
Handout

Introduction to Machine Learning

Kernel Methods

Leonie Pätzold

supervised by PhD. Akash Ashirbad Panda

18.01.2021

Contents

1 Introduction 3

2 The Kernel Trick: Dual Representations 3

3 Constructing Kernels 5

4 Examples 7
4.1 Radial Basis Function Networks: The Nadaraya-Watson Model 7
4.2 Polynomial Kernels in Classification . 9
4.3 Graph kernels . 11

1 Introduction

In the previous talks we learned about supervised and unsupervised learning, linear
regression and classification.
Today we focus on the prediction function, which was introduced in the talk about
linear models of regression by Nadia Vohwinkel. We will learn how to express the
prediction function by using kernels, which you can think of as a scalar product of
some sort. This means instead of training the weights by using the training data, we
use the training data in the kernels.
Remember for instance the method of nearest neighbour, which is used for classification
problems. Here some sort of metric is needed to define closeness of points and clusters.
In this memory based method, all or at least most training points need to remembered
to define the clusters and to predict the right cluster affiliation for a new input.
Very common kernel functions are for instance the linear kernel k(x, x′) = xTx′,
stationary kernels k(x, x′) = k(x−x′) and homogeneous kernels k(x, x′) = k(||x−x′||),
which are also known as radial basis functions.

We now design the prediction function in such a way that we use the input data x
only in the kernels. This way we can profit from the advantages a kernel brings. In
particular we can use infinite feature spaces and are not limited to strictly numerical
inputs x. We can for instance have sets or graphs as input.

2 The Kernel Trick: Dual Representations

In this chapter we want to explore the possibilities to express prediction functions,
we have already encountered, via kernels. In particular we have encountered linear
parametric models in the talks about linear models for regression and classification.
There we used the weight w = (w1, · · · , wM) and basis functions φi(x), with the feature
space mapping φ(x) = (φ1, · · · , φM)(x) to express the prediction function

y(x) =
M∑
i=1

wiφi(x) = wTφ(x). (1)

We now want to use the kernel

k(x,x′) = φ(x)Tφ(x′) (2)

in the prediction function without using the weights. Instead of the weights we will
use the training data x1, · · · ,xn.
Let us remember the example in chapter 1.2.5 on the handout of Linear Models of
regression by Nadia Vohwinkel. There we had a linear regression model, where the
parameter w is determined by minimizing a regularized sum-of-squares.
The regularized sum-of-squares error function was given by

E(w) =
1

2

N∑
n=1

(wTφ(xn)− tn)2 +
λ

2
wTw, (3)

with λ > 0 and φ = (φ1, ..., φM−1), where the φi are the basis functions and w the
weight vector.
We now need to express w with the basis functions. This we do by setting the gradient
of E(w) to 0.
The solution for w takes the form of a linear combination of the vectors φ(xn), with
coefficients an that are functions of w, of the form

w = −1

λ

N∑
n=1

{wTφ(xn)− tn}φ(xn) =
N∑

n=1

anφ(xn) = ΦTa (4)

where Φ is the design matrix, whose nth row is given by φ(xn)T and the
vector a = (a1, · · · , aN) is defined by

an = −1

λ
{wTφ(xn)− tn}. (5)

We can now reformulate the least squares algorithm in terms of the parameter vector
a, giving rise to a dual representation. We can now substitute w = ΦTa and get

E(a) =
1

2
aTΦΦTΦΦTa− aTΦΦT t +

1

2
tT t +

λ

2
aTΦΦTa

where t = (t1 · · · , tN)T . We can now define the Gram matrix K = ΦΦT , which is an
N ×N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm).

We can now see that we use the kernel (2) here. This means we are half way, where
we want to be. Using the Gram matrix in the sum-of-squares error function gives us

E(a) =
1

2
aTKKa− aTKt +

1

2
tT t +

λ

2
aTKa.

If we now set the gradient of E(a) with respect to a to zero, we get

a = (K + λIN)−1t.

Substitution back into (1) gives us the following prediction function

y(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIN)−1t

where we have defined the vector k(x) = (k1(x), · · · , kN(x)) with elements ki(x) =
k(xi,x).

To recap, we see that in the dual formulation, we determine the parameter vector
a by inverting an N × N matrix, whereas in the original parameter space we had to
invert an M ×M matrix in order to determine w.
As N is typically much larger than M the dual formulation does not seem very useful.
However in the dual representation we express the data entirely in the form of the
kernel function k(x,x′), so we can work directly with the kernels and do not have to
worry about the size of the feature space. In particular this offers the opportunity

to work with feature spaces with high or even infinite dimensionality. This is a huge
advantage in the use of kernels.

3 Constructing Kernels

In this chapter we focus on the way to construct valid kernels and first of all we will
give a formal definition for a valid kernel, which was taken from [PV, S.4].

Definition 3.1. A function k : X ×X −→ R is called a valid or positive definite kernel
iff it is symmetric, that is, k(x, x′) = k(x′, x) for all x, x′ ∈ X , and positive definite,
that is,

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0

for any n > 0, any choice of n objects x1, · · · , xn ∈ X , and any choice of real numbers
c1, · · · , cn ∈ R.

There are different methods to construct valid kernels. One way to do it is to choose
a feature space mapping φ(x) and then find the corresponding kernel

k(x, x′) = φ(x)Tφ(x′) =
M∑
i=1

φi(x)φi(x
′) (6)

where φi(x) are the basis functions.
This kernel is a valid kernel as it is obviously symmetric and we can see that for any
n > 0, x1, · · · , xn ∈ X and c1, · · · cn ∈ R

n∑
i=1

n∑
j=1

cicjk(xi, xj) =
n∑

i=1

n∑
j=1

cicjφ(xi)
Tφ(x′j) = ||

n∑
i=1

ciφ(xi)||2 ≥ 0 (7)

holds. Note that we get the valid kernel k(x,x)′ = xTx′ if we take the basis functions
φi(x) = xi for all i = 1, . . . , N .

Another method is to try to construct a kernel function directly. In this case we
have to prove, that the constructed kernel is a valid kernel. As a simple example, we
consider a kernel function given by

k(x, z) = (xTz)2. (8)

If we assume we have a two dimensional input space x = (x1, x2) we can expand the
terms to find the corresponding basis functions

k(x, z) = (xTz)2 = (x1z1 + x2z2)
2

= x21z
2
1 + 2x1z1x2z2 + x22z

2
2

= (x21,
√

2x1x2, x
2
2)(z

2
1 ,
√

2z1z2, z
2
2)

= φ(x)Tφ(z). (9)

Here we see, that we have three basis functions φ1(x) = x21, φ2(x) =
√

2x2x2 and
φ3(x) = x22.
However, in practise constructing the feature mapping with its basis functions is not
always that easy. Therefore a different, but quite powerful technique for constructing
new kernels is used.
The idea is to build them out of simpler kernels as building blocks. This can be done
using the following properties.

Lemma 3.2. Given valid kernels k1(x,x
′) and k2(x,x

′) the following kernels will also
be valid:

k(x,x′) = ck1(x,x
′) (10)

k(x,x′) = f(x)k1(x,x
′)f(x′) (11)

k(x,x′) = q(k1(x,x
′)) (12)

k(x,x′) = exp(k1(x,x
′)) (13)

k(x,x′) = k1(x,x
′) + k2(x,x

′) (14)

k(x,x′) = k1(x,x
′) · k2(x,x′) (15)

k(x,x′) = k3(φ(x), φ(x′)) (16)

k(x,x′) = xTAx′ (17)

k(x,x′) = ka(xa,x
′
a) + kb(xb,x

′
b) (18)

k(x,x′) = ka(xa,x
′
a) · kb(xb,x

′
b) (19)

where c > 0 is a constant, f(·) is any function and q(·) is a polynomial with non
negative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in RM ,
A is a symmetric positive semi definite matrix, xa an xb are variables (not necessarily
disjoint) with x = (xa,xb), and ka and kb are valid kernel functions over their respective
spaces.

Equipped with these properties, we will now construct complex kernels.

Proposition 3.3. The kernel k1(x,x
′) = (xTx′ + c)2 with c > 0, k2(x,x

′) = (xTx′)M

with M ∈ N and k3(x,x
′) = (xTx′ + c)M with c > 0 and M ∈ N are valid kernels.

Proof. As we know from above k(x,x′) = (xTx′)2 is a simple polynomial kernel. In
particular it is a valid kernel. We only showed it for a two dimensional input space,
but it is true for all. As c is positive we can define q(x) = (x + c)2 and by applying
(12) from lemma 3.2 we see that the kernel k1(x,x

′) = (xTx′ + c)2 with c > 0 is valid.
As we know k(x,x′) = xTx′ is a valid kernel, we can apply (12) M times and get a
valid kernel k2.
Analog to the first two cases we can use (12) show that k3 is a valid kernel.

Remark 3.4. Imagine x and x′ are two images. Then the kernel k2 represents a
particular weighted sum of all possible products of M pixels in the first image with M
pixels in the second image. This can be generalised to include all terms up to degree
M by using kernel k3.

Proposition 3.5. The ’Gaussian’ kernel

k(x,x′) = exp(−||x− x′||2

2σ2
) (20)

is valid.

Proof. We can see that this kernel is valid by first expanding the squares

||x− x′||2 = xTx + x′
T
x′ − 2xTx′ (21)

to get

k(x,x′) = exp(−xTx

2σ2
)exp(−(x′)Tx′

2σ2
)exp(

xTx′

σ2
). (22)

Now we can use (11) and (13) together with the validity of the linear kernel k(x,x′) =
xTx′.

Remark 3.6. The Gaussian kernel is not restricted to the use of the Euclidean
distance. We can for instance use a kernel substitution in (21) to replace xTx with a
non linear kernel κ(x,x′)

k(x,x′) = exp(−(κ(x,x) + κ(x′,x′)− 2κ(x,x′))/2σ2). (23)

4 Examples

4.1 Radial Basis Function Networks: The Nadaraya-Watson Model

In the talk about linear regression models by Nadia Vohwinkel we encountered basis
functions, but did not specify their form. One choice is as radial basis functions, which
have the property that each basis function depends only on the radial distance from a
center µj, so that for M ∈ N we have φj(x) = h(||x− µj||) for all j = 1, . . . ,M .
Originally radial basis functions were used for exact function interpolation. So given
input vectors x1, · · · ,xN and their target values t1, · · · , tN the aim was to find a
function f such that f(xi) = ti for all i = 1 · · · , N . This can be archived by a
linear combination of radial basis functions

f(x) =
N∑
i=1

wih(||x− xi||)

where the values of the coefficients wi are found by least squares.
As we have the same amount of coefficients as constraints, the resulting function fits
every target value exactly. But as we discussed in previous talks before this is not
ideal in machine learning. As the training data, consisting of the input values and the
target values, normally has some sort of noise, this technique can easily result in an
over-fitted solution, which is not desirable.
We may assume now that the input variables are noisy. Furthermore, the noise can
be described by a variable ξ with the distribution ν(ξ). This way we get the following
sum-of-squares error function

E =
1

2

N∑
i=1

∫
(y(xi + ξ)− ti)2ν(ξ)dξ. (24)

We can now optimize with respect to the function f(x) and get

y(x) =
N∑
i=1

tih(x− xi) (25)

where the basis functions are given by

φi(x) = h(x− xi) =
ν(x− xi)

N∑
n=1

ν(x− xn)

. (26)

Each basis function is centered on one data point. This is known as the Nadaraya-
Watson model. If the noise distribution ν(ξ) is a function only of ||ξ||, then the basis
functions will be radial, so that

φi(x) = h(||x− xi||) =
ν(||x− xi||)

N∑
n=1

ν(||x− xn||)
. (27)

We should note here that the basis functions are normalised, so that
∑

i h(x− xi) = 1
for any value of x. This normalisation ensures that one avoids having regions in the
input space where all of the basis functions have a small value.

We will now have a look at the following: Suppose we have a training data set
x1, · · · ,xN with corresponding target values t1, · · · , tN and we model the joint distribution
p(x, t) so that

p(x, t) =
1

N

N∑
i=1

f(x− xi, t− ti), (28)

where f(x, t) is the component density function. We can now express the prediction
function y(x) the following way

y(x) = E[t|x] =

∫ ∞
−∞

tp(t|x)dt

=

∫
tp(t|x)dt∫
p(t|x)dt

=

∑
i

∫
tf(x− xi, t− ti)dt∑

n

∫
f(x− xn, t− tn)dt

.

We assume for simplicity that the integral over f(x, t)t is zero for all values of x and
using a change of variables namely g(x) :=

∫
f(x, t)dt, we get

y(x) =

∑
i g(x− xi, t)ti∑
n g(x− xn, t)

=
∑
i

k(x, xi)ti (29)

where i, n = 1, . . . , N and the kernel function is given by

k(x,xi) =

∑
i g(x− xi, t)∑
n g(x− xn, t)

. (30)

An example for a Nadaraya Watson kernel regression model with isotropic Gaussian
kernels is given in Figure 0.

Figure 0

4.2 Polynomial Kernels in Classification

One very common use for polynomial kernels is in classification. Let us look at the
following example:
Assume we have a set of data points, labeled red or blue and want to separate them
as we can see in the figure 1.1 below.

Figure 1.1

It is easy to see that we can not separate them with a linear function, but for instance
with a circle.
To get a linear separator we need to go to a higher dimension, in this case dimension
3, where we can choose z = x2 + y2. The blue cone we see in figure 1.2 consists of all
points that satisfy the equation z = x2 +y2, in short every data point from our original
two dimensional space will be projected on this cone.
We can see in figure 1.3 that we can separate the two sets of data points by the linear
separator z = 10 in this dimension. When we look a the intersection of this separator
and the cone we get the same circle we drew in our original data space.
This polynomial transformation into a higher dimension and back always corresponds
to a polynomial kernel and vice versa. In this instance we have the feature mapping
φ((x, y)) = (x, y, x2 + y2) and the corresponding polynomial kernel k((x, y), (x′, y′)) =
Φ((x, y))TΦ((x, y)) = xx′ + yy′ + x2x′2 + y2y′2 + x2y′2 + y2x′2.

Obviously this is quite an easy example, where it is easy to compute the feature
map. This is not always the case and can be computationally costly. But when we
use kernels we do not have to compute this feature map explicitly, we just have to use
the corresponding kernel in the Gram-Matrix, as we have seen in chapter 2 about dual
representation. So if we have data points that are not linearly separable in the original
data set, but we find a polynomial function like the circle to separate them, we know
now it corresponds to a linear separator in a higher dimension and this is enough to
compute the kernel, which is all that is needed.
In short the main advantage here is when we use algorithms that only depend on the
Gram-matrix (denoted by G, which is defined by Kernel function), then we never have
to know or even compute the actual feature map. For most of the cases, efficient
algorithms exist since we know the kernel function.

Figure 1.2

Figure 1.3

4.3 Graph kernels

As we stated in chapter 3, with kernel functions it is possible not just to have numerical
inputs. Here we now have an example for such an event. For further detail on this
example see [SNVB10].
Assume one wants to evaluate a protein. Proteins can be represented by certain forms
of different graphs as seen in Figure 1.

We first have to define an inner product for graphs, and we can do this by using the
Kronecker product. An example for this can be seen in Figure 2.

Now We can define a kernel k(G,G′) for the graphsG andG′ by using the corresponding
weight function Wx for the new graph Gx = G ⊗ G′. We use the weight function to
compute qTxW

k
x px, which is the expected similarity between random walks of same

length k on G and G′. The initial and stopping probability distributions are given by
px and qx. We can now define the kernel by summing up the similarities of walks of
all lengths. To make sure the sum converges we can add an appropriate non-negative
coefficient µ(k) and therefore the kernel between G and G′ can be defined as

k(G,G′) :=
∞∑
k=0

µ(k)qTxW
k
x px. (31)

References

[AIQ19] AIQCAR: 12 Support Vector Machine(SVM) Polynomial Kernel Detail
Explanation. 2019 https://www.youtube.com/watch?v=Xoz3LeOWOGU

[Bis06] Bishop, Christopher M.: Pattern recognition and machine learning. New
York : Springer Science and Business Media,LLC, 2006. – 291–303 S.

[PV] Philippe Vert, Bernhard S. Koji Tsuda T. Koji Tsuda: A primer on
kernel methods

[SNVB10] S.V. N. Vishwanathan, Risi K. Nicol N. Schraudolph S. Nicol
N. Schraudolph ; Borgwardt, Karsten M.: Graph Kernels. Journal
of Machine Learning Research 11 (2010), 2010 https://jmlr.csail.mit.

edu/papers/volume11/vishwanathan10a/vishwanathan10a.pdf

https://www.youtube.com/watch?v=Xoz3LeOWOGU
https://jmlr.csail.mit.edu/papers/volume11/vishwanathan10a/vishwanathan10a.pdf
https://jmlr.csail.mit.edu/papers/volume11/vishwanathan10a/vishwanathan10a.pdf

	Introduction
	The Kernel Trick: Dual Representations
	Constructing Kernels
	Examples
	Radial Basis Function Networks: The Nadaraya-Watson Model
	Polynomial Kernels in Classification
	Graph kernels

