

Mathematisch-Naturwissenschaftliche Fakultät

Fachbereich Mathematik

Prof. Dr. Andreas Prohl Armin Beck

Statistical Learning 1

Summer semester 2024

eberhard karls UNIVERSITÄT

TÜBINGEN

Tübingen, 10.06.2024

Assignment 8

Problem 1

To obtain weak universal consistency for the *k*-NN estimator, we verify the assumptions in Stone's theorem. In Assginment 7 Problem 1, we have already shown conditions (ii) and $(iv)_2$ and condition (iii) was proved in the lecture. Show the remaining assumptions under the conditions

$$k_n \uparrow \infty$$
 and $\frac{k_n}{n} \downarrow 0$ for $n \uparrow \infty$.

Problem 2

Show that for the support of X holds

a) $\mathbb{P}[X \in \operatorname{supp}(\mathbb{P}_X)] = 1$

b) $\operatorname{supp}(\mathbb{P}_X)$] is closed.

Problem 3

Let $S \equiv \operatorname{supp}(\mathbb{P}_X)$. The following estimate is to prove rates for the kernel estimator. Show that a constant $C_d \equiv C(d, \operatorname{diam}(S)) > 0$ exists, such that

$$\int_{S} \frac{1}{n \mathbb{P}_{X}[B(x, h_{n})]} \mu[dx] \leq \frac{C_{d}}{n \cdot h_{n}^{d}}.$$

Problem 4

For the proof of rates for the kernel estimator, a variance-bias decomposition is used again. Let m_n be a local averaging estimator and m the regression function. Show that

$$\mathbb{E}[|m_n(x) - m(x)|^2 | X_1, ..., X_n] \\ = \mathbb{E}[|m_n(x) - \mathbb{E}[m_n(x)|X_1, ..., X_n]|^2 | X_1, ..., X_n] + \left| \mathbb{E}[m_n(x)|X_1, ..., X_n] - m(x) \right|^2$$

holds for every $x \in \mathbb{R}^d$.

Date of Submission: 17.06.2024 in the mailbox at 12 noon.

Seite 1/1