Stochastische Differentialgleichungen

Sommer-Semester 2022

Tübingen, 25.05.2022

Homework 6

Problem 1. Let \mathbf{W} be a \mathbb{R}^{d}-valued Wiener process on $(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathbf{B}, \mathbf{S} \in \mathbb{R}^{d \times d}$, as well as $\mathbf{b} \in \mathbb{R}^{d}$ be given. Consider the linear SDE

$$
\mathrm{d} \mathbf{X}_{t}=\left(\boldsymbol{B} \mathbf{X}_{t}+\mathbf{b}\right) \mathrm{d} t+\boldsymbol{S} \mathrm{d} \mathbf{W}_{t} \quad(0 \leq t \leq T), \quad \mathbf{X}_{0}=\mathbf{x}_{0} \in \mathbb{R}^{d}
$$

Show that there exists a unique strong solution; then derive a bound for $\frac{1}{2} \mathbb{E}\left[\left\|\mathbf{X}_{t}\right\|_{\mathbb{R}^{d}}^{2}\right]$, for $0 \leq t \leq T$.

Problem 2. Verify that the given processes solve the given corresponding stochastic SDEs:
(i) $X_{t}=e^{W_{t}}$ solves

$$
\mathrm{d} X_{t}=\frac{1}{2} X_{t} \mathrm{~d} t+X_{t} \mathrm{~d} W_{t} \quad(t>0), \quad X_{0}=0
$$

(ii) $X_{t}=\frac{W_{t}}{1+t}$ solves

$$
\mathrm{d} W_{t}=-\frac{1}{1+t} X_{t} \mathrm{~d} t+\frac{1}{1+t} \mathrm{~d} W_{t} \quad(t>0), \quad X_{0}=0 .
$$

Problem 3. Let \mathbf{X} be the strong solution of the SDE considered in the lecture. Let $\mathcal{E} \subset \mathbb{R}^{n}$ be nonempty, and open or closed. Then the hitting time

$$
\tau:=\inf \left\{t \geq 0 ; \mathbf{X}_{t} \in \mathcal{E}\right\}
$$

is an \mathbb{F}-stopping time.
Hint: consider the case where \mathcal{E} is open independently from the case where \mathcal{E} is closed.

Problem 4. Let $f \in M_{T}^{2}$, and τ be an \mathbb{F}-stopping time such that $0 \leq \tau \leq T$. Define

$$
\int_{0}^{\tau} f_{s} \mathrm{~d} W_{s}:=\int_{0}^{T} 1_{\{s \leq \tau\}} f_{s} \mathrm{~d} W_{s}
$$

Show that
i) $\mathbb{E}\left[\int_{0}^{\tau} f_{s} \mathrm{~d} W_{s}\right]=0$.
ii) $\mathbb{E}\left[\left(\int_{0}^{\tau} f_{s} \mathrm{~d} W_{s}\right)^{2}\right]=\mathbb{E}\left[\int_{0}^{\tau} f_{s}^{2} \mathrm{~d} s\right]$.

Problem 5. We generalize Problem 4 in Homework 5 from $d=1$ to general $d \in \mathbb{N}$, on using a \mathbb{R}^{d}-valued Wiener process $\mathbf{W}=\left[W_{1}, \ldots, W_{d}\right]^{\top}$, and considering the \mathbb{R}^{d}-valued process

$$
\mathbf{Z} \equiv\{\mathbf{Z}(t) ; 0 \leq t \leq T\}, \quad \text { where } \quad \mathbf{Z}(t)=\left[\begin{array}{c}
\mathbf{X}(t) \\
\mathbf{Y}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathbf{Q}(t) \\
\mathbf{Q}^{\prime}(t)
\end{array}\right]
$$

which solves the following generalized problem instead of (2) from Homework 5,

$$
\left\{\begin{array}{l}
\mathrm{d} \mathbf{X}(t)=\mathbf{Y}(t) \mathrm{d} t, \tag{1}\\
\mathrm{~d} \mathbf{Y}(t)=(-\boldsymbol{\Lambda} \mathbf{X}(t)-\mathbf{Y}(t)+\mathbf{F}(t)) \mathrm{d} t+\alpha \mathrm{d} \mathbf{W}(t), \\
\mathbf{X}(0)=\mathbf{x}_{0} \in \mathbb{R}^{d}, \quad \mathbf{Y}(0)=\mathbf{y}_{0} \in \mathbb{R}^{d},
\end{array}\right.
$$

with initial data

$$
\mathbf{x}_{0}^{\top}=\left(\sin \left(x_{j}\right)\right)_{j=1}^{d}, \quad \mathbf{y}_{0}^{\top}=\left(x_{j}\left(1-x_{j}\right)\right)_{j=1}^{d}, \quad \text { where } \quad x_{j}=\frac{j}{d} \quad(1 \leq j \leq d)
$$

and data for the SDE

$$
\alpha \in[0,1], \quad \Lambda=\left[\begin{array}{cccc}
2 & -1 & 0 & \ldots \\
-1 & 2 & -1 & \ddots \\
0 & -1 & 2 & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right] \in \mathbb{R}_{\mathrm{spd}}^{d \times d}, \quad \text { and } \quad \mathbf{F}(t) \equiv t \cdot[1, \ldots, 1]^{\top} \in \mathbb{R}^{d} .
$$

Let $\mathcal{I}_{k^{J}}=\left\{t_{j}^{J}\right\}_{j=0}^{J} \subset[0,1]$ be an equi-distant mesh of size k^{J}. For each j, let the $\mathbb{R}^{2 d}$-valued tuple $\left(\mathbf{X}_{j}, \mathbf{Y}_{j}\right)$ denote the numerical approximation of $\left(\mathbf{X}\left(t_{j}^{J}\right), \mathbf{Y}\left(t_{j}^{J}\right)\right)$, which solves $(0 \leq j \leq J)$

$$
\begin{cases}\mathbf{X}_{j+1}-\mathbf{X}_{j} & =k^{J} \mathbf{Y}_{j+1} \tag{2}\\ \mathbf{Y}_{j+1}-\mathbf{Y}_{j} & =k^{J}\left(-\boldsymbol{\Lambda} \mathbf{X}_{j}-\mathbf{Y}_{j}+\mathbf{F}\left(t_{j}\right)\right)+\alpha \Delta_{j} \mathbf{W}\end{cases}
$$

where $\left(\Delta_{j} \mathbf{W}\right)_{\ell}:=W_{\ell}\left(t_{j+1}^{J}\right)-W_{\ell}\left(t_{j}^{J}\right)$ for $1 \leq \ell \leq d$ denotes the ℓ-th component of the j-th \mathbb{R}^{d}-valued Wiener increment.
(a) Fix $d=4$ and $T=1$, and let $k^{J}=10^{-3}$. Plot single trajectories of the 1 st component each of the solution ($\left\{\mathbf{X}_{j} ; 0 \leq j \leq J\right\},\left\{\mathbf{Y}_{j} ; 0 \leq j \leq J\right\}$) for $\alpha \in\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$.
(b) Let $\mathbf{F} \equiv \mathbf{0}$. Consider the functional $\mathcal{E}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, via

$$
\mathcal{E}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)=\underbrace{\frac{1}{2}\left\|\boldsymbol{\Lambda}^{1 / 2} \mathbf{B}_{1}\right\|_{\mathbb{R}^{d}}^{2}}_{=: \mathcal{E}_{1}\left(\mathbf{B}_{1}\right)}+\underbrace{\frac{1}{2}\left\|\mathbf{B}_{2}\right\|_{\mathbb{R}^{d}}^{2}}_{=: \mathcal{E}_{2}\left(\mathbf{B}_{2}\right)} .
$$

Consider $\alpha \in\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$ below, and fix $\mathrm{M}=10^{3}$. Plot the evolutions

$$
[0,1] \ni t_{j} \mapsto \mathbb{E}_{\mathrm{M}}\left[\mathcal{E}_{1}\left(\mathbf{X}_{j}\right)\right], \quad[0,1] \ni t_{j} \mapsto \mathbb{E}_{\mathrm{M}}\left[\mathcal{E}_{2}\left(\mathbf{Y}_{j}\right)\right], \quad \text { and } \quad[0,1] \ni t_{j} \mapsto \mathbb{E}_{\mathrm{M}}\left[\mathcal{E}\left(\mathbf{X}_{j}, \mathbf{Y}_{j}\right)\right] .
$$

