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Problem 1
Assume that the weights {αn,i} are nonnegative and that the corresponding local averaging estimate
is weakly universally consistent. Prove that assumption (iii) in Stone’s Theorem is satisfied, i.e.,

limn→∞ E
[ n∑
i=1

|αn,i(X)|1{∥Xi−X∥>a}
]
= 0 ∀a > 0.

Hint: For any fixed x ∈ Rd and a > 0 let f be a non-negative continuous function which is 0 on B(x, a3 )
and is 1 on B(x, 2a3 )

c. Now choose Y = f(X) = m(X), then

1{X∈B(x,a
3
)}

n∑
i=1

αn,i(X)f(Xi) ≥ 1{X∈B(x,a
3
}

n∑
i=1

αn,i(X)1{∥Xi−X∥>a}
n→∞−−−→ 0

in probability, therefore, for any compact set K,

1{X∈K}

n∑
i=1

αn,i(X)1{∥Xi−X∥>a}
n→∞−−−→ 0

in probability.

Problem 2
In the lecture, we verify weak universal consistency of the kernel estimator for the naive kernel K(x) =
1{∥x∥≤1} by validating the four assumptions in the theorem of Stone.
Verify assumptions (ii) and (iii) in Stone’s theorem for the kernel estimator in the case of the more
general boxed kernels.
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