

Mathematisch-Naturwissenschaftliche Fakultät

Fachbereich Mathematik

Prof. Dr. Andreas Prohl Armin Beck

Statistical Learning 1

Summer semester 2024

Tübingen, 03.06.2024

Assignment 7

Problem 1

The third regression estimator for which we prove weak universal consistency is the k-NN estimator, provided that

$$k_n \uparrow \infty$$
 and $\frac{k_n}{n} \downarrow 0$ for $n \uparrow \infty$

Verify assumptions (ii) and $(iv)_2$ in Stone's theorem.

Problem 2

We call an observation noiseless if $Y_i = m(X_i)$, for $1 \le i \le n$. Prove that for fixed k the k-NN regression estimator is weakly universal consistent for noiseless observations.

Problem 3

Fix $x \in \mathbb{R}^d$. Let g_n be the k-NN classification rule for M-classes:

$$g_n(x) = \operatorname{argmax}_{1 \le j \le M} \sum_{i=1}^{k_n} \mathbb{1}_{\{y_{(n,i}(x)=j)\}}.$$

Show that, for $k_n \uparrow \infty$ and $\frac{k_n}{n} \downarrow 0$,

$$\lim_{n\to\infty} \mathcal{P}[\{g_n(X)\neq Y\}] = \mathcal{P}[\{g^*(X)\neq Y\}]$$

for all distributions of (X, Y), where g^* is the Bayes decision rule.

Hint: Use **Problem 1 (b)** of **Assignment 2**, and the weak universal consistency property of the k-NN estimator.

Date of Submission: 10.06.2024 in the mailbox at 12 noon.