

Fachbereich Mathematik

Prof. Dr. Andreas Prohl Benita Tscheppe

Nichtlineare Optimierung

Sommersemester 25

EBERHARD KARLS

TÜBINGEN

Tübingen, 10.07.2025

Übungsaufgaben 10

Problem 1. Consider the linear program in normal form, with data

$$\boldsymbol{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \boldsymbol{b} = \begin{pmatrix} 4 \\ 6 \\ 2 \\ 3 \end{pmatrix}, \qquad \boldsymbol{c}^{\top} = (-2, -3, -4, 0, 0, 0, 0).$$

Do one simplex step, starting with the corner $\mathbf{x} = (2, 0, 0, 2, 6, 0, 3)^{\top}$.

Problem 2. The aim is to approximate the following optimization problem with equality constraints

min
$$f(\mathbf{x})$$
 subject to $h_j(\mathbf{x}) = 0$ $(1 \le j \le p)$ (1)

by the (un-constrained) penalty method (with penalty parameter $\gamma > 0$)

$$\min_{\mathbf{x}\in\mathbb{R}^n}\mathscr{P}(\mathbf{x};\gamma)\,,\qquad\text{where}\qquad\mathscr{P}(\mathbf{x};\gamma):=f(\mathbf{x})+\frac{\gamma}{2}\|\mathbf{h}(\mathbf{x})\|_{\mathbb{R}^p}^2\,.\tag{2}$$

In the lecture, we had a theorem which stated properties for the penalty method, under the assumptions that $\mathscr{X} := \mathbf{h}^{-1}(\mathbf{0}) \neq \emptyset$, that $\{\gamma_k\}_k \subset \mathbb{R}^+$ would be strictly growing, that f, \mathbf{h} are continuous, and f would be bounded from below, as well as that (2) has a unique solution \mathbf{x}_k^* for every $k \in \mathbb{N}$.

In the lecture, we verified already that the sequence $\{\mathscr{P}(\mathbf{x}_k^*; \gamma_k)\}_k$ is growing, and that $\{\|\mathbf{h}(\mathbf{x}_k^*)\|_{\mathbb{R}^p}\}_k$ is decreasing.

Show that the following properties are valid:

- i) The sequence $\{f(\mathbf{x}_k^*)\}_k$ is growing.
- ii) $\mathbf{h}(\mathbf{x}_k^*) \to \mathbf{0}$ $(k \uparrow \infty)$.
- iii) Every accumulation point of the sequence $\{\mathbf{x}_k^*\}_k \subset \mathbb{R}^n$ solves (1).

Problem 3. In addition to the data assumptions in **Problem 2**, let us assume that f, \mathbf{h} are both continuously differentiable, and that the limit $\mathbf{x}^* := \lim_{k \uparrow \infty} \mathbf{x}^*_k$ is a *regular* point. Then the approximates $\{\boldsymbol{\lambda}^k\}_k \subset \mathbb{R}^p$, with $\lambda_j^k = \gamma_k h_j(\mathbf{x}^*_k)$, converge to the unique Lagrange multiplier $\boldsymbol{\lambda} \in \mathbb{R}^p$ of (1).

Abgabe: 17.07.2025.

Seite 1/1

