Mathematisch-
Naturwissenschaftliche Fakultät

Stochastische Differentialgleichungen

Sommer-Semester 2022

Tübingen, 22.06.2022

Homework 9

Problem 1. Fix $T>0$, a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$, and consider the \mathbb{R}^{d}-valued process $\mathbf{X}=\left\{\mathbf{X}_{t} ; 0 \leq t \leq T\right\}$ on it. Assume that there exist numbers $\alpha, \beta, C>0$, such that

$$
\begin{equation*}
\mathbb{E}\left[\left\|\mathbf{X}_{t}-\mathbf{X}_{s}\right\|_{\mathbb{R}^{d}}^{\alpha}\right] \leq C|t-s|^{1+\beta} \quad \forall s, t \in[0, T] \tag{1}
\end{equation*}
$$

Show that there exists a Hölder continuous modification $\widetilde{\mathbf{X}}$ of \mathbf{X} with exponent $\gamma \in\left[0, \frac{\beta}{\alpha}\right)$.
Remark \& Hint: 1. This is Kolmogorov's continuity theorem, which we e.g. applied before for W.
2. For its proof, apply Borel-Carelli lemma, after estimating

$$
\mathbb{P}\left[\max _{1 \leq j \leq 2^{J}}\left\|\mathbf{X}_{t_{j}}-\mathbf{X}_{t_{j-1}}\right\|_{\mathbb{R}^{d}} \geq 2^{-\gamma J}\right] \quad \text { along/on a mesh } \quad \mathcal{I}_{k}=\left\{t_{j}\right\}_{j=0}^{2^{J}}
$$

with the help of Tschebycheff's inequality, and (1).

Problem 2. Fix $T>0$, and $\mathrm{x} \in \mathbb{R}^{d}$. In the lecture, we associated the family of maps $\Psi:=\left\{\Psi_{s, t} ; 0 \leq\right.$ $s \leq t \leq T\}$ to the strong solution $\mathbf{X}^{\mathbf{x}} \equiv\left\{\mathbf{X}_{t}^{\mathbf{x}} ; 0 \leq t \leq T\right\}$ of the SDE

$$
\begin{equation*}
\mathrm{d} \mathbf{X}_{t}^{\mathbf{x}}=\mathbf{b}\left(\mathbf{X}_{t}^{\mathbf{x}}\right) \mathrm{d} t+\boldsymbol{\sigma}\left(\mathbf{X}_{t}^{\mathbf{x}}\right) \mathrm{d} \mathbf{W}_{t} \quad \forall t \in[0, T], \quad \mathbf{X}_{0}^{\mathbf{x}}=\mathbf{x} \tag{2}
\end{equation*}
$$

where data (b, $\boldsymbol{\sigma}$) are Lipschitz, and of (sub-)linear asymptotic growth. Show that Ψ is a Brownian flow.

Problem 3. Fix $T>0$, and $\mathrm{x} \in \mathbb{R}^{d}$. In the lecture, we associated the $\mathbb{R}^{d \times d}$-valued 1st variation process $\boldsymbol{J}(\mathbf{x}) \equiv\left\{\boldsymbol{J}_{t}(\mathbf{x}) ; 0 \leq t \leq T\right\}$ to $\mathbf{X}^{\mathbf{x}}$ from SDE (2). Verify the related theorem in the lecture which asserts that $\boldsymbol{J}(\mathbf{x})$ solves the linear SDE

$$
\begin{equation*}
\boldsymbol{J}_{t}(\mathbf{x})=1_{\mathbb{R}^{d}}+\int_{0}^{t} \nabla_{\mathbf{x}} \mathbf{b}\left(\mathbf{X}_{s}^{\mathbf{x}}\right) \boldsymbol{J}_{s}(\mathbf{x}) \mathrm{d} s+\sum_{\ell=1}^{d} \nabla_{\mathbf{x}} \boldsymbol{\sigma}_{\ell}\left(\mathbf{X}_{s}^{\mathbf{x}}\right) \boldsymbol{J}_{s}(\mathbf{x}) \mathrm{d} W_{s}^{\ell} \quad \forall t \in[0, T] \tag{3}
\end{equation*}
$$

Remark \& Hint: 1. Instead of (3), we may consider the following SDE

$$
\begin{equation*}
\mathrm{d} \boldsymbol{\eta}_{t}^{\mathbf{h}}=\nabla_{\mathbf{x}} \mathbf{b}\left(\mathbf{X}_{t}^{\mathbf{x}}\right) \boldsymbol{\eta}_{t}^{\mathbf{h}} \mathrm{d} t+\sum_{\ell=1}^{d} \nabla_{\mathbf{x}} \boldsymbol{\sigma}_{\ell}\left(\mathbf{X}_{t}^{\mathbf{x}}\right) \boldsymbol{\eta}_{t}^{\mathbf{h}} \mathrm{d} W_{t}^{\ell} \quad \forall t \in[0, T], \quad \boldsymbol{\eta}_{0}^{\mathbf{h}} \equiv \boldsymbol{\eta}_{0}^{\mathbf{h}}(\mathbf{x})=\mathbf{h}, \tag{4}
\end{equation*}
$$

for arbitrary $\mathbf{h} \in \mathbb{R}^{d}$.
2. Now verify ($p \geq 1$)

$$
\left(\mathbb{E}\left[\sup _{0 \leq t \leq T}\left\|\mathbf{X}_{t}^{\mathbf{x}+\mathbf{h}}-\mathbf{X}_{t}^{\mathbf{x}}-\boldsymbol{\eta}_{t}^{\mathbf{h}}\right\|_{\mathbb{R}^{d}}^{p}\right]\right)^{1 / p} \leq C_{p}\|\mathbf{h}\|_{\mathbb{R}^{d}}^{2} \quad \forall \mathbf{h} \in \mathbb{R}^{d} .
$$

Now use BDG-inequality, and mean-value theorem to show this estimate, and then conclude from it that indeed $\boldsymbol{J}_{t}(\mathbf{x})=\nabla_{\mathbf{x}} \Psi_{0, t}(\mathbf{x})$.

Problem 4. Consider the following equation on $\mathbb{R}^{d}(d \geq 1)$:

$$
\begin{cases}\partial_{t} u(t, \mathbf{x}) & =\frac{1}{2} \Delta u(t, \mathbf{x}), \tag{5}\\ u(0, \mathbf{x}) & =f(\mathbf{x}),\end{cases}
$$

where $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a bounded measurable function. Then we have the well-known Feynman-Kac formula for the solution of the above equation

$$
u(t, \mathbf{x})=\mathbb{E}\left[f\left(\mathbf{x}+\mathbf{W}_{t}\right)\right],
$$

where \mathbf{W} is an \mathbb{R}^{d}-valued Wiener process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathcal{I}_{k^{J}}=\left\{t_{j}^{J}\right\}_{j=0}^{J} \subset[0,1]$ be an equi-distant mesh of size k^{J}.
(i) Let $d=1$ and $f(x)=\sin (\pi x)$. Consider points $x_{1}=-10, x_{2}=-8, x_{3}=-6, \cdots, x_{10}=8, x_{11}=$ 10 , and fix $J=100$ and $\mathrm{M}=3000$. For each $j=0, \cdots, J$, compute

$$
u\left(t_{j}^{J}, x_{i}\right) \approx \mathbb{E}_{M}\left[f\left(x_{i}+\sum_{j=0}^{J-1} \Delta_{j}^{J} W\right)\right] \quad(i=1, \cdots, 10)
$$

with Wiener increments $\Delta_{j}^{J} W:=W_{t_{j+1}^{J}}-W_{t_{j}^{J}} \sim \sqrt{k^{J}} \mathcal{N}(0,1)$.
(ii) Let $d=4$. For $\mathbf{x} \in \mathbb{R}^{4}$, take $f(\mathbf{x})=\prod_{\ell=1}^{4} \sin \left(\pi \mathbf{x}_{\ell}\right)$, where

$$
\mathbf{x}_{1}=(1,0,0,0)^{\top} \quad \mathbf{x}_{2}=(0,1,0,0)^{\top} \quad \mathbf{x}_{3}=(0,0,1,0)^{\top} \quad \mathbf{x}_{4}=(0,0,0,1)^{\top} .
$$

Fix $J=100$ and $\mathrm{M}=3000$. For $i=1, \cdots, 4$, plot the temporal evolution

$$
j \mapsto u\left(t_{j}^{J}, \mathbf{x}_{i}\right) \approx \mathbb{E}_{M}\left[f\left(\mathbf{x}_{i}+\sum_{\ell=0}^{J-1} \Delta_{\ell}^{J} \mathbf{W}\right)\right] .
$$

Date of Submission: 29.06.2022.

