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Problem 1. Fix 7" > 0. To construct a strong solution for an SDE with data (b, o) which satisfy Ass-
umption 1, the first step of the proof was to establish solvability (in Y := L(€2; C([0, T];R?)) ) for its
truncationn € N, i.e,,

AX! = b(XP)dt + 0,(XP)AW, (0<t<T), b =xeR:. (1)

To accomplish this goal, we introduced und studied in class the mapping I',, : Y — Y, via { = I',,(n),
where
¢ =b(C)dt +o,(dW: (0<t<T), (o=x€R?, (2

and used its re-formulation as randomized ODE to first construct local, and then global solutions via
Assumption 1.

Then, we discussed that I, is a contraction on Y := Cr ([0, T]; L*(Q; R?)) for small times 0 < T' < Ty <
oo, by using lto’s formula, Assumption 1, Lipschitz property of o.,,, and Gronwall’s inequality.

Now show that the same property holds for I',, on Y.

Hint: Proceed similarly as before, and use the results from the lecture, and BDG-inequality.

Problem 2. For every n € N, we have now established the existence (and uniqueness) of a solution
X" e Y of by Banach FP theorem through (2), and a continuation argument. There remains to
verify convergence of {X"},, C Y to X € Y, and the identification of the limit as strong solution of

dX; = b(Xy)dt + o(X)dW; (0<t<T), Xg=xeR?. (3)

In class, we therefore verified uniform bounds (in n) for solutions {X"},cn of for the particular
case ¢ =2, i.e.

30>0:  swE[|X, ] < 0(1 + ”xugw) exp(Cyt)  Vte[0,T], (4)
ne

where, for a given r > 0, we introduced the stopping time

B {T for || X?||ge < r for all t € [0,7], )

inf{t € [0,T); | X}|lga =7} else.

Now generalize the proof in class for ¢ = 2 of (4) to general ¢ > 2. Then argue with the help of Fatou
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lemma that this implies the existence of C, r > 0, s.t.

sup sup E[HX?H%H] <Cyr. (6)
neN te[0,T]

Problem 3. Based on Assumption 1, the higher moment bounds in (6) may now be used to verify:

3C>0: sup | X"|ly < C. (7)
neN
For this purpose, start again with
t t
P—as.: X?:x+/ b(X?)ds—i—/ o, (X" dW,  Vte[0,T].
0 0

Now make squares, and use the BDG-inequality, in particular, to show (7).

Problem 4. The spread of an infection on a time interval [0, 7] subject to random disturbances is
modeled via the stochastic SIR (Susceptible-Infectious-Recovered) equations, which are

dS(t) = [a—BSt)I(t) —puS(t)] dt + o1 .S(t)dW (),
dI(t) = [BSE)I{) - (p+p+)I(t)]dt+ o2 I(t)dW (L), (8)
S(0) =S, I1(0) = I .

where
e S(t) denotes the total susceptible population at time ¢ € [0, T,
e I(t) denotes the number of active infections at time t € [0, 7],

and «, u, p, 8, are given positive numbers. Here, o1 > 0, 09 # 0 are used to model the randomness in
the evolution. Let {W (¢)}+>0 be a Wiener process defined on a given probability space (2, F,P). It can
be shown that there exists a unique strong solution {(S(t), 1(t)); 0 <t < T}.LetZ,; = {t/}7_, C [0,1]
be an equi-distant mesh of size k7. For each j, let the R?-valued tuple (S;, I;) denote the numerical
approximation of (S(t7), I(t/)).

Use the Euler-Maruyama method to computationally study the system (8).

(a) Consider (8) with parameters a =5,8=5,u=4,p=1,7v=1. 01 = 09 = 0. For (S, Ip) = (1,1),
verify computationally that () converges a.s. to a non-zero number as ¢ — co. Then, consider

o1 = 2,09 = —1 and verify that I(t) — 0 as t — oo, P-a.s. (i.e., the population will eventually
be disease-free). To verify this, take T = 30,k7 = 1073 and plot the histogram of I(t) for t =
1,---,30.

(b) For the same model parameters in (a) with non-zero o; and o5, plot the histogram of f*(x)
defined as 195
* oY -4
ff(x) = TR
In the same snapshot, plot the empirical density of S(¢) at ¢ = 50. Observe that S(t) — f* as
t — oo, P-a.s.

e % (x>0).
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