

Mathematisch-Naturwissenschaftliche Fakultät

Fachbereich Mathematik

Prof. Dr. Andreas Prohl Dr. Akash Panda

Tübingen, 01.06.2022

Stochastische Differentialgleichungen

Sommer-Semester 2022

eberhard karls JNIVERSITÄT

TÜBINGEN

Homework 7

Problem 1. Fix T > 0. Let \mathbf{W} be an \mathbb{R}^m -valued Wiener process on $(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathbb{F} \equiv \mathbb{F}^{\mathbf{W}}$. Consider continuous maps

 $\mathbf{b}: [0,T] \times \mathbb{R}^n \to \mathbb{R}^n$ and $\boldsymbol{\sigma}: [0,T] \times \mathbb{R}^n \to \mathscr{L}(\mathbb{R}^m,\mathbb{R}^n),$

which satisfy the following properties for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and all $t \in [0, T]$:

(i)
$$|\mathbf{b}(t,\mathbf{x})|_{\mathbb{R}^n} + \|\boldsymbol{\sigma}(t,\mathbf{x})\|_{\mathscr{L}(\mathbb{R}^m,\mathbb{R}^n)} \le C(1+|\mathbf{x}|_{\mathbb{R}^n}),$$

(ii) $|\mathbf{b}(t,\mathbf{x}) - \mathbf{b}(t,\mathbf{y})|_{\mathbb{R}^n} + \|\boldsymbol{\sigma}(t,\mathbf{x}) - \boldsymbol{\sigma}(t,\mathbf{y})\|_{\mathscr{L}(\mathbb{R}^m,\mathbb{R}^n)} \le C|\mathbf{x}-\mathbf{y}|_{\mathbb{R}^n}.$

Let $\boldsymbol{\xi} \in L^p(\Omega; \mathbb{R}^n)$ be given, for $p \geq 2$. Consider the SDE

$$d\mathbf{X}_t = \mathbf{b}(t, \mathbf{X}_t) dt + \boldsymbol{\sigma}(t, \mathbf{X}_t) d\mathbf{W}_t \qquad (0 \le t \le T), \qquad \mathbf{X}_0 = \boldsymbol{\xi}.$$

Show that there exist a constant C > 0, and a constant $C_p > 0$ which depends on p as well, such that

$$\mathbb{E}\left[\sup_{0\leq s\leq t} |\mathbf{X}_s|_{\mathbb{R}^n}^p\right] \leq C_p\left(\mathbb{E}[|\boldsymbol{\xi}|_{\mathbb{R}^n}^p] + 1\right) \exp\left(Ct\right).$$

Hint: Use Ito's formula, and BDG-inequality.

Problem 2. Under the same conditions as in Problem 1, show that

$$\mathbb{E}\left[|\mathbf{X}_t - \mathbf{X}_s|_{\mathbb{R}^n}^p\right] \le \widetilde{C}_p \left(\mathbb{E}\left[|\boldsymbol{\xi}|_{\mathbb{R}^n}^p\right] + 1\right) \left(t - s\right)^{\frac{p}{2}} \qquad (0 \le s \le t \le T),$$

with constants $\widetilde{C} > 0$ and $\widetilde{C}_p > 0$, where the latter are also depends on $p \ge 2$.

Problem 3. Assume the same conditions as in **Problem 1**. Let $\mathcal{I}_k = \{t_j\}_{j=0}^J$ be an equi-distant mesh of size $k \equiv k^J > 0$ that covers [0, T]. Consider iterates $\{\mathbf{Y}^j\}_{j=0}^J$ of the (explicit) Euler method

$$\mathbf{Y}^{j+1} - \mathbf{Y}^j = \mathbf{b}(\mathbf{Y}^j)k + \boldsymbol{\sigma}(\mathbf{Y}^j)\Delta_j \mathbf{W} \qquad (0 \le j \le J-1), \qquad \mathbf{Y}^0 = \boldsymbol{\xi} \in L^4(\Omega; \mathbb{R}^n),$$

where $\Delta_j \mathbf{W} := \mathbf{W}(t_{j+1}) - \mathbf{W}(t_j)$. Prove the existence of constants C > 0 and $C_p > 0$ such that

$$\sup_{k>0} \max_{0 \le j \le J} \mathbb{E}\left[|\mathbf{Y}^j|_{\mathbb{R}^n}^{2p} \right] \le C\left(\mathbb{E}[|\boldsymbol{\xi}|_{\mathbb{R}^n}^{2p}] + 1 \right) \exp(CT)$$

Problem 4. Fix T > 0. Let \mathbf{W} be an \mathbb{R}^m -valued Wiener process on $(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathbb{F} \equiv \mathbb{F}^{\mathbf{W}}$. Let $\mathbf{b} : \mathbb{R}^n \to \mathbb{R}^n$ and $\boldsymbol{\sigma} : \mathbb{R}^n \to \mathbb{R}]^{n \times m}$ be locally Lipschitz functions, *i.e.*, for every $N \ge 0$ there exists $C_N > 0$, *s.t.*

$$|\mathbf{b}(\mathbf{x}) - \mathbf{b}(\mathbf{y})|_{\mathbb{R}^n} + \|\boldsymbol{\sigma}(\mathbf{x}) - \boldsymbol{\sigma}(\mathbf{y})\|_{\mathscr{L}(\mathbb{R}^m,\mathbb{R}^n)} \le C_N |\mathbf{x} - \mathbf{y}|_{\mathbb{R}^n} \qquad \forall \, \mathbf{x}, \mathbf{y} \in [-N,N]^n \,.$$

i) Show that for every $\mathbf{x} \in \mathbb{R}^n$, we can find a stopping time τ_x , almost surely positive, and a stochastic process $\{\mathbf{X}_t^{\mathbf{x}}; 0 \le t < \tau_{\mathbf{x}}\}$, *s.t.*

$$\mathbf{X}_{t}^{\mathbf{x}} = \mathbf{x} + \int_{0}^{t} \mathbf{b}(\mathbf{X}_{s}^{\mathbf{x}}) \, \mathrm{d}s + \int_{0}^{t} \boldsymbol{\sigma}(\mathbf{X}_{s}^{\mathbf{x}}) \, \mathrm{d}\mathbf{W}_{s} \qquad \forall t < \tau_{x} \,. \tag{1}$$

ii) Show that the process $\{\mathbf{X}_t^{\mathbf{x}}; 0 \le t < \tau_{\mathbf{x}}\}$ is unique in the sense that if $\tilde{\tau}_{\mathbf{x}}$ is an almost surely positive stopping time and if $\{\mathbf{Y}_t^{\mathbf{x}}; 0 \le < \tilde{\tau}_{\mathbf{x}}\}$ is a stochastic process such that

$$\mathbf{Y}_{t}^{\mathbf{x}} = \mathbf{x} + \int_{0}^{t} \mathbf{b}(\mathbf{Y}_{s}^{\mathbf{x}}) \, \mathrm{d}s + \int_{0}^{t} \boldsymbol{\sigma}(\mathbf{Y}_{s}^{\mathbf{x}}) \, \mathrm{d}\mathbf{W}_{s} \qquad \forall t < \widetilde{\tau}_{x} \,, \tag{2}$$

then $\widetilde{\tau}_{\mathbf{x}} \leq \tau_{\mathbf{x}}$, and \mathbb{P} -a.s.,

$$\mathbf{Y}_t^{\mathbf{x}} \mathbb{1}_{\{t < \widetilde{\tau}_{\mathbf{x}}\}} = \mathbf{X}_t^{\mathbf{x}} \mathbb{1}_{\{t < \widetilde{\tau}_{\mathbf{x}}\}} \qquad \forall t \ge 0 \,.$$

The process { $\mathbf{X}_{t}^{\mathbf{x}}$; $0 \le t < \tau_{\mathbf{x}}$ } is called the solution of the SDE (1) up to the explosion time $\tau_{\mathbf{x}}$.

Problem 5. Fix T > 0, as well as $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$, and a W on it. We wish to approximate the following so-called SPDE with solution $u \equiv \{u(t, x); 0 \le t \le T, 0 \le x \le 1\}$ via the spatial discretization below,

$$\begin{cases} \partial_t u(t,x) &= -\Delta u(t,x) + \alpha \, \partial_t W(t,x) & \forall (t,x) \in (0,T) \times [0,1] \,, \\ u(0,x) &= u_0(x) & \forall x \in [0,1] \,, \\ u(t,0) &= u(t,1) = 0 & \forall t \in (0,T) \,, \end{cases}$$
(3)

for $\alpha \in \{0, 1\}$. Here, $W \equiv W(t, x)$ is of the form

$$W(t,x) := \sum_{i=1}^{N} \gamma_i^{1/2} \sqrt{2} \sin(i\pi x) W_i(t)$$
(4)

for some $N \in \mathbb{N}$, and $\{W_i(t); 0 \le t \le T\}$ are *i.i.d.*, real-valued Brownian motions, and $\{\gamma_i\}_{i\ge 1}^N \subset \mathbb{R}_{>0}$. For the numerical approximation of (3), we discretize¹ in both, space and time. For every $0 \le j \le J-1$, let \mathbf{u}_j^h denote an approximation

$$\mathbf{u}_{j}^{h} \approx \left[u(t_{j}^{J}, x_{1}), u(t_{j}^{J}, x_{2}), \cdots, u(t_{j}^{J}, x_{L})\right]^{\top},$$

which solves the following (implicit) discretization

$$\mathbf{u}_{j+1}^{h} - \mathbf{u}_{j}^{h} = -k^{J} \mathbf{\Lambda}^{h} \mathbf{u}_{j+1}^{h} + \alpha \Delta_{j} \mathbf{W} \quad (0 \le j \le J - 1),
\mathbf{u}_{0}^{h} = \left[u_{0}(x_{1}), u_{0}(x_{2}), \cdots, u_{0}(x_{L}) \right]^{\top}$$
(5)

¹For a spatial discretization, we divide the interval [0, 1] into subintervals $I_j := [x_{j-1}, x_j]$ $(1 \le j \le L)$ of equi-distant mesh of size $h \equiv h^L$, where L is a positive integer, and $0 = x_0 < x_1 < \cdots < x_{L-1} < x_L = 1$. For the time discretization, let $\mathcal{I}_{k^J} = \{t_j^J\}_{j=0}^J \subset [0, T]$ be an equi-distant mesh of size $k \equiv k^J$.

where

$$\mathbf{\Lambda}^{h} := \frac{1}{h^{2}} \begin{bmatrix} 2 & -1 & 0 & \cdots \\ -1 & 2 & -1 & \ddots \\ 0 & -1 & 2 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{bmatrix} \in \mathbb{R}^{L \times L}, \qquad \Delta_{j} \mathbf{W} := \begin{bmatrix} \sum_{i=1}^{N} \gamma_{i}^{1/2} \sqrt{2} \sin(i\pi x_{1}) \left(W_{i}(t_{j+1}^{J}) - W_{i}(t_{j}^{J}) \right) \\ \sum_{i=1}^{N} \gamma_{i}^{1/2} \sqrt{2} \sin(i\pi x_{2}) \left(W_{i}(t_{j+1}^{J}) - W_{i}(t_{j}^{J}) \right) \\ \vdots \\ \sum_{i=1}^{N} \gamma_{i}^{1/2} \sqrt{2} \sin(i\pi x_{L}) \left(W_{i}(t_{j+1}^{J}) - W_{i}(t_{j}^{J}) \right) \end{bmatrix}.$$

Fix N = 5 in (4). Consider the following three different initial data for $x \in [0, 1]$:

(i)
$$u_0(x) = \sin(\pi x)$$
, (ii) $u_0(x) = \begin{cases} x, \text{ for } x \in [0, 0.5] \\ 1 - x, \text{ otherwise} \end{cases}$, (iii) $u_0(x) = \mathbb{1}_{\{x=0.5\}}$.

Plot a single trajectory of the solution $\mathbf{u}^h \equiv \begin{bmatrix} \mathbf{u}_0^h, \cdots, \mathbf{u}_L^h \end{bmatrix}^\top$ till T = 1 for the following cases with the above mentioned initial data (i) – (iii):

(a)
$$\alpha = 0$$
 in (5).

- (b) $\alpha = 1$ in (5), $\gamma_i = 1$ for $i = 1, \dots, 5$ in (4).
- (c) $\alpha = 1$ in (5), $\gamma_i = 1/i^2$ for $i = 1, \dots, 5$ in (4).

Date of Submission: 15.06.2022.