

Mathematisch-Naturwissenschaftliche Fakultät

Fachbereich Mathematik

Prof. Dr. Andreas Prohl Armin Beck

Statistical Learning 1

Summer semester 2024

eberhard karls UNIVERSITÄT

TÜBINGEN

Tübingen, 06.05.2024

Assignment 4

Problem 1

In the lecture we verified weak universal consistency of a regression estimator m_n under certain assumptions. Revisit the proof and show that the same property holds without assumption

(i) There is a constant c such that for every nonnegative measurable function $f : \mathbb{R}^d \to \mathbb{R}$ satisfying $\mathbb{E}[f(\mathbf{X})] < \infty$ and any $n \in \mathbb{N}$,

$$E\Big[\sum_{i=1}^{n} |\alpha_{n,i}(\mathbf{X})| f(\mathbf{X}_{i})\Big] \le c\mathbb{E}[f(\mathbf{X})],$$

in case that the regression function is uniformly continuous and the conditional variance function $\sigma^2(x) = E[(\mathbf{Y} - m(\mathbf{X}))^2 | \mathbf{X} = x]$ is bounded.

Problem 2

In the lecture we defined the empricial measure μ_n for an i.i.d. sample set $(X_1, ..., X_n)$. Let \mathcal{P}_n be a partition of \mathbb{R}^d ; we call a cell $\mathcal{A}_{n,j} \in \mathcal{P}_n$ to be empty, if $\mu_n[\mathcal{A}_{n,j}] = 0$. Let now M_n be the number of nonempty cells of \mathcal{P}_n . Prove that a.s.

$$\frac{1}{n}M_n\xrightarrow{n\to\infty} 0$$

provided that $\lim_{n\to\infty} \frac{|\{j\in\mathbb{N}:\mathcal{A}_{n,j}\cap\mathcal{B}(0,R)\neq\emptyset\}|}{n} = 0$ for each R > 0, where $\mathcal{B}(0,R)$ is the ball of radius R around 0.

Date of Submission: 13.05.2024 in the mailbox at 12 noon.