 _1112
<7 (et * et Tk ) -

where we used the Wh* estimate of the position error from (3.4).

The nonlinear term (v) can be estimated exactly like the coupling term before, which was bounded
in (4.18). The only differences are the test function and the fact that the normal vector does not
appear here. However, the missing of the normal vector here only simplifies the computation, all
steps that do not concern with the normal vector can just be repeated in the exact same way to
obtain, for an arbitrary small v > 0

D . p .
(en—nen ) (FR" &) ~ &L T) <7 Y e [gepersy + C 2 ek ey -
J=0 J=0

The defect term arising from d, are estimated analogous to the bound of the defect dy, that

was bounded in (4.19). Using the Cauchy-Schwartz inequality, combined with Young’s inequality
yields

(e - nen ™) M)y = (el - neli ™) TK(x!) PR (x) M) ds
- ((RG'™) (e - ne ™) - (KO MMy
(KG2)" (el - nel ™)

= Heﬁ - ”eﬁ_luK(X@ HdﬁH*,xQ

<

N COREUCATH

2 -12 2
<7 lleqlkxny Heﬁ HK(x;H) +C | dgll xn
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4.2 Estimates for the surface PDE 4 STABILITY ANALYSIS

Collecting all the bounds for the summands on the right hand side now gives

P 9 '
<0 e g ®
o
p .
+ P € g eny + O Z [CH Hi/[(xn—j) (ii)
*C“eﬁ‘\i?(rh[ >+CHe” 1HL2(F xz 1)) (iif)
210 ! n— P n—7ll2
( [ ] = ., O 8 e 1)
com (et I ey *+ ||eﬁuA(x@) (iv)
p-l1 A
+C (7 Heﬁ”%qxf) 7 Heg_lui((xr;—l) + ZE) Heﬁ_l_] Hi(xf—l—j)) (iv)
£
d n—j 2 P n—j 2
7 Z e HK(X”*J') +C Z |ex HK(x”’j) (v)
Rl CH P IHK(Xn b+ O (vi)

<C Z e Ingguasy *+ 7l Fa e

2
+ Oyl x

+ Z (C e HK( n) +7HEn ]’Hl(r [ j]))

Adding up the estimate for j =1,...,n now yields

ot

n . n .12 .2 ) -2
J J _ J _ J . J
j;p s Cj; (HeuHM(xi) T HeuHA(xi) + HexHK(xi) T HEV‘ (T [ . x])
for an arbitrary small constant ~ > 0. ‘ '
In the following, we estimate differential quotients EY, in terms of velocity errors e},. The main
tool to achieve this is an identity from [1] which relates both in the following way:

Ep =2 e —CZXJ(”Jer"J) (4.24)

with |x;| <97 for a constant 0 < < 1.
We introduce a new notation to denote Fourier series. In the following we write

o0 [ee)

Ev(§)= X Eye™,  a(@)= ) (eb+dl)e”,  x(6)= Y xje’, (4.25)
J=—00

j=—o0 j:—oo
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4.2 Estimates for the surface PDE 4 STABILITY ANALYSIS

where i denotes the imaginary unit. Here the coefficients are meant to be zero for j ¢ {1,..., N}.
By using coefficient comparison and (4.24) we see

Ev () = x(£)ev(£).

Now we use Lemma 3.2 and Parseval’s theorem to obtain

D LY R L N o ¥ sy O

= [ ROP I8 e €
T - (4.26)
< nax \x(i)lQ[ [84 (&) 15 (seny d€

<C Z% He{/HK( n<C Z HevHK(xJ)’
i

where we used again Parseval’s theorem in the last line, combined with the bound of X (&). The
last inequality above then follows from Lemma 3.2. This now finally leaves us with

L L 2 - 12 02
Zﬁ z:: (Heu HK(xi) + Heg(HK(xi) +7C He{,HK(xi) +] *,xg)7 (4.27)

with an arbitrary small constant + > 0.

4.2.2 Estimation of the left hand side

We now estimate the term with the stiffness matrix from below using the Cauchy-Schwartz and
Young’s inequalities
~I\T 2 -1
(eq—mey ) A(xP)ey > [eyfaxny = el HA(xg) leullaxn
1 2 1
2 -1 2
2 el ey 51108 ey ~ 57108 B

With Lemma 3.2 we obtain

Jea 1HA(xn) en 1HA(xn nt lew IHA(xn) le ﬁilHA(x'E—l)
= et [ a perry * (n DT (AG) - AGET)) el (4.28)
<(l+er) He” IHA(Xn -

Using this norm equivalence, combined with the inequality above we conclude
n n—-1\T ny,.n 1 n |2 1 n-1
(eu —T€u A(Xx— )eu 2\1- 577 Heu”A(x’:) - 277 +cT He HA(X"‘ 1)
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4.2 Estimates for the surface PDE 4 STABILITY ANALYSIS

For the term with the mass matrix M(x7) we use the following notation:

n _ n—p+1 n-1 _n
=(ey P . ey L en),

with the past error vectors of u, and the G-generated norm

P , ,
[Eflexn = 2 gi(eq ™) M(x!)eg ™.
ij=1
This family of matrices Eﬁ is extended for k < p by defining error vectors like e;! before the
initial time as zero vectors. Since G is positive definite we know that the eigenvalues of G are

real, positive and can be ordered 0 < A; < A2 < ... < A,. Therefore we have the following norm
equivalence

p
VDI [l T Z gi(en ) TM(xD ey ™ < )y Z el . (4.29)
Jj=1 2,j=1

With the definition of the matrix in Lemma 4.1 we now have
P P
(ep —nel )TM(x]) Y. d;elk Z ep P TM(x] e P
i=0 i=1
_ Z gz’j(eﬁ_p+i_1)TM(XZ)eﬁ_p+j_l
1,5=1
|E |G XY |En "2 G x

With the same argument as in (4.28) we see by Lemma 3.2 that

En! éyxg <(1+er)EX?

Gxn 1,

Combining both estimates from below for the left-hand side of the error equation (4.21) and
applying the above norm estimate now yields

1 1
EL s - (1 en) B s 47 (1= 50 el ageny - 7 (574 7) et ey < 707

We now use this inequality for j =1,...,n

For a short notation let 7,, denote the left hand side of the above equation. For small enough
step size 1+ c7 > 0 and therefore we take a weighted sum from the inequalities above to create a
telescope sum, that cancels out the terms containing E{l for 0 < j <n. With that we deduce

n
Z (1+er)™ ]T <7’Z(1+C7‘)n Iy <TZ€CT(" 9 o <7'e””2p]
For the left hand side we obtain by expanding the T}
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4.2 Estimates for the surface PDE 4 STABILITY ANALYSIS

1 .2 o
B2 0~ (14 er)"[EY o +7(1 —§n)zl(1+c7')"j‘e{lui(xi)
J=

1 n s .
—7'(577+C7')j; (L+cr)" 7 ||el; 1Hi(xi‘1)

n—-1 e 1
> |Ey |Gxn+T(1_ )||euHA(xn)+T Z(1+CT) 3(1——17 (= 77+c7')(1+c7'))HeuHA(xj),

where we used an index shift on the right sum to combine both. We now take a look at one of

the factors of the coefficient from the sum above. Multiplying out yields, for an arbitrary small
v >0,

1 1 1 1 1
1—577—(577+c7')(1+c7'):1—§n—§77+07—07(§77+c7')
1
=1—77+CT(1—§’I7—C’7')21—17-‘1-07'2’7,

1 1
for a small enough step size 7. We point attention to the fact that 1 — 57] >1- 577(2 v) for 7

small enough. This now yields

[E% |G xn + T 2(1 +er) Iy HeuHA(x]) e EY |G X0 +7efT" ZM
Jj=1 =1

Using the norm equivalence from (4.29), multiplying on both sides with a positive factor then
gives for nT < T

P
2 e T vty * 7 Z ledlacy <€ Z led gty + 7€ Z 2
We plug in the estimate (4.27) we obtained for ¥, o’ to arrive at
P 2
Z: e p+jHM(xn) +T Z HeUHA(x 5 <C Z HeuHM(xﬂ) + CT (HeUHM(x]) +y HeUHA(x + HexHK(x{;))
2 (7 o2l * \!dﬂ\h,xg;)-

We absorb the terms with €/, in the A-norm on the right-hand side and then use the Gronwall
inequality to obtain

p
S e ey 5 et ey €5 ey 05 (ueuuM(x]) % \euHA(xJ))

+CT
j=

> (Il 2 !\ei\\x(xz;) sl )
1
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4.3 Estimates for the ODE 4 STABILITY ANALYSIS

Gronwall’s inequality now yields

p , noo . A .
Z Heﬁ_p-” Hf\/l(xf) tT Z He{lH2A(xi) <Cr (Heg(Hi((xi) ty He{’Hi((xi) + Hd{I i,xi)
j=1 j=1 j=1
o (4.30)
R 2
+C 3 leblea)
7=0
Now we add up both sides for j =1,...,n and multiply it with 7 to obtain furthermore
n ) n .9 .9 .9 p-l .
T Z; et HK(XJ*') <Cr Z; (HechK(x{) + HeszK(xi) + i, *,xﬂ*‘) +C ;) He{JHM(x{) : (4.31)
J= J= j=

4.3 Estimates for the ODE

This part of the proof is mainly taken from [17].
We recall the error equation (4.4) and expand the sum by adding d; = 0 for j > p and then write

1& ;
= > bn-jel = ey —dy.
szo

Subtracting the first p terms from the left side then yields

> bn-jek =T(eh - dx ), (4.32)
J=p

with
— 1p-1 .
dy =dl+ =Y 6, jel.
T ]=0

We introduce multiple power series as a technical tool. As coefficients we use eZ, J,, and the
right hand side of (4.32), which then gives three power series denoted by

e(Q)=Y e, 8(¢) =Y 6" d(Q) =Y T(el - dx )¢
n=p n=0 n=p

With the Cauchy product of e(¢) and 6(¢) and (4.32) we now arrive at

(O3() = ¥, (z 6n_jez;)<;" =S r(en - )¢t = (o). (4.33)

n=p \j=p n=p

We further introduce the power series of the inverse §(¢). Since all zeros of 6(() are outside of
the unit circle, there are bounded coefficients u,, € R, such that
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4.4 Combination of stability estimates 4 STABILITY ANALYSIS

ST
(<) -—n;uné =50
Now (4.33) and again the Cauchy product imply
(€)= e(O(On(C) = (i (el - cT) (@)
n=p

= i T (i pin—j (€, - a;j)) ¢".

n=p  \j=p
A coefficient comparison then yields directly
n . s
ey =T Z fin—j (€ = dx])-
Jj=p
The BDF method is zero-stable for p < 6, therefore all zeros of §(({) are outside the unit circle
except for the simple zero at ( = 1. Therefore the coefficients of u(¢) are bounded for all n € N

by a up <c<R.
Taking the K(x7) norm on both sides now yields

2

) |
9 ]
fobficasy < O 2 Jed - &

N . o (4.34)
<Cr Z He{rHK(x{) +CT Z HdchK(xi) +C Z HechK(xi) :
j=p j=p =0

4.4 Combination of stability estimates

Here we recall the obtained stability results, transform them using the discrete Gronwall Lemma
and then combine them. We recall estimate from the velocity law (4.20) :

n . p .
4y < € ( O LGRS o Lo udcuixg) . (4:35)
1=Nn—p 1=

and insert the stability estimate from the ODE (4.34), for i =n —p,...,n, to obtain

L . 112 i .9 p-1 .
¥l <€ p> (CT 2 Hez/HK(xi) +OT ) Hdgc”K(xi) +O Hei’K(xi))
1=N—p J=p j=p ]:0
3 n—i||? n|2
i Z; e sy * 19T e er
1=

n - n 22
<07 levlkpay + 07 2 Iy
J=p J=p

= i 12 L n—i||2 n|2
+C Z(:) HechK(xi) +C Z; el HK[xg—i] + Oy xn -
j= i=
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4.4 Combination of stability estimates 4 STABILITY ANALYSIS

Addition of (4.34) yields
n n < 2
”eVH%((X:}) + ”ex”%((xz) < CTJZP(HeVHK(X + HeXHK(x ) +CT Z HdXHK( )
p=l PO .
+ C Z(:] He‘z(HK(xi) + CZ; Heu HK[X”‘Z + C Hd ||>(— X
J= 1=

where we added the K (x%)-norm of the position errors on the right-hand side, so that we are in the

position of the discrete Gronwall Lemma. For 7 < 79 we can absorb C'1 (||e3H%<(xn) + ||eQH%<(Xn))

)

+CTEHC”HK(X +CZHG [ +CZH6 licpersy + C I8

on the right-hand side. Using the discrete Gronwall inequality then yields

8y e £ (5l 3 ety S T +
=p

<03 [l + ' el

+CTZHe HK +072Hd3 ]+C||d”H

J=p

*, X

where we used that e“™ < e“T is bounded independent of h and 7. We insert (4.31), to bound
the errors in v and obtain

ni2 n 2 S J 2 ) = J 2 ) = J 2 . n2
levlkxny + lexlk ) < CT Z "dx“K(xi) +C E 0: HexHK(xi) +COT Z | i T vl
=p j= j=p

mtl 2 9 pzlo o
rory (HexHIqX + el ey + il ) + € ZO A S
Jj= J=

We use Gronwall’s inequality again to arrive at

e+ 165y < 07 3 (1l I I o + 11 )
- (4.36)
+C Z(:) (HeiHK(xg) + e, HM(xi))
j=
We now use the estimates above and insert them into (4.30) to obtain
P . 9
Z e JHM(X”) T Z HeuHA(x < CT (de HK(X + it Hd{lH*,xi)
B (4.37)

: 12
+C Z(:) (HechK(xi) + He{lHM(xi)) :
iz
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Summation of the stability estimates (4.36) and (4.37) finally allows us to conclude

P ) n )
el * Ie¥liccasy *+ 22 18 ngeer) 7 2 leblaey
Jj= Jj=

Lol

<C 7 j 2 j 2 p-l j 2 j 2
s TZ(deHK(x{) | *,xi)JrCZ(:)(HexHK(xi)* HeuHM(xi))’
j=p Jj=

which is the stated result. O

5 Geometric estimates

In this section we collect results that will allow us to estimate the consistency errors. Now the
geometry, that did not enter in the stability analysis, will enter into the estimation of the bounds
of the defects (4.1).

Remark 3. In the following, if used as an integrand, we write Vr for the surface gradient of the
exact surface and Vr, for the piecewise surface gradient on a discrete surface. It is then clear by
the domain of the integral which surface is meant by the gradient. The same convention is used
for the exact and discrete normal vectors vr(x) and vy, (x,)-

5.1 Approximation results

Since we compare functions on different surfaces, we need to make sure that the lifting process
of a function does not create an error that decreases the order of convergence. However, this is
guaranteed by a result from [6] and [5].

We collect norm equivalences of the lift in the following Lemma.

Lemma 5.1. Let ny, and its lift be as before. Then the LP- and W'P-norms on the discrete
and continuous surfaces are equivalent for 1 < p < oo, uniformly in the mesh size h < hy (for
sufficiently small hg >0) and in t € [0,T].

As a special case of the above Lemma for the spaces L2(T'(X)) and H*(I'(X)) there is a constant
C, for h < hg and t € [0,T], such that

_ I

c! [l z2 oy xy) < H77hHL2(F(X)) <Clmnlzr,xz)) -
_ I

c! [l (0 3y < thHHl(F(X)) <Clmlm e, -

In the next Lemma from [20], the distance function and the difference of the normal vectors on
the discrete and continuous surfaces are estimated.

Lemma 5.2. Let I'(X(.,t)) and 'y (X} (.,t)) be as before. Then, for h < hg the following
estimates hold:

k+1 !
”d”L‘X’(Fh(X;:)) < Ch 5 HVF(X) - Vrh(X;)HL‘X’(F(X)) < ¢ ’

with constants C' > 0 independent of h < hg and t € [0,T].
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5.2 Bilinear Forms 5 GEOMETRIC ESTIMATES

5.2 Bilinear Forms

As in the literature, we define bilinear forms (e.g. see [16]) on the Sobolev spaces and the finite
element spaces as in [7]. We denote again the exact surface with I'(X'), the interpolated surface
with I'(X}') and the exact and discrete velocities with v and v;. Let z,¢ € H(I'(X)), and
Zn,¢n € Sh(Th((X}7))). Then we define on the exact surface I'(X)

X; = Xz = Z
m( 7Z790) F(X)ZSO’ m( h> ha¢h) F(X;;) h¢ha
X7 ) :f ' ) X*;Za = Iy, - y
a(X;2,¢) ) Vrz-Vre a(Xp; Zn, on) F(X;)Vrh b VT, ®n
q(X;v;2,0) = fF(X)(Vr-v)Z% a( Xy v Zn, 0n) = F(X;;)(Vrh V) ZpQh-

5.3 Interpolations

For a function u : Gy — R we define its finite element interpolation Tpu € Sp[x"] by
_ N
Iyu =3 u;p[x}],
j=1

where the u; are the elements of the nodal vector u € RY, which we recall as
uj(t) = u(X(gj,t)).
The interpolation of three dimensional functions v : Gr - R? is defined in the same way.

Remark 4. Since the nodal vector is used to define the interpolation, we can immediately expand
the definition to an arbitrary discrete surface. In this case, we define, if x is a nodal vector

_ N
TIhulx] = Eujcbj[x].
j=1

Since, in the following, it is always clear from the context on what domain the function is, we
drop the nodal vector x as an argument.

In other words, Tyu denotes the finite element function that corresponds to the nodal vector u,
on an arbitrary discrete surface corresponding to a nodal vector x.

We define, as an approximation to u on the exact surface I'(X),
Ty = (Thu)l

For the further consistency analysis we need to control the interpolation error of functions on
surfaces. The following result is given by [7, Proposition 2.7].

Lemma 5.3. There exists a constant ¢ > 0 independent of h < hg, with a sufficiently small hy > 0,
and t such that for u(-,t) € H*Y(T(t)), for t € [0,T7],

= Tnut] 2oy < P ull g ()

[V (= Tnw) | p2grexyy < b [l g gy -
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As done in [7] we define a discrete velocity of the exact surface. We define oy, : Gr - R? by

—_ * d *
vh((Xh)l('a t)a t) = a(Xh)l(" t)
This yields a discrete material derivative for functions that operate on the exact surface I'(X),
which we define by
Aru(z,t) = dyulz,t) + Vu(x,t) -y, t), for x e T'(X), te[0,T], (5.1)

provided the quantities on the right-hand side exist. Together with the interpolation error this
immediately yields, as in Corollary 5.7 in [7]

d*u(z,t) - 3ﬁu($7t)“L2(p(X)) = [vu- (0, - U)HLQ(F(X)) (5.2)
< Clull oy (180 = Trol gy + 100 =0l 2 rxyy) 63)
< CH* ul g p ey 10l 2 (5.4)

We recall geometric estimates from [13, Lemma 5.6], that are essential for the consistency analysis
later.

Lemma 5.4. (Geometric estimates)

Let X be a surface and X* a nodal vector with exact nodal values such that T'y(X) is a piecewise
polynomial discretization of order k of I'(X) as before. For arbitrary Zn,epn € Sp(X*) we then
have for h < hg, with hg > 0 sufficiently small

Im(X; Zilw 902) =m(X"; Zp, pn)| < ch#*! HZIZz HL2(F(X)) H9"§1HL2(F(X)) (5.5)
|a(X; lew 902) —a(X"; Zp, pn)| < chF*! HVFhZ}lLHLQ(F(X)) HVFh‘sz HLz(r(x)) (5.6)
|lg( X5 0n; Z}lw ‘P%) - Q(X*WZ; Znyon)| < ch**! HZ/l1HL2(F(X)) HSDthm(r(X)) : (5.7)

The constant ¢ on the right hand side is not depending on h.

6 Defect bounds

Now we have all the necessary tools to estimate the defects defined in (4.1).
A combination with the stability result (4.7) will then allow us to obtain the full convergence
result. We formulate the defect bounds in the following Lemma.

Lemma 6.1. Consider the full discretized problem (2.19-2.21) with the conditions conditions of
Theorem 2.1. Then there exist hg, 7o > 0, such that for all h < hg, T < 19 the following consistency
result holds

a1 s = I 21y o) < O+ ),
A2 e = 1 vy ey € O 4 15),
1 ey = 12y < O

Proof. All finite element functions 1, € (Sy[x?])® have exactly one corresponding vy, € S;[X"]
with the same nodal vector. We therefore drop the bar above and instead always write 1, which
is then the finite element function on the same domain as the integral.
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6.1 Defect of v

By definition of the defects (4.1) we know that the corresponding finite element function d} €
Sp[X7}] fulfills the following problem:
For all finite element functions 1, € (S,[x?])® we have

m(X;;(tn), d;?)q/}h) = m(‘)’zg(tn)a Th”('v tn)ﬂ/]h) + O[(I(X}j(tn); Thv(’vtn)v Q;bh)
+ 5G‘(X;L- (tn)7 EZX(vtn)7¢h) - m(yit (tn); g(Elua thzlu)VFhawh)

Consider in comparison the rearranged weak form (2.13) at the time ¢,

0 == m(X (tn); 0( tn), ¥p) = aa(X (a); 0(s tn), 1)
~Ba(X (tn): X (tn), ¥p) +m(X (tn); g (u, Vi, u)rr, ¥h)-
Naturally every summand on the right-hand side of both equations has a corresponding term on

the other equation. We add both of those equations and rewrite the differences of each of those
terms. This allows us to obtain

m (X (n); di, n) = m( X5 (t); Tyv (st ), ) = (X (4);0( b))
+ (X5 (tn); Tnv (o ta), tn) — aa(X (tn); (-, t), )
+ Ba( X5y (tn); Tn X (- tn), ) = Ba(X (t0); X (-, tn), Y1)
~m( X (tn); g(Tnu, Vr, Inw)vr, , ¥n) + m(X (tn); g(u, Vo, u)vr, ).

Now we want to separate the defect into a purely spatial part which was estimated in [16] and
a part depending on the extrapolation. This now yields for the first summands

m(X;:(tn); ’Ivhv(‘vtn)a Q;Z)h) - m(X(tn)§v('vtn)7¢§l)
= m( X (tn); Tno (o tn), ) = m( X (6); Thv (- ) vn)
+ m(X;:(tn)a ELU('vtn)7wh) - m(X(tn); U(', tn)ﬂ/}é)

Adding such intermediate terms for all summands and using the defect dj, ,, from Section 8 of
[16], which collects all purely spatial terms from above we obtain

m(X;:(tn)a dﬁv¢) = m(yft(tn);nv('vtn%'lﬁh) - m(X;(tn)SELU('atn)>wh)
+ O‘(a(x;{(tn); ELU('7tn)7 V) = a(X;;(tn); Thv('vtn)?wh))
+ﬁ(a(ig(tn);EzX('vtn)7wh) _a(X;:(tn);ElX('vtn)?wh))

—m( X (tn); g(Tpu, Vr, Inw)vr, s ¥n) + m( X5 (tn); g(Thu, Vi, Tnw)vr,  ¥n)
(6.1)

+m(X}t(tn)Sdh,v('atn%wh)' (6.2)

Now we estimate the spatial defect (6.2) in the last line and the other terms separately. We start
with the time related parts (6.1).
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6.1.1 Time related defect of v

Now we return to the estimates of the time related parts of the defect. We start with the right
hand side of the first line of (6.1) and use, a similar argument as in Lemma 3.1. With an
intermediate surface Fz =T [x} +0(X} -x7)] and the fundamental theorem of calculus we obtain

|m(X;: (tn); ELU('vtn)v zbh) - m(XliL(_(tn)a Elv('atn)v q/)h)|

1
0 0 ,0
= ‘fo o Un(Vro -2 )Uz,hdﬂ’
h
1
9 0
S fo Hd’hHL?(FZ) HVFZ e ‘

where we used an L% — L? — L™ estimate in the last step. Then with Lemma 3.1 and the triangle
inequality we deduce

*,h LOO(FZ) ’

L2(19) ’

n,GH
*.h LOO(FZ)

1
/ leelHLQ(FG) HVFZ 2’

HwhHm(r 0 HW OHHl(FO)

L2(T9) ‘
vn,OH
“PllLe(rg)

< el ey peep 122 s o g

(HU*( 7571)||L°°(1"h )+ HU* h( tn) U*( t")HL‘”(Fh ]))
The v.(+,t,) is to be understood as the exact velocity on the exact surface lifted on the discrete
surface with exact nodes I'y, (X} (t,)). However, since the lift does not change the values in the

nodes it is clear that v, j, and v, coincide in the nodes x7. We use an interpolation estimate (|5]
Proposition 2.7) for the last term to obtain

(X5 (tn); Tno (5 tn), ) = m( X (8); Tno (- 1), )|
< Clnl 2oy ey 1B i oy, gy (1 + €82 0w G ) lyprasee (0, en])
<O X! =Y gy 19n ] 2r, (o

<CTrP WhHLQ(Fh[X’Q]) )

The other terms of (6.1) are all estimated in the same way, the calculations and the corresponding
estimates are the rest of this section.
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The second line of (6.1) is again estimated by Lemma 3.1 to get with an L® — L? — L? estimate
\a(fﬁ(tn)'fhv(' tn), ¥n) = a(XG (tn); Inv (s tn), ¥n))|

*h)(DN )(Vpe¢h)d0‘

1‘*9
0
< [Morert] o] L e
/(; Fh >(—7h LOO(FZ) Fh T LQ(FQ F wh LQ(FG
SC HVFGUH’}OZ ‘DFO’é‘:’O ‘Vré’wh
ho*s Loo(FO) h LQ(FO h L2(F?L)

< O (0l m ey 18 i ey 1L o)
<CO[%2 = x{ ey 19l e, )
<CT [Unl e, ) »

where we used the same steps as in the term before. The estimate in the last step is estimated
with Taylor’s theorem, see [1].
The last term of the time related defect is bounded by

(S (ta)s 9T, T, Ty, n) — m( X (00)s 9T, Vi, T, )|

< (X (t): 9T Vi, Ty, - Tug (T, Vo, T, ). )|

+ |m(X; (t0); Tn(g (Do, Vi, Tnw)vr, ), ¥n) = m( X5 (80): Tn(9(Tu, Ve, Tnw)vr, ), on))|
+|m( X () Tn(9(Tnu, Vo, Inw)vr, ) = g(Tnu, Vi, Inw)vr, , ¥n)|

< Ch* lenl L2 rpxmny

+ [ m(X5 (tn); Tn(g(Tau, Vr, Tnu)vr, ), von) - m( X5 (62); Tn(g(Thw, Vi, Inw)vr, ), ¥n)|
+ Ch* ol L2 rpeny)

where we used Cauchy Schwartz and an interpolation error estimate in the last inequality. Since
both finite element functions coincide in the last remaining summand, we are in the position to
use Lemma 3.3, which yields

[m( X (4): Tn (g (T, Ve, Tnwvr, ) on) = m(X5 (ta); Tn(g(Tvw, Ve, Tnw)vr, ), )|
<O |n | nagsery -
6.1.2 Spatial defect of v
For the spatial term we obtain
m( X (tn); dno (5 tn)s ) = m(Xp (80); Tno (o tn), n) = m(X (n); v (- tn), ¥
+ (@ X (tn); Tnv (st ), ¥n) = a(X (80); 0 (-, ), ¥))
+ Ba(X (1) TnX (1), ¥n) = a(X (8); X (1), )
—m( X (tn); 9(Tu, Vo, Inw)vr, , o) + m(X (tn); g(u, Vru)vr, ).
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These pairs are now bounded pairwise. For the first difference we obtain, by using Lemma (5.4)
and the Cauchy-Schwartz inequality

M (X (tn): Tov (- tn), 1) = (X (t); 0 (-, t), 0]

< m(XG; (tn); Tno (ot ), n) = (X ()5 Tnv (0 ), 4]
+ (X (tn): Tno (o tn) = v (- tn), ¥0))

< ch**! H%HLQ(F(X)) loCtn)lp2rxy)y -

For the estimation of the second summand we use the interpolation bound from Lemma 5.3. We
estimate the second difference with the exact same techniques by

|a(X (tn); Tho (o tn), ¥n) = a(X (tn); (- tn), 93]

<a(X5 (tn); Tnv (o tn), tn) = (X (80); Tno (-, t), 4|
+|a(X (t); Tnv (s t) = 0 (- tn), )]

< ch” HVF(X)% HL2(1"(X)) HVF(X)U('7t”)HL2(F(X)) :

Notice the order of the interpolation error is k instead of k + 1, hence the order of the whole
estimate drops by one to k.
For the difference of the nonlinear parts we estimate

Im( X (tn); 9(Tnu, Vr, yw)vr, , ¥n) = m(X (tn); g(u, Veu)vr, ¥}
< (X (tn); (9(Tpu, Vr, Thw) — g(u, Vou) v, )|

+ [m( X (tn); 9(u, Vou) v, ) = m(X (t); g (u, Vou)vr, v,
< [m (X5 (tn); (9(Tnu, Vr, Iyu) - g(u, Vru) vr,, ¥p)]

+ [m (X (tn): g(u, Vou) ™ (vr, = vp'), ¥n))

+ [m(X; (tn); g (u, Vou) ot ) = m(X (tn); g(u, Vru)vr, )|

The first summand can now be bounded by a L% - L*° - L? estimate and using the local Lipschitz
continuity of g

m (X, (t); (9(Tnw, Vr, Tnu) = g(u™, (Vew) ™))vr, , vn)|

< HQ(ThUa VFhThU) _g(uila (VFU)il)HLz[xf] HVFhHLoo(rh[xg]) Hd]h”LQ[xQ]

<C ( HTh“ —u HLQ(rh[xvg]) + ”VFhTh“ - (Vru)™ HLQ(Fh[xQ])) 19l 22, )

< O (1= ) papugy + 190 e = 0 o ey + 190007 = (T2 ) Wty ey
<C(B* + 9,0 = (Vre) | o o, peopy) 10 22y

where we used the Lemma 5.1and 5.3 in the last inequality.
With the norm equivalence from Lemma (5.1) we then obtain

’m(X}t(tn)7 (Q(Eﬂ% thELu) - g(uil7 (Vru)fl))’/rhﬂ/}h)‘ < Chk HwﬁLHLQ(F(X)) )
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since we have
[(Vr,u™) = Vrul o i < . (6.3)
Furthermore, we use an L? — L — L? estimate and Lemma 5.2 to obtain

(X5 (tn); g(u, Vru) ™ (vr,, = vpt), ¢n)]
< Hg(ua vl—‘u)_l HLZ(F[XQ]) HVFh - VEZHLM(F[XT:]) ”¢h”L2(F[xf])
<eh® [ui] L2y

where we also used the norm equivalence for the lifted functions in the last step.
The final summand is now estimated directly with Lemma 5.4

|m(X}t(tn)7g(u7 VFU)_IVI:lu ¢h) - m(X(tn)ag(u) VFU)VF7¢Z)|

< ch* lg(u, Vrw)vr | 2 rix)

AT

This now yields for the complete spatial defect
* k l
|m(Xh (tn)§ dh,v('a tn),wh” <ch “¢h“L2(F(X)) .

6.2 The defect of u

We continue by estimating the defect di,. The definition (4.1) reads in bilinear notation as

p - - - -
m(Xy (tn); ity on) % Zgéjmm;(tn-j);Ihu(-,tn_j),soh) +a( X (tn); Thu(-, tn), 1)
]:
— (X (tn); fF(Tnu(y ), Vo, Tnu(o tn), on)

Here Tpu(:,t,-;) is understood as the finite element function on ['(X!™7) corresponding with the
nodal vector u;’, which collects the evaluation of u(-,t,-;) in the nodes x;™’. Similar to the
defect from the velocity law we rewrite the weak formulation of the surface PDE to obtain

0=- %m(X(tn); u(tn), oh) = al(X (tn)iu( tn), oh)

+ m(X(tn); f(u(’ tn)v Vrhu(-,tn)), 302)

Adding these two equations now gives

G () ) =2 3 8T by Tty ) = (X)) )
j=
+m(X (tn); f(u(tn), Vr,ul tn)), €h) (iii)
- m()?}t (tn)§ f(j;zu('7tn)a VFhThu("tn))a (Ph)a (iii)
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where the terms were rearranged in a way that all differences will turn out small.
In the following we estimate the three lines above, in order.
(i) We use the extrapolated surface X, to rewrite

Odjm(Xh(tn j) [hu( ln- ]) (Ph)_im(X(tn) u(, tn)?WéL)

.
Il

S
M=

- 2 LT ) T ) ) = (R Ton)

o \]l'—‘

~. ~ d
+ 2o (X () T, ion) = om (X (t);w, 01)

With Taylor’s expansion we can estimate the first difference to be of order 77 with Peano kernels,
as in |1]. We derive the second difference with the Leibniz rule to arrive at

d -, ~ d
am(Xh (tn); Inu, on) - &m(X(tn)% u, )

=m(X; (tn); OnInw, on) = m(X (tn); 0w, @) = m( X (tn); u, 8°ph (6.4)
+ (X (tn); T T, on) — (X (t0); 030, @)

Using the discrete material derivative from (5.1) immediately yields, together with the property
(5.2), for (6.4)

[m(X (tn); 8w, @h,) + m(X (tn);u, 0°0h)| < m(X (t,); Tpu, oh,) + | )

0%}, - 5’\Zsﬁhum(r(.x))
< (X (tn); O, 21) + CH G4 Loy »

where we also used the transport property ’8\,'1g0lh = 0. This leaves us with

‘d (X7 (6n): Trts on) — —m(X(tn) u goh)‘ (6.5)
= ‘m(Xh (tn)§8hfhu780h) - (X(tn)§8hua()0h)‘ (6.6)
+a(X5 (tn); Ty Thus on) — (X (tn); 030, @) (6.7)

+ CH bl parxyy
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In the following we take a closer look at (6.6). Using intermediate terms yields
|m (X (tn); Op Tnu, on) = m(X (tn); Ohu, ),
< [m( X5 (tn); O T, on) = m( X, (tn); TnBhu, 1)
(X (t): B = (Fr) s 0h)|
(X (t): (Fr) ™ on) = (X () Ty, 0})|
< (X (13 T T, ion) = m( X, (£ TnBs, )|
+C HEZ@\;LUJ - (a:u)_l‘

I
L2UKX;))HwhHLWF(X;»

+C

(I'(X)) ngh ||L2(1"(X)) ’

where the geometric estimates from Lemma 5.4 and the Cauchy—Schwartz inequality were used
in the last step. Now the norm equivalences for lifts (5.1) and the interpolation error estimate
from Lemma 5.3 lead us to

(X5 (ta): OpTnu, on) — m(X (tn); Opu, ¢},
< [m(X (tn): OpInu, on) — m( X5 (tn); InOpu, )| (6.9)
+C (K" +7P) ]9 (T(X)) (6.10)

The transport property ensures that I, and 0; commute, since

_ N N
Rl =0} 3 u(Xiay 00151 = 3 (G 0.0) 41651 @)
N
=Z(—u 25(0).0)) 04X;] (6.12)
= 1,0°u = T,0%u, (6.13)

where in the last line was used that the discrete material derivative (defined in (5.1)) and the
material derivative coincide in the nodes ;(t). We also recall that on X, the material derivative
of the interpolation 07 Inu is due to the transport property given by

— N — N d —
=Y (Fru;(1)) 5[ X1 = Y (au@j(t),t)) 5%, (6.14)
j=1 J=1

The last equality holds, since u;(t) = u(x;(t),t) does not depend on the extrapolated surface.
We define the nodal vector i e RY with

d
(‘ﬂ)j = au(fﬂj(t),t), for1<j<N.
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6.2 The defect of u 6 DEFECT BOUNDS

This nodal vector now corresponds with (6.14) to the finite element function 5,'jhu onT'(X 5 ) and
with (6.11) to 95 1pu on I'(X}). We denote the nodal vector corresponding to ¢, with ¢ € RY.
This allows us to rewrite (6.9), to obtain

(X5 (6): O T, on) = m( X, (tn); IO, o3,)|
= ol (M(X3) - M(x)) ¢l
<O [0l Imeen [ lnaer)
<O |T,08u

‘L2(X;L(tn)) ||<70h||L2(X}’;(tn))

< CTp(l + Chk) ||8.u”L2(X) HgothLQ(X) )

where Lemma 3.3 and the usual norm equivalences were used. In the last step an interpolation
estimate from Lemma 5.3 ensures the estimate with the norm of 9ju instead of its interpolation.
Combining the steps above we can now estimate (6.6) with

(X5 (t0); O I, on) = m(X (8n): T, 03| < OB +77) [0l 20y loml 2 ey

where we used the norm equivalence for lifted functions from Lemma 5.1 .
Now we turn to the second sum of the same term, i.e. (6.7):

|a( X (tn); T35 Tnws, on) = (X (tn); w50, 03| (6.15)
= (X5 (tn); 053 Tnu, o) = ¢( X (tn); Tnvs Tyu, )| (6.16)
+ (X5 (tn); Tnvs Tnu, o) = (X (tn): Tnvs Tyu, @) (6.17)
+ (X5 (tn); Tnvs Tyu, on) = (X (£): 03 Ins, 03, (6.18)
+ |g(X (tn); 0ns Inw, 0) = ¢(X (t); 05 Inu, 3| (6.19)
+ |q(X (tn); w3 Inu, ) = (X (n); v5u, 0}, - (6.20)
Now (6.16) and (6.19) are bounded with an L? — L* — L? estimate, and (6.20) can be controlled

with an L*® — L? — L? estimate. Furthermore, (6.18) can be bounded with the last geometric
estimate from Lemma 5.4. This leaves us with

|a(XG: (t): B Thus on) — (X (tn); 034, 03|
< HVFh (?7;: - Eﬂ))

L2(%5) ‘Th“HLw()?;) lonl 2z

+|a(X55; Tovs Tnu, 1) — a( X5 Tnvs Thw, on) |

+ CR** Y Ty 2o xyy |0k HL?(F(X))

+C (HVF (O = Inv) | L2(r(xy) + Ve (Tnv = 0) HL2(F(X))) [ 1hull oo (e xyy HgothLQ(F(X))

+ ||VFU||L°°(F(X)) | Zhu - UHL2(F(X)) HSOthLz(r(X)) .
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6.2 The defect of u 6 DEFECT BOUNDS

Since vy, and v agree on the nodes, their interpolations coincide. Using the interpolation estimates
from Lemma 5.3 and norm equivalences for lifts now allows us to obtain

|a(Xh (tn); 55 Tnty o) = (X ()5 w50, 04)| < C I = VE e gemy 10 nagaeny
+|a(X55s Thvs Tnu, o) — a( X505 Thvs Thu, )|
+ CPF Y | | 2 xy) H%Hm(r(x»
+ChP (||77h“L2(r(X)) + HUHL2(F(X))) H‘PthLz(p(X))
+ O ull ey [0h ] 2o
<C (7 + 1) |onl o
+ |a(X5s Thos Thu, on) — a(X5s Tnvs Tnu, )|

where an estimate for the extrapolation was used in the last inequality. The difference with the
extrapolation is, as before, bounded with Taylor’s theorem and of order 7P. The last remaining
summand now is estimated with the techniques from Lemma 3.1. We use an intermediate surface
Y =T[x? +0(X! - x7)] and the fundamental theorem of calculus to obtain

(X5 Thos Tnu, n) — ¢(Xps Tnvs Tnu, )|
14
[ (5 ) R o]

S, 75 (o) () (g o) () (9 2. )0

where the Leibniz rule was used as before. The transport property ensures that the material
derivative of a finite element function with constant coefficient vanishes (i.e. 0 go?Z:O). We can
use this together with the product rule to see that it is sufficient to take the material derivative
of the first factor of the product. We remind ourselves of (4.17), which yields

<C

0 0
‘%Vrzjzv = Vrgaéjzv - (Vrg’é?,’* - VFZ(VFZ)T(VF‘ZE::*)T) VFZTZU'

The first summand on the right side vanishes because of the transport property. We insert this
identity into the right-hand side above to obtain

|a(X5s Thos Tyu, on) - (X5 Thvs Tnu, )|

1
<c ] fpg (ol = vy ()" (Veg @2 )") Vg Tow (Tu)

| (Vs Th0) () 1 (92 . 6
ngol(HVrﬁ’éz,’f Lz(FZ)JFHVFZ ;(FZ) ‘sz’éﬁjf LQ(I‘Z))HVFZTZUHL“’(Fz) HTzUHLm(FZ) HSOZHLQ(FZ)

ey i

1
~n,0
< C A HVFZ€:E7*

Loo(I‘Z) H',[\ZUHL‘X’(FZ) HC’DZHLQ(Fz) ‘VFZ .'ég'7* L2(FZ)

LQ(F?L) HSOZHLQ(FZ) de
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6.2 The defect of u 6 DEFECT BOUNDS

The last inequality is due to the fact that the L®-norm of interpolations (and their gradients)
of functions is bounded, for example we can deduce

[ hull oo (r(xyy + < Ml oo (r(xyy + = Inuf oo (rx0y)
<l oo (rexyy + Ch (HUHWL“(F(X)) +h Hu”wzw(r(xn) <C,

with common L*-interpolation estimates, like [14, Lemma 3.8].
Now, we use Lemma 3.1 and an estimate to conclude

|a(Xns Tnv; Tnu, on) = g (X35 Tnv; Tnu, 1) < C77 [ on 2 (r, pxn)

Combining this result with the others above now yields for (i)

12 .. - d
; Z 5jm(Xh (tn—j)§ Thu(, tn—j)v on) - am(X(tn)§ u(s,tn), 902) < C(hk +77) ”SOhHLQ(Fh[X?])
=0

(ii) The second term is estimated by using multiple zeros, i.e.

|a( X (tn); Tnw, on) — a(X (tn); u, )|
< |a( X5 (t2); Tnu, o) — a(x?; Tnu, on))|
+ |a(Xft(tn)§ T-hua on) = a(X (tn); Inu, Qolh)|
+a(X (tn); Inu, ) — a(X () u, ¢},
k l
< C(h + Tp) ||UHL2(F(X)) “soh“[/?([‘(x)) ’

where we used Lemma 3.1 for the first term, estimate the second summand with a geometric
estimate from Lemma 5.4 and the last summand with the Cauchy-Schwartz inequality and the
interpolation bound from Lemma 5.3.

(iii) For the last summand of the defect in u we use an intermediate term as before, to obtain

m( X, (tn); £ (Tntt, Vi, Tnw), o) = m(X (); f(u, Vo, u), @} (6.21)
< |m(X;:(tn);f(EluvthThu)agph) _m(X}t(tn)af(Elu¢ thElu)vcth ( )
+ [m(X; (tn); f (Tntt, Vi, Tau), on) = m(X (t); f (u, Vi, ), 0)]- (6.23)

(6.22)

by

(X (); f(Tnu, Vo, Inu), o) = m( X (tn); f (Thu, Vi, Tnu), on))|

< (X (tn); f (Tnu, Vi, Ipw), on) = m( X (tn): In f (Tnu, Vo, Tnu), on)

+ (X (tn) Inf (Tnu, Vr, Inw), on) = m( X5 (8); Inf (Tnu, Vi, Inw), o)

+ [m( X (tn): Tn f (Tnw, Vi, Tnu), o) = m(X (tn); f(Tnu, Vi, Tnu), op)|
kil || o7 ~

<Ch™ Hf(Ihua thIhu)HLQ(F[ﬁf])

+m( X5 (tn); Inf (Inu, Vo, Inw), n) = m( Xy (tn); Inf (Inu, Vi, Inw), o)
ftl || o7 =

+ ORI V1 In) | o, fen -
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6.3 The defect of © 6 DEFECT BOUNDS

Since the finite element functions in the last pair that remains correspond to the same nodal
vector, we conclude

(X5 (tn); f(Thu, Ve, Iyw), on) =m (X (t); f(Thu, Ve, Tyu), on)| < C(A" + 77).

Now, we continue by estimating (6.23). By using f(u,Vru)™ = f(u™, (Vu)™) and the first
geometric estimate from Lemma 5.4, we obtain

[m (X, (t); f (Thw, Ve, Tyu), on) = m(X (tn); f (u, Vru), ¢})|
< m( X (tn): f (Tyu, Ve, Tyw) = f(u™, (Vru) ™), ¢n)

+ m( X (tn); £ (u, (V0w) ™ on) = m(X (8); f(u, Vru), @),
< |m( X (tn); f(Tnu, Vi, Tnw) = f(u™, (Vo,u) ™), ¢n)

+ chF*! HSOh”L?[xQ] :

< | F(Tpu, Vi, Inw) = f(u™, (thu)il)HLQ[xz] lenl p2pxn

+ chF*! H90h||L2[xg] )

where we used the Cauchy Schwartz inequality in the last estimate. Using the local lipschitz
continuity of f and the usual interpolation estimates (Lemma 5.3) now yields for the first term
of the sum above

Hf(INhua thThu) - f(u717 (vrhu)il) HLZ[xZ}] HSOhHL?[xZ}]
<C (HEU - u_lHLQ[x;}] + ”thThu - (vrhu)_l HLQ[X':;L]) ”(Ph HLQ[XZJ]
<C (C’hk+1 +|vr, (Thu - u_l) +Vp,ut - (Vrhu)_lHLz[xg]) lenl L2pxny
<C (Chk+1 + Chk + HVrhu_l - (Vr‘hu)_l HLQ[XZZ]) ||(‘OhHL2[x:}] .
With (6.3) and the norm equivalence for lifts in Lemma 5.1 we can estimate the final term with

< Ch*.
L2(T(X))

HVrhuil - (Vru)ilH sron < C (Vrhufl)l - Vru
L2[x7]

Combining all estimates for (i),(ii) and (iii) now yields

m(Xf):(tn)a duaﬂp) < C(hk + 7—17)'

6.3 The defect of =
The defect dZ € R?V is given by

dz -

e

i 0% (tn-j) = % (tn)-
30
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6.3 The defect of © 6 DEFECT BOUNDS

This defect solely arises due to the time discretization. Using Taylor’s theorem and Peano kernels,
as done in (|1], Lemma 6.1) gives the estimate

[} ¢y < O
O

Now, the main statement for the errors follows from inserting the defect bounds into the stability
results. In the following, we now give the proof of Theorem 2.1.

Proof. Inserting the defect bounds from Lemma 6.1 into the stability result from Proposition 1
yields

p . n :
el * el + 2 18 gy 7 2 leblay
Jj= j=

2 .
) J
x—,xi + Hdu

i 12 ; 2 el 2 12
<07 Y (Il ey + I i)+ C ZO(Heﬁchxz) + el (6.24)
2

J=p
n p—-1

<Cr Y C(HF+7) +CY C(RF +77)% < C(h* + )
J=p J=0

For arbitrary a,b > 0, Young’s inequality yields

(\/E+\/l_))=\/(\/5+\/l_))2=\/a+2\/5\/5+bs\/2(a+b).

Taking the square root of both sides of (6.24) and then using the estimate from below multiple
times allows us to obtain

n -2
k
lefliecer + 1ev Iy * et Iagr) + J T2 b o, < COF 577,

where we dropped the past errors in u. As before in (2.23) we write @} for the finite element

function corresponding to u” on the discrete surface with exact nodes. Using the interpolation
estimate from Lemma 5.3, together with Lemma 5.1 we obtain
n\L ny\L

|y = ut )] < [[upy® = Dol ta) + nu(s ) = u(, )|

<Ol - Tyu- ¢

L2(T(tn)) L2(T(tn))

k
n)HLQ(Fh(X;L(tn))) * Ch

<C ||eEHM[x;L] +ChMl < C’(hk +7P).

Using this argument structure in the same way for the other errors yields the stated result. [
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7 NUMERICAL EXPERIMENTS

7 Numerical experiments

The main obstacle to the implementation is the matrix assembly, i.e. the calculation of the
finite element matrices A and M. We use an element-by-element implementation and the usual
reference element techniques to calculate local FEM matrices and insert these into the global
mass/stiffness matrix.

From Theorem 2.1 we can not conclude convergence of linear finite elements, we therefore
implement second order finite elements. This proves to be more challenging at a number of points,
mainly in the matrix assembly and the mesh generation, which we discuss in the following.

7.1 Generation of a second order triangulation

For this implementation, we used the distmesh [20| package for MATLAB to generate a linear
discretization of the initial surface with a given distance function. We then transform every linear
element by creating additional points in the middle of each edge and projecting these new points
to the boundary. These points characterize the element, however for computational purposes we
need a parametrization of the element.

We define our reference element E as the convex hull of the origin, (1,0,0) and (0,1,0), with
nodes at

0 0 0

1 0 O

— 0 1 0
Nodes = 12 0 0
0 1/2 0

1/2 1/2 0

In the following, everything related to the reference element is denoted with a hat. For a second
order element E ¢ R we choose the parametrization ® : E — E to be the polynomial of second
degree that interpolates the nodes of E. (In a loose notation we demand ®z(Nodes) = Nodesg.)
Furthermore, we write 553- for the second order basis functions of E and ¢;= ;5]- o @El for the basis
functions on F.

Understood as a map @5 : R® - R? is singular, since it maps the points above and below the
reference element on the surface as well.
To get around this we demand that the differential D® g pushes forward the normal vector on
the reference Element vg = (0,0, 1)t on the normal vector on the Element vg i.e. D®grs =vg.
To understand why we define &5 in a neighborhood of the reference element E like this, we
observe the following calculation for the surface gradient of a basis function on an arbitrary
element, :

Vg = V(¢ o ) —vevEV ()0 BF)
= (D) (Ve;) 0 @5 - vprp(DOF ) (V;) o F
= (D) (V) 0 @5 —vp(DPE ve)" (V) o ©F (7.1)
= (D) (V) 0 @5 —ve(vg) (V) o ®F
= (D25 (Ve)) o B3
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7.2 Matrix Assembly 7 NUMERICAL EXPERIMENTS

The second term now vanishes, since the gradient of basis functions on the reference element
is zero in the last entry and the normal vector on the reference element is just (0,0,1). The
property above will be useful later in the matrix assembly of the stiffness matrix.

7.2 Matrix Assembly

The computational complexity mainly comes from the matrix assembly, since they have to be
recalculated at any time step due to the fact that the surface is evolving.

Using the integral transformation theorem gives us a formula for the local mass matrix
M° = f1;¢j¢i = [E@o%l@o%l - [Eo 3, [det(DPR))|.
With the same structure, combined with (7.1) we obtain
Ai’?c = fE VE®; - VED
- [ (DOF ((v@) o 07)) - (D2F ((V5:) o 07))
- [ (D2F'V3;)- (D@5 V) [det D],
where the differential D®7! is evaluated at a point ® (&), for £ € E.

7.3 Constructing numerical experiments

We test the discretization by choosing the evolution X (¢, t) = r(¢)q with a function r: [0,1] - R,
and the initial surface I'’ chosen as the unit sphere. The exact surface I'(t) is therefore given by
a sphere with Radius r(t). The exact velocity is then given by

X(a.t) i)
X(@.0] - rp)~ @0

o(X(4,0),8) = L X(a,1) = (g = #()g = #(1)

The divergence of the velocity is now obtained by

P(t P
Vrx) v= %VF(X) X = 2%,

and the Laplace—Beltrami operator by

7(t)
A v(x,t) = —=A X =
rx)v(z,t) () 20
On the surface, we choose u = a(t)zyz to be an eigenfunction of the Laplace-Beltrami operator
on a sphere, multiplied with an arbitrary function a only depending on time. A long, however
straightforward computation then yields

7(t) 2 ~ 7(t)
OO O
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7.4 Convergence Plots 7 NUMERICAL EXPERIMENTS

12
A =———u.
r(x)u r(t)Qu
The material derivative is given by

0" u(a, 1) = Tu(X(0,1),0) = Ta(r() nas = at)3r() D020 + ()1 auaaas

m)*a(t)) ‘

With (2.7), we obtain for the right hand side f (with =3 =1)

=3—=a(t)r1xoxs + a(t)x1zow3 = (3
r

f(u, Vpxyu) = 0%u+uVp(x) v - Apxyu

(7))  a(t) 7(t) 12 (_r(t) a(t) 12
—(371(—t)+@)u+2mu+r(t)2u—(5 + )u

Plugging in u and v in the velocity law (2.8) now yields for g

9(u, Vrx)yw)vr(x) = v - @Apx)yv + BHp(x)Vr(x)
7(t) 7(t) 2
= 2 X
(r(t) IO r(t)?)

= (f’(t) + 204;((;))2 + ,810(2—2&)) VF(X)

v |y +a7’*(t)+ i,/

where the additional factor that was created in the last step serves as an artificial coupling of

the velocity law to the solution of the surface PDE.

7.4 Convergence Plots

1
Setting a(t) = exp(~t?) and r(t) = 1 + 5 sin(7t), we now calculate approximations of u and X at

a time T =1, for various h and 7.

We then plot the L?- norm and the H'-seminorm of the errors e” and €”, with double logarithmic
scale. We fix the step size and mesh size in turn to observe space and time convergence rates.
In the following, we present plots for the quadratic ESFEM / BDF3 discretization. The time

convergence rate (O(7?)) is observed both for =} and u} and for both norms.

The space convergence rate for the L?-norm is observed to be of order O(h%), where we were
only able to prove the rate @(h?), since we do not have a natural access to the Ritz-projection.

The space convergence rate for the H'-norm of O(h?) is observed for both u}' and z?.
All numerical experiments were conducted using a =5 = 1.
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7.4 Convergence Plots 7 NUMERICAL EXPERIMENTS

, for the L?-norm and the

In the following, we present convergence plots of H(:cZ)L - ZI7(X)

H'-seminorm.

quadr. ESFEM L2-norm space conv. quadr. ESFEM Hl-seminorm space conv.
100 T T T T 100 T T T T
1L 4 -1 L i
10 107 F
1072 102
2 . S
<
S @
5 1034 g 107°
E 2
8 43 e 47
~" 10 @ 10
— d
i
T
53 =0.1 sl —&— 7=0.1 i
10 —&— 7=0.05 10 —6&— 7 =0.05
| 7=0.025 7=0.025
—=— 7=0.0125 —=%— 7=0.0125
106 ¢ —k— 7=0.00625 106 F —k— 7 =0.00625 |3
——+—— 7=0.003125 ——— 7=0.003125
— — — 0o(h®) — — —o(h?)
-7 1 n n -7 1 n n
10 10
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
mesh size h mesh size h

Figure 1: Time convergence of zj, with quadratic ESFEM/ BDF3, for (2.7)-(2.9)

BDF3 L2-norm time conv. BDF3 Hl-seminorm time conv.
0 (0]
10 T 10 T
10 4 10
/ ",
1072 1072
S
S )
5 103 £ 103k
g e
s £
e
o107 F g 10 F
— 1
T v
5L —— h =0.95228 || 5L s —— h =0.95228 ||
10 —O6— h =0.64484 10 v —©6— h =0.64484
h =0.47249 / h =0.47249
// —2— h =0.36676 , 4 —2— h =0.36676
0%, —%— h=0.2405 [} 10%F —%— h=0.2405 [}
——+— h=0.18724 ——+— h=0.18724
—— —oE) —— —oE)
1077 ' 1077 '
1073 1072 107t 1073 1072 107t
step size 7 step size 7

Figure 2: Space convergence of x}, with quadratic ESFEM/ BDF3, for (2.7)-(2.9)
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, for the L?-norm and the

. L
In the following, we present convergence plots of H(uﬁ) - u‘

H'-seminorm.

BDF3 L2-norm time conv.

BDF3 H-seminorm time conv.

10° - 10°
10t ¢ 101 f
1072 1072 f
S
S >
5 103 £ 103k
g 2
S £
S 104k 5 104k
o 10 ﬁ 10
T %
5L / —<— h =0.95228 || 5L / —<—h =0.95228 |]
10 / —6— h =0.64484 10 / —6— h =0.64484
, 7 h =0.47249 s/ h =0.47249
, —2— h =0.36676 , 7 —%=— h =0.36676
0% ——k— h =0.2405 [} 10%F ——k— h =0.2405
: ——+— h=0.18724 ——+— h =0.18724
—— —oE) —— —o@)
107’ ; 107’ :
1078 1072 107t 1078 1072 107t
step size 7 step size 7

Figure 3: Time convergence of uy, with quadratic ESFEM/ BDF3, for (2.7)-(2.9)

Oquadr. ESFEM L2-norm space conv. quoadr. ESFEM Hl-seminorm space conv.
10 T T T T 10 T T T T
107! 10t
1072« 102
S
S )
5 103 c 1073
. g
< o4 5 o4t 4
o 1074 $ 10
—
<L o .-01 | T <l —%—-=01 I
10 —&— 7=0.05 10 —6— 7=0.05
7 =0.025 7 =0.025
—— 7=0.0125 —&%— 7=0.0125
106 F ——k— 7=0.00625 4 106 F —k— 7=0.00625 3
——+—— 7=0.003125 ——+—— 7=0.003125
—— —o®d) —— —oh?)
10_7 1 1 1 10_7 1 n n
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

mesh size h mesh size h

Figure 4: Space convergence of uy, with quadratic ESFEM/ BDF3, for (2.7)-(2.9)
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7.4 Convergence Plots 7 NUMERICAL EXPERIMENTS

In the full discretization of the surface PDE (2.19) appear mass matrices on surfaces correspond-
ing to extrapolated nodal vectors, i.e. M(X"77), where we could also reassemble at the numerical
approximations x" /. This corresponds of exchanging (2.19) with

% (60M(’>Z")u" " iéjM(Xn_j)u"_j) +AR) U = £(&,T"). (7.2)
=

We note that this change does come at a price, since we previously did compute M(x"7). In our
numerical experiments this additional matrix assembly increases the runtime by approximately
40%.

Convergence plots, using (2.19) or (7.2), are basically identical, which implies that both
schemes work equally fine for this experiment. To visualize the difference of both discretizations,
we compute a numerical solutions uﬁ’l using (2.19) and a numerical solution uzg, using (7.2). We

then plot, in the same format as before, the space and time convergence of Huzl - uZ’Q

HY(Th[x2])

BDF3 H-norm time conv.

quadr. ESFEM Hl-norm space conv.

10° 100
—<— h =0.95228 —4—7=0.1
—O6— h =0.64484 —6— 7=0.05
101t h =0.47249 7 101k 7=0.025
—#%— h =0.36676 s —%— 7 =0.0125
—— h =0.2405 % ——%— 7=0.00625
Sl h =0.18724 // A > 5‘ 7=0.003125 =
W05 F | == —oud) % / 07— ——om? -7
5 re o
: : -
3 107 $10°%F -~
£ £
e e L o L
. 10 T 104
T T
* 5 * ¥—F
10° 105
10°® 10§
10 7 L 10_7 L L L L
10'3 10'2 10'1 0.2 0.4 0.6 0.8
step size 7 mesh size h

Figure 5: Convergence plots for HuZ’l - UZQHHl(Fh[xQ])

We observe that the H'-norm of the difference of both numerical solutions is much smaller than
the error and completely dominated by the time discretization error. Therefore, reassembling
the mass matrices in the numerical solutions x’ (at a high computational cost) and using (7.2)

did not improve the accuracy of the numerical solution in any relevant way, compared to using
(2.19).
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Zusammenfassung

In dieser Arbeit wird ein gekoppeltes System geometrischer Evolutionsgleichung auf zweidimen-
sionalen bewegten Oberflichen I'() ¢ R? volldiskretisiert und numerisch analysiert. Die Evolu-
tion der Oberflache selbst ist dabei nicht vorgegeben, sondern selbst abhéngig von einer Losung
einer partiellen Differentialgleichung (PDE) auf der bewegten Oberflache.

Die Evolution 16st einen regularisierten mittleren Kriitmmungsfluss, welcher gekoppelt ist an eine
parabolische partielle Differentialgleichung auf der Oberfldche. In [16] wurde bereits die Konver-
genz einer Semidiskretisierung, mithilfe finiter Elemente von Ordnung k£ > 2 , des gekoppelten
Systems nachgewiesen. Daraufhin wurde in [17] eine linear implizite BDF-Zeitdiskretisierung der
semidiskreten PDE analysiert und fiir BDF-Verfahren der Ordnung p < 5 Konvergenz bewiesen.
Diese Arbeit erweitert nun die numerische Analyse dieses Systems und enthélt eine vollstdndige
Konvergenzanalyse der Volldiskretisierung des gekoppelten Systems.

Im ersten Abschnitt wird eine kurze Einleitung in das Thema gegeben. Bisherige Ergebnisse
werden referiert und die Struktur der Arbeit wird beschrieben.

Der zweite Abschnitt fiihrt die grundlegende Notation eingefiihrt und wichtige Eigenschaften
von bewegten Oberflichen werden wiederholt. Anschlieffend wird eine schwache Formulierung
hergeleitet und finite Elemente Rédume werden eingefiithrt. Mithilfe von BDF-Verfahren wird eine
Volldiskretisierung des Problems aufgestellt. Abschliefsend wird das Hauptresultat formuliert und
in einen Satz gefasst.

Im dritten Abschnitt werden Hilfsresultate fiir die aus [16] und [17] wiederholt, die eine
zentrale Rolle in der Stabilitdtsanalyse spielen. Ein neues Resultat wurde hinzugefiigt, welches
einen Differentenquotienten der Massematrizen abschétzt.

Der vierte Abschnitt beinhaltet die Stabilitdtsanalyse. Zu Beginn werden Fehlergleichungen
hergeleitet. Hierfiir wird die Interpolation der exakten Losung in das diskretisierte System einge-
setzt. Diese 16sen das numerische System nicht exakt, sondern nur bis auf einen Restterm, der
sogenannte Defekt. Subtraktion der numerischen Losung eingesetzt in das numerische System
liefert dann Fehlergleichungen. Nun werden die Fehlergleichungen nacheinander getestet, an-
schliefsend werden die Terme auf der rechten Seite nacheinander abgeschétzt und absorbiert. Eine
wichtige Rolle spielen dabei die Multiplier-Techniken aus [19]. Das Stabilitétsresultat schitzt nun
die numerischen Fehler in Termen der eingefiihrten Defekte ab.

Abschnitt 5 gibt wichtige geometrische Abschétzungen an, die spéater in der Konsistenzanalyse
verwendet werden.

Die Konsistenzanalyse befindet sich im sechsten Abschnitt. Hier werden die in der Stabilitét-
sanalyse eingefiihrten Defekte, mithilfe der geometrischen Abschétzungen aus der Sektion zuvor,
beschrankt. Gemeinsam mit dem Stabilitdtsresultat aus dem vierten Abschnitt wird nun das
Hauptresultat, in Form des Satzes aus dem vorherigen Abschnitt, bewiesen.

Im siebten Abschnitt werden numerische Experimente beschrieben. Die zentralen Ideen der
Implementierung von finiten Elementen zweiter Ordnung auf gekriimmten Oberflichen werden
erlautert. FEin simpler Weg zur Erstellung numerischer Experimente wird dargestellt. Die be-
wiesenen Konvergenzraten werden anhand Fehlerplots numerischer Experimente illustriert.
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