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Problem 1. This task generalizes the classification problem from the lecture. In a classification prob-
lem, Y can only have a finite number of values in M = {1, ...,M} with M ≥ 2. Such a classification
problem could be, for example, the classification of animals on images (a sequence of pixels). In this
case, the values of Y in M = {1, ...,M} could stand for „dog“, „cat“, „mouse“, „elephant“ etc.
In order to classify new data (e.g. images), a function f∗ : Rd → {1, ...,M} is sought such that the
error probability is minimum, i.e.,

P[f∗(X) ̸= Y ] = minf :Rd→{1,...,M} P[f(X) ̸= Y ]. (1)

a) Show that (1) is met by Bayes decision

f∗(x) = argmax1≤k≤M P[Y = k|X = x] ∀x ∈ Rd.

b) The a posteriori probabilities

P[Y = k|X = x] =: m(k)(x) für (1 ≤ k ≤ M).

are required for the Bayes estimator. These a posteriori probabilities cannot be calculated di-
rectly. Therefore, we approximate the a posteriori probabilities m(k) with the help of an estimator
m

(k)
n , which is based on a data set Dn = {(Xj , Yj)}nj=1. With these estimators, the „plug-in“

estimator is defined as an approximation of Bayes’ estimator

f∗(x) ≈ fn(x) = argmax1≤k≤M m(k)
n (x)

for all x ∈ Rd.
Show that the error probability of the „plug-in“ estimator satisfies the following estimate

0 ≤ P[fn(X) ̸= Y |Dn]− P[f∗(X) ̸= Y ]

≤
M∑
k=1

∫
Rd

|m(k)
n (x)−m(k)(x)|µ[dx]

≤
M∑
k=1

(∫
Rd

|m(k)
n (x)−m(k)(x)|2µ[dx]

) 1
2
.

This shows that the error probability of the „plug-in“ estimator is bounded by the errors of the
estimators for the a posteriori probabilities.

Seite 1/2



Problem 2. Let n ∈ N. For z1, ..., zn ∈ R we consider z := 1
n

∑n
i=1 zi.

a) Show that

1

n

n∑
i=1

|c− zi|2 = |c− z|2 + 1

n

n∑
i=1

|z − zi|2

for all c ∈ R.

b) Conclude from a) that

1

n

n∑
i=1

|z − zi|2 = minc∈R
1

n

n∑
i=1

|c− zi|2.

Problem 3. After looking at the classification problem from a theoretical perspective in the lecture
and in problem 1, we here consider a concrete example. Given the data set Dn = {(Xi, Yi)}ni=1,
where Xi is a Rd-valued random variable and Yi is a M-valued random variable. In this specific
example, n = 9, d = 2 and M = {0, 1}. In the following, we look at a concrete realization Dn(ω̃) =
{(Xi(ω̃), Yi(ω̃))}9i=1 ⊂ R2 ×M for a ω̃ ∈ Ω from the underlying probability space

Xi(ω̃) (1,-2) (2,-2) (1, 0) (2, 0) (0, 1) (3, 1) (0, 2) (2, 2) (3, 2)

Yi(ω̃) 1 1 0 1 0 1 0 0 1
.

The Bayes classifier

f∗(x) =

{
1, falls P[Y = 1|X = x] ≥ 1

2

0, sonst

is used to classify further data points. This involves the a posteriori probability, which is not available.
Therefore, it will be estimated using the following estimator

P[Y = 1|X = x] ≈ m9(x) =

∑9
i=1 1{∥Xi(ω̃)−x∥≤2}Yi(ω̃)∑n

i=1 1{∥Xi(ω̃)−x∥≤2}
∀x ∈ R2. (2)

This yields the „plug-in“ estimator, which provides approximate values for the Bayes’ estimator

f∗
9 =

{
1, if m9(x) ≥ 1

2

0, else
.

a) Using the „plug-in“ estimator f∗
9 , classify the data points x = (1, 5 , 2, 5) and (0, 0).

b) Draw a sketch showing the areas in which the „plug-in“ estimator estimates the value „0“ and in
which it estimates the value „1 “.

Date of Submission: 29.04.2024 in the mailbox at 12 noon.
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