Mathematisch-
 Naturwissenschaftliche Fakultät

Statistical Learning 2

Summer-Semester 2023
Tübingen, 11.05.2023

Homework 2

Problem 1. In the lecture, we currently show a lemma that states the (uniform) exponential inequality by Pollard from '84. Recall the notations that we used in steps 1 of the proof, i.e., of \mathbf{Z}, and of \mathscr{Z}_{n} for an i.i.d. n-sample, as well as of $\overline{\mathscr{Z}}_{n}:=\left\{\overline{\mathbf{Z}}_{j}\right\}_{j=1}^{n}$ for an i.i.d. ghost n-sample. With the help of the function $g^{*} \equiv g^{*}\left(\cdot ; \mathscr{Z}_{n}\right)$ constructed there, and by the assumptions made in the lemma we were then lead to bound

$$
\mathbb{P}\left[\left.\left|\mathbb{E}\left[g^{*}(\mathbf{Z}) \mid \mathscr{Z}_{n}\right]-\frac{1}{n} \sum_{j=1}^{n} g^{*}\left(\overline{\mathbf{Z}}_{j}\right)\right| \leq \frac{\varepsilon}{2} \right\rvert\, \mathscr{Z}_{n}\right] \geq \frac{1}{2} \quad \text { a.s. }
$$

Detail the proof outlined in the lecture that leads to this estimation.
Hint: Use Tschebycheff's inequality when you derive an upper bound for the probability of the 'complementary set'.

Problem 2. While Problem 1 relates to the 'symmetrization by a ghost n-sample' as a first tool to verify the lemma mentioned, another tool is in step 2 of its proof, which introduces 'additional randomness by random signs'. This comes with the help of another independent i.i.d. n-sample $\mathscr{U}_{n}:=\left\{U_{j}\right\}_{j=1}^{n}$, where

$$
\mathbb{P}\left[U_{j}=1\right]=\mathbb{P}\left[U_{j}=-1\right]=\frac{1}{2} \quad(1 \leq j \leq n) .
$$

Now, the idea was to consider randomly exchanged same entries of the \mathscr{Z}_{n} and $\overline{\mathscr{Z}}_{n}$, for which we consider the (related) map

$$
\mathscr{Y}_{n}=\boldsymbol{h}\left(\mathscr{Z}_{n}, \overline{\mathscr{Z}}_{n}, \mathscr{U}_{n}\right),
$$

where $\mathscr{Y}_{n}=\left\{\mathscr{Y}_{n}^{(j)}\right\}_{j=1}^{n}$, with components $\mathscr{Y}_{n}^{(j)} \equiv \mathbf{h}\left(\mathbf{Z}_{j}, \overline{\mathbf{Z}}_{j}, \mathbf{U}_{j}\right)$, and the function $\mathbf{h}: \mathbb{R}^{2 d+1} \rightarrow \mathbb{R}^{2 d}$ via

$$
\mathbf{h}(\mathbf{z}, \overline{\mathbf{z}}, u)=\left(\frac{1}{2}[1+u] \mathbf{z}+\frac{1}{2}[1-u] \overline{\mathbf{z}}, \frac{1}{2}[1-u] \mathbf{z}+\frac{1}{2}[1+u] \overline{\mathbf{z}}\right)^{\top} .
$$

Study if the induced laws coincide, i.e.,

$$
\mathscr{L}\left(\mathscr{Y}_{n}\right)=\mathscr{L}\left(\left(\mathscr{Z}_{n}, \overline{\mathscr{Z}}_{n}\right)\right) .
$$

Hint: Consider $n=1$ first, and then proceed for each entry independently.

