

Mathematisch-Naturwissenschaftliche Fakultät

Fachbereich Mathematik

Prof. Dr. Andreas Prohl Dr. Akash Panda

Tübingen, 06.07.2022

Stochastische Differentialgleichungen

Sommer-Semester 2022

EBERHARD KARLS JNIVERSITÄT

TÜBINGEN

Homework 10

Problem 1. Fix T > 0. Let W be an \mathbb{R} -valued Wiener process on a given probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with is endowed with natural filtration $\mathbb{F} := \mathbb{F}^W$. Consider a map $f \in C^{1,2}([0,T] \times \mathbb{R})$, for which there exist numbers $K, \alpha > 0$, such that

$$\sup_{0 \le s \le T} \left| f(t, x) \right| \le K e^{\alpha |x|} \,.$$

Show that the process $\{f(t, W_t); 0 \le t \le T\}$ is an \mathbb{F} -martingale if and only if

$$\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} = 0 \qquad \forall (t, x) \in (0, T) \times \mathbb{R}.$$

<u>Remark & Hint:</u> (a) Note that $f(t, x) = t - x^2$ is admissible, which settles that $W^2 - t$ is \mathbb{F} -martingale. (b) Use that W is a Markov process, with given transition semigroup \mathscr{S}^W .

Problem 2. Let $p \in \mathbb{N}$. In **Problem 3** of **Homework 7**, you derived higher moment bounds for (explicit) Euler iterates $\{\mathbf{Y}^j\}_{j=0}^J \subset L^{2p}(\Omega; \mathbb{R}^n)$, which are meant to approximate the strong solution $\mathbf{X} \in L^2_{\mathbb{F}}(\Omega; C([0, T]; \mathbb{R}^n))$ of the SDE given in **Problem 1** of **Homework 7**.

Now recall the notion of an equi-distant mesh $\{t_j\}_{j=0}^J$ covering [0,T] of size $k = t_{j+1} - t_j$ from there: on every sub-interval $[t_j, t_{j+1}]$, we then define $\boldsymbol{\mathcal{Y}}_{t_j}^{(k)} := \mathbf{Y}^j$, and refer to $\{\boldsymbol{\mathcal{Y}}_t^{(k)}; t \in [t_j, t_{j+1})\}$ as strong solution of

$$\boldsymbol{\mathcal{Y}}_{t}^{(k)} = \boldsymbol{\mathcal{Y}}_{t_{j}}^{(k)} + \int_{t_{j}}^{t} \mathbf{b}(\boldsymbol{\mathcal{Y}}_{t_{j}}^{(k)}) \, \mathrm{d}s + \int_{t_{j}}^{t} \boldsymbol{\sigma}(\boldsymbol{\mathcal{Y}}_{t_{j}}^{(k)}) \, \mathrm{d}\mathbf{W}_{s} \qquad \forall t \in [t_{j}, t_{j+1}) \,.$$

$$\tag{1}$$

- 1) Show that $\boldsymbol{\mathcal{Y}}^{(k)} \equiv \{\boldsymbol{\mathcal{Y}}_t^{(k)}; 0 \leq t \leq T\} \in L^2_{\mathbb{F}}(\Omega; C([0,T]; \mathbb{R}^n))$ exists, and interpolates $\{\mathbf{Y}^j\}_{j=0}^J \subset L^2(\Omega; \mathbb{R}^n)$.
- **2)** Show that there exists $C_T > 0$ such that

$$\max_{1 \le j \le J} \left(\mathbb{E} \left[\| \mathbf{X}_{t_j} - \mathbf{Y}^j \|_{\mathbb{R}^n}^2 \right] \right)^{1/2} \le C_T \sqrt{k}$$
(2)

3) Show that there exists $C_T > 0$ such that

$$\left(\mathbb{E}\left[\max_{1\leq j\leq J} \|\mathbf{X}_{t_j} - \mathbf{Y}^j\|_{\mathbb{R}^n}^2\right]\right)^{1/2} \leq C_T \sqrt{k}$$
(3)

<u>Hint</u>: To show 2) recall $\mathcal{Y}_{t_i}^{(k)} = \mathbf{Y}^j$. Now write an error identity on a fixed sub-interval $[t_j, t_{j+1}]$ first,

Seite 1/2

and use the properties given in **Problem 1** of **Homework 7** on data (\mathbf{b}, σ) before summation over all sub-intervals.

To show 3) use the result from 2), in combination with **BDG-inequality**.

Problem 3. Consider the following equation on $\mathcal{O} \subset \mathbb{R}^2$:

$$\begin{cases} -\Delta u = f & \text{on } \mathcal{O} := (0, 1)^2, \\ u = g & \text{on } \partial \mathcal{O}, \end{cases}$$
(4)

where $f : \mathcal{O} \to \mathbb{R}$ and $g : \partial \mathcal{O} \to \mathbb{R}$ be bounded measurable functions. Then the probabilistic representation of the solution of the above equation is given by the (generalized) Feynman-Kac formula as

$$u(\mathbf{x}) = \left[g(\mathbf{X}_{\tau_{\mathbf{x}}}^{\mathbf{x}}) + Z_{\tau_{\mathbf{x}}}^{\mathbf{x}}\right] \qquad \forall \, \mathbf{x} \equiv (x_1, x_2) \in \mathcal{O} \,,$$

where $\mathbf{X}^{\mathbf{x}} \equiv { \mathbf{X}^{\mathbf{x}}_t; t \ge 0 }$ denotes the \mathbb{R}^2 -valued solution of the following SDE

$$d\mathbf{X}_t = \sqrt{2} \mathbf{1}_{\mathbb{R}^2} d\mathbf{W}_t \quad \forall t > 0, \qquad \mathbf{X}_0 = \mathbf{x} \in \mathcal{O},$$
(5)

with $\mathbf{1}_{\mathbb{R}^2} \in \mathbb{R}^{2 \times 2}$ the identity matrix, with $\mathbf{W} \equiv {\mathbf{W}_t; t \ge 0}$ an \mathbb{R}^2 -valued Wiener process on a filtered probability space $(\Omega, \mathcal{F}, {\mathcal{F}_t}_{t \ge 0}, \mathbb{P})$, and $\tau_{\mathbf{x}}$ the first exit time of $\mathbf{X}^{\mathbf{x}}$ from \mathcal{O} , *i.e.*,

$$\tau_{\mathbf{x}} := \inf\{t > 0 : \mathbf{X}_t^{\mathbf{x}} \notin \mathcal{O}\},\$$

and $Z^{\mathbf{x}} \equiv \{Z_t^{\mathbf{x}}; t \ge 0\}$ the \mathbb{R} -valued solution of the random ODE

$$\mathrm{d}Z_t = f(\mathbf{X}_t^{\mathbf{x}}) \,\mathrm{d}t \quad \forall t > 0, \qquad Z_0 = 0.$$

Let $f \equiv 1$ and g = 0.5 in (4). Partition the domain \mathcal{O} by using the Matlab command meshgrid with grid size of 1/20. For every spatial grid point in \mathcal{O} , compute (and plot) the approximate solution

$$u(\mathbf{x}) = 0.5 + \mathbb{E}[\tau_{\mathbf{x}}] \approx 0.5 + \mathbb{E}_{\mathsf{M}}[t_{j^*}],$$

for M = 3000, where $t_{j^*} := \min\{t_j : \mathbf{Y}_{\mathbf{x}}^j \notin \mathcal{O}, j \ge 0\}$, and $\{\mathbf{Y}_{\mathbf{x}}^j\}_{j\ge 0}$ are the explicit Euler iterates of the SDE (5).

Date of Submission: 13.07.2022.