Exercise Sheet-1

Stochastic Differential Equations
Dr. Chaudhary

October 26, 2023

1. Conditional Expectation of a Discrete Random Variable

Exercise 1.

Let's consider a random experiment where a six-sided fair die is rolled twice. Define the following random variables:

- Let X be the outcome of the first roll. - Let Y be the outcome of the second roll. - Let Z be the product of the two outcomes, i.e., $Z=X \cdot Y$.

Calculate the conditional expectation $E(X \mid Z=z)$ for a given value $z=6$, and prove that it satisfies the properties of an expectation. Specifically, calculate $E(X \mid Z=6)$, and demonstrate the following:

1. Compute $E(X \mid Z=6)$ using the definition of conditional expectation.

Exercise 2.

Let X be a discrete random variable representing the number of heads obtained when flipping three fair coins. Calculate the conditional expectation $E(X \mid X \geq$ $2)$ and prove that it satisfies the properties of an expectation.

2. Conditional Expectation of a Continuous Random Variable

Exercise 1.

Consider a continuous random variable Y with probability density function (PDF) given by:

$$
f_{Y}(y)= \begin{cases}2(1-y), & \text { for } 0 \leq y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Let X be another continuous random variable defined as $X=2 Y$. Calculate the conditional expectation $E(X \mid Y=y)$ and prove that it satisfies the properties of an expectation.

Exercise 2

Consider a continuous random variable X with probability density function (PDF) given by:

$$
f_{X}(x)= \begin{cases}2 x, & \text { for } 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Let Y be another continuous random variable defined as $Y=X^{2}$. Calculate the conditional expectation $E(Y \mid X=x)$ and prove that it satisfies the properties of an expectation.

Deadline: 2nd Nov 2023, 12:00.

