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Abstract

We compare different machine learning estimators, and present details about their imple-
mentation in Python. The computational studies are conducted for classification, as well as
regression problems. Moreover, as one of the founding problems of machine learning, we
present the specific classification task of handwritten digit recognition from the scratch. In
this connection, we are responsive to the mathematical formulation, and of course to the im-
plementational details of this problem. All corresponding Python codes are fully provided on
request and can be downloaded from the author’s GitHub page [7]1.
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1 Introduction and Setting
‘Artificial’ generation of knowledge based on experience — this is essentially what machine learn-
ing (ML) is about. Seen as a part of artificial intelligence (AI), ML provides/builds methods that
leverage data to help systems to automatically learn and improve. An artificial system which has
learned through experience is able to make general predictions and/or decisions without being ex-
plicitly programmed to do so. In this connection, involved ML algorithms build a statistical model
which relies on given data — referred to as training data — to perform certain tasks, where con-
ventional algorithms are unfeasible or might fail. In doing so, ML algorithms are eager to detect
patterns and principles coming from the training data rather than memorizing those (‘overfitting’),
which, in particular, enables a smart evaluation of unknown (new) data to optimize underlying
processes. Due to their huge practical relevance in a broad variety of applications, ML algorithms
are indispensable nowadays. Typical examples are image recognition (detect an object or feature
in a digital image), speech recognition (‘Alexa’ (Amazon) or ‘Siri’ (Apple)), prediction of traffic
patterns (identify the fastest route to circumvent traffic jam), product recommendations (customer
behavior based on past purchases and/or browsing habits is tracked and similar products are rec-
ommended to buy), sentiment analysis (determine the emotion or opinion of a speaker or writer),
self-driving cars (cars collect informations from cameras and sensors about its surroundings and
automatically choose what actions to perform), stock market and day trading (decide when to
buy and/or sell stocks), social media (automatic friend tagging suggestions), language translation
(Google translate), personalized medication (disease assessment), genetics and genomics (iden-
tify the impact of heredity on human health), cancer prognosis and prediction (identify critical
traits in complicated datasets to help to model the evolution and therapy of malignant diseases),
drug discovery/manufacturing (speed up drug discovery processes), fraud detection (spot patterns
for unusual behavior, e.g. in finance) and many more. All these examples go back to different
algorithmic approaches, which are essentially divided into three categories:

• supervised learning: algorithms use known data to detect patterns and principles, and to learn
a general rule that maps inputs to outputs → e.g. classification and regression problems.

• unsupervised learning: (hidden) patterns and principles are detected independently without
providing already known data to the algorithms → e.g. clustering, density estimation.

• reinforcement learning: algorithms interact with a dynamic environment and learn through
rewards → e.g. self-driving cars.

However, in this manuscript, we mainly focus on supervised learning tasks such as classification
and regression. The goal here is to give a more mathematical-based introduction of these tasks
in combination with fully provided Python codes, which are meant to help the reader to (better)
understand the related classification resp. regression estimators presented in Section 2 from a prac-
tical viewpoint. Therefore, we encourage the reader to download and test the corresponding Python
codes from the author’s GitHub page; see [7].
In the following, we formalize the setting and present a motivating example with which we illus-
trate the main problems and goals of supervised learning.
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Let n,d ∈N. Throughout this manuscript, we assume that we have given ‘data’ Dn = {(xi,yi)}n
i=1,

where {xi}n
i=1 ⊂Rd are called points, and {yi}n

i=1 ⊂Y are called ‘labels’ or ‘target values’. If Y is
a discrete set, e.g. Y = {0,1}, we deal with a classification problem. On the other hand, if Y = R,
we are concerned with a regression problem. Technically speaking, Dn = {(xi,yi)}n

i=1 can be con-
sidered as single realizations of i.i.d. random variables {(Xi,Yi)}n

i=1 on a given probability space
(Ω,F ,P), i.e., Xi(ω) = xi and Yi(ω) = yi (i = 1, ...,n), where the distribution of {(Xi,Yi)}n

i=1 is in
general unknown.
A first question, which naturally arises now is ‘where to get data from?’. Essentially, there are two
possibilities to get data from:

1) Generate, ‘create’ or collect data from e.g. own experiments.

2) Import (already known) data from a (given) data sheet, file, etc.

Once data {(xi,yi)}n
i=1 are available, they are saved in a

(
n× (d +1)

)
−matrix ‘Data’, given by

Data=

 x1 y1
...

...
xn yn

 , (1.1)

where xi =
(
x(1)i , ...,x(d)i

)
∈ Rd for every i = 1, ...,n.

To get a better, more concrete insight, we start with a motivating example, which is one of the
‘founding problems’ of ML: Handwritten digit recognition. Its goal is to make the ‘computer’
recognize human handwritten digits, which come from different sources, like images, papers, let-
ters, etc., and classify them into the class labels {0,1,2,3,4,5,6,7,8,9}. We consider the following
experiment: (automatically) recognize the postal code in the address field of a letter. We first take
a picture of the address (see Figure 1 (a)); then we segment the image into individual letters and
digits (see Figure 1 (b)). Suppose the image of each individual digit has the form of a 28× 28
greyscale image (if not, we can transform and resize it; see Figure 1 (d)).

The 28×28 greyscale image corresponds to a vector with 28 ·28 = 784 entries in [0,1], where
0 ≡‘black’ and 1 ≡‘white’. Our goal is now to find out the digits in the postal code; if put in
mathematical terms: we want to find an ‘exact’ mapping f ∗ : [0,1]784 → {0,1,2,3,4,5,6,7,8,9}
that has true risk as small as possible, i.e., has true risk close to the Bayes risk. By using the notation
above, we have d = 784 and Y = {0,1,2,3,4,5,6,7,8,9}. Here, the true risk of a (prediction)
function f : Rd →Y (in the experiment: f : [0,1]784 →{0,1,2,3,4,5,6,7,8,9}) is defined as

Risk( f ) := E
[
ℓ
(
X,Y, f (X)

)]
,

where the expectation is over a random draw (X,Y ) according to the (unknown) distribution P,
and ℓ : Rd ×Y×Y → [0,∞) is a given loss-function. For classification problems (i.e., when Y is a
discrete set) one can use the ‘0−1−loss function’

ℓ(xi,yi, ŷi) =

{
0 , yi = ŷi

1 , otherwise .
(1.2)
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(a) Postal code (b) Digit extracted from postal code

(c) Greyscale image (d) 28×28 greyscale image

Figure 1: (a) Handwritten postal code. (b) Digit ‘4’ extracted from the postal code. (c) Greyscale
image of ‘4’. (d) 28×28 greyscale pixel image of the handwritten ‘4’.

For regression problems (i.e., when Y = R) one can use the ‘squared loss function’

ℓ(xi,yi, ŷi) = (yi − ŷi)
2 . (1.3)

The Bayes risk in this respect is defined by (see [4, p. 22/23, Def. 2.3])

Risk∗ := inf{Risk( f ) | f : Rd →Y, f measurable} . (1.4)

In case the infimum in (1.4) is attained, we call

f ∗ := argmin Risk( f ) ⇔ Risk( f ∗) = min
f :Rd→Y

Risk( f ) = Risk∗

the Bayes classifier.
Returning to our classification experiment, we thus want to find a function f ∗ such that

P[ f ∗(X) ̸= Y ] = min
f :[0,1]784→{0,1,2,3,4,5,6,7,8,9}

P[ f (X) ̸= Y ] .

By [3, p. 9], the Bayes classifier f ∗ is given by

f ∗(x) = argmax
k∈{0,1,2,3,4,5,6,7,8,9}

P[Y = k |X = x] .

For k ∈ {0,1,2,3,4,5,6,7,8,9}, we here denote by

P[Y = k |X = x] = E[1{Y=k} |X = x] =: m(k)(x) (1.5)
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the a posteriori probabilities. However, since the distribution of (X,Y ) is unknown in practice, we
have to estimate f ∗ via given data (‘training examples’) Dn = {(xi,yi)}n

i=1 by estimating m(k)(·),
k ∈ {0,1,2,3,4,5,6,7,8,9}. By following this supervised learning approach, we use the given
data Dn drawn from {(Xi,Yi)}n

i=1, with xi ∈ [0,1]784 representing a resized greyscale image, and
yi ∈ {0,1,2,3,4,5,6,7,8,9} representing the true class label to construct a function f ∗n : [0,1]784 →
{0,1,2,3,4,5,6,7,8,9} that has true risk close to the Bayes risk, i.e., Risk( f ∗n ) ≈ Risk∗. To
represent f ∗n , one can use a plug-in estimate

f ∗n (x) = argmax
k∈{0,1,2,3,4,5,6,7,8,9}

m(k)
n (x) , (1.6)

where m(k)
n (·) is an estimation of m(k)(·). Given the data Dn, the estimators m(k)

n (·) can be con-
structed via the data set D(k)

n = {(xi,1{yi=k})}n
i=1. In the next section, we present some particular

estimators mn(·)≡ m(k)
n (·) to estimate m(k), and consequently f ∗. We refer to Subsection 3.3 for a

continuification of this experiment.

2 Estimators and their implementation
In this section we present the partitioning estimator, the kernel estimator and the k−Nearest
Neighbor (kNN) estimator, and give details about their implementation. In this conncection,
we also present parts of the corresponding Python codes, with which we further explain/discuss
implementational details. We refer to [7], where full Python codes are available.

2.1 Uniform partitioning estimator
The realization of the uniform partitioning estimator may be classified into three steps. We follow
a Binary Tree Cuboid (BTC) structure; see e.g. [1], [2] and/or [3], which allows for an efficient way
of implementing the estimator; see also Figure 2. Note that in the next subsection, we present a
data-dependent partitioning estimator, which is much more favorable when the dimension of the
state space Rd is large. We refer to Subsection 2.2 for a more detailed discussion in this direction.

STEP 1: (Partition of the state space Rd) Fix κ ∈ N. We partition the state space Rd into 2κ many
(uniform) rectangles. In the following, we briefly sketch the procedure (see Source Code 1 below):

(1) Specify a rectangle R0,0 = [a(1)1 ,a(1)2 ]× ...× [a(d)1 ,a(d)2 ], which contains all points {xi}n
i=1 ⊂

Rd (see Figure 3(a)).

(2) Compute MAX := max
(
a(1)2 − a(1)1 , ...,a(d)2 − a(d)1

)
in order to find out along which axis to

divide the rectangle R0,0 into two (new) rectangles R1,0 and R1,1 (see Figure 3(b)).

(3) Proceed in a similar way for each new rectangle until the amount of (new) rectangles is 2κ .
We denote these 2κ many rectangles by A1A1A1 := Rκ,0,....,A2κA2κA2κ := Rκ,2κ−1; see also Figure 2.
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R0,0

R1,0

· · ·

Rκ,0 Rκ,1

· · ·

R1,1

· · · · · ·

Rκ,2κ−2 Rκ,2κ−1

Figure 2: Binary tree structure of the partitioning strategy.

The informations needed to specify a particular rectangle can be saved in a
(
(κ+1)×2κ

)
−‘cell-

matrix’2 RR, given by

RR=


RR0,0 . . . . . . . . .
RR1,0 RR1,1 . . . . . .

... . . .
RRκ,0 . . . . . . RRκ,2κ−1

 .

In this connection, the cell-matrix RR ‘reflects’ the binary tree structure in Figure 2. Each RRi, j
(i = 0, ...,κ , j = 0, ...,2κ −1) is a (d ×2)−matrix, which contains the information to specify the
rectangle Ri,j. Ultimately, in order to conduct the partition of Rd , we only need the last row of RR,
i.e., we are only interested in the matrices RRκ,0,....,RRκ,2κ−1.

In the following, we illustrate this partitioning procedure by means of an example.

Example 2.1. Let n = 16, d = 2 and κ = 2. Figure 3 below illustrates the partition of R2 into 22

many rectangles. According to the procedure from above, we have

RR=

 RR0,0 . . . . . . . . .
RR1,0 RR1,1 . . . . . .
RR2,0 RR2,1 RR2,2 RR2,3

 ,

where

RR0,0 =

[
a(1)1 a(1)2

a(2)1 a(2)2

]
, RR1,0 =

[
a(1)1

(a(1)1 +a(1)2 )/2

a(2)1 a(2)2

]
, RR1,1 =

[
(a(1)1 +a(1)2 )/2 a(1)2

a(2)1 a(2)2

]
, ...

2A ‘cell-matrix’ is a matrix whose entries consists of matrices.
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R0, 0

(a) R0,0

R1, 1R1, 0

(b) R1,0, R1,1

R2, 2R2, 0

R2, 3

R2, 1

(c) R2,0,R2,1,R2,2, R2,3

Figure 3: (a) Specification of rectangle R0,0 = [a(1)1 ,a(1)2 ]× [a(2)1 ,a(2)2 ], which contains all points
{xi}n

i=1 highlighted in red. (b) Specification of rectangles R1,0 = [a(1)1 , (a
(1)
1 +a(1)2 )/2]× [a(2)1 ,a(2)2 ] and

R1,1 = [(a
(1)
1 +a(1)2 )/2,a(1)2 ]× [a(2)1 ,a(2)2 ] according to (2) from above. (c) Final result of the partition

of R2 into 22 many rectangles.

1 # The following function partitions the state space (which is determined

by the minimum and maximum value

2 # of the {x_i}_{i=1,...,n} & and a given tolerance) into 2^kappa many

uniform rectangles.

3 def partitioning(kappa ,A,tolerance): # Define partitioining function

4 RR=np.empty(shape =(kappa +1 ,2**( kappa)),dtype='object ') # Initialize

cell -matrix RR

5 RR1=np.zeros ((d,2)) # initialize first entry of RR

6 for i in range(d):

7 # Set up the first rectangle (resp. corresponding informations),

which contains all points. 'tolerance ' determines the distance of the

rectangle to the furthest points , which all are located inside the

rectangle

8 RR1[i,0]=np.amin(A)-tolerance

9 RR1[i,1]=np.amax(A)+tolerance

10 RR [0][0]= RR1 # specification of first rectangle; see Subsection 2.1

STEP 1: (1) in the manuscript

11 # Successively specify subsequent rectangles according to a Binary

Tree Cuboid structure; see Subsection 2.1 STEP 1: (2) in the

manuscript

12 for p in range(kappa):

13 for q in range (2**p):

14 maxi=np.copy(RR[p][q][0][1] -RR[p][q][0][0])

15 iter=0

16 for i in range(d):

17 comp=np.copy(RR[p][q][i][1]-RR[p][q][i][0])

18 if comp > maxi:

19 iter=i

20 maxi=np.copy(comp)

21 RR[p+1][2*q] = np.copy(RR[p][q])

22 RR[p+1][2*q][iter ][1]=( RR[p][q][iter ][0]+RR[p][q][iter ][1]) /2

23 RR[p+1][2*q+1] = np.copy(RR[p][q])
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24 RR[p+1][2*q+1][ iter ][0] = (RR[p][q][iter ][0] + RR[p][q][iter

][1]) / 2

25 return RR

Source Code 1: Uniform partition of Rd .

Source Code 1 generates the cell-matrix RR by following (1) – (3) from STEP 1.

STEP 2: (Localization) We choose a point point ∈ Rd . Then, we determine the rectangle
A1A1A1,...,A2κA2κA2κ in which point is located.
1 # For a given Point 'point' in the state space , the following function

determines the rectangle (resp.

2 # corresponding informations) in which 'point ' is included. Here , the

localization procedure successively checks every rectangle if 'point '

is included , and then stops.

3 def localization(RR,point): # define localization function

4 for i in range(len(RR[-1,:])): # successively check for each

rectangle (all rectangles are saved in the last line 'RR[-1,:]' of

cell -matrix RR), if 'point' is included

5 if (RR[-1,i][:,0] <= point ).all()==True and ( point <= RR[-1,i

][:,1] ).all()==True:

6 index=i

7 break # stop , if rectangle resp. corresponding index is

found , in which 'point' is included

8 return index

Source Code 2: Localization of point by successively checking every rectangle.

The strategy in Source Code 2 above successively checks every rectangle A1A1A1,...,A2κA2κA2κ , if point
is located in it, and thus requires at most O(2κ) many checks. However, a more convenient lo-
calization strategy is given in Source Code 3 below, which (recursively) utilizes the binary tree
structure of the cell-matrix RR; cf. also Figure 2, and thus requires O(κ) many checks.

1 # For a given Point 'point' in the state space , the cell -matrix RR , two

indices 'counter ' and 'index ' ('counter ' refers to the row -index in

RR; 'index' refers to the column -index of RR) and kappa , the

following function determines the rectangle (resp.

2 # corresponding informations) in which 'point ' is included. The function

is defined recursively and utilizes the binary tree structure of RR.

3 # Note: to start , set counter=0, index =0

4 def localization(RR,point ,counter ,index ,kappa): # define localization

function

5 if counter == kappa: # stop , if last row of RR is reached

6 return index

7 # Recursively utilize binary tree structure of RR

8 if (RR[counter +1,2* index ][:,0] <= point ).all()==True and ( point <=

RR[counter +1,2* index ][:,1] ).all()==True:

9 newindex=int (2* index)

10 return localization(RR,point ,counter+1,newindex ,kappa)

11 else:
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12 newindex=int (2* index +1)

13 return localization(RR, point , counter + 1, newindex , kappa)

Source Code 3: Localization of point by utilizing the tree structure.

STEP 3: (Estimator) Compute the partitioning estimator ‘mn(point)’ in order to estimate the label
of the given point point ∈ Rd . Suppose point is located in the rectangle A jA jA j ( jjj = 1, ...,2κ), then

mn(point) =

n
∑

i=1
1{xi∈A jA jA j} · yi

n
∑

i=1
1{xi∈A jA jA j}

. (2.1)

Source Code 4 below illustrates the computation via (2.1).
1 #index=localization(RR ,point) # needed from Localization -Algorithm

2 index=localization(RR ,point ,0,0,kappa) # needed from Localization -

Algorithm

3 ############################################

4 # The following function realizes the partitioning estimator m_n=m_n(

point), and yields the estimated label of

5 # the given 'point '.

6 def partEstimator(RR,index ,Data): # define partitioning estimator

7 factor1 =0

8 factor2 =0

9 # Compute numerator and denominator in equation (2.1) in the

manuscript

10 for i in range(n):

11 if (RR[-1,index ][:,0] <= Data[i,0:d] ).all()==True and ( Data[i

,0:d] <= RR[-1,index ][:,1] ).all()==True:

12 factor1 += Data[i,d]

13 factor2 +=1

14 if factor2 ==0:

15 m_n=0

16 else:

17 m_n=factor1/factor2

18 return m_n

Source Code 4: Estimation of label of point.

2.2 Data-dependent partitioning estimator
Since the computational complexity of a uniform partition of the state space Rd grows exponen-
tially with the dimension d, the uniform partitioning estimator from Subsection 2.1 may not be
a good choice for tackling classification/regression problems when the underlying state space is
high-dimensional. However, using a data-dependent partition of Rd instead, which, in some sense,
incorporates the ‘distribution’ of the given points in Rd , drastically cuts down the complexity
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and is much more favorable, especially when d is large. In the following, we present such a
data-dependent partitioning strategy (see [2]), which partitions Rd based on statistically equiva-
lent blocks, i.e., where each rectangle/compartement in the partition contains the same amount of
points; see [3, p. 243 ff.] for further informations.

Similar to steps 1, 2 and 3 in Subsection 2.1, we realize the data-dependent partitioning estima-
tor. Compared to the uniform partitioning estimator, the main difference here is the data-dependent
partition in STEP 1 below. The localization procedure in STEP 2, and the computation of the es-
timator in STEP 3 below are similar to those in Subsection 2.1.

STEP 1: (Data-dependent partition of the state space Rd) Fix κ ∈ N, and assume n = 2N with
κ ≤ N ∈ N. We partition the state space Rd into 2κ many rectangles, where each rectangle con-
tains n

2κ points. Based on a coordinate-wise empirical standard deviation criterion of {xi}n
i=1, the

following algorithm divides the given points into 2κ many disjoint groups; see Source Code 5
for an implementation in Python, and also [7]. Each particular group of points corresponds to a
rectangle/compartement in the partition in which they are located inside; see Source code 6.

Algorithm 2.2 (BTC-Algorithm; see [2]). Choose κ ∈ N. Let S0,0 = [x1, ...,xn]
⊤ ∈ Rn×d .

For p = 0, ...,κ −1 do:
For q = 0, ...,2p −1 do:

(I) Set SSS := Sp,q.

(II) Find the component ℓ ∈ {1, ...,d} in SSS which possesses the largest empirical standard devi-
ation σ̂ℓ ∈ R; denote this component by ℓp,q ∈ {1, ...,d}.

(III) Compute median medp,q ∈ R of SSS[:, ℓp,q].

(IV) Divide SSS into two equal parts SSS = Sp+1,2q ∪Sp+1,2q+1 according to the criterion x(ℓp,q)
i ≤

medp,q (for those points, whose indices i belong to SSS).

1 # BTC -ALGORITHM: Realization of Algorithm 2.2 in the manuscript

2 def MEDpart(kappa ,x):

3 SS=np.empty(shape =(kappa +1 ,2**( kappa)),dtype='object ') # initialize

cell -matrix SS , in which all 'S_{p,q}' are saved

4 MED=np.zeros ((kappa +1 ,2**( kappa))) # initialize matrix 'MED ', in

which all values

5 # med_{p,q} are saved

6 LL=np.zeros(( kappa +1 ,2**( kappa))) # initialize matrix 'LL', in which

all values

7 # l_{p,q} are saved

8 SS [0][0]=x # set S_{0,0}

9 for p in range(kappa):

10 for q in range (2**p):

11 S=np.copy(SS[p][q])

12 maxi=np.copy(np.std(S[: ,0]))

13 l=0
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14 # Find out the component which posseses largest empirical

standard deviation , cf. (II) in Algorithm 2.2 in the manuscript

15 for k in range(d):

16 if maxi <np.std(S[:,k]):

17 maxi=np.copy(np.std(S[:,k]))

18 l=np.copy(k)

19 med=np.median(S[:,l]) # cf. (III) in Algorithm 2.2 in the

manuscript

20 # Realize (IV) in Algorithm 2.2 in the manuscript

21 B=np.copy(S[S[:, l]. argsort ()]) # sort matrix for appropriate

dividing according to (IV)

22 S=np.copy(B)

23 t=int(len(S[: ,0]) /2)

24 SS[p + 1][2*q]=np.copy(S[t:n,:])

25 SS[p + 1][2*q + 1]=np.copy(S[0:t,:])

26 MED[p][q]=np.copy(med)

27 LL[p][q]=np.copy(l)

28 Scell=SS[-1,:] # last row of cell -matrix SS contains all pair of

points , which each are included in the particular rectangles/

compartements in the partition

29 return MED , LL , Scell

Source Code 5: BTC-Algorithm.

Figure 4: Data-dependent partition of Rd based on the points {xi}n
i=1 (highlighted in red) from

Example 2.1: Here, d = 2, n = 24, κ = 3. Each rectangle contains 24

23 = 2 points.

The informations needed to specify a particular rectangle can (again) be saved in the cell-matrix
RR from Subsection 2.1. Source Code 6 below generates this matrix RR in case of a data-dependent
partitioning.
1 MED , LL, Scell = MEDpart(kappa ,Data [:,0:d]) # needed from BTC -Algorithm

2 ##############################################################

3 # The following function partitions the state space (based on Algorithm

2.2 in the manuscript) --- which is determined by the minimum and

maximum value

4 # of the {x_i}_{i=1,...,n} & and a given tolerance --- into R=2^( kappa)

many rectangles.
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5 def partitioning(kappa ,A,tolerance ,MED ,LL):

6 RR=np.empty(shape =(kappa +1 ,2**( kappa)),dtype='object ') # initialize

cell -matrix RR

7 RR1=np.zeros ((d,2)) # initialize first entry of RR

8 for i in range(d):

9 # Set up the first rectangle (resp. correspondinhg informations)

which contains all points. 'tolerance ' determines the distance of the

rectangle to the furthest points , which all are located inside the

rectangle

10 RR1[i,0]=np.amin(A)-tolerance

11 RR1[i,1]=np.amax(A)+tolerance

12 RR [0][0]= RR1 # specification of first rectangle

13 # Successfully specify subsequent rectangles/compratements according

to a Binary Tree Cuboid structure

14 for p in range(kappa):

15 for q in range (2**p):

16 for i in range(d):

17 if LL[p][q] == i:

18 RR[p+1][2*q] = np.copy(RR[p][q])

19 RR[p+1][2*q][i][0] = np.copy(MED[p][q])

20 RR[p+1][2*q + 1] = np.copy(RR[p][q])

21 RR[p+1][2*q + 1][i][1] = np.copy(MED[p][q])

22 return RR

Source Code 6: Data-dependent partition of Rd .

STEP 2 and STEP 3: See steps 2 and 3 in Subsection 2.1.

We now present an example, where the data-dependent partitioning estimator is used for clas-
sification. All corresponding Python codes to reconstruct Example 2.3, i.e., to realize steps 1, 2
and 3 above can be found in [7].

Example 2.3 (Classification via data-dependent partitioning estimator). Let d = 2, n = 210 and
Y = {1,2,3,4}. We use [7, DataGeneration1.py] to generate data Dn = {(xi,yi)}n

i=1; see Figure
5 for a realization. According to steps 1, 2 and 3 from Subsection 2.2, we choose κ = 8 and fix
point = (1,1.35)⊤. An implementation of the partitioning estimator yields mn(point) = 1; see
[7, Example2.3_PartEstimator.py] and also Figure 6.

2.3 Kernel estimator
Opposed to the implementation of the partitioning estimator from Subsections 2.1 and 2.2, the
realization of the kernel estimator is much simpler and can be classified into two steps:

STEP 1: (Kernel function) Choose a kernel function K : Rd → [0,∞), which is used to express the
similarity of two points in Rd; for instance
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Figure 5: Data generated via [7, DataGeneration1.py].
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(a) Estimation
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(b) Global solution

Figure 6: (a) Visualization of data and point (highlighted in black), whose label is estimated. (b)
Visualization of the global solution.

• Naive Kernel:
K(x) = 1{∥x∥Rd≤1} .

• Epanechnikov Kernel:

K(x) =

{
3
4

(
1−∥x∥2

Rd

)
, ∥x∥Rd ≤ 1

0 , otherwise.

STEP 2: (Estimator) Fix a bandwidth h > 0, and a point point ∈ Rd , whose corresponding label

13



is estimated by the kernel estimator

mn(point) =

n
∑

i=1
K
(
point−xi

h

)
· yi

n
∑

i=1
K
(
point−xi

h

) . (2.2)

Source Code 7 below realizes steps 1 and 2 from above: first a kernel function is defined, then
the kernel estimator in (2.2) is computed.
1 # Define Kernel -function: Naive -Kernel

2 def naivkernel(a):

3 if np.linalg.norm(a) <= 1:

4 value =1

5 else:

6 value = 0

7 return value

8 ##########################################################

9 # Define Kernel -function: Epanechnikov -Kernel

10 def epanechnikovkernel(a):

11 if np.linalg.norm(a) <=1:

12 value =(3/4) *(1-(np.linalg.norm(a)**2))

13 else:

14 value =0

15 return value

16 ##########################################################

17 # Define Kernel -Estimator:

18 def kernelestimator(point ,Data ,h):

19 factor1 =0

20 factor2 =0

21 for i in range(len(Data)):

22 #factor1 += naivkernel ((point -Data[i,0:d])/h)*Data[i,d]

23 #factor2 += naivkernel ((point -Data[i,0:d])/h)

24 factor1 += epanechnikovkernel ((point - Data[i, 0:d]) / h) * Data[

i, d]

25 factor2 += epanechnikovkernel ((point - Data[i, 0:d]) / h)

26 if factor2 == 0:

27 m_n = 0

28 else:

29 m_n = factor1 / factor2

30 return m_n

31 ###########################################################

Source Code 7: Estimation of label of point

We now consider an example, which is similar to Example 2.3, but uses the kernel estimator
for the underlying classification task. Th full Python code to reconstruct Example 2.4 is provided
in [7].
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Example 2.4. (Classification via kernel estimator) Suppose the same framework as in Example
2.3; i.e., d = 2, n = 210, Y = {1,2,3,4}, the same data, and point = (1,1.35)⊤. For the es-
timation of the label of point, we choose the Epanechnikov kernel as a kernel function and
fix h = 0.1. An implementation of the kernel estimator yields mn(point) = 1; see [7, Exam-
ple2.4_KernelEstimator.py].
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Kernel-Estimator: Global solution

Figure 7: Visualization of the global solution.

2.4 k−Nearest Neighbor (kNN) estimator
The realization of the kNN estimator may be classified into three steps:

STEP 1: (Setup) Fix k ∈ {1, ...,n}, and fix a point point ∈ Rd whose corresponding label should
be estimated. Compute all distances ∥point−xi∥Rd (i = 1, ...,n), and save the results in an extra
column of the matrix ‘Data’ in (1.1):

Datadist=

 x1 y1 ∥point−x1∥Rd

...
...

...
xn yn ∥point−xn∥Rd

 ∈ Rn×(d+2) .

STEP 2: (Sort and extract) Sort the rows of matrix ‘Datadist’ in ascending order based on the
value in the last column:

Datadistsort=



xi1 yi1 ∥point−xi1∥Rd

...
...

...
xik yik ∥point−xik∥Rd

xik+1 yik+1 ∥point−xik+1∥Rd

...
...

...
xin yin ∥point−xin∥Rd


∈ Rn×(d+2) .
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Extract from matrix ‘Datadistsort’ the first k rows:

Datadistsortk=

 xi1 yi1 ∥point−xi1∥Rd

...
...

...
xik yik ∥point−xik∥Rd

 ∈ Rk×(d+2) .

The points xi1 ,...,xik are the k−nearest neighbors of point.

1 # Compute distances:

2 def distancemeasure(Data ,point ,k):

3 Dataplusdist=np.zeros ((len(Data),d+2)) # initialize matrix

4 Dataplusdist [:, 0:d+1] = np.copy(Data)

5 for i in range(len(Data)):

6 Dataplusdist[i,d+1]=np.linalg.norm(point -Data[i,0:d]) # compute

distance

7 Dataplusdist=np.copy(Dataplusdist[Dataplusdist [:, d+1]. argsort ()]) #

sort distances in ascending order

8 Dataplusdistk=Dataplusdist [0:k,:] # extract the first k rows

9 return Dataplusdistk

Source Code 8: Implementation of STEP 1 and STEP 2

STEP 3: (Estimator) In order to estimate the label of point, we compute the kNN estimator via

mn(point) =
1
k

k

∑
ℓ=1

yiℓ , (2.3)

where the bracket [·] either rounds the expression inside it up, or down.

1 # Define kNN -Estimator:

2 def kNNestimator(Dataplusdistk ,k):

3 sum=0

4 for i in range(len(Dataplusdistk)):

5 sum += Dataplusdistk[i,d]

6 m_n=sum/k

7 return m_n

Source Code 9: Estimation of label of point

The following example is similar to Example 2.3 resp. 2.4, but uses the kNN estimator for the
underlying classification task. Th full Python code to reconstruct Example 2.5 is again provided in
[7].

Example 2.5. (Classification via kNN estimator) Suppose the same framework as in Example 2.3;
i.e., d = 2, n = 210, Y = {1,2,3,4}, the same data, and point= (1,1.35)⊤. For the estimation of
the label of point, we fix k = 9. An implementation of the kNN estimator yields f ∗n (point) = 1;
see [7, Example2.5_kNNEstimator.py].
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(b) Global solution

Figure 8: (a) Visualization of data and point (highlighted in black), whose label is estimated. The
circle around point involves the k−nearest neighbors. (b) Visualization of the global solution.

In the following remark, we compare the three estimators presented in this section from an
algorithmical viewpoint.

Remark 2.1. As far as preliminary work is concerned, the partitioning estimator clearly leads the
list. Before realizing a classification resp. regression task, a (data-dependent) partition of the state
space Rd has to be carried out first, which has a complexity of roughly O(d2κ+1) (uniform parti-
tion) resp. O(dn2κ+1) (data-dependent partition), cf. Source Codes 1, 5 and 6. In order to estimate
the label of a given point according to (2.1), we first localize it; cf. Source Code 3, which requires
O(κ) checks. The evaluation via (2.1) then requires O(n) further checks; cf. Source Code 4. Sec-
ond on the list is the kNN estimator with a preliminary work complexity of O(nd); cf. Source Code
8. The estimation via (2.3) then has a complexity of O(k), cf. Source Code 9. In contrast, the kernel
estimator does not require any algorithmical preliminary work, which is why its implementation is
straightforward; cf. Source Code 7, and the ‘easiest’ compared to the other estimators. However,
the estimation via (2.2) is the most time consuming with a complexity of roughly O(nd), which,
in particular, has an influence on the computation of a global solution. We refer to Subsection 3.2
for a further discussion in this direction, and for a comparison of the above estimators from a more
computational/simulational viewpoint.

3 Data-dependent selection of parameters in the estimation

3.1 K-fold cross validation
The parameters κ ∈ N, h > 0 and k ∈ N involved in the error estimators in Section 2 determine
the ‘accuracy’ of the estimators. Improper choices of κ , h, and k being too ‘small’ or too ‘large’
might lead to underfitting resp. overfitting phenomenons. A question which naturally arises now
is ‘How to choose the ‘optimal’ accuracy-parameter(s)?’. We answer this question by considering
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the following machine learning experiment:

Suppose we have given data Dn = {(xi,yi)}n
i=1. In a first step, we shuffle and then split the

data into ‘learning/training data’ DnL = {(xi,yi)}nL
i=1 and ‘test data’ DnT = {(xi,yi)}nT

i=nL+1, where
n = nL+nT. This strategy has been analyzed in [3, Chap. 7,8]. For an implementation, see Source
code 10 below, which yields the data DnL and DnT .

1 # Generate (random) training set & test set; shuffel and split the data:

2 # Suppose the (n x (d+1))-matrix 'Data' is given (cf. (1.1) in the

manuscript).

3 fac =0.7 # fac is a number between 0 and 1; Example: fac =0.7 splits the

data into 70% training data and

4 # 30% test data

5 randomtrainindices=np.random.choice(n,int(fac*n),replace=False) #

generate int(fac*n)-many different

6 # random indices from 0 to n

7 randomtestindices=list(set(range(n))-set(randomtrainindices)) # save the

other indices (not chosen above)

8 TrainData=np.zeros((len(randomtrainindices),len(Data [0]))) # initialize

the training data

9 TestData=np.zeros((len(randomtestindices),len(Data [0]))) # initialize the

test data

10 # The training data are built via the randomly chosen indices in '

randomtrainidices ':

11 n_L=len(randomtrainindices)

12 for i in range(n_L):

13 TrainData[i,:]= Data[randomtrainindices[i],:]

14 # The test data are built via the indices in 'randomtestidices ':

15 n_T=len(randomtestindices)

16 for i in range(n_T):

17 TestData[i,:]= Data[randomtestindices[i],:]

Source Code 10: Generate random training and test data

The training data are used to train the estimator, i.e., to find out the optimal ‘accuracy-patrameter(s)’.
The test data are independent from the training data and will be used to evaluate the success of the
estimator. In this regard, we introduce the training error and test error:

Training error: We predict the labels of all training points {xi}nL
i=1 (although the true labels are

known) via the estimator: call the predicted labels ŷi. We then compute the error on each training
point {xi}nL

i=1
err(xi,yi, ŷi) = ℓ(xi,yi, ŷi) ,

where ℓ : Rd ×Y×Y → [0,∞) is a given loss-function; see (1.2) and (1.3).
The training error is now defined by

Errtrain :=
1
nL

nL

∑
i=1

err(xi,yi, ŷi) .
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Test error: We predict the labels of all test points {xi}nT
i=nL+1 (although the true labels are known)

via the estimator: call the predicted labels ŷi. We then compute the error on each test point:
err(xi,yi, ŷi) = ℓ(xi,yi, ŷi). The test error can now be defined by

Errtest :=
1
nT

nT

∑
i=nL+1

err(xi,yi, ŷi) .

Next, we illustrate the concept of K−fold cross validation, which is one of the most important
methods to determine the optimal accuracy parameter(s), in the case of the partitioning estimator.
We refer to the Python files ‘Example2.3_PartEstimator.py’, ‘Example2.4_KernelEstimator.py’
and ‘Example2.5_kNNEstimator.py’ in [7], in which K−fold cross validation is each included
in the setting of classification via the partitioning estimator, kernel estimator and kNN estimator.

Algorithm 3.1. (K−fold cross validation for the partitioning estimator)
Input: K ∈ N, training data DnL = {(xi,yi)}nL

i=1, and a set Pn of different parameter combinations,
i.e., a set of different values of κ .

(I) Partition the training set into K parts that are equally large. These parts are called ‘folds’.

(II) For κ ∈ Pn do:
For j = 1, ...,K do:

– Build one training set out of folds 1, ..., j−1, j+1, ...,K; call this fold trainingfold;
call the leftover set testfold

– Realize the partitioning estimator with a (data-dependent) partition based on all points
in trainingfold

– Compute the validation error on fold j (≡ testfold):

errval(κ, j) :=
1

#{points in testfold} ∑
xi∈testfold

ℓ(xi,yi, ŷi)

(III) Compute the average validation error over folds:

err(κ) :=
1
K

K

∑
j=1

errval(κ, j)

(IV) Determine the optimal κ∗ := argmin
κ∈S

err(κ).

Output: κ∗.

After the K−fold cross validation procedure, we realize the partitioning estimator with a (data-
dependent) partition into 2κ∗

many rectangles based on all training points {xi}nL
i=1. Then, and only

then, we use a completely new test set to compute the test error.
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Remark 3.1. 1. It is not allowed to use the test set in the training procedure!
2. The choice of the number of folds K is not so critical. In practice, people often use K = 5 or
K = 10.
3. The K−fold cross validation procedure is computationally expensive, but there is no other
systematic method to choose ‘accuracy parameters’ in a useful way.
4. When dealing with a classification problem, we predict the labels ‘ŷi’ via ‘ f ∗nL(xi)= ŷi’ according
to (1.6), and choose (1.2) as loss-function in Algorithm 3.1. On the other hand, when dealing with
a regression problem, we predict the labels ‘ŷi’ via ‘mnL(xi) = ŷi’ according to the estimators
presented in Section 2, which, in particular, approximate (3.1) below, and choose (1.3) as loss-
function in Algorithm 3.1.

3.2 Computational comparison
In this subsection, we compare the different error estimators presented in Section 2 on the basis of
further examples.

We start with a comparison of Exmaples 2.3, 2.4 and 2.5, where for the same data set (see
Figure 5) a global solution is computed via the partitioning estimator, the kernel estimator and the
kNN estimator; see Figures 6 (b), 7 and 8 (b). Table 1 below compares the computational time each
estimator (with corresponding optimal ‘accuracy’ parameter determined via 5−fold cross valida-
tion) needs for the generation of the global solution. There, we can clearly see that the partitioning
estimator outclasses the other two estimators as far as computational time is concerned, which
is due to the ‘character’/setup of the estimators: the partitioning estimator automatically yields a
‘rectanglewise’/‘compartementwise’ global solution of the given problem (i.e., in the sense that the
label in each rectangle/compartment is the same); whereas the kernel estimator and the kNN esti-
mator yield a pointwise solution (i.e., at every given point in the state space Rd the corresponding
label has to be estimated again and again, which is computationally more costly). These temporal
differences increase more drastically with growing dimension of the state space Rd .

Estimators Computational time (Training) error

Partitioning estimator 4 sec ≈ 0.0712
Kernel estimator 81 sec ≈ 0.0517
kNN estimator 33 sec ≈ 0.0576

Table 1: Comparisons of the computational time for the global solution and the (training) errors of
Examples 2.3, 2.4 and 2.5. Here, we used all the data as training data.

Next, we consider an example which deals with regression. Similar to the mathematical frame-
work explained in the ‘handwritten digit recognition–experiment’ for classification in the intro-
duction, the goal in regression analysis is to find a (regression) function f ∗ : Rd → R (note that
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Y = R), such that

E
[
| f ∗(X)−Y |2

]
= min

f :Rd→R
E
[
| f (X)−Y |2

]
,

where (X,Y ) ∈ Rd ×R is a random variable on a given probability space (Ω,F ,P). By [3, p. 2],
f ∗(·) = m(·), where m : Rd → R is given by

m(x) := E[Y |X = x] forall x ∈ Rd . (3.1)

Again, since the distribution of (X,Y ) is unknown in general, we have to estimate the regression
function m(·) by mn(·) based on given data Dn = {(xi,yi)}n

i=1 in practice. We refer to Section 2 for
different estimators ‘mn(·)’.

Example 3.2. (Regression) Let d = 1, n = 210 and Y = R. We use [7, DataGeneration2.py] to
generate data Dn = {(xi,yi)}n

i=1; see Figure 9 (a) for a realization. Table 2 below compares the
performance of the partitioning estimator, kernel estimator and kNN estimator in the framework of
this example. Figures 9 (b) – (d) shows the regression function emerging from each estimator with
optimal chosen ‘accuracy parameter’ according to the 5−fold cross validation procedure in Subsec-
tion 3.1. The corresponding Python files ‘Example.3.2_PartEst.py’, ‘Example.3.2_KernelEst.py’
and ‘Example.3.2_kNNEst.py’ can be found in [7].

ESTIMATORS Partitioning estimator Kernel estimator kNN estimator

Opt. parameter via cross val. κ∗ = 7 h∗ = 0.1 k∗ = 5
Training error ≈ 0.077 ≈ 0.055 ≈ 0.056
Test error ≈ 0.112 ≈ 0.093 ≈ 0.11
Comp. time with cross val. 25 sec 57 sec 14 sec
Comp. time without cross val. 1.5 sec 3 sec 1 sec

Table 2: Comparison of the performance of the estimators in Example 3.2.

3.3 Handwritten digit recognition
In this subsection, we immediately tie in with the ‘handwritten digit recognition–experiment’ from
the introduction, and present further details. In order to construct the (prediction) function f ∗n in
(1.6), we first need a suitable data set. Here, we make use of the MNIST data set (Modified National
Institute of Standards and Technology database), which provides (informations of) a collection of
n = 70000 28×28 greyscale (pixel) images of handwritten digits (normalized and anti-aliased; see
[5, 6]) from 0 to 9; see Figure 10 (a). The data set Dn = {(x̃i,yi)}n

i=1 is already divided into nL =
60000 learning/training data DnL = {(x̃i,yi)}nL

i=1 and nT = 10000 test data DnT = {(x̃i,yi)}nT
i=nT+1.

Here, each x̃i corresponds to a matrix in R28×28 with values between 0 and 255. We proceed as
follows:
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(c) Kernel estimator
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Figure 9: (a) Data generated via [7, DataGeneration2.py]. (b) Regression-function via partitioning
estimator with κ = 7. (2c) Regression-function via kernel estimator with h= 0.1 and Epanechnikov
kernel. (d) Regression-function via kNN estimator with k = 5.

1) Prepare data set: Via the Python file ‘datasetPREP.py’ in [7], we first scale down the en-
tries in each matrix x̃i to values in [0,1]: each entry of x̃i (after the scale down procedure)
corresponds to a pixel in the corresponding 28×28 greyscale image, where 0 ≡‘black’ and
1 ≡‘white’. Secondly (after the scale down procedure), we transform each matrix x̃i into a
vector xi with values in [0,1]784. Then, via ‘datasetPREP.py’, the (prepared) data is saved
(according to (1.1)) in the matrices TrainData ∈ RnL×785 and TestData ∈ RnT×785.

2) Prepare input image: We use the Python file ‘Test_Imgage_PREP.py’ in [7] to ‘read’ and to
transform a given input/test image in ‘jpg’ or ‘png’ format with equal width and height (see
Figure 1 (b)) into a 28×28 greyscale (pixel) image in ‘png’ format (see Figure 10 (b)). Then,
via ‘Test_Imgage_PREP.py’, we prepare resp. extract informations from the new resulting
image and save them in the vector testdigit ∈ [0,1]784, which encodes these informations.
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Note that it is crucial, that the given test image is prepared in such a way, that it is similar to
the ‘structure’ of the digits in the MNIST data set. As one can see in Figure 10 (a), the digits
are provided as ‘white on black’; so the prepared test image has also to be represented in this
way; see Figure 10 (b). An improper representation ‘black on white’ as seen in Figure 1 (d)
might lead to troubles and spoiled predictions in the (upcoming) classification task!

3) Prediction: We now use the Python file ‘kNN_digit_classifier.py’ in [7], which predicts the
digit/label of the original input image in Figure 1 (b); i.e., encoded in the vector testdigit.
In this connection, the kNN estimator is used to estimate the a posteriori probabilites in (1.5)
by m(i)

nL (testdigit), where i = 0, ...,9. Then, according to (1.6), ‘kNN_digit_classifier.py’
outputs the predicted label.
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Figure 10: (a) Digits from the MNIST data set. (b) Prepared image from Figure 1 (b).
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