
Artificial Neural Networks

Jan Feldmann

January 4, 2021

1 Motivation

In this talk, our goal is to improve on linear models for classification and regression by
adapting to more complex data, say, data which is not linearly separable.

This is done by learning the non-linear basis function. We will be concerned with
Neural Networks which are built from multiple perameterised, non-linear basis functions
that are adapted to the data by gradient descend.

2 Perceptrons

A perceptron is a function Rn → {−1, 1} of the form

x 7−→ sgn(w · x+ b),

where w ∈ Rn, b ∈ R and sgn denotes the step function

sgn(ξ) =

{
1 ξ ≥ 0,

−1 ξ < 0.

The components of the vector w are called the weights of the perceptron, the quantity
b is called the bias or threshold.

2.1 Linear Separability

A perceptron f : Rn → {−1, 1} labels a given input according to its decision boundary,
which is given by the affine hyperplane defined by the equation w · x + θ = 0. Thus,
the weight vector w determines the orientation of the decision boundary and θ/ ‖w‖
determines its distance from the origin.

The perceptron will then label input on the “positive” side of the decision bound-
ary with 1 and input on the “negative” side with −1. Only functions Rn → {−1, 1}
under which the preimages of 1 and −1 are separated by a hyperplane can therefore by
accurately modelled by a perceptron. We call such a function linearly separable.

1

Figure 1: Decision boundary of a perceptron f : R2 → {−1, 1} with bias θ.

2.2 The Perceptron Algorithm

Given any linearly separable classification X ×Y ⊆ Rn×{−1, 1} of a finite set X ⊆ Rn,
any perceptron f can be trained to fit that classification.

We choose a positive constant η and iterate through the data (x, y) ∈ X × Y .
If x is misclassified by f , we replace the weight vector w by w + η(y − f(x))x and the
threshold θ by θ + η(f(x)− y).

Figure 2: The point x is misclassified, weight and threshold are modified.

After a finite number of iterations, the perceptron f will correctly classify X. A
rigorous proof of that claim can be found in [2], chapter 24.

2

2.3 Some History

� The idea of a perceptron is originally conceived by Frank Rosenblatt in the late
1950s, cf. [1].

� In 1958, a first mechanical machine implementing a perceptron is presented to the
public. Endowed with 400 light sensors, it was trained with the algorithm of the
previous section to recognize written characters.

� In 1968, Marvin Minsky and Seymour Papen publish with [3] a mathematical
account of perceptrons and show, that perceptrons can solve only linearly separable
classifications and give with the exclusive or an elementary example of a function,
which can not be modelled by a perceptron.

� As a result, interest in neural networks and funding of their research decreases
significantly.

3 Forward Feeding Neural Networks

In some sense, neural networks can be thought of as a collection of perceptrons stacked
in layers. Consider functions Rn × Rm of the form

y(x,w) = f
(m∑

j=1

wjφj(x)
)

with some non-linear activation function f and basis functions (φj).
Such a function is then called a neu-

ral network, if each base function φj is again
of the above form or the identity.

The base functions are often differ-
entiable, gradient methods are thus applica-
ble to learn neural networks, which consti-
tutes one of the major differences to percep-
trons. It is helpful to introduce a graphical
depiction of neural networks by a directed
acyclic graph, an example is displayed on
the right. Here, we speak of a neural net-
work with a single hidden layer.

3

This suggest calculating the output (yk) by means of forward feeding the input
vector x. First, the activation (ak) of the hidden units or neurons is calculated:

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 .

Then, a differentiable non-linear activation function h is applied, to obtain the output

zj = h(aj)

of the basis functions (φj).
This process is then similarly repeated with the quantities (zj) to calculate the

output of the network. Thus, our example network possesses the form

y(x,w) = f
(M∑

j=1

w
(2)
kj h

(D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
.

3.1 Network Training

Given a neural network with an output function y(x,w) and some training data com-
prising input vectors (xn)1≤n≤N and corresponding target vectors (tn)1≤n≤N , we want
to find weight matrices which minimize an error function E(w). For example, consider
the squared error

E(w) =
1

2

N∑
n=1

‖y(xn, w)− tn‖2 .

Minimizing E(w) is done algorithmically. Since
y(x,w) is differentiable - unlike a perceptron - we
can find a local minimum of E(w) by steepest de-
scend, or gradient descend.

The error function E(w) will in general
not be convex (unlike in the case of support vector
machines). Therefore, multiple local minima can
exist, as it is depicted in the figure on the right.
There is no sensible way to determine whether a
local minimum is a global minimum, but for prac-
tical purposes, it suffices to choose an adequate
weight among a few numerically computed local
minima.

Any local minimum wmin satisfies the
equation ∇E(wmin) = 0 while for any w, which

is not a local extremum, ∇E(w) points in the direction of steepest ascend of the error
function.

4

Choosing a learning rate η > 0 and some initial weight w(0), we can successively
move through the space of weights by setting

w(r+1) = w(r) − η∇E(w(r))

and eventually find an approximation of a local minimum.

3.2 Error Backpropagation

The training technique described in the section above requires computing the gradient of
the error function. This can be done by error backpropagation. The chain rule provides
us the equation

∂En

∂wji
=
∂En

∂aj

∂aj
∂wji

,

where aj is the activation of the neuron j. We now note

∂aj
∂wji

=
∂

∂wji

(∑
k

wjkzk

)
= zi

and introduce the notation δj = ∂En
∂aj

. The (δj) are called the errors. We thus obtain

∂En

∂wji
= δjzi.

The errors (δj) can be calculated succes-
sively following a scheme suggested by the figure
on the right. While the output of a neural net-
work is calculated feeding the input through the
neurons in a forward fashion, the errors are cal-
culated starting with the output layer and then
moving backwards.

Assume that the errors δ1, . . . , δk as in the
figure have already been calculated. Then, using
again the chain rule, we calculate

δj =
k∑

l=1

∂En

∂al

∂al
∂aj

= h′(aj)
k∑

l=1

wljδl,

where h is the activation function appearing in the calculation of the activations

al =
∑
i

wlizi =
∑
i

wlih(ai).

The errors corresponding to the output units can be directly computed to start the
backpropagation.

5

4 Other Kinds of Neural Nets

Different architectures of neural networks, which are specialized to certain applications
and part from the feed forward structure discussed in the previous sections, are now
abundant. We shall briefly discuss recurrent neural networks and convolutional neu-
ral networks. Many more architectures are discussed in great detail in [5], which we
recommend for further reading.

4.1 Recurrent Neural Networks

Suppose we want to train a neural network to classify film reviews (sentiment analysis)
as favourable or unfavourable, or to predict the next word given a part of a sentence.
In each case, we are given a text and it seems reasonable to break it apart into single
words to feed it to a neural network.

Forward feeding neural networks as presented in the previous section are not
well suited for that approach: The number of input nodes is fixed while the length of
the texts will vary and the sequential information of the sentence structure is lost by
reducing the text to a set of single words.

This issue is remedied by recurrent neural networks. The number of layers of
such a network varies with the length of the input by stacking copies of a fixed layer
(hence the designation recurrent). Each instance of that fixed layer takes a single input
and propagates its computation forward to the next layer. In the graphical depiction
below, we find a recurrent neural network being trained to predict the next word from
its input by being fed the sentence “The cat chased the mouse.”

Figure 3: A recurrent network with a time-layered representation on the right.

The parameters of the repeated layer are retained throughout the process. The
number of weights of the network is thus fixed as well and the computation at each
sequence point is modelled the same way.

Every time some sequential aspect of a data set is to be emphasised, recur-
rent neural networks can be used. For example, recurrent neural networks find as well
application in the financial sector to analyse stock markets or to monitor credit card
transactions for fraudulent behaviour.

6

4.2 Convolutional neural network

Convolutional neural networks were originally inspired by the study of the visual cortex
of cats and now find application in the field of computer vision for image classification
or object detection.

The layers of a convolutional network are three dimensional. For example, the
input layer could organise its units among axes representing hight and width of an image
and the RGB colour channels. Among the layers, we again discern convolutional and
sampling layers. The sampling layers are processed by sampling operations, simply
averaging over small local regions of units to obtain a more compressed successive layer.

Figure 4: LeNet-5: An early convolutional neural network.

The convolution operation convolves a small filter or kernel with the preceding
convolutional layer. Learning this filter is significantly less work than learning weights
between all pairs of neurons between two layers.

The hidden layers of the network are thought to obtain semantic information
from the input data. The first hidden layers might recognize lines or other primitive
shapes in the input while the successive layers will capture increasingly complex shapes.
It is also possible to cut a trained convolutional neural network off at the penultimate
layer to obtain abstract representations of images for further processing.

4.3 Combining different architectures

It is also possible to combine different types of neural networks. We want to give an
example of combining a convolutional neural network with a recurrent neural network.

7

We are looking for a neural network which assigns a caption to an image which
should be trained with sets of pairs of images with captions. In this case, a convolutional
neural network can first be used to obtain some abstract representation of an image which
is then fed into the first input unit of a recurrent neural network, followed by the caption.
A schematic depiction is found on the previous page.

Upon completion of the training, the network can predict a caption for an image
by feeding the output of each recurrent layer as new input to the following one.

8

References

[1] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6), 386.

[2] Anthony, M., & Bartlett, P. L. (2009). Neural network learning: Theoretical foun-
dations. Cambridge university press.

[3] Minsky, M., & Papert, S. A. (1988). Perceptrons: An introduction to computational
geometry. MIT press.

[4] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

[5] Aggarwal, C. C. (2018). Neural networks and deep learning. Springer.

9

