

Mathematisch-**Naturwissenschaftliche** Fakultät

Fachbereich Mathematik

Prof. Dr. Andreas Prohl **Dr. Abhishek Chaudhary**

Tübingen, 14.06.2023

Statistical Learning 2

Summer-Semester 2023

EBERHARD KARLS UNIVERSITÄT

TÜBINGEN

Homework 5

Let

 ${f Z}$ and ${f Z}_1,\ldots,{f Z}_n$ be i.i.d. ${\Bbb R}^d$ -valued random variables, and \mathcal{G} be a set of functions $g: \mathbb{R}^d \to \mathbb{R}$, with $\mathbb{E}[g(\mathbf{Z})] < \infty$.

This exercise sheet is on the property of G to satisfy the uniform law of large numbers (ULLN), i.e.,

$$\sup_{g\in\mathcal{G}}\Bigl|\frac{1}{n}\sum_{i=1}^n g(\mathbf{Z}_i)-\mathbb{E}\big[g(\mathbf{Z})\big]\Bigr|\overset{n\uparrow\infty}{\longrightarrow} 0\qquad\mathbb{P}\text{-a.s.}$$

The following theorem elaborates sufficient criteria for \mathcal{G} to satisfy ULLN. It uses the envelope $G(\mathbf{x}) =$ $\sup_{a \in \mathcal{G}} |g(\mathbf{x})|$, where $\mathbf{x} \in \mathbb{R}^d$.

Theorem 1. Let \mathcal{G} be given, and G be its envelope. Assume

 $\mathbb{E}[G(\mathbf{Z})] < \infty$ and $V_{\mathcal{G}^+} < \infty$.

Then ULLN holds for \mathcal{G} .

Problem 1. Prove Theorem 1.

<u>Hints</u>: 1) Fix L > 0, and consider the set of truncated functions $\mathcal{G}_L := \{g \cdot \mathbb{1}_{\{G \leq L\}}; g \in \mathcal{G}\}$. Now estimate the relevant term as follows:

$$\begin{aligned} \left| \frac{1}{n} \sum_{i=1}^{n} g(\mathbf{Z}_{i}) - \mathbb{E}[g(\mathbf{Z})] \right| &\leq \underbrace{\left| \frac{1}{n} \sum_{i=1}^{n} G(\mathbf{Z}_{i}) \mathbb{1}_{\{G(\mathbf{Z}_{i}) > L\}} = ::\mathbf{I}_{n}}{\left| \frac{1}{n} \sum_{i=1}^{n} g(\mathbf{Z}_{i}) - \frac{1}{n} \sum_{i=1}^{n} g(\mathbf{Z}_{i}) \mathbb{1}_{\{G(\mathbf{Z}_{i}) \leq L\}} \right|} \\ &+ \underbrace{\left| \frac{1}{n} \sum_{i=1}^{n} g(\mathbf{Z}_{i}) \mathbb{1}_{\{G(\mathbf{Z}_{i}) \leq L\}} - \mathbb{E}[g(\mathbf{Z}) \mathbb{1}_{\{G(\mathbf{Z}) \leq L\}}] \right|}_{:=\mathbf{II}_{n}} + \underbrace{\left| \frac{\mathbb{E}[g(\mathbf{Z}) \mathbb{1}_{\{G(\mathbf{Z}) > L\}}] - \mathbb{E}[g(\mathbf{Z})] \right|}_{\leq \mathbb{E}[G(\mathbf{Z}) \mathbb{1}_{\{G(\mathbf{Z}) > L\}}] - \mathbb{E}[g(\mathbf{Z})] \right|}_{\leq \mathbb{E}[G(\mathbf{Z}) \mathbb{1}_{\{G(\mathbf{Z}) > L\}}] = ::\mathbf{II}_{L}}. \end{aligned}$$

Now show that all terms tend to zero independently, for $n, L \uparrow \infty$.

2) a) For $\{I_n\}_n$ we may argue with the law of large numbers, since only the envelope G is involved. **b)** For $\{III_L\}_L$ we may use the monotone convergence theorem (why)?

c) For the last term, reason why it suffices to verify that

$$\mathrm{II}_n \leq \sup_{g \in \mathcal{G}_L} \Big| \frac{1}{n} \sum_{i=1}^n g(\mathbf{Z}_i) - \mathbb{E} \big[g(\mathbf{Z}) \big] \Big| \stackrel{n \uparrow 0}{\longrightarrow} 0 \qquad \mathbb{P}\text{-a.s.}$$

Therefore, start with Pollard's *uniform exponential inequality*, and use the results from the lecture to bring it in a form where $V_{\mathcal{G}_L^+}$ enters. Now **assume** the following estimate:

 $V_{\mathcal{G}_L^+} \leq V_{\mathcal{G}^+}$.

Date of Submission: 12.00 on 21.06.2023.