Mathematisch-
Naturwissenschaftliche Fakultät

Stochastische Differentialgleichungen

Sommer-Semester 2022

Tübingen, 27.04.2022

Homework 2

Problem 1. Let $T>0$, and $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. In the lecture, we introduced the Lagrange interpolation $\left\{\widetilde{Y}_{k, h}(t) ; 0 \leq t \leq T\right\}$ via

$$
\widetilde{Y}_{k, h}(t)=\frac{t_{j+1}-t}{k} Y_{k, h}\left(t_{j}\right)+\frac{t-t_{j}}{k} Y_{k, h}\left(t_{j+1}\right) \quad \forall t_{j} \leq t<t_{j+1},
$$

where $Y_{k, h}=\sum_{l=1}^{j} \eta_{l}$ is the (scaled) random walk with $\mathcal{L}\left(\eta_{\ell}\right)=\frac{1}{2} \delta_{-h}+\frac{1}{2} \delta_{h}$, and $t_{j}=j \frac{T}{J}=: j k$ are the mesh points of the equi-distant mesh $\mathcal{I}_{k}:=\left\{t_{j}\right\}_{j=0}^{J}$ covering $[0, T]$.
Let now $f \in C_{\mathrm{bdd}}(\mathbb{R})^{1 /}$. Show that the iterates $\left\{u^{j}\right\}_{j=0}^{J} \subset C_{\mathrm{bdd}}(\mathbb{R})$ which are given by

$$
u^{j}(x)=\mathbb{E}\left[f\left(x+\widetilde{Y}_{k, \sqrt{k}}\left(t_{j}\right)\right)\right] \quad \forall x \in \mathbb{R}
$$

solves

$$
\begin{cases}\frac{u^{j}(x)-u^{j-1}(x)}{k}=\frac{u^{j-1}(x+\sqrt{k})-2 u^{j-1}(x)+u^{j-1}(x-\sqrt{k})}{2 k} & (1 \leq j \leq N) \tag{1}\\ u^{0}(x)=f(x) & \forall x \in \mathbb{R},\end{cases}
$$

where (1) is a finite difference discretization of the linear heat equation.

Problem 2. Let $t>0$. In the lecture, we defined the quadratic variation of the Wiener process W as

$$
Q^{W}(t)=L^{2}-\lim _{J \uparrow \infty} Q_{k^{J}}^{W}(t),
$$

where $Q_{k^{J}}^{W}(t)=\sum_{j=1}^{J}\left|W\left(t_{j}^{J}\right)-W\left(t_{j-1}^{J}\right)\right|^{2}$ on the equi-distant mesh $\mathcal{I}_{k^{J}}:=\left\{0, t_{1}^{J}, \ldots, t_{J}^{J}\right\}$ of mesh size $k>0$ covering $[0, t]$, such that $t_{j}^{J}=\frac{j t}{J}=: j k^{J}$. Let $\left\{\mathcal{I}_{k} ; ; l \in \mathbb{N}\right\}$ be a sequence of equi-distant meshes such that $\sum_{l=1}^{\infty} k^{l}<\infty$. Show that

$$
Q_{k^{l}}^{W}(t) \rightarrow t \quad \mathbb{P}-\text { a.s. } \quad(l \uparrow \infty) .
$$

Hint: Use Tschebycheff's inequality and the Borel-Cantelli lemma to use the corresponding L^{2}-convergence result from the lecture.

[^0]Problem 3. Let $0=t_{0}^{J}<t_{1}^{J}<\ldots<t_{J}^{J}=T<$ where $t_{j}^{J}=\frac{j T}{J}$ be an equi-distant mesh of size $k^{J}=\frac{T}{J}$ covering $[0, T]$. Find the following limits

$$
\begin{aligned}
& \text { a) } \quad L^{2}-\lim _{J \uparrow \infty} \sum_{j=0}^{J-1} W\left(t_{j}^{J}\right)\left[W\left(t_{j+1}^{J}\right)-W\left(t_{j}^{J}\right)\right], \\
& \text { b) } \quad L^{2}-\lim _{J \uparrow \infty} \sum_{j=0}^{J-1} W\left(t_{j+1}^{J}\right)\left[W\left(t_{j+1}^{J}\right)-W\left(t_{j}^{J}\right)\right] .
\end{aligned}
$$

Problem 4. Let $f \in M_{\text {step }}^{2}$, i.e., it is of the form $f(t)=\sum_{j=0}^{J-1} \eta_{j} 1_{\left[t_{j}, t_{j+1}\right)}(t)$. Consider the stochastic integral

$$
I(f)=\sum_{j=1}^{J-1} \eta_{j}\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right) .
$$

Show that

$$
\mathbb{E}\left[|I(f)|^{2}\right]=\mathbb{E}\left[\int_{0}^{\infty}|f(s)|^{2} \mathrm{~d} s\right] .
$$

[^0]: ${ }^{1}$ I.e., the space that consists of bounded, continuous functions on \mathbb{R}.

