Mathematisch-
Naturwissenschaftliche Fakultät

Stochastische Differentialgleichungen

Sommer-Semester 2022

Tübingen, 01.06.2022

Homework 7

Problem 1. Fix $T>0$. Let \mathbf{W} be an \mathbb{R}^{m}-valued Wiener process on $(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathbb{F} \equiv \mathbb{F}^{\mathbf{W}}$. Consider continuous maps

$$
\mathbf{b}:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad \text { and } \quad \boldsymbol{\sigma}:[0, T] \times \mathbb{R}^{n} \rightarrow \mathscr{L}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)
$$

which satisfy the following properties for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and all $t \in[0, T]$:
(i) $\quad|\mathbf{b}(t, \mathbf{x})|_{\mathbb{R}^{n}}+\|\boldsymbol{\sigma}(t, \mathbf{x})\| \mathscr{L}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right) \leq C\left(1+|\mathbf{x}|_{\mathbb{R}^{n}}\right)$,
(ii) $\quad|\mathbf{b}(t, \mathbf{x})-\mathbf{b}(t, \mathbf{y})|_{\mathbb{R}^{n}}+\|\boldsymbol{\sigma}(t, \mathbf{x})-\boldsymbol{\sigma}(t, \mathbf{y})\|_{\mathscr{L}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)} \leq C|\mathbf{x}-\mathbf{y}|_{\mathbb{R}^{n}}$.

Let $\xi \in L^{p}\left(\Omega ; \mathbb{R}^{n}\right)$ be given, for $p \geq 2$. Consider the SDE

$$
\mathrm{d} \mathbf{X}_{t}=\mathbf{b}\left(t, \mathbf{X}_{t}\right) \mathrm{d} t+\boldsymbol{\sigma}\left(t, \mathbf{X}_{t}\right) \mathrm{d} \mathbf{W}_{t} \quad(0 \leq t \leq T), \quad \mathbf{X}_{0}=\boldsymbol{\xi}
$$

Show that there exist a constant $C>0$, and a constant $C_{p}>0$ which depends on p as well, such that

$$
\mathbb{E}\left[\sup _{0 \leq s \leq t}\left|\mathbf{X}_{s}\right|_{\mathbb{R}^{n}}^{p}\right] \leq C_{p}\left(\mathbb{E}\left[|\boldsymbol{\xi}|_{\mathbb{R}^{n}}^{p}\right]+1\right) \exp (C t)
$$

Hint: Use Ito's formula, and BDG-inequality.

Problem 2. Under the same conditions as in Problem 1, show that

$$
\mathbb{E}\left[\left|\mathbf{X}_{t}-\mathbf{X}_{s}\right|_{\mathbb{R}^{n}}^{p}\right] \leq \widetilde{C}_{p}\left(\mathbb{E}\left[|\xi|_{\mathbb{R}^{n}}^{p}\right]+1\right)(t-s)^{\frac{p}{2}} \quad(0 \leq s \leq t \leq T),
$$

with constants $\widetilde{C}>0$ and $\widetilde{C}_{p}>0$, where the latter are also depends on $p \geq 2$.

Problem 3. Assume the same conditions as in Problem 1. Let $\mathcal{I}_{k}=\left\{t_{j}\right\}_{j=0}^{J}$ be an equi-distant mesh of size $k \equiv k^{J}>0$ that covers $[0, T]$. Consider iterates $\left\{\mathbf{Y}^{j}\right\}_{j=0}^{J}$ of the (explicit) Euler method

$$
\mathbf{Y}^{j+1}-\mathbf{Y}^{j}=\mathbf{b}\left(\mathbf{Y}^{j}\right) k+\boldsymbol{\sigma}\left(\mathbf{Y}^{j}\right) \Delta_{j} \mathbf{W} \quad(0 \leq j \leq J-1), \quad \mathbf{Y}^{0}=\boldsymbol{\xi} \in L^{4}\left(\Omega ; \mathbb{R}^{n}\right)
$$

where $\Delta_{j} \mathbf{W}:=\mathbf{W}\left(t_{j+1}\right)-\mathbf{W}\left(t_{j}\right)$. Prove the existence of constants $C>0$ and $C_{p}>0$ such that

$$
\sup _{k>0} \max _{0 \leq j \leq J} \mathbb{E}\left[\left|\mathbf{Y}^{j}\right|_{\mathbb{R}^{n}}^{2 p}\right] \leq C\left(\mathbb{E}\left[|\boldsymbol{\xi}|_{\mathbb{R}^{n}}^{2 p}\right]+1\right) \exp (C T) .
$$

Problem 4. Fix $T>0$. Let \mathbf{W} be an \mathbb{R}^{m}-valued Wiener process on $(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathbb{F} \equiv \mathbb{F}^{\mathbf{W}}$. Let $\mathbf{b}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\left.\sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}\right]^{n \times m}$ be locally Lipschitz functions, i.e., for every $N \geq 0$ there exists $C_{N}>0$, s.t.

$$
|\mathbf{b}(\mathbf{x})-\mathbf{b}(\mathbf{y})|_{\mathbb{R}^{n}}+\|\boldsymbol{\sigma}(\mathbf{x})-\boldsymbol{\sigma}(\mathbf{y})\|_{\mathscr{L}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)} \leq C_{N}|\mathbf{x}-\mathbf{y}|_{\mathbb{R}^{n}} \quad \forall \mathbf{x}, \mathbf{y} \in[-N, N]^{n} .
$$

i) Show that for every $\mathrm{x} \in \mathbb{R}^{n}$, we can find a stopping time τ_{x}, almost surely positive, and a stochastic process $\left\{\mathbf{X}_{t}^{\mathbf{x}} ; 0 \leq t<\tau_{\mathbf{x}}\right\}$, s.t.

$$
\begin{equation*}
\mathbf{X}_{t}^{\mathbf{x}}=\mathbf{x}+\int_{0}^{t} \mathbf{b}\left(\mathbf{X}_{s}^{\mathbf{x}}\right) \mathrm{d} s+\int_{0}^{t} \boldsymbol{\sigma}\left(\mathbf{X}_{s}^{\mathbf{x}}\right) \mathrm{d} \mathbf{W}_{s} \quad \forall t<\tau_{x} \tag{1}
\end{equation*}
$$

ii) Show that the process $\left\{\mathbf{X}_{t}^{\mathbf{x}} ; 0 \leq t<\tau_{\mathbf{x}}\right\}$ is unique in the sense that if $\widetilde{\tau}_{\mathbf{x}}$ is an almost surely positive stopping time and if $\left\{\mathbf{Y}_{t}^{\mathbf{x}} ; 0 \leq<\widetilde{\tau}_{\mathbf{x}}\right\}$ is a stochastic process such that

$$
\begin{equation*}
\mathbf{Y}_{t}^{\mathbf{x}}=\mathbf{x}+\int_{0}^{t} \mathbf{b}\left(\mathbf{Y}_{s}^{\mathbf{x}}\right) \mathrm{d} s+\int_{0}^{t} \boldsymbol{\sigma}\left(\mathbf{Y}_{s}^{\mathbf{x}}\right) \mathrm{d} \mathbf{W}_{s} \quad \forall t<\widetilde{\tau}_{x} \tag{2}
\end{equation*}
$$

then $\widetilde{\tau}_{\mathbf{x}} \leq \tau_{\mathbf{x}}$, and \mathbb{P}-a.s.,

$$
\mathbf{Y}_{t}^{\mathbf{x}} \mathbb{1}_{\left\{t<\tilde{\tau}_{\mathbf{x}}\right\}}=\mathbf{X}_{t}^{\mathbf{x}} \mathbb{1}_{\left\{t<\tilde{\tau}_{\mathrm{x}}\right\}} \quad \forall t \geq 0 .
$$

The process $\left\{\mathbf{X}_{t}^{\mathbf{x}} ; 0 \leq t<\tau_{\mathbf{x}}\right\}$ is called the solution of the SDE (1) up to the explosion time $\tau_{\mathbf{x}}$.

Problem 5. Fix $T>0$, as well as $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$, and a W on it. We wish to approximate the following so-called SPDE with solution $u \equiv\{u(t, x) ; 0 \leq t \leq T, 0 \leq x \leq 1\}$ via the spatial discretization below,

$$
\left\{\begin{array}{lll}
\partial_{t} u(t, x)=-\Delta u(t, x)+\alpha \partial_{t} W(t, x) & & \forall(t, x) \in(0, T) \times[0,1], \tag{3}\\
u(0, x) & =u_{0}(x) & \\
u(t, 0) & =u(t, 1)=0 & \\
u t \in(0,1], \\
\end{array}\right.
$$

for $\alpha \in\{0,1\}$. Here, $W \equiv W(t, x)$ is of the form

$$
\begin{equation*}
W(t, x):=\sum_{i=1}^{N} \gamma_{i}^{1 / 2} \sqrt{2} \sin (i \pi x) W_{i}(t) \tag{4}
\end{equation*}
$$

for some $N \in \mathbb{N}$, and $\left\{W_{i}(t) ; 0 \leq t \leq T\right\}$ are i.i.d., real-valued Brownian motions, and $\left\{\gamma_{i}\right\}_{i \geq 1}^{N} \subset \mathbb{R}_{>0}$. For the numerical approximation of (3), we discretize ${ }^{\top}$ in both, space and time. For every $0 \leq j \leq J-1$, let \mathbf{u}_{j}^{h} denote an approximation

$$
\mathbf{u}_{j}^{h} \approx\left[u\left(t_{j}^{J}, x_{1}\right), u\left(t_{j}^{J}, x_{2}\right), \cdots, u\left(t_{j}^{J}, x_{L}\right)\right]^{\top},
$$

which solves the following (implicit) discretization

$$
\begin{align*}
\mathbf{u}_{j+1}^{h}-\mathbf{u}_{j}^{h} & =-k^{J} \boldsymbol{\Lambda}^{h} \mathbf{u}_{j+1}^{h}+\alpha \Delta_{j} \mathbf{W} \quad(0 \leq j \leq J-1), \tag{5}\\
\mathbf{u}_{0}^{h} & =\left[u_{0}\left(x_{1}\right), u_{0}\left(x_{2}\right), \cdots, u_{0}\left(x_{L}\right)\right]^{\top}
\end{align*}
$$

[^0]where
\[

\boldsymbol{\Lambda}^{h}:=\frac{1}{h^{2}}\left[$$
\begin{array}{cccc}
2 & -1 & 0 & \cdots \\
-1 & 2 & -1 & \ddots \\
0 & -1 & 2 & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}
$$\right] \in \mathbb{R}^{L \times L}, \quad \Delta_{j} \mathbf{W}:=\left[$$
\begin{array}{c}
\sum_{i=1}^{N} \gamma_{i}^{1 / 2} \sqrt{2} \sin \left(i \pi x_{1}\right)\left(W_{i}\left(t_{j+1}^{J}\right)-W_{i}\left(t_{j}^{J}\right)\right) \\
\sum_{i=1}^{N} \gamma_{i}^{1 / 2} \sqrt{2} \sin \left(i \pi x_{2}\right)\left(W_{i}\left(t_{j+1}^{J}\right)-W_{i}\left(t_{j}^{J}\right)\right) \\
\vdots \\
\sum_{i=1}^{N} \gamma_{i}^{1 / 2} \sqrt{2} \sin \left(i \pi x_{L}\right)\left(W_{i}\left(t_{j+1}^{J}\right)-W_{i}\left(t_{j}^{J}\right)\right)
\end{array}
$$\right] .
\]

Fix $N=5$ in (4). Consider the following three different initial data for $x \in[0,1]$:
(i) $u_{0}(x)=\sin (\pi x)$,
(ii) $u_{0}(x)=\left\{\begin{array}{l}x, \text { for } x \in[0,0.5] \\ 1-x, \text { otherwise }\end{array}\right.$
(iii) $u_{0}(x)=\mathbb{1}_{\{x=0.5\}}$.

Plot a single trajectory of the solution $\mathbf{u}^{h} \equiv\left[\mathbf{u}_{0}^{h}, \cdots, \mathbf{u}_{L}^{h}\right]^{\top}$ till $T=1$ for the following cases with the above mentioned initial data (i) - (iii):
(a) $\alpha=0$ in (5).
(b) $\alpha=1$ in (5), $\gamma_{i}=1$ for $i=1, \cdots, 5$ in (4).
(c) $\alpha=1$ in (5), $\gamma_{i}=1 / i^{2}$ for $i=1, \cdots, 5$ in (4).

[^0]: ${ }^{1}$ For a spatial discretization, we divide the interval $[0,1]$ into subintervals $I_{j}:=\left[x_{j-1}, x_{j}\right](1 \leq j \leq L)$ of equi-distant mesh of size $h \equiv h^{L}$, where L is a positive integer, and $0=x_{0}<x_{1}<\cdots<x_{L-1}<x_{L}=1$. For the time discretization, let $\mathcal{I}_{k^{J}}=\left\{t_{j}^{J}\right\}_{j=0}^{J} \subset[0, T]$ be an equi-distant mesh of size $k \equiv k^{J}$.

