Stochastische Differentialgleichungen

Sommer-Semester 2022

Tübingen, 11.05.2022

Homework 4

Problem 1. Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be a filtered probability space, where $\mathbb{F}=\left\{\mathcal{F}_{t} ; t \geq 0\right\}$ is such that $\mathcal{F}_{t}=$ $\sigma\left(\left\{W_{s} ; 0 \leq s \leq t\right\}\right)$ is generated by the Wiener process W.
a) Show that $X=\left\{\left|W_{t}\right|^{2}-t ; t \geq 0\right\}$ is an \mathbb{F}-martingale.
b) Show that $X=\left\{X_{t} ; t \geq 0\right\}$, with $X_{t}=\exp \left(W_{t}-\frac{t}{2}\right)$ is an \mathbb{F}-martingale.

Problem 2. Show that the exponential martingale X from Problem 1, b) is an Ito process and verify that it satisfies the equation

$$
\mathrm{d} X_{t}=X_{t} \mathrm{~d} W_{t} .
$$

Hint: Don't forget to show that $X \in M^{2}(T)$ for all $T>0$ before applying Ito's formula.

Problem 3. Let $\alpha>0$ and $\sigma \in \mathbb{R}$ be fixed. Define $Y=\left\{Y_{t} ; t \geq 0\right\}$ via

$$
Y_{t}=\sigma \exp (-\alpha t) \int_{0}^{t} \exp (\alpha s) \mathrm{d} W_{s}
$$

Show that Y satisfies

$$
\mathrm{d} Y_{t}=-\alpha Y_{t} \mathrm{~d} t+\sigma \mathrm{d} W_{t} \quad(t \geq 0)
$$

The process Y is known as Ornstein-Uhlenbeck process.

Problem 4. Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be the filtered probability space from Problem 1, and $X=\left\{X_{t} ; 0 \leq\right.$ $t \leq T\} \subset M^{2}(T)$. Show that there exists a continuous modification of $Y=\left\{Y_{t} ; 0 \leq t \leq T\right\}$, where $Y_{t}=\int_{0}^{t} X_{s} \mathrm{~d} W_{s}=I_{t}(X)$.
Hint: Consider an approximating sequence $\left\{X_{j} ; j \in \mathbb{N}\right\} \subset M_{\text {step }}^{2}(T)$. Then
a) use Doob's inequality and Ito isometry to show that $\left\{I\left(X_{j}\right) ; j \in \mathbb{N}\right\} \subset L^{2}(\Omega ; C([0, T] ; \mathbb{R}))$ is Cauchy, where $I\left(X_{j}\right)=\left\{I_{t}\left(X_{j}\right) ; 0 \leq t \leq T\right\}$. Recall that $L^{2}(\Omega ; C([0, T] ; \mathbb{R}))$ is Banach space.
b) use Tschebycheff's inequality and the Borel-Cantelli lemma to step over to a subsequence $\left\{I\left(X_{j_{\ell}}\right) ; \ell \in \mathbb{N}\right\}$ which already convergences \mathbb{P}-a.s. in $C([0, T] ; \mathbb{R})$.

Problem 5. Let $\mathcal{I}_{k^{J}}=\left\{t_{j}^{J}\right\}_{j=0}^{J} \subset[0,1]$ be an equi-distant mesh of size k^{J}. Starting with $W_{0}=0$, increments $\Delta_{j}^{J} W \sim \sqrt{k^{J}} N(0,1)$ are simulated in MATLAB via the random number generator 'randn' to constitute an (approximate) Wiener process.
a) Let run the MATLAB codes bpath1.m, bpath2.m, which are available on the homepage:
https://www.maths.ed.ac.uk/ dhigham/pubs.html
to approximate the Wiener process W for $J=100,500,1000$, and 2000. Discuss your observations. 1
b) Simulate the process

$$
t \mapsto F(W(t))=\exp \left(t+\frac{1}{2} W(t)\right) \quad(0 \leq t \leq 1)
$$

for $J=500,1000,2000$. Then plot

$$
t \mapsto \mathbb{E}[F(W(t))] \approx \frac{1}{M} \sum_{j=1}^{M} F\left(W_{j}(t)\right) \quad \text { where } M \in\left\{10^{\ell} ; 2 \leq \ell \leq 6\right\}
$$

Date of Submission: 18.05.2022.

[^0]
[^0]: ${ }^{1}$ From the given homepage, we recommend the downloadable paper: An Algorithmic Introduction to Numerical Simulation of Stochastic Differential equations' for further reading to simulate SDEs.

