

Mathematisch-Naturwissenschaftliche Fakultät

Fachbereich Mathematik

Prof. Dr. Andreas Prohl Armin Beck

Tübingen, 13.05.2024

Statistical Learning 1

Summer semester 2024

eberhard karls UNIVERSITÄT

TÜBINGEN

Assignment 5

Problem 1

In the lecture and for the proof of Stone's theorem, we decomposed the weak consistency analysis into three parts, where the last addresses

$$III^n := \left(\sum_{i=1}^n \alpha_{n,i}(\mathbf{X}) - 1\right) m(\mathbf{X}).$$

Use the assumptions of this theorem to show that $\lim_{n\uparrow\infty} \mathbb{E}[|III^n|^2] = 0$.

Problem 2

In the lecture, we showed Stone's theorem, which settles weak consistency of local averaging regression estimators m_n . At some stage of it, we needed to establish convergence to zero (for $n \uparrow \infty$) of

$$\sum_{i=1}^{n} \mathbb{E}\Big[|\alpha_{n,i}(\mathbf{X})|^2 \big(Y_i - m(\mathbf{X}_i) \big)^2 \Big]$$

The argumentation in the lecture was fast. Please detail the proof.

Problem 3

Let a rectangle partition consist of rectangles with side lengths $h_{n,1}, ..., h_{n,1}$. Prove weak universal consistency of the related partitioning estimator m_n for

 $\lim_{n\to\infty} h_{n,j} = 0$ $(1 \le j \le d)$ and $\lim_{n\to\infty} nh_{n,1} \cdots h_{n,d} = \infty$

Date of Submission: 27.05.2024 in the mailbox at 12 noon.

Seite 1/1