

Mathematisch-Naturwissenschaftliche Fakultät

Fachbereich Mathematik

Prof. Dr. Andreas Prohl Benita Tscheppe

Nichtlineare Optimierung

Sommersemester 25

Tübingen, 17.04.2025

Übungsaufgaben 1

Problem 1. Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ of the form:

$$f(\mathbf{x}) := \frac{1}{2} \big\langle \mathbf{x}, \boldsymbol{Q} \mathbf{x} \big\rangle + \big\langle \mathbf{c}, \mathbf{x} \big\rangle + \gamma \,,$$

where $Q \in \mathbb{R}^{n \times n}_{sym}$, $\mathbf{c} \in \mathbb{R}^{n}$, and $\gamma \in \mathbb{R}$. Show that

- i) f is convex if and only if Q is positive semi-definite.
- ii) f is strictly convex if and only if Q is positive definite.

Problem 2. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function such that $\mathbf{x}^* \in \mathbb{R}^n$ is a local minimum of f along every line passing through the point \mathbf{x}^* .

- i) Show that $\nabla f(\mathbf{x}^*) = 0$.
- ii) Can you find an example where x^* may not be a local minimum of f although it satisfies the property above?

Problem 3. Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ of the form

$$f(\mathbf{x}) := \frac{1}{2} \langle \mathbf{x}, \boldsymbol{Q} \mathbf{x} \rangle + \langle \mathbf{c}, \mathbf{x} \rangle, \qquad (1)$$

where $Q \in \mathbb{R}^{n \times n}_{spd}$ (so it is symmetric, positive definite) and $\mathbf{c} \in \mathbb{R}^n$. Fix $\mathbf{x} \in \mathbb{R}^n$. To this point, we attach a *search direction* $\mathbf{d} \in \mathbb{R}^n$ — which is a direction in which values of f decay (at least locally). The minimum value $\sigma^* \geq 0$ of the following minimization problem

$$f(\mathbf{x} + \sigma^* \mathbf{d}) = \min_{\sigma \ge 0} f(\mathbf{x} + \sigma \mathbf{d})$$

will be referred to as step size in the lecture.

- i) Discuss why $\sigma^* > 0$.
- ii) Show that the choice $\sigma = \sigma^*$ guarantees

$$f(\mathbf{x} + \sigma \mathbf{d}) - f(\mathbf{x}) \le \sigma \gamma \langle \nabla f(\mathbf{x}), \mathbf{d} \rangle$$
(2)

for all $\gamma \in (0, \frac{1}{2}]$. The inequality (2) is known as *Armijo's condition*, which will appear in the lecture shortly.

Abgabe: 23.05.2025.

Seite 1/1