Mathematisch-
Naturwissenschaftliche Fakultät

Stochastische Differentialgleichungen

Sommer-Semester 2022

Tübingen, 15.06.2022

Homework 8

Problem 1. Fix $T>0$. To construct a strong solution for an SDE with data ($\mathbf{b}, \boldsymbol{\sigma}$) which satisfy Assumption 1, the first step of the proof was to establish solvability (in $\mathbb{Y}:=L_{\mathbb{F}}^{2}\left(\Omega ; C\left([0, T] ; \mathbb{R}^{d}\right)\right)$) for its truncation $n \in \mathbb{N}$, i.e.,

$$
\begin{equation*}
\mathrm{d} \mathbf{X}_{t}^{n}=\mathbf{b}\left(\mathbf{X}_{t}^{n}\right) \mathrm{d} t+\boldsymbol{\sigma}_{n}\left(\mathbf{X}_{t}^{n}\right) \mathrm{d} \mathbf{W}_{t} \quad(0 \leq t \leq T), \quad \mathbf{X}_{0}^{n}=\mathbf{x} \in \mathbb{R}^{d} . \tag{1}
\end{equation*}
$$

To accomplish this goal, we introduced und studied in class the mapping $\Gamma_{n}: \mathbb{Y} \rightarrow \mathbb{Y}$, via $\boldsymbol{\zeta}=\Gamma_{n}(\boldsymbol{\eta})$, where

$$
\begin{equation*}
\mathrm{d} \boldsymbol{\zeta}_{t}=\mathbf{b}\left(\boldsymbol{\zeta}_{t}\right) \mathrm{d} t+\boldsymbol{\sigma}_{n}(\boldsymbol{\eta}) \mathrm{d} \mathbf{W}_{t} \quad(0 \leq t \leq T), \quad \boldsymbol{\zeta}_{0}=\mathbf{x} \in \mathbb{R}^{d}, \tag{2}
\end{equation*}
$$

and used its re-formulation as randomized ODE to first construct local, and then global solutions via Assumption 1.

Then, we discussed that Γ_{n} is a contraction on $\widetilde{\mathbb{Y}}:=C_{\mathbb{F}}\left([0, T] ; L^{2}\left(\Omega ; \mathbb{R}^{d}\right)\right)$ for small times $0 \leq T \leq T_{0}<$ ∞, by using Ito's formula, Assumption 1, Lipschitz property of σ_{n}, and Gronwall's inequality.

Now show that the same property holds for Γ_{n} on \mathbb{Y}.
Hint: Proceed similarly as before, and use the results from the lecture, and BDG-inequality.

Problem 2. For every $n \in \mathbb{N}$, we have now established the existence (and uniqueness) of a solution $\mathbf{X}^{n} \in \mathbb{Y}$ of (1) by Banach FP theorem through (2), and a continuation argument. There remains to verify convergence of $\left\{\mathbf{X}^{n}\right\}_{n} \subset \mathbb{Y}$ to $\mathbf{X} \in \mathbb{Y}$, and the identification of the limit as strong solution of

$$
\begin{equation*}
\mathrm{d} \mathbf{X}_{t}=\mathbf{b}\left(\mathbf{X}_{t}\right) \mathrm{d} t+\boldsymbol{\sigma}\left(\mathbf{X}_{t}\right) \mathrm{d} \mathbf{W}_{t} \quad(0 \leq t \leq T), \quad \mathbf{X}_{0}=\mathbf{x} \in \mathbb{R}^{d} . \tag{3}
\end{equation*}
$$

In class, we therefore verified uniform bounds (in n) for solutions $\left\{\mathbf{X}^{n}\right\}_{n \in \mathbb{N}}$ of 11 for the particular case $q=2$, i.e.:

$$
\begin{equation*}
\exists C>0: \quad \sup _{n \in \mathbb{N}} \mathbb{E}\left[\left\|\mathbf{X}_{t \wedge \ell_{n, r}}^{n}\right\|_{\mathbb{R}^{d}}^{q}\right] \leq C\left(1+\|\mathbf{x}\|_{\mathbb{R}^{d}}^{q}\right) \exp \left(C_{q} t\right) \quad \forall t \in[0, T], \tag{4}
\end{equation*}
$$

where, for a given $r>0$, we introduced the stopping time

$$
\ell_{n, r}= \begin{cases}T & \text { for }\left\|\mathbf{X}_{t}^{n}\right\|_{\mathbb{R}^{d}}<r \text { for all } t \in[0, T], \tag{5}\\ \inf \left\{t \in[0, T] ;\left\|\mathbf{X}_{t}^{n}\right\|_{\mathbb{R}^{d}} \geq r\right\} & \text { else } .\end{cases}
$$

Now generalize the proof in class for $q=2$ of (4) to general $q \geq 2$. Then argue with the help of Fatou
lemma that this implies the existence of $C_{q, T}>0$, s.t.

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sup _{t \in[0, T]} \mathbb{E}\left[\left\|\mathbf{X}_{t}^{n}\right\|_{\mathbb{R}^{n}}^{q}\right] \leq C_{q, T} \tag{6}
\end{equation*}
$$

Problem 3. Based on Assumption 1, the higher moment bounds in (6) may now be used to verify:

$$
\begin{equation*}
\exists C>0: \quad \sup _{n \in \mathbb{N}}\left\|\mathbf{X}^{n}\right\|_{\mathbb{Y}} \leq C . \tag{7}
\end{equation*}
$$

For this purpose, start again with

$$
\mathbb{P}-\text { a.s. : } \quad \mathbf{X}_{t}^{n}=\mathbf{x}+\int_{0}^{t} \mathbf{b}\left(\mathbf{X}_{s}^{n}\right) \mathrm{d} s+\int_{0}^{t} \boldsymbol{\sigma}_{n}\left(\mathbf{X}_{s}^{n}\right) \mathrm{d} \mathbf{W}_{s} \quad \forall t \in[0, T] .
$$

Now make squares, and use the BDG-inequality, in particular, to show (7).

Problem 4. The spread of an infection on a time interval $[0, T]$ subject to random disturbances is modeled via the stochastic SIR (Susceptible-Infectious-Recovered) equations, which are

$$
\left\{\begin{align*}
d S(t) & =[\alpha-\beta S(t) I(t)-\mu S(t)] \mathrm{d} t+\sigma_{1} S(t) \mathrm{d} W(t) \tag{8}\\
d I(t) & =[\beta S(t) I(t)-(\mu+\rho+\gamma) I(t)] \mathrm{d} t+\sigma_{2} I(t) \mathrm{d} W(t), \\
S(0) & =S_{0}, \quad I(0)=I_{0}
\end{align*}\right.
$$

where

- $S(t)$ denotes the total susceptible population at time $t \in[0, T]$,
- $I(t)$ denotes the number of active infections at time $t \in[0, T]$,
and $\alpha, \mu, \rho, \beta, \gamma$ are given positive numbers. Here, $\sigma_{1}>0, \sigma_{2} \neq 0$ are used to model the randomness in the evolution. Let $\{W(t)\}_{t \geq 0}$ be a Wiener process defined on a given probability space $(\Omega, \mathcal{F}, \mathbb{P})$. It can be shown that there exists a unique strong solution $\{(S(t), I(t)) ; 0 \leq t \leq T\}$. Let $\mathcal{I}_{k^{J}}=\left\{t_{j}^{J}\right\}_{j=0}^{J} \subset[0,1]$ be an equi-distant mesh of size k^{J}. For each j, let the \mathbb{R}^{2}-valued tuple (S_{j}, I_{j}) denote the numerical approximation of $\left(S\left(t_{j}^{J}\right), I\left(t_{j}^{J}\right)\right)$.
Use the Euler-Maruyama method to computationally study the system (8).
(a) Consider (8) with parameters $\alpha=5, \beta=5, \mu=4, \rho=1, \gamma=1$. $\sigma_{1}=\sigma_{2}=0$. For $\left(S_{0}, I_{0}\right)=(1,1)$, verify computationally that $I(t)$ converges a.s. to a non-zero number as $t \rightarrow \infty$. Then, consider $\sigma_{1}=2, \sigma_{2}=-1$ and verify that $I(t) \rightarrow 0$ as $t \rightarrow \infty$, \mathbb{P}-a.s. (i.e., the population will eventually be disease-free). To verify this, take $T=30, k^{J}=10^{-3}$ and plot the histogram of $I(t)$ for $t=$ $1, \cdots, 30$.
(b) For the same model parameters in (a) with non-zero σ_{1} and σ_{2}, plot the histogram of $f^{*}(x)$ defined as

$$
f^{*}(x):=\frac{125}{16} x^{-4} e^{-\frac{5}{2 x}} \quad(x>0) .
$$

In the same snapshot, plot the empirical density of $S(t)$ at $t=50$. Observe that $S(t) \rightarrow f^{*}$ as $t \rightarrow \infty, \mathbb{P}$-a.s.

Date of Submission: 22.06.2022.

Seite 22 2

