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Chapter II.
Basic eigenvalue optimization problems

chap:proto
We describe an algorithmic approach to a class of eigenvalue optimization problems that
uses constrained gradient flows and the remarkable low-rank structure of the optimizers.
This chapter is basic in the sense that we illustrate essential ideas and techniques on a
particular problem class that will be vastly extended later in this book. The eigenvalue
optimization problems considered in this chapter arise in computing complex, real or
structured pseudoscectra or their extremal points such as those giving the pseudospectral
abscissa and radius. These problems (and extensions thereof) will reappear as the princi-
pal building block in the two-level approach to various matrix nearness problems to be
discussed in later chapters. The problems come in three variants: optimizing eigenval-
ues over unstructured complex perturbations of a given matrix, over real perturbations,
or over structured perturbations, which are restricted to a given complex- or real-linear
subspace of matrices, for example matrices with a given sparsity pattern or matrices with
given range and co-range or Hamiltonian matrices. In all these cases there is a common
underlying rank-1 property of optimizers that will be used to advantage in algorithms.

II.1 Unstructured complex case
sec:proto-complex

II.1.1 Problem description

Let A ∈ Cn,n be a given matrix and let λ(A) ∈ C be a target eigenvalue of A, for
example:

• the eigenvalue of minimal or maximal real part;
• the eigenvalue of minimal or maximal modulus;
• the closest eigenvalue to a given set in the complex plane.

Here the target eigenvalue need not depend continuously on the matrix A when several
eigenvalues are simultaneously extremal, but it depends continuously on A when the ex-
tremal eigenvalue is unique.

The objective is to minimize a given function f of the target eigenvalue λ(A+∆) over
perturbation matrices ∆ of a prescribed norm ε. We consider the following eigenvalue
optimization problem: For a given ε > 0, find
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arg min
∆∈Cn,n, ∥∆∥F=ε

f
(
λ (A+∆) , λ (A+∆)

)
, (1.1) eq:optimiz0

where ∥∆∥F is the Frobenius norm of the matrix ∆, i.e. the Euclidean norm of the vector
of matrix entries; where λ(A + ∆) is the considered target eigenvalue of the perturbed
matrix A+∆, and where

f : C2 → C with f
(
λ, λ

)
= f

(
λ, λ

)
∈ R for all λ ∈ C (1.2) ass:f

is a given smooth function. While our theory applies to general functions f with (1.2), in
our examples we often consider specific cases where f or −f evaluated at

(
λ, λ

)
equals

Reλ =
λ+ λ

2
or |λ|2 = λλ.

We note that Imλ = 1
2i (λ− λ) does not satisfy (1.2), but this case can be included in the

present setting by first rotating A to −iA and then considering the real part. The argmax
case is treated in the same way, replacing f by −f .

For example, as will be dicussed in detail in Chapter IV, the real part function is used
in studying the distance to instability (or stability radius) of a matrix with all eigenvalues
in the left complex half-plane. The interest is in computing the nearest matrix A +∆ to
A for which the rightmost eigenvalue is on the imaginary axis. Here, “nearest” will refer
to the Frobenius norm ∥∆∥F . Similarly, the squared modulus function is used when A is
a matrix with all eigenvalues in the unit disk, to compute the nearest matrix A +∆ to A
for which the eigenvalue of largest modulus is on the unit circle.

It is convenient to write

∆ = εE with ∥E∥F = 1

and
Fε(E) = f

(
λ (A+ εE) , λ (A+ εE)

)
(1.3) Feps

so that Problem (1.1) is equivalent to finding

arg min
E∈Cn,n, ∥E∥F=1

Fε(E). (1.4) eq:optimiz

Problem (1.1) or (1.4) is a nonconvex, nonsmooth optimization problem.
In a variant to the above problem, the inequality constraints ∥∆∥F ≤ ε and ∥E∥F ≤ 1

will also be considered in (1.1) and (1.4), respectively.
There are obvious generalizations to the above problem, which we will actually en-

counter in applications in later chapters:

– The objective function f might depend on several or all eigenvalues of A +∆ instead
of only a single target eigenvalue.

– The objective function might depend also on eigenvectors of A+∆.

However, in this chapter we shall only consider the function f as in (1.1)–(1.2).
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II.1.2 Free gradient

Let us begin with some notations and normalizations. Let x and y be left and right eigen-
vectors, respectively, associated with a simple eigenvalue λ of a matrix M : x, y ∈
Cn \ {0} with x∗M = λx∗ and My = λy, where x∗ = x⊤. Unless specified differ-
ently, we assume that the eigenvectors are normalized such that

∥x∥ = ∥y∥ = 1 and x∗y is real and positive. (1.5) eq:scaling

The norm ∥ · ∥ is chosen as the Euclidean norm. Any pair of left and right eigenvectors x
and y can be scaled in this way.

We denote by
⟨X,Y ⟩ =

∑
i,j

xijyij = tr(X∗Y )

the inner product in Cn,n that induces the Frobenius norm ∥X∥F = ⟨X,X⟩1/2.
The following lemma will allow us to compute the steepest descent direction of the

functional Fε.

Lemma 1.1 (Free gradient). Let E(t) ∈ Cn,n, for real t near t0, be a continuouslylem:gradient
differentiable path of matrices, with the derivative denoted by Ė(t). Assume that λ(t) is
a simple eigenvalue of A + εE(t) depending continuously on t, with associated left and
right eigenvectors x(t) and y(t) satisfying (1.5), and let the eigenvalue condition number
be

κ(t) =
1

x(t)∗y(t)
> 0.

Then, Fε(E(t)) = f
(
λ(t), λ(t)

)
is continuously differentiable w.r.t. t and we have

1

εκ(t)

d

dt
Fε(E(t)) = Re

〈
Gε(E(t)), Ė(t)

〉
, (1.6) eq:deriv

where the (rescaled) gradient of Fε is the rank-1 matrix

Gε(E) = 2fλ xy
∗ ∈ Cn,n (1.7) eq:freegrad

with fλ =
∂f

∂λ
(λ, λ) for the eigenvalue λ = λ(A + εE) and the corresponding left and

right eigenvectors x and y normalized by (1.5).

Proof. We first observe that (1.2) implies fλ = fλ =
∂f

∂λ
(λ, λ). Using Theorem VIII.1.1,

we obtain that Fε(E(t)) is differentiable with

d

dt
Fε (E(t)) = fλ λ̇+ fλ λ̇

=
ε

x∗y

(
fλ x

∗Ėy + fλ x
∗Ėy

)
=

ε

x∗y
2Re

(
fλ x

∗Ėy
)
, (1.8)
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where we omit the omnipresent dependence on t on the right-hand side. Noting that

Re
(
fλ x

∗Ėy
)
= Re

〈
fλ xy

∗, Ė
〉
,

we obtain (3.14)–(3.15). ⊓⊔

ex:G Example 1.2. For f(λ, λ) = − 1
2 (λ + λ) = −Reλ we have 2fλ = −1 and hence

Gε(E) = −xy∗, which is nonzero for all λ. For f(λ, λ) = − 1
2 |λ|

2 = − 1
2λλ we have

2fλ = −λ. In this case we obtain Gε(E) = −λxy∗, which is nonzero whenever λ ̸= 0.

II.1.3 Projected gradient

To comply with the constraint ∥E(t)∥2F = 1, we must have

0 =
1

2

d

dt
∥E(t)∥2F = Re ⟨E(t), Ė(t)⟩. (1.9) eq:normconstr

In view of Lemma 1.1 we are thus led to the following constrained optimization problem
for the admissible direction of steepest descent.

Lemma 1.3 (Direction of steepest admissible descent). LetE,G ∈ Cn,n with ∥E∥F = 1.lem:opt
A solution of the optimization problem

Z⋆ = arg min
∥Z∥F=1, Re ⟨E,Z⟩=0

Re ⟨G,Z⟩, (1.10)

is given by

µZ⋆ = −G+ Re⟨G,E⟩E, (1.11) eq:Eopt

where µ is the Frobenius norm of the matrix on the right-hand side. The solution is unique
if G is not a multiple of E.

Proof. The result follows on noting that the real part of the complex inner product on
Cn,n is a real inner product on R2n,2n, and the real inner product with a given vector
(which here is a matrix) is maximized over a subspace by orthogonally projecting the
vector onto that subspace. The expression in (1.11) is the orthogonal projection of −G
onto the orthogonal complement of the span of E, which is the tangent space at E of the
manifold of matrices of unit Frobenius norm. ⊓⊔

II.1.4 Norm-constrained gradient flow

Lemmas 1.1 and 1.3 show that the admissible direction of steepest descent of the func-
tional Fε at a matrix E of unit Frobenius norm is given by the positive multiples of the
matrix −Gε(E)+Re ⟨Gε(E), E⟩E. This leads us to consider the (rescaled) gradient flow
on the manifold of n× n complex matrices of unit Frobenius norm:
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Ė = −Gε(E) + Re ⟨Gε(E), E⟩E, (1.12) ode-E

where we omitted the ubiquitous argument t.
By construction of this ordinary differential equation, we have Re⟨E, Ė⟩ = 0 along

its solutions, and so the Frobenius norm 1 is conserved. Since we follow the admissible
direction of steepest descent of the functional Fε along solutions E(t) of this differential
equation, we obtain the following monotonicity property.

Theorem 1.4 (Monotonicity). Assume that λ(t) is a simple eigenvalue of A+ εE(t) de-thm:monotone
pending continuously on t. Let E(t) of unit Frobenius norm satisfy the differential equa-
tion (4.13). Then,

d

dt
Fε(E(t)) ≤ 0. (1.13) eq:pos

Proof. Although the result follows directly from Lemmas 1.1 and 1.3, we compute the
derivative explicitly. We write G = Gε(E) for short and take the inner product of (4.13)
with Ė. Using that Re⟨E, Ė⟩ = 0, we find

∥Ė∥2F = −Re⟨G− Re⟨G,E⟩E, Ė⟩ = −Re⟨G, Ė⟩

and hence (4.13) and Lemma 1.1 yield

1

εκ

d

dt
Fε(E(t)) = −∥G− Re ⟨G,E⟩E∥2F ≤ 0, (1.14) c-s

which gives the precise rate of decay of Fε along a trajectory E(t) of (4.13). ⊓⊔

The stationary points of the differential equation (4.13) are characterized as follows.

Theorem 1.5 (Stationary points). Let E⋆ ∈ Cn,n with ∥E⋆∥F = 1 be such thatthm:stat

(i) The target eigenvalue λ(A + εE) is simple at E = E⋆ and depends continuously on
E in a neighborhood of E⋆.

(ii) The gradient Gε(E⋆) is nonzero.

Let E(t) ∈ Cn,n be the solution of (4.13) passing through E⋆. Then the following are
equivalent:

1.
d

dt
Fε (E(t)) = 0.

2. Ė = 0.

3. E⋆ is a real multiple of Gε(E⋆).

Proof. Clearly, 3. implies 2., which implies 1. Finally, (1.14) shows that 1. implies 3. ⊓⊔

Remark 1.6 (Degeneracies). In degenerate situations where Gε(E⋆) = 0, we cannot
conclude from 2. to 3., i.e., that the stationary point is a multiple of Gε(E⋆). For the case
f(λ, λ) = −Reλ we have seen in Example 1.2 that Gε(E) = −xy∗ ̸= 0, where x, y
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are normalized eigenvectors to the target eigenvalue λ(A + εE). For f(λ, λ) = − 1
2 |λ|

2

we have Gε(E) = −λxy∗ ̸= 0 for λ ̸= 0. For other functions f we might encounter
Gε(E⋆) = 0, but such a degeneracy can be regarded as an exceptional situation, which
will not be considered further.

Remark 1.7 (Stationary points and optimizers). Every global minimum is a local min-rem:stat-min
imum, and every local minimum is a stationary point. The converse is clearly not true.
Stationary points of the gradient system that are not a local minimum, are unstable. It
can thus be expected that generically a trajectory will end up in a local minimum. Run-
ning several different trajectories can reduce the risk of being caught in a local minimum
instead of a global minimum.

Remark 1.8 (Inequality constraints). When we have the inequality constraint ∥∆∥F ≤rem:ineq
ε in (1.1) or equivalently ∥E∥F ≤ 1 in (1.4), the situation changes only slightly. If
∥E∥F < 1, every direction is admissible, and the direction of steepest descent is given by
the negative gradient −Gε(E). So we choose the free gradient flow

Ė = −Gε(E) as long as ∥E(t)∥F < 1. (1.15) ode-E-free

When ∥E(t)∥F = 1, then there are two possible cases. If Re ⟨Gε(E), E⟩ ≥ 0, then the
solution of (1.15) has (omitting the argument t)

d

dt
∥E(t)∥2F = 2Re ⟨Ė, E⟩ = −2Re ⟨Gε(E), E⟩ ≤ 0,

and hence the solution of (1.15) remains of Frobenius norm at most 1.
Else, if Re ⟨Gε(E), E⟩ < 0, the admissible direction of steepest descent is given

by the right-hand side of (4.13), i.e. −Gε(E) + Re ⟨Gε(E), E⟩E, and so we choose
that differential equation to evolve E. The situation can be summarized as taking, if
∥E(t)∥F = 1,

Ė = −Gε(E) + µE with µ = min
(
0,Re ⟨Gε(E), E⟩)

)
. (1.16) ode-E-mu

Along solutions of (1.16), the functional Fε decays monotonically, and stationary points
of (1.16) with Gε(E) ̸= 0 are characterized, by the same argument as in Theorem 1.5, as

E is a negative real multiple of Gε(E). (1.17) stat-neg

If it can be excluded that the gradient Gε vanishes at an optimizer (as in Example 1.2), it
can thus be concluded that the optimizer of the problem with inequality constraints is a
stationary point of the gradient flow (4.13) for the problem with equality constraints.

Remark 1.9 (Multiple and discontinuous eigenvalues). We mention some situationsrem:mult-eig
where the assumption of a smoothly evolving simple eigenvalue is violated. As such sit-
uations are either non-generic or can happen generically only at isolated times t, they do
not affect the computation after discretization of the differential equation.
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— Along a trajectory E(t), the target eigenvalue λ(t) = λ(A + εE(t)) may become
discontinuous. For example, in the case of the eigenvalue of largest real part, a different
branch of eigenvalues may get to have the largest real part. In such a case of discontinuity,
the differential equation is further solved, with descent of the largest real part until finally
a stationary point is approximately reached.

— A multiple eigenvalue λ(t) may occur at some finite t because of a coalescence
of eigenvalues. Even if some continuous trajectory runs into a coalescence, this is non-
generic to happen after discretization of the differential equation, and so the computation
will not be affected.

— A multiple eigenvalue may appear in a stationary point, in the limit t → ∞. The
computation will stop before, and items 1.-3. in Theorem 1.5 will then be satisfied ap-
proximately, in view of (1.14).

Although the situations above do not affect the time-stepping of the gradient system,
close-to-multiple eigenvalues do impair the accuracy of the computed left and right eigen-
vectors that appear in the gradient.

II.1.5 Rank-1 property of optimizers

We call an optimizer E⋆ of (1.4) non-degenerate if conditions (i) and (ii) of Theorem 1.5
are satisfied. Since optimizers are necessarily stationary points of the norm-constrained
gradient flow (3.6), Theorem 1.5 and Lemma 1.1 immediately imply the following re-
markable property.

Corollary 1.10 (Rank of optimizers). If E⋆ is a non-degenerate optimizer of problemcor:rank-1
(1.4), then E⋆ is of rank 1.

Let us summarize how this rank-1 property came about: An optimizer is a stationary
point of the norm-constrained gradient flow (4.13). This implies that the optimizer E is
a real multiple of the free gradient Gε(E), which is of rank 1 as a consequence of the
derivative formula for simple eigenvalues.

This corollary motivates us to search for a differential equation on the manifold of
rank-1 matrices of norm 1 with the property that the functional Fε decreases along its
solutions and has the same stationary points as the differential equation (4.13). Working
with rank-1 matricesE = uv∗ given by two vectors u, v ∈ Cn instead of general complex
n × n matrices is computationally favourable, especially for high dimensions n, for two
independent reasons:

(i) Storage and computations are substantially reduced when the two n-vectors u, v are
used instead of the full n× n matrix E.

(ii) The computation of the target eigenvalue λ(t) of A + εE(t) using inverse iteration
is largely simplified thanks to the Sherman-Morrison formula

(A+ εuv∗ − µI)−1 = (A− µI)−1 − (A− µI)−1εuv∗(A− µI)−1

1 + v∗(A− µI)−1εu
.
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Moreover, after transforming the given matrix A ∈ Cn,n to Hessenberg form by a unitary
similarity transformation, linear systems with the shifted matrix A−µI for varying shifts
µ can be solved with O(n2) operations each.

For sparse matricesA, Krylov subspace methods for the perturbed matrixA+εE take
advantage when E is of rank 1, since matrix-vector products with E = uv∗ just require
computing an inner product with v.

II.1.6 Rank-1 matrices and their tangent matrices
subsec:rank-1

We denote by R1 = R1(Cn,n) the manifold of complex rank-1 matrices of dimension
n× n and write E ∈ R1 in a non-unique way as

E = σuv∗,

where σ ∈ C \ {0} and u, v ∈ Cn have unit norm. The tangent space TER1 at E ∈ R1

consists of the derivatives of paths in R1 passing throughE. Tangent matrices Ė ∈ TER1

are then of the form
Ė = σ̇uv∗ + σu̇v∗ + σuv̇∗, (1.18) E-dot-1

where σ̇ ∈ C is arbitrary and u̇, v̇ ∈ Cn are such that Re(u∗u̇) = 0 and Re(v∗v̇) = 0
(because of the norm constraint on u and v). They are uniquely determined by Ė and
σ, u, v if we impose the orthogonality conditions u∗u̇ = 0, v∗v̇ = 0. Multiplying Ė with
u∗ from the left and with v from the right, we then obtain

σ̇ = u∗Ėv, σu̇ = Ėv − σ̇u, σv̇∗ = u∗Ė − σ̇v∗. (1.19) sigma-u-v-Edot

Extending this construction, we arrive at a useful explicit formula for the projection onto
the tangent space that is orthogonal with respect to the Frobenius inner product ⟨·, ·⟩.

Lemma 1.11 (Rank-1 tangent space projection). The orthogonal projection from Cn,n
lem:P-formula-1

onto the tangent space TER1 at E = σuv∗ ∈ R1 is given by

PE(Z) = Z − (I − uu∗)Z(I − vv∗) for Z ∈ Cn,n. (1.20) P-formula-1

Proof. Let PE(Z) be defined by (1.20). To prove that PE(Z) ∈ TER1, we show that
PE(Z) can be written in the form (1.18). Let σ̇, u̇, v̇ be defined like in (1.19), but now
with Ė ∈ TER1 replaced by arbitrary Z ∈ Cn,n, i.e.,

σ̇ = u∗Zv, σu̇ = Zv − σ̇u, σv̇∗ = u∗Z − σ̇v∗. (1.21) sigma-u-v-Z

We obtain the corresponding matrix in the tangent space TER1, see (1.18), as

σ̇uv∗ + σu̇v∗ + σuv̇∗

= σ̇uv∗ + (Zv − σ̇u)v∗ + u(u∗Z − σ̇v∗)

= Zvv∗ − uu∗Zvv∗ + uu∗Z = PE(Z).
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This shows that
PE(Z) = σ̇uv∗ + σu̇v∗ + σuv̇∗ ∈ TER1. (1.22) P-formula-dots

Furthermore,
⟨PE(Z), Ė⟩ = ⟨Z, Ė⟩ for all Ė ∈ TER1,

because ⟨(I − uu∗)Z(I − vv∗), Ė⟩ = ⟨Z, (I − uu∗)Ė(I − vv∗)⟩ = 0 by (1.18). Hence,
PE(Z) is indeed the orthogonal projection of Z onto TER1. ⊓⊔

We note that PE(E) = E for E ∈ R1, or equivalently, E ∈ TER1, which will be an
often used property.

II.1.7 Rank-1 constrained gradient flow
subsec:rank1-gradient-flow

In the differential equation (4.13) we project the right-hand side to the tangent space
TER1:

Ė = −PE

(
Gε(E)− Re⟨Gε(E), E⟩E

)
. (1.23) ode-E-1

This yields a differential equation on the rank-1 manifold R1. In view of Lemma 1.1, it is
the (rescaled) gradient flow of the functional Fε constrained to the manifold R1.

Assume now that for some t, the Frobenius norm of E = E(t) is 1. Since PE(E) =
E, we have with Z = −Gε(E) + Re⟨Gε(E), E⟩E that

Re ⟨E, Ė⟩ = Re ⟨E,PE(Z)⟩ = Re ⟨PE(E), Z⟩ = Re ⟨E,Z⟩ = 0.

Hence, solutions E(t) of (1.23) stay of Frobenius norm 1 for all t.
The proof of Lemma 1.11 also provides the following differential equations for the

factors of E(t) = σ(t)u(t)v(t)∗, which can be discretized by standard numerical integra-
tors.

Lemma 1.12 (Differential equations for the three factors). For E = σuv∗ ∈ R1 withlem:suv-1
nonzero σ ∈ C and with u ∈ Cn and v ∈ Cn of unit norm, the equation Ė = PE(Z) is
equivalent to Ė = σ̇uv∗ + σu̇v∗ + σuv̇∗, where

σ̇ = u∗Zv

u̇ = (I − uu∗)Zvσ−1 (1.24)
v̇ = (I − vv∗)Z∗uσ−1.

Proof. The result follows immediately from (1.21) and (1.22). ⊓⊔

Since we are only interested in solutions of Frobenius norm 1 of (1.23), we can sim-
plify the representation of E to E = uv∗ with u and v of unit norm (without the extra
factor σ of unit modulus).
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Lemma 1.13 (Differential equations for the two vectors). For an initial value E(0) =lem:uv-1
u(0)v(0)∗ with u(0) and v(0) of unit norm, the solution of (1.23) is given as E(t) =
u(t)v(t)∗, where u and v solve the system of differential equations (for G = Gε(E))

u̇ = − i
2 Im(u∗Gv)u− (I − uu∗)Gv

v̇ = − i
2 Im(v∗G∗u)v − (I − vv∗)G∗u,

(1.25) ode-uv

which preserves ∥u(t)∥ = ∥v(t)∥ = 1 for all t.

We note that forG = Gε(E) = 2fλ xy
∗ (see Lemma 1.1) and with α = u∗x, β = v∗y

and γ = 2fλ we obtain the differential equations

u̇ = − i
2 Im(αβγ)u+ αβγ u− βγ x

v̇ = − i
2 Im(αβγ)v + αβγ v − αγ y.

(1.26) ode-uv-short

Proof. We introduce the projection P̃E onto the tangent space atE = uv∗ of the subman-
ifold of rank-1 matrices of unit Frobenius norm,

P̃E(G) = PE(G− Re⟨G,E⟩E) = PE(G)− Re⟨G,E⟩E.

We find

P̃E(G) = Gvv∗ − uu∗Gvv∗ + uu∗G− Re⟨G, uv∗⟩uv∗

= (I − uu∗)Gvv∗ + uu∗G(I − vv∗) + uu∗Gvv∗ − Re(u∗Gv)uv∗

= (I − uu∗)Gvv∗ + uu∗G(I − vv∗) + i Im(u∗Gv)uv∗

=
(

i
2 Im(u∗Gv)u+ (I − uu∗)Gv

)
v∗ + u

(
i
2 Im(u∗Gv)v∗ + u∗G(I − vv∗)

)
.

For Ė = u̇v∗ + uv̇∗ we thus have Ė = −P̃E(G) if u and v satisfy (1.25). Since then
Re(u∗u̇) = 0 and Re(v∗v̇) = 0, the unit norm of u and v is preserved. ⊓⊔

The projected differential equation (1.23) has the same monotonicity property as the
differential equation (4.13).

Theorem 1.14 (Monotonicity). Let E(t) ∈ R1 of unit Frobenius norm be a solution tothm:monotone-C-1
the differential equation (1.23). If λ(t) is a simple eigenvalue of A+ εE(t), then

d

dt
Fε

(
E(t)

)
≤ 0. (1.27) eq:pos-C-1

Proof. As in the proof of Theorem 1.4, we abbreviateG = Gε(E) and obtain from (1.23)
and Ė ∈ TER1 and Re⟨E, Ė⟩ = 0 that

∥Ė∥2F = −Re
〈
PE

(
G− Re⟨G,E⟩E

)
, Ė
〉
= −Re

〈
G− Re⟨G,E⟩E, Ė

〉
= −⟨G, Ė⟩

and hence Lemma 1.1 and (1.23) yield

1

εκ

d

dt
Fε(E(t)) = −

∥∥PE

(
G− Re⟨G,E⟩E

)∥∥2
F
, (1.28) c-s-1

which yields the monotone decay. ⊓⊔
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Comparing the differential equations (4.13) and (1.23) immediately shows that every
stationary point of (4.13) is also a stationary point of the projected differential equation
(1.23). Remarkably, the converse is also true for the stationary points E of unit Frobenius
norm with PE(Gε(E)) ̸= 0. Violation of this non-degeneracy condition is very excep-
tional, as we will explain below.

Theorem 1.15 (Stationary points). Let the rank-1 matrix E ∈ R1 be of unit Frobeniusthm:stat-1
norm and assume that PE(Gε(E)) ̸= 0. If E is a stationary point of the rank-1 pro-
jected differential equation (1.23), then E is already a stationary point of the differential
equation (4.13).

Proof. We show that E is a nonzero real multiple of Gε(E). By Theorem 1.5, E is then
a stationary point of the differential equation (4.13).

For a stationary point E of (1.23), we must have equality in (1.28), which shows that
PE(G) (again with G = Gε(E)) is a nonzero real multiple of E. Hence, in view of
PE(E) = E, we can write G as

G = µE +W, where µ ̸= 0 is real and PE(W ) = 0.

Since E is of rank 1 and of unit Frobenius norm, E can be written as E = uv∗ with
∥u∥ = ∥v∥ = 1. We then have

W =W − PE(W ) = (I − uu∗)W (I − vv∗).

On the other hand, G = 2fλxy
∗ is also of rank 1. So we have

2fλxy
∗ = µuv∗ + (I − uu∗)W (I − vv∗).

Multiplying from the right with v yields that x is a complex multiple of u, and multiplying
from the left with u∗ yields that y is a complex multiple of v. Hence, G is a complex
multiple of E. Since we already know that PE(G) is a nonzero real multiple of PE(E) =
E, it follows that G is the same real multiple of E. By Theorem 1.5, E is therefore a
stationary point of the differential equation (4.13). ⊓⊔

Remark 1.16 (Non-degeneracy condition). Let us discuss the condition PE(Gε(E)) ̸=rem:exceptional
0. We recall that G = Gε(E) is a multiple of xy∗, where x and y are left and right
eigenvectors, respectively, to the eigenvalue λ of A+ εE. In which situation can we have
PE(G) = 0 whereas G ̸= 0 ?

For E = uv∗, PE(G) = 0 implies G = (I − uu∗)G(I − vv∗), which yields Gv = 0
and u∗G = 0 and therefore y∗v = 0 and u∗x = 0. So we have Ey = 0 and x∗E = 0.
This implies that λ is already an eigenvalue of A with the same left and right eigenvectors
x, y as for A+ εE, which is a very exceptional situation.

II.1.8 Numerical integration by a splitting method
subsec:proto-numer

We need to integrate numerically the differential equations (1.26), viz.
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u̇ = − i
2 Im(αβγ)u+ αβγ u− βγ x

v̇ = − i
2 Im(αβγ)v + αβγ v − αγ y,

where α = u∗x ∈ C, β = v∗y ∈ C and γ = 2fλ ∈ C.
The objective here is not to follow a particular trajectory accurately, but to arrive

quickly at a stationary point. The simplest method is the normalized Euler method, where
the result after an Euler step (i.e., a steepest descent step) is normalized to unit norm
for both the u- and v-component. This can be combined with an Armijo-type line-search
strategy to determine the step size adaptively.

We found, however, that a more efficient method is obtained with a splitting method
instead of the Euler method. The splitting method consists of a first step applied to the
differential equations

u̇ = αβγ u− βγ x

v̇ = αβγ v − αγ y
(1.29) ode-uv-horiz

followed by a step for the differential equations

u̇ = − i
2 Im(αβγ)u

v̇ = − i
2 Im(αβγ)v.

(1.30) ode-uv-rot

As the next lemma shows, the first differential equation moves λ in the direction of −γ =
−2fλ. In particular, the motion is horizontal if fλ is always real. The second differential
equation is a mere rotation of u and v.

Lemma 1.17 (Eigenvalue motion in the direction of −fλ ). Along a path of simplelem:gamma-motion
eigenvalues λ(t) of A+ εu(t)v(t)∗, where u, v of unit norm solve (1.29), we have that

λ̇(t) is a nonnegative real multiple of −∂f
∂λ

(λ(t), λ(t)).

Proof. The standard perturbation theory of eigenvalues shows that

λ̇ =
1

x∗y

(
x∗

d

dt
(A+ εuv∗) y

)
= ε

x∗ (u̇v∗ + uv̇∗) y

x∗y
.

With α = u∗x and β = v∗y and with x, y normalized by (1.5), we obtain from (1.29)

λ̇

γ
= − ε

x∗y

(
|α|2 ·

(
1− |β|2

)
+ |β|2 ·

(
1− |α|2

))
∈ R, ≤ 0,

which proves the statement, since γ = 2fλ. ⊓⊔
In general, splitting methods do not preserve stationary points. Here, it does.

Lemma 1.18 (Stationary points). If (u, v) is a stationary point of the differential equa-lem:stat-split
tions (1.26), then it is also a stationary point of the differential equations (1.29) and
(1.30).

Proof. If (u, v) is a stationary point of (1.26), then u is proportional to x and v is propor-
tional to y. Hence, x = αu and y = βv. This implies that (u, v) is a stationary point of
(1.29), and hence also of (1.30). ⊓⊔
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Fully discrete splitting algorithm. Starting from initial values uk, vk, we denote by xk
and yk the left and right eigenvectors to the target eigenvalue λk of A+ εukv

∗
k, and set

αk = u∗kxk, βk = v∗kyk, γk = 2fλk
. (1.31) alpha-beta-gamma-n

We apply the Euler method with step size h to (1.29) to obtain

û(h) = uk + h
(
αkβkγk uk − βkγk xk

)
v̂(h) = vk + h (αkβkγk vk − αkγk yk) ,

(1.32) eul-horiz

followed by a normalization to unit norm

ũ(h) =
û(h)

∥û(h)∥
, ṽ(h) =

v̂(h)

∥v̂(h)∥
. (1.33) eq:normal

Then, as a second step, we integrate the rotating differential equations (1.30) by set-
ting, with ϑ = − 1

2 Im
(
αkβkγk

)
,

u(h) = eiϑh ũ(h), v(h) = e−iϑh ṽ(h), (1.34) eq:rotate

and compute the target eigenvalue λ(h) ofA+εu(h)v(h)∗. We note that this fully discrete
algorithm still preserves stationary points.

One motivation for choosing this method is that near a stationary point, the motion
is almost rotational since x ≈ αu and y ≈ βv. The dominating term determining the
motion is then the rotational term on the right-hand side of (1.26), which is integrated by
a rotation in the above scheme (the integration would be exact if α, β, γ were constant).

This algorithm requires in each step one computation of rightmost eigenvalues and
associated eigenvectors of rank-1 perturbations to the matrix A, which can be computed
at relatively small computational cost for large sparse matrices A, either combining the
Cayley transformation approach with the Sherman-Morrison formula or by using an im-
plicitly restarted Arnoldi method (as implemented in ARPACK and used in the MATLAB
function eigs).

(We also tried a variant whereα, β, γ in the rotation step are updated from (ũ(h), ṽ(h))

and the left and right eigenvectors to the target eigenvalue λ̃(h) of A + εũ(h)ṽ(h)∗. In
our numerical experiments we found, however, that the slight improvement in the speed
of convergence to the stationary state does not justify the nearly doubled computational
cost per step.)

Step size selection. We use an Armijo-type line search strategy to determine a step size
that reduces the functional f(λ, λ). For the non-discretized differential equation (1.23),
we know from (1.28) that the decay rate is given by

d

dt
Fε(E(t)) = −εκ

(
∥PE(G)∥2F −

(
Re ⟨G,E⟩

)2) ≤ 0.

Here we note that for E = uv∗ and again with α = u∗x, β = v∗x, γ = 2fλ,



16 II. Basic eigenvalue optimization problems

Re⟨G,E⟩ = Re(αβγ)

and

PE(G) = γ(αuy∗ + βxv∗ − αβuv∗) = γ(u, x)

(
−αβ α

β 0

)
(v, y)∗.

A calculation shows that the squared Frobenius norm of this rank-2 matrix equals

∥PE(G)∥2F = |γ|2
(
|α|2 + |β|2 − |α|2|β|2

)
.

We set

gk = εκ
(
∥PE(G)∥2F −

(
Re ⟨G,E⟩

)2) ≥ 0

for the choice E = Ek = ukv
∗
k, G = Gε(Ek) = 2fλ(λk, λk)xky

∗
k, and κ = κk =

1/(x∗kyk). In view of the above formulas gk is computed simply as

gk = εκk

(
|γk|2

(
|αk|2 + |βk|2 − |αk|2|βk|2

)
− Re(αkβkγk)

2
)
. (1.35) g-n-formula

Let

fk = f(λk, λk), f(h) = f(λ(h), λ(h)).

We accept the result of the step with step size h if

f(h) < fk.

If for some fixed θ > 1,

f(h) ≥ fk − (h/θ)gk,

then we reduce the step size for the next step to h/θ. If the step size has not been reduced
in the previous step, we try for a larger step size. Algorithm 1 describes the step from tk
to tk+1 = tk + hk.
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Algorithm 1: Integration step for the rank-1 constrained gradient system
alg_prEul

Data: A, ε, θ > 1, uk ≈ u(tk), vk ≈ v(tk), hk (proposed step size)
Result: uk+1, vk+1, hk+1

begin
1 Initialize the step size by the proposed step size, h = hk
2 Compute the value fk = f(λk, λk)
3 Compute left/right eigenvectors xk, yk of A+ εukv

∗
k to λk such that

∥xk∥ = ∥yk∥ = 1, x∗kyk > 0
4 Compute αk, βk, γk by (1.31) and gk by (1.35)
5 Initialize f(h) = fk

while f(h) ≥ fk do
6 Compute u(h), v(h) according to (1.32)-(1.34)
7 Compute λ(h) target eigenvalue of A+ εu(h)v(h)∗

8 Compute the value f(h) = f
(
λ(h), λ(h)

)
if f(h) ≥ fk then

Reduce the step size, h := h/θ

if f(h) ≥ fk − (h/θ)gk then
Reduce the step size for the next step, hnext := h/θ

else if h = hk then
Set hnext := θhk (augment the stepsize if no rejection has occurred)

else
Set hnext := hk

9 Set hk+1 = hnext, λk+1 = λ(h), and the starting values for the next step as
uk+1 = u(h), vk+1 = v(h)

return

Numerical example. An illustration is given in Fig. 9 for f(λ, λ) = − 1
2 (λ + λ), which

yields γ = 1, and A the randomly chosen 6× 6 matrix

A =


0.1019 −0.8350 0.2966 −0.0756 −2.2079 1.2682
1.1813 −1.4224 −0.8664 0.8003 −1.3413 1.3547

−1.2457 −0.1737 −1.1910 −0.3194 −0.2909 0.8230
−0.7830 −0.5115 −0.0109 0.8860 0.4878 0.3246
−0.5740 0.0268 1.1950 −0.1729 0.9966 −0.8003
−0.3815 −0.4476 −0.9740 1.4030 1.0361 0.7399

 . (1.36) eq:example

The initial step size is set to h = 0.1. The orange curve is the boundary of the ε-
pseudospectrum of A, that is

{z ∈ C : z is an eigenvalue of A+ εE for some E ∈ Cn,n with ∥E∥ = ε},

and with our choice of f we aim to find a rightmost point of the ε-pseudospectrum (this
problem will be discussed in more detail in Chapter III).
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A comparison of the 12 iterates (i.e. accepted steps) generated by the splitting integra-
tor (in blue) and an exponential Euler method (in red) shows that the splitting integrator
is faster and more accurate after the same number of steps.

II.2 Real case
sec:proto-real

II.2.1 Problem description.

We now consider problem (1.1) for a real matrix A ∈ Rn,n and real perturbations ∆ ∈
Rn,n: find

arg min
∆∈Rn,n,∥∆∥F=ε

f
(
λ (A+∆) , λ (A+∆)

)
(2.1) eq:optimiz0rF

where again λ(A + ∆) is the target eigenvalue of the perturbed matrix A + ∆, and f
satisfies (1.2). As in the complex case, it is convenient to write

∆ = εE with ∥E∥F = 1

and to use the notation

Fε(E) = f
(
λ (A+ εE) , λ (A+ εE)

)
(2.2)

so that (2.1) can be rewritten as

arg min
E∈Rn,n,∥E∥F=1

Fε(E). (2.3) eq:optimizrF

II.2.2 Norm-constrained gradient flow and rank of optimizers
subsec:gradient-flow-real

The programme of the previous section extends to the real case with minor but important
modifications.

Free gradient. Consider a smooth path of real matrices E(t) ∈ Rn,n. Since Ė(t) is then
also a real matrix, we have by Lemma 1.1

1

εκ(t)

d

dt
Fε(E(t)) =

〈
GR

ε (E(t)), Ė(t)
〉

(2.4) eq:deriv-real

with the rescaled real gradient

GR
ε (E) := ReGε(E) = Re(2fλ xy

∗) ∈ Rn,n, (2.5) gradient-real

which has rank at most 2 (as a sum of two rank-1 matrices). As ε is fixed and only the real
case is considered in this section, we often write for short

G(E) := GR
ε (E).
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fig:splitt

-2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Fig. 1.1. In blue: iterates λk of the splitting integrator (Algorithm 1) applied to the matrix A of
(III.1.36) with f(λ, λ) = Reλ and ε = 1. In red: iterates of the exponential Euler method.
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fig:expeul
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Fig. 1.2. Zoom of the iterates produced by the two methods. The splitting method clearly reaches
the equilibrium faster.
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Lemma 1.3 on the direction of steepest admissible descent extends without ado to the real
case: Consider real matrices and take everywhere the real inner product instead of the real
part of the complex inner product.

Constrained gradient flow. We consider the gradient flow on the manifold of real n× n
matrices of unit Frobenius norm,

Ė = −G(E) + ⟨G(E), E⟩E. (2.6) ode-ErF

Monotonicity. Assuming simple eigenvalues along the trajectory, we then still have the
monotonicity property of Theorem 1.4,

d

dt
Fε(E(t)) = −∥G(E)− ⟨G(E), E⟩E∥2F ≤ 0, (2.7) eq:pos-real

with essentially the same proof (the real inner product replaces the real part of the complex
inner product).

Stationary points. Also the characterization of stationary points as given in Theorem 1.5
extends with the same proof: Let E ∈ Rn,n with ∥E∥F = 1 be such that the eigenvalue
λ(A+ εE) is simple and GR

ε (E) ̸= 0. Then,

E is a stationary point of the differential equation (2.6) stat-real

if and only if E is a real multiple of GR
ε (E).

(2.8) stat-real

As a consequence, optimizers of (2.3) have rank at most 2. We can determine the precise
rank as follows.

Theorem 2.1 (Rank of optimizers). For A ∈ Rn,n and ε > 0, let E ∈ Rn,n withthm:rank
∥E∥F = 1 be a stationary point of the differential equation (2.6) such that the eigenvalue
λ = λ(A+ εE) is simple and GR

ε (E) ̸= 0. Then, the rank of E is as follows.

(a) If λ is real, then E has rank 1.
(b) If Imλ ̸= 0, then E has rank 2.

Proof. (a) If λ is real, then fλ is real and x and y can be chosen real, hence G(E) =
Re(fλxy

∗) = fλxy
⊤ is of rank 1, and so is every nonzero real multiple, in particular E.

(b) We set w = fλy and separate the real and imaginary parts in x = xR + ixI
and w = wR + iwI . If Re(xw∗) = xRw

⊤
R + xIw

⊤
I is of rank 1, then xR and xI are

linearly dependent or wR and wI are linearly dependent. Let us first assume the former.
In this case there is a real α such that x = cos(α)v + i sin(α)v for some nonzero real
vector v. Rotating both x and y by e−iα does not change the required property x∗y > 0,
so we can assume without loss of generality that x is a real left eigenvector of the real
matrix A+ εE, which implies that the corresponding eigenvalue λ is real. The argument
is analogous when wR and wI are linearly dependent. ⊓⊔
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II.2.3 Low-rank matrices and their tangent matrices
subsec:low-rank

Theorem 2.1 motivates us to search for a differential equation on the manifold of real
rank-2 matrices that has the same stationary points with non-real target eigenvalue as
(2.6). For the stationary points with real target eigenvalues we use a differential equation
for rank-1 matrices as in Section II.1.7.

In the following we consider differential equations of the manifold of real n × n
matrices of rank r, denoted

Mr = Mr(Rn,n) = {E ∈ Rn,n : rank(E) = r}.

While only ranks 1 and 2 are of interest for the optimization problem studied in this sec-
tion, we now consider the case of a general fixed rank r, since it is not more complicated
than rank 2 and will be useful later. We proceed similarly to the rank-1 case considered in
Section II.1.6.

Every real rank-r matrix E of dimension n× n can be written in the form

E = USV ⊤ (2.9) USV

where U ∈ Rn,r and V ∈ Rn,r have orthonormal columns, i.e.,

U⊤U = Ir, V ⊤V = Ir, (2.10) UV-orth

(with the identity matrix Ir of dimension r), and S ∈ Rr,r is nonsingular. The singular
value decomposition yields S diagonal, but here we will not assume a special form of S.
The representation (2.9) is not unique: replacing U by Ũ = UP and V by Ṽ = V Q with
orthogonal matrices P,Q ∈ Rr,r, and correspondingly S by S̃ = P⊤SQ, yields the same
matrix E = USV ⊤ = Ũ S̃Ṽ ⊤.

Every tangent matrix Ė ∈ TEMr is of the form

Ė = U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤, (2.11) Edot-r

where Ṡ ∈ Rr,r, and U⊤U̇ and V ⊤V̇ are skew-symmetric (as results from differentiating
U⊤U = Ir and V ⊤V = Ir). The matrices Ṡ, U̇ , V̇ are uniquely determined by Ė and
U, S, V if we impose the orthogonality conditions

U⊤U̇ = 0, V ⊤V̇ = 0. (2.12) orth

Multiplying Ė with U⊤ from the left and with V from the right, we then obtain

Ṡ = U⊤ĖV, U̇S = ĖV − UṠ, SV̇ ⊤ = U⊤Ė − ṠV ⊤,

which yields Ṡ, U̇ , V̇ in terms of Ė. Extending this construction, we arrive at an explicit
formula for the orthogonal projection onto the tangent space. Here, orthogonality refers
to the real Frobenius inner product.
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Lemma 2.2 (Rank-r tangent space projection). The orthogonal projection from Rn,n
lem:P-formula-r

onto the tangent space TEMr at E = USV ⊤ ∈ Mr is given by

PE(Z) = Z − (I − UU⊤)Z(I − V V ⊤) for Z ∈ Cn,n. (2.13) P-formula-r

Proof. The proof is a direct extension of the proof of Lemma 1.11. Let PE(Z) be defined
by (2.13). Determining (similarly to above) Ṡ, U̇ , V̇ by

Ṡ = U⊤ZV, U̇S = ZV − UṠ, SV̇ ⊤ = U⊤Z − ṠV ⊤,

we obtain PE(Z) = UU⊤ZV V ⊤ −ZV V ⊤ −UU⊤Z in the form (2.11) with (2.12) and
hence

PE(Z) ∈ TEMr.

Furthermore,
⟨PE(Z), Ė⟩ = ⟨Z, Ė⟩ for all Ė ∈ TEMr,

because ⟨(I − UU⊤)Z(I − V V ⊤), Ė⟩ = ⟨Z, (I − UU⊤)Ė(I − V V ⊤)⟩ = 0 by (2.11).
Hence, PE(Z) is the orthogonal projection of Z onto TEMr. ⊓⊔

We note that PE(E) = E for E ∈ Mr, or equivalently, E ∈ TEMr.

II.2.4 Rank-r constrained gradient flow
subsec:rank-r-gradient-flow

In the differential equation (2.6) we replace the right-hand side by its orthogonal projec-
tion onto TEMr, so that solutions starting with rank r will retain rank r for all times:

Ė = PE

(
−G(E) + ⟨G(E), E⟩E

)
. (2.14) ode-ErF-2

Since E ∈ TEMr, we have PE(E) = E and ⟨E,Z⟩ = ⟨E,PE(Z)⟩, and hence the
differential equation can be rewritten as

Ė = −PE(G(E)) + ⟨E,PE(G(E))⟩E, (2.15) ode-ErF-2-v2

which differs from (2.6) only in that G(E) is replaced by its orthogonal projection to
TEMr. This shows that ⟨E, Ė⟩ = 0, so that the unit norm of E is conserved along
solutions of (2.14).

To obtain the differential equation in a form that uses the factors inE = USV ⊤ rather
than the full n×n matrix E, we use the following result, which follows directly from the
proof of Lemma 2.2.

Lemma 2.3 (Differential equations for the factors). For E = USV ⊤ ∈ Mr withlem:USV
nonsingular S ∈ Rr,r and with U ∈ Rn,r and V ∈ Rn,r having orthonormal columns,
the equation Ė = PE(Z) is equivalent to Ė = U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤, where

Ṡ = U⊤ZV

U̇ = (I − UU⊤)ZV S−1 (2.16)
V̇ = (I − V V ⊤)Z⊤US−⊤.
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With Z = −G(E) + ⟨G(E), E⟩E and r = 2, this yields that the differential equation
(2.14) for E = USV ⊤ is equivalent to a system of differential equations for S,U, V . On
the right-hand side appears the inverse of the matrix S, which may be ill-conditioned. In
the present context, this appears when the target eigenvalue gets close to the real axis (see
Theorem 2.1) so that E, and hence S, becomes almost of rank 1. In such a situation of a
small singular value in S, standard numerical integrators become unstable or yield plainly
wrong numerical solutions unless used with a tiny stepsize proportional to the smallest
nonzero singular value. Later in this section we will describe a numerical integrator that
is robust to small singular values.

Monotonicity. Assuming simple eigenvalues almost everywhere along the trajectory, we
still have the monotonicity property of Theorem 1.14 along solutions E(t) of (2.14),

d

dt
Fε(E(t)) = −∥PE(G(E))− ⟨E,PE(G(E))⟩E∥2F ≤ 0, (2.17) eq:pos-real-r

with essentially the same proof (the real inner product replaces the real part of the complex
inner product).

Stationary points. Comparing the differential equations (2.6) and (2.14) immediately
shows that every stationary point of (4.13) is also a stationary point of the projected dif-
ferential equation (2.14). As in Theorem 1.15, the converse is also true for the stationary
points E of unit Frobenius norm with PE(G(E)) ̸= 0. This shows that the low-rank pro-
jection does not create spurious stationary points.

Theorem 2.4 (Stationary points). Let E ∈ M2 be of unit Frobenius norm and assumethm:stat-r
that PE(G(E)) ̸= 0. If E is a stationary point of the projected differential equation
(2.14), then E is already a stationary point of the differential equation (2.6).

Proof. The proof extends the proof of Theorem 1.15. We show that E is a real multiple
of Gε(E). By (2.8), E is then a stationary point of the differential equation (4.13).

For a stationary point E of (2.14), we must have equality in (1.28), which shows that
PE(G) (with G = G(E) for short) is a nonzero real multiple of E. Hence, in view of
PE(E) = E, we can write G as

G = µE +W, where µ ̸= 0 is real and PE(W ) = 0.

With E = USV ⊤ as above, we then have

W =W − PE(W ) = (I − UU⊤)W (I − V V ⊤).

Since G is of rank at most 2, it can be written in the form G = XRY ⊤, where X,Y ∈
Rn,2 have orthonormal columns and R ∈ R2,2. So we have

XRY ⊤ = µUSV ⊤ + (I − UU⊤)W (I − V V ⊤).

Multiplying from the right with V yieldsX(RY ⊤V ) = µUS, which shows thatX has the
same range as U , and multiplying from the left with U⊤ yields that Y has the same range
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as V . Hence, G has the same range and corange as E, which implies that PE(G) = G.
Since we already know that PE(G) is a nonzero real multiple of PE(E) = E, it follows
that G is the same real multiple of E. By (2.8), E is therefore a stationary point of (2.6).

⊓⊔

As in Remark 1.16, it is shown that if G(E) is of rank 2 and PE(G(E)) = 0, then it
follows that Ey = 0 and x∗E = 0, which implies that λ is already an eigenvalue of the
unperturbed matrix A with the same eigenvectors x and y, which is a very exceptional
situation.

II.2.5 Time-stepping for the low-rank differential equation
subsec:low-rank-integrator

A robust integrator. The following method adapts the low-rank integrator of Ceruti &
Lubich (2021) to the norm-constrained situation considered here. It first updates the basis
matrices U and V with orthonormal columns in parallel and then uses a Galerkin approx-
imation to the differential equation (2.14) in the updated basis. This integrator has been
shown to be robust to the presence of small singular values, which would here appear in
the case of a target eigenvalue near the real axis.

One time step of integration from time tk to tk+1 = tk + h starting from a factored
rank-r matrix Ek = UkSkV

⊤
k of unit Frobenius norm computes an updated rank-r fac-

torization Ek+1 = Uk+1Sk+1V
⊤
k+1 of unit Frobenius norm as follows.

1. Update the basis matrices Uk → Uk+1 and Vk → Vk+1:
Integrate from t = tk to tk+1 = tk + h the n× r matrix differential equation

K̇(t) = −G(K(t)V ⊤
k )Vk, K(tk) = UkSk.

Perform a QR factorization K(tk+1) = Uk+1Rk+1 and compute the r × r matrix
M = U⊤

k+1Uk.

Integrate from t = tk to tk+1 the n× r matrix differential equation

L̇(t) = −G(UkL(t)
⊤)⊤Uk, L(tk) = VkS

⊤
k .

Perform a QR factorization L(tk+1) = Vk+1R̃k+1 and compute the r × r matrix
N = V ⊤

k+1Vk.

2. Update Sk → Sk+1 :
Integrate from t = tk to tk+1 the r × r matrix differential equation

Ṡ(t) = −U⊤
k+1G(Uk+1S(t)V

⊤
k+1)Vk+1, S(tk) =

MSkN
⊤

∥MSkN⊤∥F
,

and set Sk+1 = S(tk+1)/∥S(tk+1)∥F .

The differential equations in the substeps are solved approximately by a step of some stan-
dard numerical integrator, e.g. the explicit Euler method or a low-order explicit Runge–
Kutta method such as the second-order Heun method. We denote the result of the fully
discrete method with stepsize h as U(h), V (h), S(h).
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Stepsize selection. As in Section II.1.8, the stepsize selection is done by an Armijo-type
strategy. Along solutions E(t) ∈ M2 of (2.14), we have by (2.4)–(2.5)

d

dt
Fε(E(t)) = −g(E(t)) with g(E) = εκ

(
∥PE(G)∥2F − ⟨G,E⟩2

)
≥ 0

where κ = 1/(x∗y) > 0, G = GR
ε (E) = Re(2fλxy

∗) with the normalized left and right
eigenvectors x and y to the eigenvalue λ(A+ εE).

We note that on separating real and imaginary parts in 2fλx = wR + iwI and y =
yR + iyI and defining the n× 2 real matrices W = (wR, wI) and Y = (yR, yI), we have
the real factorization

G =WY ⊤.

With the rank-2 matrix E = USV ⊤ in factorized from as above, we can then compute
g(E) without actually forming the n × n matrices E and G: noting that with the 2 × 2
matrices P = U⊤W and Q = V ⊤Y we have

⟨G,E⟩ = ⟨WY ⊤, USV ⊤⟩ = ⟨PQ⊤, S⟩R2×2

and

PE(G) = UPY ⊤ − UPQ⊤V ⊤ +WQ⊤V ⊤,

which yields after a straightforward computation

∥PE(G)∥2F = ∥PY ⊤∥2F + ∥WQ⊤∥2F − ∥PQ⊤∥2F ,

so that finally g = g(E) is given by

g = εκ
(
∥PY ⊤∥2F + ∥WQ⊤∥2F − ∥PQ⊤∥2F − ⟨PQ⊤, S⟩2

)
. (2.18) g-n-formula-r

With this quantity g, the Armijo-type stepsize selection is then done as in Section II.1.8.
A time step of the method is summarized in Algorithm 2.
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Algorithm 2: Integration step for the rank-2 constrained real gradient system
alg:real

Data: A, ε, θ > 1, Uk ≈ U(tk), Vk ≈ V (tk) ∈ Rn×2 with orthonormal columns,
Sk ≈ S(tk) ∈ R2×2 of unit Frobenius norm, target eigenvalue
λk = λ(A+ εUkSkV

⊤
k ), hk (proposed step size)

Result: Uk+1, Vk+1, Sk+1, λk+1, hk+1

begin
1 Initialize the step size by the proposed step size, h = hk
2 Compute fk = f(λk, λk)
3 Compute the left/right eigenvectors xk, yk to λk such that

∥xk∥ = ∥yk∥ = 1, x∗kyk > 0
4 Compute gk by (2.18)
5 Initialize f(h) = fk

while f(h) ≥ fk do
6 Compute U(h), V (h), S(h) by the above rank-2 integrator
7 Compute λ(h) target eigenvalue of A+ εU(h)S(h)V (h)⊤

8 Compute f(h) = f
(
λ(h), λ(h)

)
if f(h) ≥ fk then

Reduce the step size, h := h/θ

9 Initialize hnext = h
if f(h) ≥ fk − (h/θ)gk then

Reduce the step size for the next step, hnext := h/θ

if hnext = hk then
10 Compute U(θh), V (θh), S(θh) by the above rank-2 integrator
11 Compute λ(θh) target eigenvalue of A+ εU(θh)S(θh)V (θh)⊤

12 Compute f(θh) = f
(
λ(θh), λ(θh)

)
if f(h) > f(θh) then

Enlarge the step size for the next step, h := θh and then hnext := h

13 Set hk+1 = hnext, λk+1 = λ(h), and the starting values for the next step as
Uk+1 = U(h), Vk+1 = V (h), Sk+1 = S(h)

return

II.3 Structured cases
sec:proto-structured

II.3.1 Problem description. Linear structures

Let S be a subspace of the vector space of complex or real n×n matrices, e.g. a space of
matrices with a prescribed sparsity pattern, or Toeplitz matrices, or Hamiltonian matrices,
etc.

As before, we set

Fε(E) = f
(
λ (A+ εE) , λ (A+ εE)

)
. (3.1) eq:optimiz0S
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We now restrict the admissible perturbations εE to be in S and consider the structured
eigenvalue optimization problem to find

arg min
E∈S,∥E∥F=1

Fε(E). (3.2) eq:optimizS

II.3.2 Projection onto the structure
subsec:proj-structure

LetΠS be the orthogonal projection (w.r.t. the Frobenius inner product) onto S: for every
Z ∈ Cn,n,

ΠSZ ∈ S and Re⟨ΠSZ,W ⟩ = Re⟨Z,W ⟩ ∀W ∈ S. (3.3) Pi-S

For a complex-linear subspace S, taking the real part of the complex inner product can
be omitted (because with W ∈ S , then also iW ∈ S), but taking the real part is needed
for real-linear subspaces. Note that for S = Rn,n, we then have ΠSZ = ReZ for all
Z ∈ Cn,n. In the following examples, the stated action of ΠS is readily verified.

Example 3.1 (Sparse matrices). If S is the space of complex matrices with a prescribed
sparsity pattern, then ΠSZ leaves the entries of Z on the sparsity pattern unchanged and
annihilates those outside the sparsity pattern.

Example 3.2 (Matrices with prescribed range and co-range). An example of particu-
lar interest in control theory is the perturbation space

S = {B∆C : ∆ ∈ Rk,l},

where B ∈ Rn,k and C ∈ Rl,n with k, l < n are given matrices of full rank. Here,
ΠSZ = BB†ZC†C, where B† and C† are the Moore–Penrose inverses of B and C,
respectively.

Example 3.3 (Toeplitz matrices). If S is the space of complex n× n Toeplitz matrices,
thenΠSZ is obtained by replacing in each diagonal all the entries of Z by their arithmetic
mean. For real Toeplitz matrices, the same action is done on ReZ.

Example 3.4 (Hamiltonian matrices). If S is the space of 2d × 2d real Hamiltonian
matrices, then ΠSZ = J−1Sym(Re(JZ)), where Sym(·) takes the symmetric part of a
matrix and

J =

(
0 Id

−Id 0

)
,

for which J−1 = J⊤ = −J . We recall that a real matrix A is Hamiltonian if JA is
symmetric.

II.3.3 Structure- and norm-constrained gradient flow
subsec:gradient-flow-S

The programme of Section II.1 extends to structured cases as follows.
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Structured gradient. Consider a smooth path of structured matrices E(t) ∈ S. Since
then also Ė(t) ∈ S, we have by Lemma 1.1

1

εκ(t)

d

dt
Fε(E(t)) = Re

〈
GS

ε (E(t)), Ė(t)
〉

(3.4) eq:deriv-S

with the rescaled structured gradient

GS
ε (E) := ΠS Gε(E) = ΠS(2fλ xy

∗) ∈ S, (3.5) gradient-S

where x, y are the left and right eigenvectors, normalized to unit norm and with positive
inner product, associated with a simple eigenvalue λ ofA+εE, and fλ = (∂f/∂λ)(λ, λ).

We note that GS
ε (E) is the orthogonal projection onto S of a rank-1 matrix.

Lemma 1.3 on the direction of steepest admissible descent extends immediately to the
structured case: If E,G ∈ S in Lemma 1.3, then also Z⋆ of (1.11) is in S.

Lemma 3.5 (Non-vanishing structured gradient). Let A,E ∈ S and ε > 0, and let λlem:nonzero-gradient-S
be a simple target eigenvalue of A+ εE.

(i) Complex case: S is a complex-linear subspace of Cn,n. Then,

GS
ε (E) ̸= 0 if λfλ ̸= 0.

(ii) Real case: S is a real-linear subspace of Rn,n. Then,

GS
ε (E) ̸= 0 if Re(λfλ) ̸= 0.

We emphasize that also A needs to be in S. The result does not hold true when A /∈ S.

Proof. We give the proof for the real case. The complex case is analogous but slightly
simpler. We take the real inner product of GS

ε (E) with A+ εE ∈ S and use the definition
(3.5) of GS

ε (E):

⟨GS
ε (E), A+ εE⟩ = Re⟨ΠS(2fλ xy

∗), A+ εE⟩ = Re⟨2fλ xy
∗, A+ εE⟩

= Re
(
2fλ x

∗(A+ εE)y
)
= Re

(
2fλλx

∗y
)
= 2Re

(
fλλ

)
(x∗y),

where x∗y > 0. This yields the result. ⊓⊔

If the identity matrix I is in S , then the condition for GS
ε (E) ̸= 0 can be weakened:

– In the complex case, it then suffices to have fλ ̸= 0. This is seen by taking the inner
product with A+ εE − µI ∈ S for an arbitrary µ ∈ C.

– In the real case, if λ is real, then it suffices to have Re fλ ̸= 0. If λ is non-real, then
it even suffices to have fλ ̸= 0. In both cases this is seen by taking the inner product with
A+ εE − µI ∈ S for an arbitrary µ ∈ R.

Constrained gradient flow. We consider the gradient flow on the manifold of structured
n× n matrices in S of unit Frobenius norm,

Ė = −GS
ε (E) + Re⟨GS

ε (E), E⟩E. (3.6) ode-E-S
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Monotonicity. Assuming simple eigenvalues along the trajectory, we then still have the
monotonicity property of Theorem 1.4,

d

dt
Fε(E(t)) ≤ 0, (3.7) eq:pos-S

with essentially the same proof.

Stationary points. Also the characterization of stationary points as given in Theorem 1.5
extends with the same proof: Let E ∈ S with ∥E∥F = 1 be such that the eigenvalue
λ(A+ εE) is simple and GS

ε (E) ̸= 0. Then,

E is a stationary point of the differential equation (3.6) stat-S

if and only if E is a real multiple of GS
ε (E).

(3.8) stat-S

As a consequence, optimizers of (3.2) are projections onto S of rank-1 matrices. This
motivates us to search for a differential equation on the manifold of rank-1 matrices that
leads to the same stationary points.

II.3.4 Rank-1 matrix differential equation

Solutions of (3.6) can be written as E(t) = ΠSZ(t) where Z(t) solves

Ż = −Gε(E) + Re⟨Gε(E), E⟩Z with E = ΠSZ. (3.9) ode-E-S-Z

We note that Re⟨E, Ė⟩ = 0 if ∥E∥F = 1, so that the unit Frobenius norm of E(t) is
conserved for all t. As every solution tends to a stationary point of rank 1, we project the
right-hand side onto the tangent space TY M1 at Y of the manifold of complex rank-1
matrices M1 = M1(Cn,n) and consider instead the projected differential equation with
solutions of rank 1:

Ẏ = −PYGε(E) + Re⟨PYGε(E), E⟩Y with E = ΠSY. (3.10) ode-E-S-1

Note that then

Ė = −ΠSPYGε(E) + Re⟨ΠSPYGε(E), E⟩E with E = ΠSY, (3.11) ode-E-S-1-Pi

which differs from the gradient flow (3.6) only in that the gradient Gε(E) is replaced by
the rank-1 projected gradient PYGε(E).

For E = ΠSY of unit Frobenius norm,

Re⟨E, Ė⟩ = Re⟨E, Ẏ ⟩ = −Re⟨E,PYGε(E)⟩+ Re⟨PYGε(E), E⟩Re⟨E, Y ⟩ = 0,

where we used that Re⟨E, Y ⟩ = Re⟨E,ΠSY ⟩ = Re⟨E,E⟩ = ∥E∥2F = 1. So we have

∥E(t)∥F = 1 for all t.

We write a rank-1 matrix Y ∈ M1 in a non-unique way as
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Y = ρuv∗,

where ρ ∈ R, ρ > 0 and u, v ∈ Cn have unit norm. The following lemma extends
Lemma 1.13 to the structured situation. It shows how the rank-1 differential equation
(3.10) can be restated in terms of differential equations for the factors u, v and an explicit
formula for ρ.

Lemma 3.6 (Differential equations for the factors). Every solution Y (t) ∈ M1 oflem:uv-1-S
the rank-1 differential equation (3.10) with ∥ΠSY (t)∥F = 1 can be written as Y (t) =
ρ(t)u(t)v(t)∗ where u(t) and v(t) of unit norm satisfy the differential equations

ρu̇ = − i
2 Im(u∗Gv)u− (I − uu∗)Gv,

ρv̇ = − i
2 Im(v∗Gu)v − (I − vv∗)G∗u,

where G = Gε(E) for E = ΠSY = ρΠS(uv∗) and ρ = 1/∥ΠS(uv∗)∥F .

We find that with the exception of the additional positive factor ρ on the left-hand
side, these differential equations are of the same form as in Lemma 1.13. Note that ρ
is only related to the speed with which a trajectory is percursed, but does not affect the
trajectory itself. However, hereG = Gε(E) for a different matrixE = ΠS(ρuv∗) instead
of E = uv∗ in (1.25).

Proof. The equation for ρ is obvious because 1 = ∥E∥F = ∥ΠS(ρuv∗)∥F = ρ∥ΠS(uv∗)∥F .
We write the right-hand side of (3.10) and use (1.20) to obtain for Y = ρuv∗

Ẏ = −PYG+ Re⟨PYG,E⟩Y

= − (I − uu∗)Gvv∗ − uu∗G(I − vv∗)− uu∗Gvv∗ + Re
〈
PYG,E

〉
Y

= −
(
(I − uu∗)Gvv∗ + i

2 Im(u∗Gv)u
)
v∗ − u

(
u∗G(I − vv∗) + i

2 Im(u∗Gv)v∗
)

−
(

Re(u∗Gv) + Re⟨PYG,E⟩ρ
)
uv∗.

Since this is equal to Ẏ = (ρu̇)v∗+u(ρv̇∗)+ ρ̇uv∗, we can equate ρu̇, ρv̇∗ and ρ̇ with the
three terms in big brackets. So we obtain the stated differential equations for u and v (and
another one for ρ, which will not be needed). Further we have (d/dt)∥u∥2 = 2Re(u∗u̇) =
0 and analogously for v, which yields that u and v stay of unit norm. ⊓⊔

We note that forG = Gε(E) = 2fλ xy
∗ (see Lemma 1.1) and with α = u∗x, β = v∗y

and γ = 2fλ, we obtain differential equations that differ from (1.26) only in the additional
factor ρ on the left-hand side:

ρu̇ = αβγ u− βγ x− i
2 Im(αβγ)u

ρv̇ = αβγ v − αγ y − i
2 Im(αβγ)v.

(3.12) ode-uv-short-S
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Stationary points. The following theorem states that under some non-degeneracy con-
ditions (see Remark 1.16), the differential equations (3.6) and (3.10) yield the same sta-
tionary points.

Theorem 3.7 (Relating stationary points). (a) Let E ∈ S of unit Frobenius norm bethm:stat-S
a stationary point of the gradient system (3.6) that satisfies ΠSGε(E) ̸= 0. Then, E =
ΠSY for an Y ∈ Cn,n of rank 1 that is a stationary point of the differential equation
(3.10).

(b) Conversely, let Y ∈ Cn,n of rank 1 be a stationary point of the differential equation
(3.10) such that E = ΠSY has unit Frobenius norm and PYGε(E) ̸= 0. Then, E is a
stationary point of the gradient system (3.6).

Proof. Let G = Gε(E) in this proof for short.
(a) By (4.14), E = µ−1ΠSG for some nonzero real µ. Then, Y := µ−1G is of rank 1

and we have E = ΠSY . We further note that PYG = µPY Y = µY = G. We thus have

−PYG+ Re⟨PYG,E⟩Y = −G+ Re⟨G,E⟩Y.

Here we find that

Re⟨G,E⟩ = Re⟨ΠSG,E⟩ = Re⟨µE,E⟩ = µ∥E∥2F = µ.

So we have
−G+ Re⟨G,E⟩Y = −G+ µY = 0

by the definition of Y . This shows that Y is a stationary point of (3.10).
(b) By the argument used in the proof of Theorem 1.15, stationary points Y ∈ M1 of

the differential equation (3.10) are characterized as real multiples ofG. Hence,E = ΠSY
is a real multiple of ΠSG, and by (4.14), E = ΠSY is a stationary point of (3.6). ⊓⊔

Possible loss of global monotonicity and preservation of local monotonicity near sta-
tionary points. Since the projections ΠS and PY do not commute, we cannot guarantee
the monotonicity (3.7) along solutions of (3.10). However, in all our numerical experi-
ments we observed a monotonic decrease of the functional in all steps except possibly
(and rarely) in the first step. In the following we will explain this monotonic behaviour
locally near a stationary point, but we have no theoretical explanation for the numerically
observed monotonic behavior far from stationary points.

The first observation, already made in the proof of Theorem 3.7, is that at a stationary
point Y of (3.10), we have PYGε(E) = Gε(E) for E = ΠSY . Therefore, close to a
stationary point, PYGε(E) will be close toGε(E). It turns out that it is even quadratically
close. This is made more precise in the following lemma.

Lemma 3.8 (Projected gradient near a stationary point). Let Y⋆ ∈ M1 with E⋆ =lem:loc-S
ΠSY⋆ ∈ S of unit Frobenius norm. Let Y⋆ be a stationary point of the rank-1 projected
differential equation (3.10), with an associated target eigenvalue λ of A + εE⋆ that is
simple. Then, there exist δ̄ > 0 and a real C such that for all positive δ ≤ δ̄ and all
Y ∈ M1 with ∥Y − Y⋆∥ ≤ δ and associated E = ΠSY of unit norm, we have

∥PYGε (E)−Gε (E) ∥ ≤ Cδ2. (3.13)
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Proof. We consider a smooth path Y (τ) = u(τ)v(τ)∗ ∈ M1 (with u(τ), v(τ) ∈ Cn)
and associated E(τ) = ΠSY (τ) of unit Frobenius norm with initial value

Y (0) = Y⋆ = µ−1G⋆ for some nonzero real µ and

G⋆ = Gε (E⋆)) = 2fλxy
∗,

where E⋆ = ΠSY⋆ is of unit Frobenius norm and (λ, x, y) is the target eigentriplet of
A+ εE⋆ associated with the target eigenvalue λ.

A direct calculation of the first-order terms in the Taylor expansions ofPY (τ)Gε(E(τ))
and Gε(E(τ)), which uses the formula (1.20) for the projection PY (τ) and the formula
(3.15) of the rescaled gradient Gε(E(τ)), surprisingly yields that the Taylor expansions
of PY (τ)Gε(E(τ)) and Gε(E(τ)) at τ = 0 coincide up to O(τ2). This gives the stated
result. ⊓⊔

As a direct consequence of this lemma, a comparison of the differential equations
(3.11) and (3.6) yields that δ-close to a stationary point, the functional decreases mono-
tonically along solutions of (3.10) up toO(δ2), and even with the same negative derivative
as for the gradient flow (3.6) up to O(δ2). Note that the derivative of the functional is pro-
portional to −δ in a δ-neighbourhood of a strong local minimum. Guglielmi, Lubich &
Sicilia (?) use Lemma 3.8 to prove a result on local convergence as t → ∞ to strong
local minima of the functional Fε of (1.4) for E(t) = ΠSY (t) of unit Frobenius norm
associated with solutions Y (t) of the rank-1 differential equation (3.10).

II.3.5 Discrete algorithm and numerical example

Since the differential equations for u and v have essentially the same form as in the un-
structured case, the splitting algorithm of Subsection II.1.8 extends in a straightforward
way, and also the stepsize selection is readily extended. We refer to Guglielmi, Lubich &
Sicilia (?) for details.

******** Numerical experiment with a sparse matrix ? **************

II.4 Notes

The review article by Lewis and Overton (1996) remains a basic reference on eigenvalue
optimization, including a fascinating account of the history of the subject. There is, how-
ever, only a slight overlap of problems and techniques considered here and there.

The book by Absil, Mahony & Sepulchre (2008) on optimization on matrix mani-
folds discusses alternative gradient-based methods to those considered here, though not
specifically for eigenvalue optimization nor low-rank matrix manifolds.
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Low-rank property of optimizers. The low-rank structure of optimizers in an eigen-
value optimization problem was first used by Guglielmi & Overton (2011) who devised a
rank-1 matrix iteration to compute the complex ε-pseudospectral abscissa and radius; see
Section III.2 below.

The approach to eigenvalue optimization via a norm-constrained gradient system and
the associated low-rank dynamics was first proposed and studied by Guglielmi & Lubich
(2011, 2012, 2013), where it was used to compute the complex and real ε-pseudospectral
abscissa and radius as well as sections of the boundary of the ε-pseudospectrum (see
Chapter III).

Our discussion of low-rank dynamics in Sections II.1.7 and II.2.4 is based on Koch &
Lubich (2007). Numerical integrators for low-rank matrix differential equations that are
robust to small singular values are given by the projector-splitting integrator of Lubich &
Oseledets (2014) and the basis-update & Galerkin integrator of Ceruti & Lubich (2021),
of which a norm-preserving variant is presented in Section II.2.5.

Our presentation of the structured eigenvalue optimization problem and the underlying
rank-1 property in Section II.3 follows Guglielmi, Lubich & Sicilia ?.

Frobenius norm vs. matrix 2-norm. In the approach described in this chapter (and fur-
ther on in this work), perturbations are measured and constrained in the Frobenius norm.
This choice is made because the Frobenius norm, other than the matrix 2-norm, is induced
by an inner product, which simplifies many arguments. Not least, it allows us to work with
gradient systems. However, the approach taken here with functional-reducing differential
equations and their associated low-rank dynamics is relevant also for the matrix 2-norm,
in two different ways:

(a) In the general complex case, the optimizers with respect to the Frobenius norm are
of rank 1, and so their Frobenius norm equals their 2-norm. Since generally, the 2-norm
of a matrix does not exceed its Frobenius norm, it follows that the rank-1 Frobenius-
norm optimizers constrained by ∥∆∥F ≤ ε are simultaneously the 2-norm optimizers
constrained by ∥∆∥2 ≤ ε.

(b) In the real case and in structured cases, where the Frobenius-norm and 2-norm op-
timizers are generally different, functional-reducing differential equations for the 2-norm-
constrained problem can be given that have very similar properties to the gradient systems
for the Frobenius-norm-constrained problem considered here; see Guglielmi & Lubich
(2013) for the computation of the 2-norm real pseudospectral abscissa and Guglielmi,
Kressner & Lubich (2015) for 2-norm-constrained eigenvalue optimization problems for
Hamiltonian matrices.



Chapter III.
Pseudospectra

chap:pseudo

III.1 Complex, real and structured pseudospectra

III.1.1 Motivation and definitions
subsec:ps-motivation

As a motivating example for the (complex, real or structured) ε-pseudospectrum of a
matrix A, we consider the linear dynamical system ẋ(t) = Ax(t). The system is asymp-
totically stable, i.e., solutions x(t) converge to zero as t → ∞ for all initial data, if and
only if all eigenvalues of A have negative real part. We now ask for the sensitivity of the
asymptotic stability under (complex, real or structured) perturbations ∆ of norm bounded
by a given ε > 0. This clearly depends on the choice of norm, and here we consider the
Frobenius norm:

∥ · ∥ = ∥ · ∥F .

For a normal matrix, the spectral decomposition yields that the perturbed system remains
asymptotically stable for an arbitrary complex perturbation of norm at most ε if for each
eigenvalue λ ofA, the real part is bounded by Reλ+ε < 0. This condition is, however, not
sufficient for non-normal matricesA and it may not be necessary if the class of admissible
perturbations is restricted to some subspace S of structured perturbations.

The question posed is thus: Is the following real number negative?

αS
ε (A) = max{Reλ : There exists ∆ ∈ S with ∥∆∥ ≤ ε such that

λ is an eigenvalue of A+∆}.

This question is answered by solving a problem (II.1.1) for S = Cn,n, (II.2.1) for S =
Rn,n, or (II.3.1)–(II.3.2) for an arbitrary complex-linear or real-linear subspace S, in each
case with the function to be minimized given by f(λ, λ) = − 1

2 (λ+λ) = −Reλ (i.e., we
maximize Reλ).

It is useful to rephrase the question in terms of the ε-pseudospectrum, which is defined
as follows.

def:ps Definition 1.1. The (S-structured) ε-pseudospectrum of the matrix A is the set

ΛS
ε (A) = {λ ∈ C : λ ∈ Λ(A+∆) for some ∆ ∈ S with ∥∆∥ ≤ ε}, (1.1) eq:epsps

where Λ(M) ⊂ C denotes the spectrum (i.e., set of eigenvalues) of a square matrix M .



36 III. Pseudospectra

For S = Cn,n,Λε(A) = ΛC
ε (A) = ΛS

ε (A) is known as the complex ε-pseudospectrum,
and for S = Rn,n, ΛR

ε (A) = ΛS
ε (A) is known as the real ε-pseudospectrum.

The above quantity αS
ε (A), which is known as the (S-structured) ε-pseudospectral

abscissa of the matrix A, can then be rewritten more compactly as

αS
ε (A) = max{Reλ : λ ∈ ΛS

ε (A)}. (1.2) stability-abscissa

An analogous quantity, of interest for discrete-time linear dynamical systems xk+1 =
Axk, is the (S-structured) ε-pseudospectral radius of the matrix A,

ρSε (A) = max{|λ| : λ ∈ ΛS
ε (A)}. (1.3) stability-radius

In these notions, we drop the superscript S when we consider the unstructured complex
case S = Cn,n. We then write Λε(A), αε(A) and ρε(A).

III.1.2 Complex pseudospectrum and singular values

The complex ε-pseudospectrum can be characterized in terms of singular values. The sin-
gular value decomposition of a matrix M ∈ Cn,n is M = UΣV ∗, with unitary matrices
U = (u1, . . . , un) and V = (v1, . . . , vn) formed by the left and right singular vectors
uk and vk, respectively, and with the real diagonal matrix Σ = diag(σ1, . . . , σn) of the
singular values σ1 ≥ . . . ≥ σn ≥ 0. We use the notation σk(M) for the kth singular value
of M when we wish to indicate the dependence on M , and we write σmin(M) = σn(M)
for the smallest singular value.

Theorem 1.2 (Singular values and eigenvalues). The complex ε-pseudospectrum ofthm:ps-sv
A ∈ Cn,n is characterized as

Λε(A) = {λ ∈ C : σmin(A− λI) ≤ ε} (1.4) ps-sv

= {λ ∈ C : λ ∈ Λ(A+∆) for some ∆ ∈ Cn,n with ∥∆∥ ≤ ε}.

Moreover, the perturbation matrix ∆ can be restricted to be of rank 1.

Proof. The result relies on the fact that the distance to singularity of a matrix M equals
its smallest singular value:

σmin(M) = min{∥∆∥ : ∆ ∈ Cn,n is such that M +∆ is singular}. (1.5) dist-sing

The perturbation of minimal norm is then the rank-1 matrix

∆⋆ = −σnunv∗n (1.6) Delta-star

(unique if σn < σn−1), where σn = σmin(M) and un, vn are the nth singular vectors,
which yields that M +∆⋆ has the same singular value decomposition as M except that
the smallest singular value is replaced by zero.

Choosing M = A − λI for λ ∈ C thus shows that σmin(A − λI) ≤ ε if and only if
there exists a matrix ∆ ∈ Cn,n of norm at most ε such that A− λI +∆ is singular, or in
other words, that λ is an eigenvalue of A+∆. ⊓⊔
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Since σmin(A − λI) depends continuously on λ, an immediate consequence of The-
orem 1.2 is that the boundary of the ε-pseudospectrum of A is given as

∂Λε(A) = {λ ∈ C : σmin(A− λI) = ε}. (1.7) ps-sv-bdy

Remark 1.3 (Frobenius norm and matrix 2-norm). Since for rank-1 matrices, therem:ps-norms
Frobenius norm and the matrix 2-norm are the same, Theorem 1.2 and its proof show
that the complex ε-pseudospectra defined with respect to these two norms are identical.
This no longer holds true for real and structured pseudospectra.

Since 1/σmin(A−λI) = σmax

(
(A−λI)−1

)
= ∥(A−λI)−1∥2, we can reformulate

(1.4) in terms of resolvents (A− λI)−1 as

Λε(A) = {λ ∈ C : ∥(A− λI)−1∥2 ≥ 1/ε}. (1.8) ps-res

This allows us to characterize the ε-pseudospectral abscissa (1.2) as

αε(A) = max{Reλ : ∥(A− λI)−1∥2 ≥ 1/ε},

which implies
1

ε
= max

Reλ≥αε(A)
∥(A− λI)−1∥2. (1.9) eps-res-bound

If all eigenvalues ofA have negative real part, we define the stability radius (or distance to
instability) as ε⋆ > 0 such that αε⋆(A) = 0, i.e., there exists a perturbation ∆ ∈ Cn,n of
Frobenius norm ε⋆ such thatA+∆ has an eigenvalue on the imaginary axis, as opposed to
all perturbations of smaller norm. The above formula then yields that the inverse stability
radius 1/ε⋆ is the smallest upper bound of ∥(A− λI)−1∥2 for λ in the right half-plane:

1

ε⋆
= max

Reλ≥0
∥(A− λI)−1∥2. (1.10) oeps-res-bound

As we discuss next, the ε-pseudospectral abscissa αε(A) and the stability radius ε⋆ are
important quantities in bounding solutions of linear differential equations.

rem:ps-exp
Estimating transient behaviour of linear differential equations via resolvent bounds.
We describe two approaches to bounding solutions to linear differential equations, one for
the matrix exponential etA, which corresponds to the homogeneous initial value problem
ẋ(t) = Ax(t) with an arbitrary initial value x(0) = x0, and the other approach for the
inhomogeneous problem ẋ(t) = Ax(t) + f(t) with zero initial value.

(i) Via Theorem 1.2, the transient behaviour of ∥etA∥2 can be bounded in terms of
the complex pseudospectrum. Here we illustrate this with a simple robust bound: Let
Γε ⊂ C be the boundary curve of a piecewise smooth domain (or several non-overlapping
domains) whose closure covers Λε(A), and assume further that the real part of the right-
most point of Γε equals the pseudospectral abscissa αε(A). In particular, we may take
Γε = ∂Λε(A) when this is a piecewise regular curve. Using the Cauchy integral repre-
sentation
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etA =
1

2πi

∫
Γε

etλ (λI −A)−1 dλ

and noting that by (1.8), ∥(λI −A)−1∥2 ≤ 1/ε on Γε, we find by taking norms that

∥etA∥2 ≤ γε(t)

ε
with γε(t) =

1

2π

∫
Γε

|etλ| |dλ| ≤ |Γε|
2π

etαε(A), (1.11) transient-bound

where |Γε| is the length of Γε. This bound holds for every ε > 0.
The same argument can be applied to a perturbed matrix A + ∆ with ∆ ∈ Cn,n

bounded by ∥∆∥2 ≤ δ. Using the bound σmin(A + ∆ − λI) ≥ σmin(A − λI) − δ, we
then obtain the robust bound

∥et(A+∆)∥2 ≤ γε(t)

ε− δ
for ∥∆∥2 ≤ δ and for all ε > δ. (1.12) transient-perturbed

This bound can be optimized over ε > δ, provided that a bound for |Γε| and an al-
gorithm for computing the pseudospectral abscissa αε(A) are available. An improved
related bound for structured perturbations ∆ ∈ S will later be given in (V.5.3).

(ii) We consider the linear differential equation ẋ(t) = Ax(t) + f(t) with zero initial
value for inhomogeneities f ∈ L2(0,∞;Cn), where we assume that all eigenvalues of A
have negative real part. We extend x(t) and f(t) to t < 0 by zero. Their Fourier transforms
x̂ and f̂ are then related by iω x̂(ω) = Ax̂(ω) + f̂(ω) for all ω ∈ R, i.e.,

x̂(ω) = (iωI −A)−1f̂(ω), ω ∈ R,

and hence the Plancherel formula yields∫
R
∥x(t)∥2 dt =

∫
R
∥x̂(ω)∥2 dω =

∫
R
∥(iωI −A)−1f̂(ω)∥2 dω

≤ max
ω∈R

∥(iωI −A)−1∥22
∫
R
∥f̂(ω)∥2 dω = max

ω∈R
∥(iωI −A)−1∥22

∫
R
∥f(t)∥2 dt.

Using (1.10) and the causality property that x(t), for 0 ≤ t ≤ T , only depends on f(τ)
with 0 ≤ τ ≤ t ≤ T (which allows us to extend f(t) by 0 for t > T ), we thus obtain the
bound (∫ T

0

∥x(t)∥2 dt
)1/2

≤ 1

ε⋆

(∫ T

0

∥f(t)∥2 dt
)1/2

, 0 ≤ T ≤ ∞, (1.13) oeps-L2-bound

where ε⋆ is the stability radius of A, i.e. αε⋆(A) = 0. A related robust bound for A +∆
with structured perturbations ∆ ∈ S will later be given in (V.5.2).

Extremal perturbations. The proof of Theorem 1.2 also yields the following result on
the perturbations ∆ of minimal norm ε such that A+∆ has a prescribed eigenvalue λ on
the boundary ∂Λε(A) of the complex ε-pseudospectrum of A.
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Lemma 1.4 (Extremal complex perturbations). Let λ ∈ ∂Λε(A), and let ∆ ∈ Cn,n oflem:Delta-C
norm ε be such that A+∆ has the eigenvalue λ. Then, ∆ is of rank 1.

Assume now that ε is a simple singular value of A − λI and that the corresponding
left and right singular vectors are not orthogonal to each other. Then,

∆ = εeiθxy∗,

where eiθ is the outer normal to ∂Λε(A) at λ, which is uniquely determined, and x and
y are left and right eigenvectors of A + ∆ to the eigenvalue λ, of unit norm and with
x∗y > 0.

Proof. By (1.7), we have σmin(A − λI) = ε. The proof of Theorem 1.2 then shows that
∆ = −εuv∗, where u and v are left and right singular vectors of A− λI , with

(A− λI +∆)v = 0 and u∗(A− λI +∆) = 0,

or equivalently, (A+∆)v = λv and u∗(A+∆) = λu∗. This shows that u and v are left
and right eigenvectors of A+∆.

Assume now that ε is a simple singular value of A − λI and that u∗v ̸= 0. We show
that ∂Λε(A) has the outer normal eiθ at λ, where the angle θ is determined by

u∗v = −ρe−iθ, ρ > 0.

Let γ(t), for t near 0, be a path in the complex plane with γ(0) = λ ∈ ∂Λε(A). With
ν = γ̇(0) we have, by the standard derivative formula of simple eigenvalues,

d

dt

∣∣∣∣
t=0

σmin(A− γ(t)I) =

(
u
v

)∗
d

dt

∣∣∣
t=0

(
0 A− γ(t)I

(A− γ(t)I)∗ 0

)(
u
v

)
(
u
v

)∗(
u
v

)
= − 1

2 Re(ν u∗v) = 1
2ρRe(νe−iθ).

This shows that ν = eiθ is the unique direction of steepest ascent, which is orthogonal to
the level set ∂Λε(A) and points out of Λε(A). Hence, eiθ is the outer normal to ∂Λε(A)
at λ.

We set x = −e−iθu and y = v, which gives us a pair of left and right eigenvectors of
A+∆ with x∗y = ρ > 0. We then have

∆ = −εuv∗ = εeiθxy∗,

which proves the result. ⊓⊔

As we will see, Lemmas 1.2 and 1.4 motivate different approaches to computing the
boundary of the complex ε-pseudospectrum (or just extremal points such as a rightmost
point): methods that steer the smallest singular value of A − λI to ε, and methods that
iterate on rank-1 matrices.
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III.1.3 Real and structured pseudospectra

For real and structured pseudospectra, there is apparently no characterization in terms of
singular value decompositions. Nevertheless, there are analogues of Lemma 1.4 at least
at boundary points λ ∈ ∂ΛS

ε (A) where the boundary is differentiable and thus admits an
outer normal eiθ.

Lemma 1.5 (Extremal real perturbations). Let λ ∈ ∂ΛR
ε (A) be on a smooth section oflem:Delta-R

the boundary, with outer normal eiθ at λ. Let ∆ ∈ Rn,n of Frobenius norm ε be such that
A+∆ has λ as a simple eigenvalue. Let x and y be left and right eigenvectors of A+∆
to the eigenvalue λ, of unit norm and with x∗y > 0. If the matrix Re(eiθxy∗) is non-zero,
then

∆ = εαRe(eiθxy∗),

where α = 1/∥Re(eiθxy∗)∥F > 0. In particular, ∆ is of rank at most 2.

We note that the condition Re(eiθxy∗) ̸= 0 excludes sections of ∂ΛR
ε (A) that consist

of intervals on the real line.

Proof. The proof is based on Section II.2.2, in particular (II.2.8). In the proof we denote
the given λ ∈ ∂ΛR

ε (A) as λ0 and use λ to denote a complex variable. Similarly, we denote
the matrix∆ in the statement of the lemma by∆0 and use∆ for a generic matrix in Rn,n.

We set µ = λ0 + δeiθ with a small δ > 0. For the function

f(λ, λ) = |µ− λ|2 = (µ− λ)(µ− λ)

we consider the optimization problem (II.2.1) with λ(A+∆) denoting the eigenvalue of
A+∆ closest to λ0, which has∆0 = εE0 with ∥E0∥ = 1 as a solution, and λ(A+∆0) =
λ0. In particular, E0 is then a stationary point of the gradient system (II.2.6), and hence
satisfies (II.2.8) with a negative factor as in (II.1.17), which yields that ∆0 has the stated
form, with α a negative multiple of ∂f/∂λ(λ0, λ0) = −(µ − λ0) = −δeiθ ̸= 0. This
holds under the condition that the gradient G = Re(−δeiθxy∗) is non-zero. ⊓⊔

Lemma 1.6 (Extremal structured perturbations). Let λ ∈ ∂ΛS
ε (A) be on a smoothlem:Delta-S

section of the boundary, with outer normal eiθ at λ. Let ∆ ∈ S of Frobenius norm ε be
such that A+∆ has λ as a simple eigenvalue. Let x and y be left and right eigenvectors
of A +∆ to the eigenvalue λ, of unit norm and with x∗y > 0. If the matrix ΠS(eiθxy∗)
is non-zero, where ΠS is the orthogonal projection (II.3.3) onto S, then

∆ = εαΠS(eiθxy∗),

where α = 1/∥ΠS(eiθxy∗)∥F > 0.

Proof. The proof is analogous to that of Lemma 1.5, using now the structure-constrained
gradient flow and the characterization of its stationary points of Section II.3.3. ⊓⊔
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III.2 Computing the pseudospectral abscissa
sec:psa

As we have seen in the previous section, knowing the ε-pseudospectral abscissa αε(A)
is important for ensuring robust stability of a linear dynamical system. Various intriguing
algorithms based on different ideas have been proposed to compute the complex pseu-
dospectral abscissa:

• the criss-cross algorithm of Burke, Lewis & Overton (2003), which is based on Theo-
rem 1.2 and on Byers’ Lemma given below;

• the rank-1 iteration of Guglielmi & Overton (2011), which is based on Lemma 1.4;
• the rank-1 projected gradient flow algorithm of Guglielmi & Lubich (2011); see Sec-

tion II.1 with f(λ, λ) = − 1
2 (λ+ λ) = −Reλ;

• the subspace method of Kressner & Vandereycken (2014).

With the adaptations of Sections II.2 and II.3, the low-rank projected gradient flow ap-
proach can also be used for computing real and structured pseudospectral abscissas.

III.2.1 Criss-cross algorithm
subsec:criss-cross

This remarkable algorithm was proposed and analysed by Burke, Lewis & Overton
(2003). It uses a sequence of vertical and horizontal searches in the complex plane to
identify the intersection of a given line with ∂Λε(A). Horizontal searches yield updates
to the approximation of αε(A) while vertical searches find favourable locations for the
horizontal searches.

The criss-cross algorithm computes a monotonically growing sequence (αk) that con-
verges to the complex ε-pseudospectral abscissa αε(A). In its basic form, it can be written
as follows:

0. Initialize α0 = max{Reλ : λ ∈ Λ(A)}.
1. For k = 0, 1, 2, . . . iterate
1.1 (Vertical search)

Find all real numbers βj , in increasing order for j from 0 to m,

such that αk + iβj ∈ ∂Λε(A). (2.1) cc-vertical

1.2 (Horizontal search) For j = 0, . . . ,m− 1,

let the midpoint βj+1/2 = 1
2 (βj + βj+1);

if αk + iβj+1/2 ∈ Λε(A), find the largest real number α̂j+1/2

such that α̂j+1/2 + iβj+1/2 ∈ ∂Λε(A) . (2.2) cc-horizontal

1.3 Take αk+1 as the maximum of the α̂j+1/2.

To turn this into a viable algorithm, (2.1) and (2.2) need to be computed efficiently. This
becomes possible thanks to the following basic lemma, applied to A for (2.1) and to the
rotated matrix iA for (2.2).
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Lemma 2.1 (Byers’ Lemma). Let A ∈ Cn,n. For given real numbers α and β, the num-lem:byers
ber ε > 0 is a singular value of the matrix

A− (α+ iβ)I

if and only if iβ is an eigenvalue of the Hamiltonian matrix

H(A,α) =

(
−(A− αI)∗ εI

−εI A− αI

)
. (2.3) eq:H

Proof. After taking A− αI in the role of A, we can assume α = 0 in the following. The
imaginary number iβ is an eigenvalue of the Hamiltonian matrix (2.3) if and only if there
exist nonzero vectors u and v such that(

−A∗ εI
− εI A

)(
u
v

)
= iβ

(
u
v

)
. (2.4) eq:eigH

This is equivalent to

(A− iβI)
∗
u = εv, (A− iβI) v = εu, (2.5) eq:uv

which expresses that ε is a singular value of A− iβI . ⊓⊔

Using Lemma 2.1, the vertical search (2.1) is done by computing all purely imaginary
eigenvalues iβ of the Hamiltonian matrix and discarding those eigenvalues among them
for which ε is not the smallest singular value of A − (αk + iβ)I . The horizontal search
(2.2) is done by computing the purely imaginary eigenvalue iα̂j+1/2 of largest imaginary
part of the Hamiltonian matrix that corresponds to the matrix iA in the role of A and
−βj+1/2 in the role of α. The method is written in pseudocode in Algorithm 3.

The computational cost of an iteration step of the criss-cross algorithm is thus deter-
mined by computing imaginary eigenvalues of complex Hamiltonian 2n × 2n matrices.
All imaginary eigenvalues are needed in the vertical search and the ones of largest imag-
inary part in the horizontal search. In addition, the smallest singular values of complex
n× n matrices need to be computed to decide if a given complex number is in Λε(A).

An illustration is given in Fig. 7 for the 6× 6 matrix given in (II.1.36).

Unconditional convergence. As the following theorem by Burke, Lewis & Overton
(2003) shows, the sequence generated by the criss-cross algorithm always converges to
the ε-pseudospectral abscissa.

Theorem 2.2 (Convergence of the criss-cross algorithm). For every matrix A ∈ Cn,n,thm:cc-conv
the sequence (αk) of the criss-cross algorithm converges to the pseudospectral abscissa
αε(A).

Proof. By construction, the sequence (αk) is a monotonically increasing sequence of
real parts of points on ∂Λε(A), and it is bounded as Λε(A) is bounded. Therefore, (αk)
converges to a limit α⋆, which is the real part of some point on ∂Λε(A). Hence, α⋆ ≤
αε(A). It remains to show that actually α⋆ = αε(A).
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Fig. 2.1. Iterates of the criss cross algorithm applied to the matrix A of (1.36) and ε = 1. Right
picture: zoom close to a rightmost point
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Algorithm 3: Criss-cross algorithm
Data: Matrix A, ε > 0, tol a given positive tolerance
Result: αε(A)
begin

1 Set k = 1, α0 = α(A)

while αk − αk−1 > tol do
2 Vertical iteration.
3 Find all imaginary eigenvalues {β̂j} of H(A,αk) (see (2.3)) and collect those for

which ε is the smallest singular value of A− (αk + iβ̂j) as {βj}mj=0,

β0 ≤ β1 ≤ β2 ≤ . . . ≤ βm−1 ≤ βm.

4 Horizontal iteration.
for j = 0, . . . ,m− 1 do

5 Compute the midpoints βj+1/2 =
βj + βj+1

2
Find the highest imaginary eigenvalue (i.e. with largest imaginary part)
iαj+1/2 of H(iA, βj+1/2) (see (2.3))

6 Set k = k + 1

7 Set αk+1 = max
j=0,...,m−1

αj+1/2

alg_cc

To this end, we use the fact that every path-connected component of Λε(A) contains
an eigenvalue of A. This is readily seen as follows: For any λ1 ∈ Λε(A), there exists a
matrix∆ ∈ Cn,n of norm at most ε such that λ1 is an eigenvalue ofA+∆. Consider now
the path A + θ∆, 0 ≤ θ ≤ 1. By the continuity of eigenvalues, to this path corresponds
a path of eigenvalues λ(θ) of A + θ∆ with λ(1) = λ1, which connects λ1 with the
eigenvalue λ(0) of A.

Suppose α⋆ < αε(A). We lead this to a contradiction. Let λ1 ∈ Λε(A) be such that
Reλ1 = αε(A). Then there is a path λ(θ) to an eigenvalue λ0 ofA, which by construction
has a real part that does not exceed α0 and hence is smaller than α⋆. So there exist 0 <
θ⋆ < 1 such that λ(θ⋆) ∈ Λθ⋆ε(A) has real part α⋆, so that λ(θ⋆) = α⋆ + iβ⋆ for some
real β⋆. There exists a smallest interval [β0, β1] that contains β⋆ and has boundary points
such that α⋆+iβ0, α

⋆+iβ1 ∈ ∂Λε(A). Then, the points α⋆+iβ with β0 < β < β1 are in
the interior of Λε(A), and in particular this holds true for the midpoint β = 1

2 (β0 + β1).
Hence there exists an α > α⋆ such that α + iβ ∈ ∂Λε(A). But then, also the criss-cross
algorithm would have found an αk > α⋆, in contradiction to the maximality of α⋆. So we
must have α⋆ = αε(A). ⊓⊔

Locally quadratic convergence. We here show that the criss-cross algorithm converges
locally quadratically under the following regularity assumption:

At every right-most point of the ε-pseudospectrum of A, the
boundary curve ∂Λε(A) is smooth with nonzero curvature. (2.6) right-reg
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This condition is stronger than the condition of a simple smallest singular value ofA−λI
at right-most points λ ∈ Λε(A) imposed by Burke, Lewis & Overton (2003), but it allows
for a short proof of locally quadratic convergence.

Theorem 2.3 (Locally quadratic convergence of the criss-cross algorithm). Underthm:cc-conv-quad
condition (2.6), the sequence (αk) of the criss-cross algorithm converges locally quadrat-
ically to α⋆ = αε(A) :

0 ≤ α⋆ − αk+1 ≤ C(α⋆ − αk)2,

where C is independent of k, provided that αk is sufficiently close to α⋆.

Proof. Near a right-most boundary point α⋆ + iβ⋆ of Λε(A), boundary points α+ iβ are
related by

α⋆ − α = f(β) = c2(β⋆ − β)2 +O((β⋆ − β)3),

where c ̸= 0 by condition (2.6). For the variables η = α⋆ − α and ξ = c(β⋆ − β) this
relation becomes

η = φ(ξ) = ξ2 +O(ξ3).

For a small δ > 0, let now ξ+ = δ and choose ξ− = −δ + O(δ2) such that φ(ξ−) =
φ(ξ+) = δ2(1 +O(δ)). Then,

1
2 (ξ+ + ξ−) = O(δ2) and hence φ

(
1
2 (ξ+ + ξ−)

)
= O(δ4),

which yields
φ
(
1
2 (ξ+ + ξ−)

)
≤ Cφ(ξ+)

2.

Translated back to the original variables, this yields the stated result. ⊓⊔

III.2.2 Iteration on rank-1 matrices
subsec:r1-iteration

Guglielmi and Overton (2011) proposed a strikingly simple iterative algorithm for com-
puting the pseudospectral abscissa that uses a sequence of rank-1 perturbations of the
matrix. Working with rank-1 perturbations appears natural in view of Lemma 1.4. More-
over, this lemma (with θ = 0) shows that at a point λ ∈ ∂Λε(A) such that Reλ = αε(A),
where the outer normal is horizontal to the right, the corresponding matrix perturbation
∆ of norm ε is such that ∆ = εxy∗, where x and y are left and right eigenvectors, of
unit norm and with xy∗ > 0, to the eigenvalue λ of A+∆. This motivates the following
fixed-point iteration.

Basic rank-1 iteration. The basic iteration starts from two vectors u0 and v0 of unit
norm and runs as follows for k = 0, 1, 2, . . . :

Given a rank-1 matrix Ek = ukv
∗
k of unit norm, compute the rightmost eigenvalue λk

of A + εEk and left and right eigenvectors xk and yk, of unit norm and with x∗kyk > 0,
and set Ek+1 = uk+1v

∗
k+1 := xky

∗
k.

Algorithm 4 gives a formal description. This algorithm requires in each step one
computation of rightmost eigenvalues and associated eigenvectors of rank-1 perturba-
tions to the matrix A, which can be computed at relatively small computational cost for
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large sparse matrices A, either combining the Cayley transformation approach with the
Sherman-Morrison formula or by using an implicitly restarted Arnoldi method (as imple-
mented in ARPACK and used in the MATLAB function eigs).

Algorithm 4: Rank-1 iteration
Data: Matrix A, ε > 0, tol a given positive tolerance
Result: r ≤ αε(A), x, y
begin

1 Compute x0 and y0 left and right eigenvectors to the rightmost eigenvalue of A, both
normalized to unit norm and with x∗

0y0 > 0.
2 Let r−1 = −∞
3 Compute x0, y0, left and right eigenvectors to the rightmost eigenvalue λ0 of A, with

x0, y0 of unit norm such that x∗
0y0 > 0

4 Set r0 = Re(λ0)
5 Set k = 0

while rk − rk−1 > tol do
6 Compute xk+1, yk+1, left and right eigenvectors to the rightmost eigenvalue λk+1

of A+ εEk, Ek = xky
∗
k , with xk, yk of unit norm such that x∗

kyk > 0
7 Set k = k + 1
8 Set rk = Re(λk)

9 Set r = rk
10 Set x = xk, y = yk

alg_GO

An illustration is given in Fig. 10 for the 6× 6 matrix (1.36).
The expectation is that Reλk converges to the ε-pseudospecral abscissa αε(A), as

is observed in numerical experiments. Indeed, if the iteration converges, λk → λ and
xk → x, yk → y, then x, y are of unit norm with x∗y > 0 and

x, y are left and right eigenvectors to the rightmost eigenvalue λ of A+ εxy∗. (2.7) stat-lim

This implies (A− λI)y = −εx and x∗(A− λI) = −εy∗, which shows that A− λI has
the singular value ε (as is required for having λ ∈ ∂Λε(A) by (1.7)) — though ε is here
not known to be the smallest singular value. Furthermore the gradient of the associated
singular value is x∗y > 0, that is, the gradient is horizontal to the right in the complex
plane. By Lemma 1.4, this implies that λ ∈ ∂Λε(A) with outer normal 1 if ε is indeed the
smallest singular value of A− λI .

Moreover, in the interpretation of Theorem II.1.5 and Remark II.1.8, the property (2.7)
implies that E = xy∗ is a stationary point (though not necessarily a maximum) of the
eigenvalue optimization problem to find

arg max
∥E∥F≤1

Reλ(A+ εE), (2.8) eigopt-psa

i.e. Problem (II.1.1) with f(λ, λ) = −Reλ.
There exist no results about global convergence of the rank-1 iteration. Local linear

convergence can be shown for a sufficiently small ratio of the two smallest singular values,
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ε/σn−1(A − λI), by studying the derivative of the iteration map at a stationary point.
This requires bounds of derivatives of eigenvectors using appropriate representations of
the group inverse, as laid out in the Appendix (and used later in this book).

Monotone rank-1 iteration. The simple rank-1 iteration described above is not guaran-
teed to yield a monotonically increasing sequence (Reλk). Guglielmi and Overton (2011)
also proposed a monotone variant that is described in the following.

For given vectors u, v of unit norm, we start from the rank-1 perturbation A + εuv∗

with rightmost eigenvalue λ0, assumed to be simple. Let x, y be left and right eigenvectors
associated with λ0, of unit norm and with x∗y > 0. We still have a further degree of
freedom in scaling x and y, i.e. choosing the argument of the complex numbers α = u∗x
and β = v∗y of fixed modulus.

— If |α| ≥ |β|, then we scale x such that α is real and positive. Since we require
x∗y > 0, this also determines y uniquely.

— If |α| < |β|, then we scale y such that β is real and positive. Since we require
x∗y > 0, this also determines x uniquely.

With this particular scaling, we consider, for 0 ≤ t ≤ 1, a family of matrices

B(t) = A+ εp(t)q(t)∗, 0 ≤ t ≤ 1, (2.9) eq:B

that interpolates between A+ εuv∗ at t = 0 and A+ εxy∗ at t = 1:

p(t) =
tx+ (1− t)u

∥tx+ (1− t)u∥
, q(t) =

ty + (1− t)v

∥ty + (1− t)v∥
. (2.10) eq:xyt

The following lemma will allow us to formulate a rank-1 iteration with monotonically
increasing Reλk.

Lemma 2.4 (Monotonicity near t = 0). Let B(t), 0 ≤ t ≤ 1, be defined as above withlem:loc-mon
the stated scaling of the eigenvectors. Let λ(t), 0 ≤ t ≤ 1, be the continuous path of
eigenvalues of B(t) with λ(0) = λ0. If λ0 is a simple eigenvalue of A + εuv∗, then λ(t)
is differentiable at 0 and

Re λ̇(0) ≥ 0.

The inequality is strict except in the following two cases:

1. α = β = 1;
2. α and β are both real, of equal modulus and opposite sign.

Proof. By the standard perturbation theory for simple eigenvalues we have, with κ =
1/(x∗y) > 0,

λ̇(0) =
x∗Ḃ(t)y

x∗y
= εκ

(
x∗
(
ṗ(0)q(0)∗ + p(0)q̇(0)∗

)
y
)
.

We find p(0) = u, q(0) = v and

ṗ(0) = (x− u)− uRe(u∗(x− u)) = x− uRe(u∗x) = x− uReα, q̇(0) = y − vReβ
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This yields

Re λ̇(0) = εκRe
(
x∗(x− uReα)v∗y + x∗u(y − vReβ)∗y

)
= εκ

(
Reβ − ReαRe(αβ) + Reα− Re, β Re(αβ)

)
,

that is,
Re λ̇(0) = εκ (1− Re(αβ)) (Reα+ Reβ) . (2.11) dot-lambda-ab

With our scaling, the right-hand side is positive except in Case 1. oder 2., where it van-
ishes. ⊓⊔

Algorithm 5: Rank-1 iteration: monotone version
Data: Matrix A, ε > 0, tol a given positive tolerance
Result: r ≤ αε(A), x, y
begin

1 Compute x0 and y0 left and right eigenvectors to the rightmost eigenvalue of A, both
normalized to unit norm and with x∗

0y0 > 0.
2 Let r−1 = −∞
3 Compute x0, y0, left and right eigenvectors to the rightmost eigenvalue λ0 of A, with

x0, y0 of unit norm such that x∗
0y0 > 0

4 Set r0 = Re(λ0)
5 Set k = 0

while rk − rk−1 > tol do
6 Compute xk+1, yk+1, left and right eigenvectors to the rightmost eigenvalue λk+1

of A+ εEk, Ek = xky
∗
k , with xk, yk of unit norm such that x∗

kyk > 0
7 Set λ = λk+1

8 Set t = 1
repeat

9 Set t = t/2
10 Compute x(t), y(t) according to (2.10)
11 Compute λ(t)

until Reλ > Reλk

12 Set xk+1 = x(t), yk+1 = y(t)
13 Set k = k + 1
14 Set rk = Re(λk)

15 Set r = rk, x = xk, y = yk
16 Halt

alg_GOM

Lemma 2.4 guarantees that Re λ(t) > Re λ(0) for sufficiently small t. Hence the idea
is that to perform zero or more times the computation of the rightmost eigenvalue λ(t) of
(2.9)-(2.10) until

Re λ(t) > Re λ(0) +
t

2
Re λ̇(0)

with Re λ̇(0) given by (2.11), replacing t by t/2 until the inequality is fulfilled.
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In the kth iteration step, starting from (u, v) = (uk, vk) and λ(0) = λk, we determine
in this way t > 0 such that Re λ(t) satisfies the above condition and then set λk+1 = λ(t)
and (uk+1, vk+1) = (p(t), q(t)). The sequence of the real parts of the eigenvalues Reλk
is then monotonically increasing. In more detail, the variant is formulated in Algorithm 5.
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Fig. 2.3. The outer curve is the boundary of the pseudospectrum Λε(A) and the inner curve is the
ε-level set of σn−1(A− zI).fig:extsv

Theorem 2.5 (Convergence of the monotone rank-1 iteration). If the iteration se-th:convmon
quence stays away from Case 2 in Lemma 2.4, then the monotone rank-1 iteration con-
verges to a stationary point of the eigenvalue optimization problem (2.8), i.e., the limits

λ = lim
k→∞

λk, u = lim
k→∞

uk, v = lim
k→∞

vk
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exist, and the stationarity condition (2.7) is satisfied. In particular, ε is a singular value
of A− λI with left and right singular vectors u and v. If ε is the smallest singular value,
then λ ∈ ∂Λε(A) with horizontal rightward outer normal.

We note that near a stationary point (2.7), where α = β = 1, Case 2 in Lemma 2.4
cannot occur.

Proof. Since the sequence (Reλk) is monotonically increasing and bounded, it con-
verges. This implies that in the limit, both sides of (2.11) are zero, and hence one of
the two cases 1 or 2 in Lemma 2.4 must avail in the limit. By assumption, we have ex-
cluded the exceptional Case 2. In the remaining Case 1, α = β = 1 in the limit, i.e. u = x
and v = y in the limit, and hence the iteration converges and the stationarity condition
(2.7) is fulfilled. As noted before, this implies the further statements. ⊓⊔

Figure 2.3 shows the ε-pseudospectrum of the matrix A in (1.36) for ε = 1 as well as
the ε-level set of σn−1(A− zI) (the inner curve).

The locally rightmost points to which the algorithms may converge are given by the
4 points emphasized. The blue ??? ones are locally attractive while the red ??? ones are
locally unstable.

III.2.3 Discretized rank-1 matrix differential equation

A different iteration on rank-1 matrices results from the rank-1 projected gradient system
of Section II.1.7 for the minimization function f(λ, λ) = − 1

2 (λ + λ) = −Reλ after
discretization as in Section II.1.8 (see Algorithm II.1), as was first proposed similarly by
Guglielmi & Lubich (2011), though with a different time stepping method. The so ob-
tained rank-1 iteration yields a sequence of rank-1 matrices Ek = ukv

∗
k of unit norm and

a sequence of eigenvalues λk ∈ Λε(A) of A+ εEk with monotonically growing real part,
which converges to a stationary point (2.7); see Theorems II.1.15 and Remark II.1.16, and
also Lemma II.1.18 for the splitting method. The computational cost per step is essentially
the same as in the rank-1 iterations of the previous subsection. A numerical example was
already presented in Section II.1.8.

Conceptually, the approach of first deriving a suitable differential equation and then
using an adaptive time-stepping to arrive at a stationary point is different from directly
devising an iteration. Different tools are available and made use of in the two approaches.
For example, the tangent space of the manifold of rank-1 matrices is a natural concept
in the time-continuous setting though not so in the time-discrete setting. This enhanced
toolbox results in efficient algorithms that would not be obtained from a purely discrete
viewpoint.

III.2.4 Acceleration by a subspace method

Kressner and Vandereycken (2014) proposed a subspace method to accelerate the basic
rank-1 iteration described in Subsection III.2.2. For the subspace expansion, they essen-
tially do a step of Algorithm 4 and add the obtained eigenvector to the subspace. Along the
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way they compute orthonormal bases Vk ∈ Cn×k of nested subspaces. A key element is
the computation of the rightmost point of the ε-pseudospectrum of the rectangular matrix
pencil AVk − λVk in place of A− λI ,

Λε(AVk, Vk) = {λ ∈ C : σmin(AVk − λVk) = ε}.

These pseudospectra are nested: Λε(AVk, Vk) ⊂ Λε(AVk+1, Vk+1) ⊂ Λε(A). The right-
most point of Λε(AVk, Vk) is computed by a variant of the criss-cross algorithm. The
basic algorithm is given in Algorithm 6.

Algorithm 6: Subspace method.
Data: Matrix A, ε > 0
Result: Approximation µα to a locally rightmost point of Λε(A).
begin

1 Compute the rightmost eigenvalue λ0 and normalized right eigenvector y0 of A.
2 Set V̂1 = y0.
3 for k = 1, 2, . . . until converged do
4 Compute the rightmost point µk of Λε(AVk, Vk).
5 Compute left/right singular vectors uk and vk to σmin(A− µkI). Set

Ek = −ukv
∗
k .

6 Compute the rightmost eigenvalue λk and right eigenvector yk of A+ εEk.
Compute Vk+1 = orth([Vk, yk]).

7 Set µα = µk.
alg:KV-subspace

Kressner and Vandereycken (2014) show that the sequence (µk) grows monotonically, as
a consequence of the growth of the nested subspaces. A simplified version of the algo-
rithm, where the right singular vector vk instead of the right eigenvector yk is added to
the subspace, is shown to converge locally superlinearly to the pseudospectral abscissa.

III.3 Tracing the boundary of the pseudospectrum
sec:ps-tracing

In this section we describe two algorithms for boundary tracing. While there exist path-
following methods to obtain pseudospectral contours (e.g. those implemented in Eigtool),
the computation becomes expensive for large matrices. Here we use instead the low-rank
structure of the extremal perturbations, which allows us to treat also large sparse matrices
efficiently; see Section II.1.6.

We present two algorithms. The first algorithm, to which we refer as the tangen-
tial/transversal algorithm, makes use of a combination of the differential equation (II.1.25)
and a similar differential equation that moves eigenvalues horizontally to the boundary.
The second algorithm, which we call the ladder algorithm, aims to compute, for an iter-
atively constructed sequence of points outside the ε-pseudospectrum, the corresponding
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nearest points in the ε-pseudospectrum. Both algorithms require repeatedly the compu-
tation of the eigenvalue of a rank-1 perturbation to A that is nearest to a given complex
number. This can be done efficiently also for large matrices, using inverse power iteration
combined with the Sherman-Morrison formula.

The ladder algorithm extends readily to real and structured pseudospectra, for which
the few algorithms proposed in the literature (as implemented in Seigtool) are restricted to
just a few structures and turn out to be extremely demanding from a computational point
of view.

III.3.1 Tangential/transversal algorithm

The algorithm alternates between a time step for the system of differential equations
(II.1.25) and the following system of differential equations for vectors u(t) and v(t) of
unit norm. This second system is a simplified variant of (II.1.25) for G = −xy∗, where x
and y are left and right eigenvectors, respectively, both of unit norm and with x∗y > 0, of
an eigenvalue λ of the rank-1 perturbed matrix A+ εuv∗:

u̇ = (I − uu∗)xy∗v

v̇ = (I − vv∗)yx∗u.
(3.1) ode-hor

The system preserves the unit norm of u and v, since u∗u̇ = 0 and v∗v̇ = 0. As we show
in the next lemma, the system has the property that for a path of simple eigenvalues λ(t)
of A+ εu(t)v(t)∗, the derivative λ̇(t) is real and positive, continuing to a stationary point
where A−λI has the singular value ε. By Theorem 1.2 it therefore stops at the boundary
∂Λε(A) when ε is the smallest singular value. While in theory, a trajectory might stop at
an interior point where the singular value ε is not the smallest one, this appears to be an
unstable case that is not observed in computations.

Lemma 3.1 (Horizontal motion of an eigenvalue). Along a path of simple eigenvalueslem:hor-motion
λ(t) of A+ εu(t)v(t)∗, where u, v of unit norm solve (3.1), we have that

λ̇(t) is real and positive for all t.

In the limit λ⋆ = limt→∞ λ(t), the matrix A− λ⋆I has the singular value ε.

Proof. The standard perturbation theory of eigenvalues shows that

λ̇ =
x∗ d

dt (A+ εuv∗) y

x∗y
= ε

x∗ (u̇v∗ + uv̇∗) y

x∗y
.

With α = u∗x and β = v∗y, we obtain

λ̇ =
ε

x∗y

(
|α|2 · ∥y − βv∥2 + |β|2 · ∥x− αu∥2

)
∈ R, ≥ 0.

In a stationary point of (3.1), u and x are collinear, and so are v and y. It follows that
uv∗ = eiθxy∗ for some real θ. We thus have
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(A+ εeiθxy∗)y = λy, x∗(A+ εeiθxy∗) = λx∗,

or equivalently
(A− λI)y = εeiθx, (A− λI)∗eiθx = εy,

which states that eiθx and y are left and right singular vectors to the singular value ε
of A− λI . ⊓⊔

While (3.1) moves eigenvalues horizontally to the right, the differential equation (II.1.25)
moves an eigenvalue on the boundary along a path that starts tangentially to the boundary,
as is shown by the following lemma.

Lemma 3.2 (Tangential motion of an eigenvalue from the boundary). Let λ0 ∈lem:tang-motion
∂Λε(A) be on a smooth section of the boundary, with outer normal eiθ at λ0 for
0 < |θ| ≤ π/2. Let u0 and v0 of unit norm be such that A + εu0v

∗
0 has λ0 as a simple

eigenvalue. Let u(t) and v(t) be solutions of the system of differential equations (II.1.25)
with G = −xy∗ with initial values u0 and v0. Then, the path of eigenvalues λ(t) of
A+ εu(t)v(t)∗ with λ(0) = λ0 has λ̇(0) ̸= 0 and

λ̇(0) is tangential to ∂Λε(A) at λ0.

Proof. By Lemma 1.4, we have u0v∗0 = eiθx0y
∗
0 . We then find, inserting (II.1.25) for u̇

and v̇,

λ̇(0) =
x∗0

d
dt

∣∣
t=0

(A+ εu(t)v(t)∗) y0

x∗0y0

=
ε

x∗0y0
x∗0
(
u̇(0)v(0)∗ + u(0)v̇(0)∗

)
y0

=
ε

x∗0y0
i Im(u∗0x0y

∗
0v0)x

∗
0u0v

∗
0y0

=
ε

x∗0y0
i Im(e−iθ) eiθ.

Since x∗0y0 > 0, we find that λ̇(0) points into the tangential direction −i eiθ sign(θ). ⊓⊔

Description of the algorithm. Lemmas 3.1 and 3.2 motivate the following algorithm
for tracing the boundary of the ε-pseudospectrum Λε(A). Suppose that λ0 is a simple
eigenvalue of A + εu0v

∗
0 lying on a smooth section of the boundary ∂Λε(A), with a

priori unknown outer normal eiθ0 . By Lemma 1.4, u0v∗0 = eiθ0x0y
∗
0 , where x0 and y0 are

left and right eigenvectors of A+ εu0v
∗
0 , both of unit norm and with x∗0y0 > 0. This fact

allows us to determine the outer normal as

eiθ0 =
|u∗0v0|
u∗0v0

. (3.2) normal-theta

We first consider the tangential differential equation (II.1.25) with G = −xy∗ for the
rotated matrix ie−iθ0A, which leads us to the case θ = π/2 in Lemma 3.2. We make
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Algorithm 7: Tangential/transversal algorithm for tracing the boundary of the
ε-pseudospectrum

Data: Matrix A, initial vectors u, v of unit norm such that the eigenvalue λ of A+ εuv∗

lies on ∂Λε(A), stepsize h, number N of desired boundary points, tol a given
positive tolerance

Result: vector Γ of N consecutive boundary points
begin

for i=1,. . . ,N do
1 Set ζ = u∗v/|u∗v|
2 Compute the approximate solution ũ1, ṽ1 of (II.1.25) for the rotated matrix iζA

with initial data iζu, v doing a single normalized Euler step of size h
3 Let u0 = −iũ1, v0 = ṽ1

for k = 1, 2, . . . until convergence do
4 Compute the approximate solution uk, vk of (3.1) for the rotated matrix ζA

with adaptive stepsize hk (as in Section II.1)
5 Compute the rightmost eigenvalue λk of ζA+ εuk v

∗
k

6 Set u = uk/ζ, v = vk
7 Store λk/ζ into Γ

alg_1

a time step of stepsize h with the splitting method presented in Chapter II, followed by
normalization of u and v; at t1 = t0 + h this yields a rank-1 matrix Ẽ1 = ũ1ṽ

∗
1 of unit

norm. (Note that this step does not require to actually compute the rotated matrix.) Since
λ̇(t0) is tangential to the boundary ∂Λε(A) at λ0, the eigenvalue λ̃1 of A + εẼ1 lies in
Λε(A) and is O(h2) close to the boundary.

With initial values ũ1, ṽ1 we then consider the differential equation (3.1) for the ro-
tated matrix e−iθ0A in order to reach the boundary with a horizontal trajectory. We in-
tegrate (3.1) until we stop at a stationary point E1 = u1v

∗
1 . There, a singular value of

A − λI equals ε (by Lemma 3.1), which takes us to the boundary ∂Λε(A) provided we
start sufficiently close to it.

We then continue the above alternating integration from λ1 ∈ ∂Λε(A) and the asso-
ciated vectors u1, v1.

The algorithm as described computes a part of ∂Λε(A) to the right of λ0. To go to the
left, we change the direction of time in the tangential differential equation (II.1.25), i.e.,
we take a negative stepsize h.

Numerical experiment.

To be discussed.
We consider again the 6× 6 random matrix (1.36) with ε = 1.
We obtain the result in Figure 3.1.
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Fig. 3.1. In the left picture the ε-pseudospectrum and a section of its boundary (in blue) determined
by the tangential transversal Algorithm 7 for the random matrix (1.36) and the value ε = 1.fig:tt

III.3.2 Ladder algorithm

As in the previous algorithm, let λ0 ∈ ∂Λε(A) be a simple eigenvalue ofA+εu0v
∗
0 (with

u0 and v0 of unit norm) that lies on a smooth section of ∂Λε(A), with outer normal eiθ0
at λ0 obtained from (3.2).

With a small distance δ > 0, we define the nearby point µ0 on the straight line normal
to ∂Λε(A) at λ0,

µ0 = λ0 + δeiθ0 .

We add a tangential component, either to the left (+) or to the right (−),

µ1 = µ0 ± iδeiθ0 .

We then apply the eigenvalue optimization algorithm of Section II.1 for the function
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Algorithm 8: Ladder algorithm for tracing the boundary of the ε-
pseudospectrum

Data: Matrix A, initial vectors u, v of unit norm such that the eigenvalue λ of A+ εuv∗

lies on ∂Λε(A), step size δ, number N of desired boundary points, tolerance
tol > 0

Result: vector Γ of N consecutive boundary points
begin

for i=1,. . . ,N do
1 Set ζ = u∗v/|u∗v|
2 Set µ = λ+ (1− i)δ/ζ
3 Compute the nearest point to µ on ∂Λε(A) by the rank-1 eigenvalue optimization

algorithm of Section II.1 for minimizing the function f(λ, λ) = |λ− µ|2, with u
and v as the starting iterate and with the tolerance parameter tol. This yields an
update of u, v and λ.

4 Store λ into Γ .
alg_2

f(λ, λ) = (λ− µ1)(λ− µ1) = |λ− µ1|2,

choosing E0 = u0v
∗
0 as the starting iterate. That algorithm aims to compute u1 and v1 of

unit norm such that A + εu1v
∗
1 has the boundary point λ1 ∈ ∂Λε(A) nearest to µ1 as an

eigenvalue. At the point λ1 we have the outer normal (µ1 − λ1)/|µ1 − λ1|.
We continue from λ1 and u1, v1 in the same way as above, constructing a sequence

λk (k ≥ 1) of points on the boundary of the pseudospectrum Λε(A) with approximate
spacing δ.

Remark 3.3. The points λk and µk and the straight lines between them form the “rope
ladder” along the boundary of the pseudospectrum to which the name of the algorithm
refers. We climb up or down on this ladder to construct the sequence of boundary points.

Remark 3.4. If the curvature of the boundary is larger than 1/δ, then it may happen that
µk gets to lie inside Λε(A), and the algorithm will find λk = µk. In such a situation, the
step size δ needs to be reduced.

Numerical experiment. We apply the ladder algorithm to the matrix A in (II.1.36), for
which the curvature of the ε-pseudospectrum is moderate. Making use of a circular arc
external to the ε-pseudospectral contour allows for an accurate computation of a section
of the boundary close to the point of maximum modulus.

Algorithm 8 produces the blue curve in Figure ?? which is superimposed to the bound-
ary of the ε-pseudospectrum (computed to high accuracy by Eigtool by Wright, 2002).
The average number of steps for each horizontal computation is 5.5 for an accuracy tol-
erance tol = 10−7.

III.3.3 Tracing the boundary of structured pseudospectra
The ladder algorithm is readily extended to compute sections of the boundary of the struc-
tured ε-pseudospectrum of a given matrix. The only available tool appears to be Seigtool
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Fig. 3.2. In the left picture the ε-pseudospectrum (in orange), computed by Eigtool with ε = 1
of the matrix A in (II.1.36) and its boundary points (in blue) determined by the ladder algorithm
(Algorithm 8 ). Right picture: ε− σn(A−λI), in logarithmic scale, as a function of Re(λ) for few
points computed by the algorithm. (represented in blue in the left picture) ??)fig:1

by Kressner et al. ?, which, however, treats only a limited number of structures: the real
, the Hamiltonian and the skew Hamiltonian structure. Instead, pattern structures like
Toeplitz, Hankel, banded and in general sparse matrices are not included and there do not
exist specific algorithms to draw the associated structured pseudospectra.

Let us consider here two illustrative examples, in which we apply a structured version
of the ladder algorithm.
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Fig. 3.3. Sections of the boundary of A computed by the ladder algorithm. fig:1

III.3.4 Real pseudospectra

We consider again the real matrix in (II.1.36) and ε = 1 and are interested in computing
the boundary of the real ε-pseudospectrum

ΛR
ε (A) = {λ ∈ C : λ ∈ Λ(A+ εE) with E ∈ Rn,n, ∥E∥F ≤ 1} (3.3)

In order to do this we apply the ladder algorithm 8, that is we construct suitable control
points external to the ε-pseudospectrum and compute the closest point on its boundary.

In Figure 3.4 we show a section of the real ε-pseudospectrum of A with ε = 1.
Red points indicate control points computed by the ladder algorithm, while blue points
represent the closest boundary points of ΛR

ε (A) computed by the algorithm.
In Figure 3.5 we show the whole set of computed points on ΛR

ε (A) (left picture)
and the real ε-pseudospectrum together to the standard complex ε-pseudospectrum. Note
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that in the plot of the set ΛR
ε (A), there are two missing real segments, which are reasily

obtained interesecting the comples ε-pseudospectrum and the real axis.

III.3.5 Hamiltonian pseudospectra

Finally we show an example of real Hamiltonian ε-pseudospectrum,

ΛHam(Rn,n)
ε (H) = {λ ∈ C : λ ∈ Λ(H + εE) with E ∈ Ham(Rn,n), ∥E∥F ≤ 1}

(3.4)
where Ham(Rn,n) denotes the set of n× n (with even n) of real Hamiltonian matrices.

Let

H =


1.0 1.6 1.2 0.4
2.2 −0.6 0.4 −4.4

−4.0 −7.4 −1.0 −2.2
−7.4 6.0 −1.6 0.6

 (3.5)

and set ε = 0.4.
In Figure 3.6 we plot a section of the computed structured ε-pseudospectrum (blue

points) together with the control points (in red) computed by the ladder algorithm.
In Figure 3.7 we show the whole set of computed boundary points, which identify the

boundary of ΛHam(Rn,n)
ε (H).

In Figure 3.8 we show the classical complex ε-pseudospectrum together with the real
structured Hamiltonian ε-pseudospectrum.

III.3.6 Toeplitz pseudospectra
sec:toepps

As an illustrative case we consider the case of Toeplitz matrices, for which - as far as we
know - there are no available tools to draw structured pseudospectra and compute related
quantities. We indicate by Tk the manifold of k-diagonal Toeplitz matrices and

ΛTk
ε (A) = {λ ∈ C : λ ∈ Λ(A+ εE) with E ∈ Tk, ∥E∥F ≤ 1} (3.6)

the associated structured ε-pseudospectrum.
As an illustrative example, consider the 12× 12 penta-diagonal Toeplitz matrix

T = T5(s1, s2, d, t1, t2),∈ T5, (3.7) eq:example1

that is the matrix with elements

ai,i = d, i = 1, . . . , n

ai+1,i = s1, i = 1, . . . , n− 1

ai+2,i = s2, i = 1, . . . , n− 2

ai−1,i = t1, i = 1, . . . , n− 1

ai−2,i = t2, i = 1, . . . , n− 2.
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with entries d = −0.3, s1 = −0.1, s2 = −0.3, t1 = 2, t2 = 0.5

We wish to compute the structured ε-pseudospectrum of T for ε = 0.6,

ΛT5
ε (T ) = {λ ∈ C : λ ∈ Λ(T + εE) with E ∈ T5, ∥E∥F ≤ 1} (3.8)

The black points in Figure ?? are the spectra of 105 perturbed matrices obtained
by adding the nominal matrix (3.7) random structured perturbations with Gaussian dis-
tributed entries of Frobenius norm ε, which therefore are internal to ΛT5

ε (A).

In Figure 3.10 we plot the points in the boundary of ΛTk
ε (A) computed by the ladder

algorithm.

In Figure 3.13 we plot the control points (in red) and the the boundary points (in blue)
of a section of the set ΛT5

ε (A) computed by the ladder algorithm.

In Figure 3.12 we show both the structured and the unstructured pseudospectra.
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III.4 Notes

Pseudospectra. The standard reference for (complex unstructured) pseudospectra is the
book by Trefethen & Embree (2005). The notion of pseudospectrum was coined by Tre-
fethen (1992), but as noted there, the concept was used before under different names. The
“approximate eigenvalues” of Varah (1967) appear to be among the earliest precursors.
Interpreting approximate eigenvalues or pseudospectral values as exact eigenvalues of a
perturbed matrix is in the spirit of backward error analysis as pioneered by Wilkinson
(1965). In one of his last papers, Wilkinson (1986) considered pseudospectra under the
tentative name “fundamental inclusion domains”. Pseudospectra are of interest not only
for matrices but more generally for linear operators on Hilbert or Banach spaces; see
Trefethen (1997) and also the concise account in the book by Davies (2007), Chapter 9.

The motivating example of robust stability of a matrix (see Subsection III.1.1) was
already studied by Van Loan (1985) and Hinrichsen & Pritchard (1986a,1986b,1990).
They aim at determining the minimal norm of complex, real or structured perturbations
that turn a stable matrix into an unstable one. This yields the (complex, real or structured)
distance to instability, or stability radius, which equals the smallest perturbation size ε for
which the ε-pseudospectral abscissa becomes non-negative; this will be taken up in the
next chapter. We further refer to Qiu, Bernhardsson, Rantzer, Davison, Young & Doyle
(1995) for the real stability radius.

The use of (complex) pseudospectra together with the Cauchy integral formula to bet-
ter understand the transient behaviour of dynamical systems was suggested by Trefethen
(1992). Remark III.1.2 follows this approach, emphasizing the role of the pseudospectral
abscissa. There are close connections to the Kreiss matrix theorem (Kreiss 1962, LeVeque
& Trefethen 1984 and Spijker 1991) and to further stability bounds as given, e.g., by Lu-
bich & Nevanlinna (1991), Reddy & Trefethen (1992) and van Dorsselaer, Kraaijevanger
& Spijker (1993); see also Eisner (2010) and references therein.

The basic Theorem 1.2 and its proof via the distance to singularity are in essence
already given by Van Loan (1985) and also appear in Wilkinson (1986). Lemma 1.4 on
extremal complex perturbations is closely related to Guglielmi & Overton (2011). Lem-
mas 1.5 and 1.6 on extremal real and structured perturbations appear to be new.

Pseudospectra of matrix pencils A− λB were studied by van Dorsselaer (1997) and,
e.g., Ahmad, Alam & Byers (2010), structured pseudospectra for polynomial eigenvalue
problems by Tisseur & Higham (2001), and pseudospectra for rectangular matrices by
Wright & Trefethen (2002).

An extension of the concept of the ε-pseudospectrum of interest in control theory
is the spectral value set that consists of the eigenvalues of all matrices A + B∆(I −
D∆)−1C with given system matrices A,B,C,D of compatible dimensions and with
varying (complex or real or structured) matrices ∆ of 2-norm at most ε. This was first
considered (for D = 0) by Hinrichsen and Kelb (1993); see also Karow (2003) for a
detailed study and the book of Hinrichsen & Pritchard (2005), Chapter 5. Apart from
eigenvalues of A, the unstructured complex spectral value set contains all s ∈ C for
which the transfer matrix G(s) = C(sI − A)−1B + D has 2-norm at least ε−1; see
Guglielmi, Gürbüzbalaban & Overton (2013).
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Algorithms for computing the pseudospectral abscissa and radius. The criss-cross
algorithm of Burke, Lewis & Overton (2003) for computing the pseudospectral abscissa
relies on Byers’ lemma (Lemma 2.1), due to Byers (1988). This lemma is fundamental
in that it relates singular values of a matrix shifted along a line parallel to the imaginary
axis to the eigenvalues of a Hamiltonian matrix. This Hamiltonian connection has been
put to important and enduring use in control systems starting with the work by Boyd,
Balakrishnan & Kabamba (1989); see, e.g., Grivet-Talocia & Gustavsen (2015) and refer-
ences therein. We will encounter Hamiltonian eigenvalue optimization problems in later
chapters. Mengi & Overton (2005) extended the criss-cross algorithm to computing the
pseudospectral radius (using radial and circular searches), and Lu & Vandereycken (2017)
developed a criss-cross type algorithm for computing the real pseudospectral abscissa.
Benner & Mitchell (2019) studied criss-cross algorithms for computing the spectral value
set abscissa and radius.

The rank-1 iteration of Guglielmi & Overton (2011) for computing the pseudospectral
abscissa and radius appears to be the first algorithm that uses the low-rank property of ex-
tremal perturbations as described by Lemmas 1.4–1.6. It motivated the rank-1 projected
gradient flow algorithm of Guglielmi & Lubich (2011) for computing the pseudospectral
abscissa and radius, which opened up an approach to a wide range of eigenvalue optimiza-
tion and matrix nearness problems, as discussed throughout this book. In particular, this
low-rank matrix differential equation approach can be used to compute extremal points
of complex, real and structured pseudospectra; see Guglielmi & Lubich (2013) and Sec-
tion II.2 for the real pseudospectral abscissa and radius, Guglielmi, Kressner & Lubich
(2015) for Hamiltonian matrices, Section II.3 for general linear structures, and Guglielmi,
Kressner & Lubich (2014) for the nonlinear structure of symplectic matrices.

Subspace acceleration approaches as used by Kressner & Vandereycken (2014) also
have a much wider scope than merely computing the pseudospectral abscissa; see, e.g.,
Kangal, Meerbergen, Mengi & Michiels (2018) and Kressner, Lu & Vandereycken (2018)
for their use in other eigenvalue optimization problems.

In retrospect it appears remarkable how the modest goal of computing the pseudospec-
tral abscissa led to the discovery of diverse classes of efficient algorithms that find use in
a wide variety of other problems.

Computing the boundary of complex, real and structured pseudospectra. Trefethen
(1999) gave a survey of computing complex pseudospectra (as of 1999), which was then
accompanied by the software package EigTool (Wright 2002, Wright & Trefethen 2001).
The basic algorithm is based on a contour plot of the smallest singular value of A − zI
for z on a grid. Algorithms for tracing boundary curves of complex pseudospectra were
developed by Brühl (1996) and Mezher & Philippe (2002), and Bekas & Gallopoulos
(2001) combined curve-tracing and grids.

Karow, Kokiopoulou & Kressner (2010) discussed computational approaches to struc-
tured pseudospectra, including real, skew-symmetric, Hermitian, and Hamiltonian pertur-
bations. This is implemented in the software package Seigtool (Structured EigTool) based
on EigTool.
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Guglielmi & Lubich (2012) exploited the low-rank property of extremal perturbations
in curve-tracing algorithms that do not use singular values. Those algorithms are closely
related to the tangential/transversal algorithm and the ladder algorithm described in Sec-
tion III.3. The ladder algorithm can also be used to trace smooth sections of the boundary
of real and structured pseudospectra.
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Fig. 3.4. Section of the boundary of the boundary of ΛR
ε (A) computed by the ladder algorithm (red

points indicate control points versus the computed boundary points in blue).fig:R2
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Fig. 3.5. Left picture: points of ∂ΛR
ε (A) computed applying Algorithm 8 for the matrix (II.1.36).

Right picture: real-structured pseudospectrum reconstructed by the compute points, compared to
the unstructured pseudospectrum Λε(A) (in yellow). Right picture: zoom.fig:R1



III.4 Notes 67

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 3.6. A section of the computed boundary points (in blue) and control points (represented in
red).fig:H2
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Fig. 3.7. The whole set of boundary points on Λ
Ham(Rn,n)
ε (H) computed by the ladder algorithm. fig:H3
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Fig. 3.8. The set ΛHam(Rn,n)
ε (H) versus the complex pseudospectrum Λε(H)). fig:H1
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Fig. 3.9. A very dense sample of points internal to the structured pseudospectrum, from spectra of
perturbed matrices.fig:T2
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Fig. 3.10. Boundary points of the Toeplitz-structured pseudospectrum computed by the ladder al-
gorithm.fig:T1
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Fig. 3.11. Points on the boundary of the Toeplitz-structured pseudospectrum (blue points), with
ε = 0.6, of matrix (3.7), computed by the ladder algorithm.fig:T2
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Fig. 3.12. A section of the computed boundary points (in blue) and control points (represented in
red).fig:T3
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Fig. 3.13. Left picture: ΛT5
ε (A) reconstructed from the computed points. Right picture: the struc-

tured ε-pseudospectrum (blue curve) versus the unstructured ε-pseudospectrum (red curve).fig:T2



Chapter IV.
Basic matrix nearness problems: a two-level
approach

chap:two-level
In this chapter we consider a general approach to matrix nearness problems such as the
following (and many more, as we will see in later chapters), where ‘nearest’ is understood
as having the minimal distance in the Frobenius norm:

– Distance to singularity. Given an invertible matrix, find the nearest singular matrix.
This problem is solved by a truncated singular value decomposition if general unstruc-
tured complex or real perturbations to the given matrix are admissible. In structured
cases, e.g. sparse perturbations with a prescribed sparsity pattern, such a simple solu-
tion to this matrix nearness problem does not exist.

– Distance to instability (stability radius). Given a matrix with all its eigenvalues hav-
ing negative real part (a Hurwitz matrix), find the nearest matrix with some eigenvalue
on the imaginary axis. The perturbation to the given matrix can be restricted to be
complex, real or structured. Similarly, given a matrix with all its eigenvalues having
modulus smaller than 1 (a Schur matrix), find the nearest matrix with some eigenvalue
on the complex unit circle.

– Matrix stabilization. Given a matrix with some eigenvalues of positive real part, find
the nearest matrix having no eigenvalues of positive real part. The perturbation to the
given matrix can be restricted to be complex, real or structured. Similarly, given a
matrix with some eigenvalues having modulus larger than 1, find the nearest matrix
with all eigenvalues in the complex unit disk.

The first two matrix nearness problems can be conveniently rephrased in terms of (com-
plex, real or structured) pseudospectra: The distance to singularity is the smallest ε > 0
such that 0 is in the ε-pseudospectrum of the given matrix; the stability radius of a Hur-
witz matrix is the smallest ε > 0 such that the ε-pseudospectrum has some point on the
imaginary axis; and the stability radius of a Schur matrix is the smallest ε > 0 such that
the ε-pseudospectrum has some point on the unit circle. More generally, for a given ma-
trix having all eigenvalues in an open set Ω in the complex plane, the problem is to find
the smallest ε > 0 such that the (complex, real or structured) ε-pseudospectrum has some
point on the boundary of Ω.

The matrix stabilization problem is complementary to that. It is a spectral recovery
problem where for a given matrix having some eigenvalues outside the closed setΩ in the
complex plane, the problem is to find the nearest (complex, real or structured) matrix that
has all eigenvalues in Ω.
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The two-level approach taken here uses an inner iteration to compute the solution of
an eigenvalue optimization problem as considered in Chapter II for a fixed perturbation
size ε, and then determines the optimal perturbation size ε⋆ in an outer iteration.

The algorithm is not guaranteed to find the global optimum of these nonsmooth and
nonconvex optimization problems, but it computes a matrix with the desired spectral prop-
erty which is locally nearest and often, as observed in our numerical experiments, has a
distance close to the minimal distance. In any case it provides an upper bound to the min-
imal distance, and usually a very tight one. Running the algorithm with several different
starting values reduces the risk of getting stuck in a local optimum.

IV.1 Problem setting and examples

We consider matrix nearness problems that are closely related to the eigenvalue optimiza-
tion problems of Chapter II. We pose the problem in the structure space S, which can be
Cn,n or Rn,n or a subspace thereof as in Section II.3. For a given matrix A ∈ Cn,n, let
λ(A) ∈ C be a target eigenvalue of A. We again consider the smooth function f(λ, λ)
satisfying (II.1.2) that is to be minimized. For a prescribed real number r in the range of
f we assume that

f(λ(A), λ(A)) > r,

so that for sufficiently small ε > 0 we have ϕ(ε) > r, where

ϕ(ε) := min
∆∈S, ∥∆∥F=ε

f
(
λ (A+∆) , λ (A+∆)

)
.

The objective now is to find the smallest ε > 0 such that ϕ(ε) = r:

ε⋆ = min
{
ε > 0 : ϕ(ε) ≤ r

}
. (1.1) eq:mnpb

Determining ε⋆ is a one-dimensional root-finding problem for the function ϕ that is de-
fined by eigenvalue optimization problems as studied in Chapter II.

Example 1.1 (Stability radius of a Hurwitz matrix). With the function f(λ, λ) =
− 1

2 (λ + λ) = −Reλ and r = 0 and the target eigenvalue λ(M) chosen as an eigen-
value of largest real part of a matrix M , we arrive at the classical problem of computing
the stability radius of a Hurwitz matrix A, i.e. a matrix with negative spectral abscissa
α(A) = max{Reλ : λ is an eigenvalue of A} < 0 :

ε⋆ = min{ε > 0 : αS
ε (A) = 0},

where αS
ε (A) = max

E∈S,∥E∥F=1
α(A+ εE) is the ε-pseudospectral abscissa with respect to

the structure space S (see the previous chapter). For S = Cn,n,Rn,n or a strict subspace
thereof, ε⋆ is called the complex, real or structured stability radius, respectively.
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Example 1.2 (Stability radius of a Schur matrix). With f(λ, λ) = −λλ = −|λ|2 and
r = 1 and the target eigenvalue λ(M) chosen as an eigenvalue of largest modulus of a
matrix M , we arrive at the problem of computing the stability radius of a Schur matrix A,
i.e. a matrix with spectral radius ρ(A) = max{|λ| : λ is an eigenvalue of A} < 1 :

ε⋆ = min{ε > 0 : ρSε (A) = 1},

where ρSε (A) = max
E∈S,∥E∥F=1

ρ(A+εE) is the ε-pseudospectral radius with respect to the

structure space S.

Example 1.3 (Structured distance to singularity). With f(λ, λ) = λλ = |λ|2 and
r = 0 and the target eigenvalue λ(M) chosen as an eigenvalue of smallest modulus
of a matrix M , we arrive at the problem of computing the distance to singularity of an
invertible matrix A under perturbations in S,

ε⋆ = min{ε > 0 : δSε (A) = 0},

where δSε (A) = min
E∈S,∥E∥F=1

δ(A+εE) and δ(M) is the smallest modulus of eigenvalues

of a matrix M . Instead of eigenvalues of smallest modulus, we could take the smallest
singular value.

IV.2 Two-level iteration
sec:two-level

Our approach is summarized by the following two-level method:

– Inner iteration: Given ε > 0, we aim to compute a matrix E(ε) ∈ S of unit Frobenius
norm, such that Fε(E) = f

(
λ (A+ εE) , λ (A+ εE)

)
is minimized, i.e.

E(ε) = arg min
E∈S,∥E∥F=1

Fε(E). (2.1) E-eps-2l

– Outer iteration: We compute the smallest positive value ε⋆ with

ϕ(ε⋆) = r, (2.2) eq:zero

where ϕ(ε) = Fε (E(ε)) = f
(
λ (A+ εE(ε)) , λ (A+ εE(ε))

)
.

IV.2.1 Inner iteration: Constrained gradient flow

The eigenvalue optimization problem (2.1) is precisely of the type studied in Chapter II.
To compute E(ε) for a given ε > 0, we make use of a constrained gradient system for the
functional Fε(E) under the constraints of unit Frobenius norm of E and E ∈ S. We use
directly the gradient approach developed in Chapter II, possibly exploiting the low-rank
structure of the optimizer E(ε) by using a rank-constrained gradient system in the way
described there.
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IV.2.2 Outer iteration: Derivative for the Newton step

In the outer iteration we compute ε⋆, the smallest positive solution of the one-dimensional
root-finding problem (1.17). This can be solved by a variety of methods, such as bisection.
We aim for a locally quadratically convergent Newton-type method, which can be justi-
fied under regularity assumptions that appear to be usually satisfied (generically in the
unstructured case S = Cn,n). If these assumptions are not met, we can always resort to
bisection. The algorithm proposed in the next subsection in fact uses a combined Newton
/ bisection approach.

In the following, an important role is again played by the (structured) gradient
GS

ε (E) = ΠS(2fλxy
∗) as defined in Lemma II.1.1 and (II.3.4)–(II.3.5). Note that the

orthogonal projection ΠS from Cn,n onto S is the identity map if S = Cn,n and just
takes the real part if S = Rn,n.

ass:E-eps Assumption 2.1. For ε close to ε⋆ and ε < ε⋆, we assume the following for the optimizer
E(ε) of (2.1):

– The eigenvalue λ(ε) = λ(A+ εE(ε)) is a simple eigenvalue.
– The map ε 7→ E(ε) is continuously differentiable.
– The structured gradient G(ε) = GS

ε (E(ε)) is nonzero.

Under this assumption, the branch of eigenvalues λ(ε) and its corresponding eigen-
vectors x(ε), y(ε) with the scaling (II.1.5) are also continuously differentiable functions
of ε in a left neighbourhood of ε⋆. We denote the eigenvalue condition number by

κ(ε) =
1

x(ε)∗y(ε)
> 0.

The following result gives us an explicit and easily computable expression for the deriva-
tive of ϕ(ε) = Fε(E(ε)) = f(λ(ε), λ(ε)) with respect to ε in terms of the (structured)
gradient G(ε).

Theorem 2.2 (Derivative for the Newton iteration). Under Assumption 2.1, the func-thm:phi-derivative
tion ϕ is continuously differentiable in a left neighbourhood of ε⋆ and its derivative is
given as

ϕ′(ε) = −κ(ε) ∥G(ε)∥F < 0. (2.3) eq:dereps

Proof. By Lemma II.1.1 and (II.3.4) we obtain, indicating by ′ differentiation w.r.t. ε and
noting that d

dε (εE(ε)) = E(ε) + εE′(ε),

1

κ(ε)

d

dε
Fε(E(ε)) = Re

〈
G(ε), E(ε) + εE′(ε)

〉
. (2.4) eq:deriveps

By Theorem 1.5 for the unstructured complex case, by (II.2.8) for the unstructured real
case, and by (II.4.14) for structured cases, we know that in the stationary pointE(ε), there
exists a real µ(ε) such that

E(ε) = µ(ε)G(ε). (2.5) E-mu-G
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Since ∥E(ε)∥F = 1 for all ε, we find 1 = |µ(ε)| ∥G(ε)∥F (in particular µ(ε) ̸= 0) and

0 =
1

2

d

dε
∥E(ε)∥2 = Re⟨E(ε), E′(ε)⟩ = µ(ε)Re⟨G(ε), E′(ε)⟩,

so that
Re⟨G(ε), E′(ε)⟩ = 0.

Inserting this relation into (2.4) and using once again (2.5), we obtain

1

κ(ε)
ϕ′(ε) = Re

〈
G(ε), E(ε)

〉
=

1

µ(ε)
∥E(ε)∥2F =

1

µ(ε)
= sign(µ(ε)) ∥G(ε)∥F .

Since for ε < ε⋆, we have ϕ(ε) > ϕ(ε⋆) = r, and since the above formula shows that ϕ′

cannot change sign, we must have ϕ′(ε) < 0 and hence µ(ε) < 0. This yields the stated
result. ⊓⊔

IV.2.3 Outer iteration: Newton / bisection method
subsec:Newton-bisection

In view of Theorem 2.2, applying Newton’s method to the equation ϕ(ε) = r yields the
following iteration:

εk+1 = εk +
x(εk)

∗y(εk)

∥G(εk)∥F
(ϕ(εk)− r) , (2.6) CNM1

where the right-hand side uses the optimizer E(εk) computed by the inner iteration in the
k-th step.

Algorithm 9 implements a hybrid Newton / bisection method that maintains an interval
known to contain the root, bisecting when the Newton step is outside the interval [εlb, εub].

Step 5 (in the while loop) gives the computational core of Algorithm 9; it implements
the inner iteration and is not presented in detail since it depends on the possible struc-
ture of the matrix and on whether the low-rank structure is exploited. The inner iteration
performs the algorithm to compute the extremal perturbationE(εk), as described in Chap-
ter II. As input to the k-th iteration we use the factors of the final matrix E computed for
the previous value of ε (this explains the choice of the initial datum at step 5).

The while loop after step 4 implements the outer iteration and makes use of a vari-
able tolerance which decreases as k increases, when the method is expected to approach
convergence. A typical choice of tol0 is the norm of the difference of the first two iterates
divided by 10.

The factor 10−2 between two subsequent tolerances is fruit of an empirical experi-
mentation and is motivated by the fact that we expect convergence - on the average - in
about 4 − 5 iterates so that we reach the limit tolerance which is set here to 10−8. These
can naturally be considered as parameters of the code. Their choice here is only based on
the experience with the numerical experiments we performed. When integrating numeri-
cally the gradient system with variable stepsize we are assured to fulfilll the termination



80 IV. Basic matrix nearness problems: a two-level approach

Algorithm 9: Outer iteration: Newton / bisection method
Data: Matrix A, matrix type (real/complex, structured)
r > 0, tol0 (initial tolerance), kmax (max number of iterations)
εlb and εub (starting values for the lower and upper bounds for ε⋆)
Result: ε⋆ (upper bound for the stability radius)
begin

1 Set λ(0) target eigenvalue of A, x(0) and y(0) the corresponding left and right
eigenvectors of unit norm with x(0)∗y(0) > 0.

2 Initialize E(ε0) according to the setting.
3 Initialize ε0 according to the setting.

Set k = 0.
4 Initialize lower and upper bounds: εlb = 0, εub = +∞.

while |ϕ(εk)− ϕ(εk−1)| < tolk do
5 Compute E(εk), ϕ(εk) by integrating the constrained gradient system with initial

datum E(εk−1). (This is the inner iteration).
6 Update upper and lower bounds εlb, εub.
7 if ϕ(εk) < r then

Set εub = min(εub, εk).
else

Set εlb = max(εlb, εk).
8 Compute G(εk).

9 Compute εk+1 = εk +
x(εk)

∗y(εk)

∥G(εk)∥F
(ϕ(εk)− r).

10 Set k = k + 1.
11 if εk ̸∈ [εlb, εub] then

Set εk = (εlb + εub)/2.
if k = kmax then

goto 12.
else

Set tolk = max{10−2 tolk−1, 10
−8}.

12 if k < kmax then
Set ε⋆ = εk. Return ε⋆.

else
Print max number iterations reached

alg_SR
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condition |ϕ(εk)−ϕ(εk−1)| < tolk of the while loop because we are able to approximate
the stationary point with prescribed accuracy. Due to the possible convergence of the inner
method to a local instead of global minimum, the final value ε⋆ computed by Algorithm
9 might be larger than the minimal one.

IV.2.4 Outer iteration: Starting values

We make the following natural choice for the first initial datum E0 (that is for the
first value ε = ε0): let G0 be the structure-projected gradient of Fε at ε = 0, i.e.,
G0 = ΠS(2fλxy

∗) with the target eigenvalue and its left and right eigenvectors for the
unperturbed matrix A. We set

E0 = − G0

∥G0∥
,

which is the steepest descent direction at the unperturbed matrix for the functional Fε(E).
At least for ε0 not too large, this yields Fε0(E0) < F0, where F0 is the value assumed by
the functional for the unperturbed matrix.

By formula (2.6), with E(0) = E0, we formally apply the first Newton step and set

ε0 =
x(0)∗y(0)

∥G0∥
(F0 − r). (2.7) eq:eps0F

While the above choice of starting values is reasonable when only a single trajectory
is computed, it might in some problems be necessary to run several trajectories to reduce
the risk of getting trapped in a local minimum.

IV.3 Complex, real and structured stability radii
sec:dist-instab

The two-level approach of the previous section applies directly to computing the (com-
plex, real or structured) distance to instability of a Hurwitz-stable matrix A. We choose
the target eigenvalue λ(M) as an eigenvalue of largest real part (among these, the one with
largest imaginary part), and we take f(λ, λ) = −Reλ as the function to be minimized.
The eigenvalue optimization problem (2.1) then becomes the maximization problem

E(ε) = arg max
E∈S,∥E∥F=1

Reλ(A+ εE), (3.1) E-eps-stab-radius

and the optimal perturbation size ε⋆ is determined from Equation (1.17), which here reads

Reλ(A+ ε⋆E(ε⋆)) = 0. (3.2) zero-stab-radius

In the inner iteration, the eigenvalue optimization problem (3.1) is of the class studied
in Chapter II with f(λ, λ) = −Reλ and is solved with the constrained gradient flow
approach developed there, restricted to rank-1 perturbations in the complex unstructured
case S = Cn,n and to rank-2 perturbations in the real unstructured case S = Rn,n.
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In the outer iteration we compute the optimal perturbation size ε⋆ by the Newton /
bisection algorithm of Section IV.2.3 for f(λ, λ) = −Reλ, using the derivative formula
of Theorem 2.2 with G(ε) = −ΠS(x(ε)y(ε)∗); in particular, G = −xy∗ in the complex
untructured case, and G = −Re(xy∗) in the real unstructured case.

We consider the following numerical example: ...

IV.3.1 An illustrative example of distance to instability

IV.4 Matrix stabilization
sec:mat-stab

In this section we extend the two-level approach of Section IV.2 to the problem of mov-
ing all eigenvalues of a given matrix into a prescribed closed subset Ω of the complex
plane by a perturbation of minimal Frobenius norm. This spectral recovery problem is
complementary to the robustness analysis in the previous section where the original ma-
trix has all its eigenvalues inside Ω and it was required that one eigenvalue be driven to
the boundary of Ω. While the approach presented here is conceptually applicable to the
spectral recovery problem for quite general subsets Ω, we will focus our attention on the
guiding problem of Hurwitz stabilization of an unstable matrix, which corresponds to the
case where Ω = C−

is the closed left complex half-plane:
Given a square matrix A that has some eigenvalues with positive real part, find a

perturbation ∆ of minimal Frobenius norm such that A + ∆ has no eigenvalue with
positive real part.

The perturbations ∆ are restricted to lie in a structure space S that is Cn,n or Rn,n or
a complex or real linear subspace of Cn,n.

We describe two algorithmic approaches to this matrix stabilization problem, which
are both of the two-level type considered in Section IV.2.

– The exterior algorithm moves eigenvalues that lie outside the closed target setΩ where
the eigenvalues of the perturbed matrixA+∆ should lie (Ω = C− for Hurwitz stability
and Ω is the closed unit disk for Schur stability). All eigenvalues outside Ω are moved
towards the boundary of Ω while increasing the perturbation size.

– The interior algorithm starts from a non-optimal perturbation ∆0 such that A + ∆0

has all eigenvalues in Ω and moves some eigenvalue inside Ω to the boundary while
reducing the perturbation size.

IV.4.1 Exterior two-level algorithm
subsec:ext-stab

Here we use the following eigenvalue optimization problem: For a given perturbation size
ε > 0, find

arg min
∆∈S, ∥∆∥F=ε

n∑
i=1

f
(
λi (A+∆) , λi (A+∆)

)
, (4.1) f-E-eps-stab

with
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f
(
λ, λ

)
=

1

2
dist(λ,C−)2 =

1

2

(
(Reλ)+

)2
=

1

8

(
(λ+ λ)+

)2
, (4.2) eq:Hurw

where for a ∈ R, a+ := max {a, 0}.
The set {λi(A+∆)}ni=1 of eigenvalues of the perturbed matrix A + ∆ is ordered

by decreasing size of the real part. Note that only the eigenvalues with positive real part
contribute to the sum in (4.1), so that the sum only extends from 1 to m+(A+∆), where
m+(M) is the number of eigenvalues of M with positive real part. As in Section IV.2,
this leads us to the following two-level approach to the Hurwitz stabilization problem.
Here we additionally introduce a small shift δ > 0 that aims for strict Hurwitz stability
with all eigenvalues having real part not exceeding −δ.

– Inner iteration: Given ε > 0, we aim to compute a matrix E(ε) ∈ S of unit Frobenius
norm such that

Fε(E) =
1

2

n∑
i=1

(
(Reλi(A+ εE) + δ)+

)2
(4.3) Feps-stab

is minimized, i.e.
E(ε) = arg min

E∈S,∥E∥F=1
Fε(E). (4.4) E-eps-stab

– Outer iteration: We compute the smallest positive value ε⋆ with

ϕ(ε⋆) = 0, (4.5) eq:zero-stab

where ϕ(ε) = Fε (E(ε)) = 1
2

∑n
i=1

(
(Reλi(A+ εE(ε) + δ)+

)2
.

We remark that the existence of a zero of ϕ (i.e., stabilizability) is not guaranteed for
arbitrary structure spaces S, but it is when S equals Cn,n or Rn,n or more generally when
S contains real multiples of the identity matrix I (since then some negative shift of the
given matrix moves all its eigenvalues into the left half-plane).

As before, the inner iteration uses a norm- and structure-constrained gradient-flow
differential equation, possibly further restricted to low-rank dynamics; the outer iteration
uses a hybrid Newton / bisection method. We give details in the following subsections.

subsec:grad-flow-stab
Constrained gradient flow for minimizing Fε(E). Here we let ε > 0 be fixed. Let
E(t) ∈ S , for t in an interval I , be a continuously differentiable path of matrices in the
structure space S ⊂ Cn,n, and let the eigenvalues λi(t) = λi(A + εE(t)) be simple for
i = 1, . . . , n and all t ∈ I . The corresponding left and right eigenvectors xi and yi are
assumed to be of unit norm and with x∗i yi > 0. Then, applying Lemma VIII.1.1 we obtain

d

dt
Fε

(
E(t)

)
= ε

n∑
i=1

(
Reλi(A+ εE(t)) + δ

)
+

Re(xi(t)∗Ė(t)yi(t))

xi(t)∗yi(t)
. (4.6) eq:derFeps

With the notation

γi(t) :=
(Reλi(A+ εE(t)) + δ)+

xi(t)∗yi(t)
≥ 0.
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Here we note that γi(t) = 0 for i > mδ(A+ εE(t)), which is the number of eigenvalues
with real part greater than −δ. We write (4.6) as

d

dt
Fε

(
E(t)

)
= ε

n∑
i=1

γi(t)Re
(
xi(t)

∗Ė(t)yi(t)
)
= εRe

〈
Gε(E(t)), Ė(t)

〉
with the rescaled free gradient

Gε(E) =

n∑
i=1

γixiy
∗
i . (4.7) grad-stab

This is of rank at most mδ(A+ εE). In the structured case where E(t) ∈ S for all t, and
hence also its derivative is in S so that Ė(t) = ΠSĖ(t), we further obtain that with the
projected gradient

GS
ε (E) = ΠSGε(E) ∈ S,

we have
d

dt
Fε

(
E(t)

)
= εRe

〈
GS

ε (E(t)), Ė(t)
〉
. (4.8) eq:derFeps2

As in Section II.3, see (II.3.6), we consider the constrained gradient flow

Ė = −GS
ε (E) + Re⟨GS

ε (E), E⟩E, (4.9) ode-E-S-stab

which again has the properties that

– the unit Frobenius norm is conserved along solutions E(t);
– Fε(E(t)) decays monotonically with growing t;
– stationary points E are real multiples of GS

ε (E) provided that GS
ε (E) ̸= 0.

Therefore, a stationary point E is a projection onto the structure space S of a matrix of
rank at most mδ = mδ(A+ εE). In particular, in the complex unstructured case the rank
is at most mδ , and in the real case at most 2mδ .

subsec:low-rank-stab
Rank-constrained gradient flow in the complex and real unstructured cases. With
an expected upper bound m of mδ,ε = mδ(A + εE(ε)) at the minimizer E(ε), which is
of rank at most mδ,ε in the complex unstructured case and at most 2mδ,ε in the real case,
we can use a rank-constrained gradient flow in the same way as in Section II.2.3, where
the chosen rank is now r = m in the complex case and r = 2m in the real case. We then
consider the rank-r constrained gradient flow, with S = Cn,n or Rn,n,

Ė = −PE(G
S
ε (E)) + Re⟨E,PE(G

S
ε (E))⟩E, (4.10) ode-ErF-2-v2-stab

where PE(Z) is the orthogonal projection of Z ∈ Cn,n onto the tangent space at E of the
manifold of (complex or real) n × n-matrices of rank r. This differential equation is of
the same type as in Section II.2.3 and is treated numerically in the same way as described
there. (In the complex case, transposes of matrices are replaced by conjugate transposes.)



IV.4 Matrix stabilization 85

Iteration for ε. To solve the one-dimensional root-finding problem (4.4), we use a New-
ton / bisection method as in Section IV.2.3. We let E(ε) of unit Frobenius norm be a
(local) minimizer of the optimization problem (4.3) and we denote by λi(ε), the eigen-
values and by xi and yi corresponding left and right eigenvectors of A + εE(ε), of unit
norm and with positive inner product.

We denote by ε⋆ the smallest value of ε such that ϕ(ε) = Fε(E(ε)) = 0. For a
Newton-like algorithm we need an extra assumption that plays the same role as Assump-
tion 2.1 in Section IV.2.

Assumption 4.1. For ε close to ε⋆ and ε < ε⋆, we assume the following:

– The eigenvalues of A+ εE(ε) with positive real part are simple eigenvalues.
– The map ε 7→ E(ε) is continuously differentiable.
– The structured gradient G(ε) := GS

ε (E(ε)) is nonzero.
assumpt-stab

The following result extends Theorem 2.2 from one to several eigenvalues and is
proved by the same arguments.

Lemma 4.2 (Derivative for the Newton iteration). Under Assumption 4.1, the functionlem:der
ϕ(ε) = Fε(E(ε)) is differentiable and its derivative equals

ϕ′(ε) = −∥G(ε)∥F . (4.11) eq:derFdeps

With the derivative of ϕ at hand, we compute ε⋆ by a hybrid Newton / bisection algorithm
as described in Section IV.2.3. In addition, since Fε(E(ε)) = 0 for ε ≥ ε⋆, we take a
bisection step when all eigenvalues of A+ εE(ε) have real part smaller than −δ.

As an example consider the Grcar matrix of dimension n = 6,

G =


1 1 1 1 0 0

−1 1 1 1 1 0
0 −1 1 1 1 1
0 0 −1 1 1 1
0 0 0 −1 1 1
0 0 0 0 −1 1

 (4.12)

The matrix has all (6) eigenvalues in the right complex half-plane (red points in Figure
4.1. We set δ = 0.1, meaning we intend to push the whole spectrum on the left of the axis
Re(z) = −δ.

In Figure 4.1 we show the paths of eigenvalues corresponding to the matrixA+εE(ε)
for ε ∈ [0, ε⋆] where E(ε) indicates the extremizer of the functional computed at ε.

The behavior of φ(ε) along the sequence εk selected by means of the Newton iteration
is shown in Figure 4.2.



86 IV. Basic matrix nearness problems: a two-level approach

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 4.1. Paths of the eigenvalues of the matrix G+ εE(ε) for ε ∈ [0, ε⋆]. fig:Stab1

IV.4.2 Interior two-level algorithm
subsec:int-stab

In the previous subsection, we worked with perturbed matrices that had some eigenvalues
of positive real part, and the algorithm moved them to the left until it terminated with
a matrix all of whose eigenvalues had real part at most −δ. In an alternative approach,
the given matrix A is first perturbed to a non-optimal matrix A + ε0E0 with ε0 > 0 and
E0 ∈ S of unit Frobenius norm such that all its eigenvalues have real part smaller than
−δ. For example, this can be achieved by a simple shift. We then reduce the perturbation
size.
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Fig. 4.2. The values φ(εk) along the sequence {εk} generated in the outer iteration. fig:Stab2

Using a two-level iteration starting from A+ ε0E0, we aim to reduce the perturbation
size to find ε > 0 for which A+ εE has some eigenvalue of real part at least −δ for every
matrix E of Frobenius norm 1. This differs from the problem of computing the distance
to instability, where the aim was to find the smallest perturbation size ε for which A+ εE
(withA having only eigenvalues of negative real part) has eigenvalues of nonnegative real
part for some matrix E of Frobenius norm 1.

As in the algorithm for computing the distance to instability of Section IV.3, the target
eigenvalue λ(M) of a matrix M is chosen as an eigenvalue of maximal real part. The
function to be minimized is now f(λ, λ) = +Reλ, whereas it was f(λ, λ) = −Reλ
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for computing the distance to instability of a Hurwitz matrix. Schematically, the interior
two-level algorithm proceeds as follows.

– Inner iteration: Given ε > 0, we aim to compute a matrix E(ε) ∈ S of unit Frobenius
norm such that the rightmost eigenvalue of A+ εE is minimized, i.e.

E(ε) = arg min
E∈S,∥E∥F=1

Reλ(A+ εE). (4.13) E-eps-stab-int

(Note that for computing the distance to instability, we maximized the same functional;
see (3.1).)

– Outer iteration: We compute ε⋆ > 0 as the solution of the one-dimensional equation

ϕ(ε⋆) = −δ, (4.14) eq:zero-stab

where ϕ(ε) = Reλ(A+ εE(ε)).

This yields the nearest perturbed matrix A+ ε⋆E(ε⋆) with all eigenvalues of real part
at most −δ and the perturbation matrix in the structure space S.

In the inner iteration, the eigenvalue optimization problem (4.13) is of the class studied
in Chapter II and is solved with the constrained gradient flow approach developed there,
restricted to rank-1 perturbations in the complex unstructured case S = Cn,n and to rank-
2 perturbations in the real unstructured case S = Rn,n.

In the outer iteration we compute the optimal perturbation size ε⋆ by the Newton /
bisection algorithm of Section IV.2.3 for f(λ, λ) = Reλ, using the derivative formula
of Theorem 2.2 with G(ε) = ΠS(x(ε)y(ε)∗); in particular, G = xy∗ in the complex
untructured case, and G = Re(xy∗) in the real unstructured case.

IV.4.3 An illustrative example
sec:ill1

Consider the matrix

A =



0 1 1 1 −1 0 −1 0 0 0
1 −1 0 1 1 0 1 0 0 0

−1 0 −1 −1 −1 1 1 1 0 0
1 0 0 −1 1 −1 −1 1 0 0
0 0 −1 1 0 1 1 −1 0 0
0 −1 1 1 −1 0 0 1 1 0

−1 1 −1 1 1 0 −1 0 1 1
0 0 1 −1 −1 1 1 1 −1 1
0 0 0 0 0 0 0 −1 1 −1
0 0 0 0 0 0 0 0 −1 1


(4.15) ex:1

The matrix A has 6 eigenvalues with positive real part.
Exterior method. The stabilized matrix presents 7 eigenvalues on the parallel axis imag-
inary axis and abscissa −δ; its distance from A is ε⋆ ≈ 2.56. For comparison, the stabi-
lized matrix computed by the algorithm of Orbandexivry, Nesterov & Van Dooren (?) has
a much larger distance 9.02 and all eigenvalues are located on the imaginary axis.
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Fig. 4.3. Spectrum of the matrix (4.15) (red circles) and of the stabilized matrix A+ ε⋆E(ε⋆) (blue
circles) in the exterior method. fig1

Interior method. We start by computing a stable matrix, with spectrum on the left of
the half-line Rez = − δ, by using a method developed by Michael Overton, using a
BFGS-type method on the penalized functional

∥|X −A∥|F + ρα(X)

where α(X) denotes the spectral abscissa ofX and ρ is a penalty parameter. We obtain in
this way an initial matrix for our method, whose distance from A is approximately 3.14.
After applying our interior type method we obtain a stabilized matrix which presents
3 eigenvalues on the parallel axis imaginary axis and abscissa −δ; its distance from A is
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ε⋆ ≈ 2.94, which is larger than the one computed by the exterior method, but still a nearby
matrix. It is worth to remark that using the method proposed by Gillis and Sharma a closer
matrix is computed, with approximate distance 1.92 and characterized by 8 eigenvalues
aligned on the vertical axis Re z = −δ.

Examples of large matrices

IV.5 Structured distance to singularity

Let A ∈ Cn,n be an invertible matrix, and let S be a complex- or real-linear subspace of
Cn,n that defines the linear structure that is imposed on perturbations ∆ ∈ S to A. We
consider the following structured matrix nearness problem.

Problem. Given an invertible matrix A, find a structured perturbation ∆ ∈ S of minimal
Frobenius norm such that A+∆ is singular.

The norm of the minimizing ∆ ∈ S is called the S-structured distance to singularity of
the given matrix A. Unlike the complex or real unstructured distance to singularity, it
cannot be obtained from a singular value decomposition of A. For its computation we use
the two-level iteration of Section IV.2.

An obvious case of interest is when S is a space of complex or real matrices with
a prescribed sparsity pattern. In the following we consider a different situation where a
structured distance to singularity is of interest.

IV.5.1 Example: Nearest pair of polynomials with a common zero

We consider polynomials with real coefficients (alternatively, we could allow for complex
coefficients). A pair of polynomials (p, q) is called coprime if p and q have no nontrivial
common divisor, or equivalently, have no common zero. For a pair of polynomials (p, q)
that is coprime, the distance to the nearest pair of polynomials with a common zero is of
interest. In the following we measure the distance of pairs of polynomials by the Euclidean
norm of the difference of the vectors of coefficients.

Problem. Given a pair of polynomials that is coprime, find the nearest pair of polynomials
with a nontrivial common divisor.

Consider polynomials

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

q(z) = bmz
m + bm−1z

m−1 + · · ·+ b1z + b0
(5.1)

with real coefficients ai and bi. We may assume m ≤ n and an ̸= 0, and we can take
m = n if we allow for bn = 0. So we assume m = n in the following. With these
polynomials we associate the Sylvester matrix of dimension 2n× 2n,
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S(p, q) :=



an . . . a0
an . . . a0

. . . . . .
an . . . a0

bn . . . b0
bn . . . b0

. . . . . .
bn . . . b0


. (5.2) eq:Sylpq

A result from commutative algebra (see, e.g. cite! ) states:
The pair of polynomials (p, q) is coprime if and only if the associated Sylvester matrix
S(p, q) is invertible.

This allows us to reformulate the problem of nearest non-coprime polynomials as a
matrix nearness problem, where the distance is measured by the Frobenius norm.

Problem. Given an invertible Sylvester matrix, find the nearest singular Sylvester matrix.

This amounts to the problem of computing the structured distance to singularity, where
the structure is given by the subspace S ⊂ R2n,2n of Sylvester matrices of the form (5.2).

Let S be a Sylvester matrix. We define the lower radius of S as

µ(S) = min{|λ| : λ is an eigenvalue of S},

and note that S is singular if and only if µ(S) = 0. Furthermore, with the structured
ε-pseudospectrum ΛS

ε (S), let

µS
ε (S) = min{|λ| : λ ∈ ΛS

ε (S)}, (5.3) eq:psa

which reduces to the lower radius µ(S) when ε = 0. We can then express the radius of
coprimeness of the pair of polynomials (p, q) as

ρco(p, q) =
ε⋆√
n

with ε⋆ = min{ε > 0 : µS
ε (S) = 0}.

(The division by
√
n is done to account for the fact that each coefficient ai and bi appears

n times in the Sylvester matrix, which yields a factor
√
n in the Frobenius norm.)

Two-level iteration. We are thus in the situation of applying the two-level iteration of
Section IV.2 with the functional Fε(E) (for E ∈ S of unit Frobenius norm) given as

Fε(E) = µ(S + εE), (5.4) eq:FepSyl

which is of the form (1.3) with f(λ, λ) =
√
λλ and with the eigenvalue of smallest

modulus as target eigenvalue.
To apply the gradient-based algorithm of Section II.3 in the inner iteration, we need

the structured gradient, see II.3.4), which is the orthogonal projection onto the space S of
Sylvester matrices of the (rescaled) gradient
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Gε(E) = Re
( λ
|λ|

xy∗
)
,

where x and y are the left and right eigenvectors, normalized to unit norm and with
positive inner product, that are associated with the eigenvalue λ of smallest modulus of
S + εE, which is assumed to be simple. We note that the structured gradient is nonzero
by Lemma II.3.5.

The orthogonal projection onto S is given in the following lemma.

Lemma 5.1 (Orthogonal projection onto the space of Sylvester matrices). Let S ∈lem:projS
S ⊂ R2n×2n and Z ∈ C2n,2n; the orthogonal projection PS onto S, with respect to the
Frobenius inner product ⟨·, ·⟩, is given by

ΠSZ = S(p, q), (5.5)

where p and q are the polynomials with coefficients (for k = 0, . . . , n)

an−k =
1

n

n∑
l=1

Re (Zl,l+k) , bn−k =
1

n

n∑
l=1

Re (Zn+l,l+k) .

Proof. We have to find argminS∈S ∥Z − S∥F . The result follows directly from the fact
that for a complex vector x ∈ Cn,

µ∗ = argmin
µ∈R

∥x− µ1∥F =
1

n

n∑
i=1

Re(xi),

where 1 = (1 1 . . . 1)
⊤. ⊓⊔

sec:exill
Numerical example. Consider the two polynomials of degree 3,

p(z) = z3 + 2z2 + 2z + 2, q(z) = 2z3 + z − 2, (5.6) ex:pq1

where p is constrained to be monic. Here a = (1 1 2 2)
⊤ and b = (2 0 1 − 2)

⊤; the
corresponding Sylvester matrix is given by

S(a, b) =


1 2 2 2 0 0
0 1 2 2 2 0
0 0 1 2 2 2
2 0 1 −2 0 0
0 2 0 1 −2 0
0 0 2 0 1 −2

 (5.7) eq:illS

The structured pseudospectrum ΛS
ε (S) for ε = 1

2 is approximated by dense sampling
on the set of admissible perturbations and is plotted in blue in Figure 5.1.

It turns out that for the value
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ε = ε⋆ = 0.618108064

the functional Fε(E) (see (5.4)) vanishes, while for ε < ε⋆ it holds Fε(E) > 0. This
gives ρco(p, q) = 0.356864857.

The computed matrix S + ε⋆E(ε⋆) has rank 2n− 2 due to a double semi-simple zero
eigenvalue. The coefficients of the perturbed polynomials p̂, q̂ are shown (with 10-digit
accuracy) in Table 5.1. The common complex conjugate zeros of p̂, q̂ are

z1,2 = −0.4008686595± 1.03085391659i.

Table 5.1. Coefficients of the perturbed polynomials p̂, q̂ in the example 5.6. t1

â3 = 0.75744188 â2 = 2.10479150 â1 = 2.12724001 â0 = 1.83200184

b̂3 = 1.95430087 b̂2 = −0.06706025 b̂1 = 1.08084913 b̂0 = −1.99883585
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IV.6 Notes
An early survey of matrix nearness problems, with emphasis on the properties of sym-
metry, positive definiteness, orthogonality, normality, rank-deficiency and instability, was
given by Higham (1989). This review is a source of continuing interest in view of its
choice of topics and the references to the older literature.

Distance to instability (stability radius) under complex unstructured perturbations.
Van Loan (1985) was apparently the first to address the question “How near is a stable
matrix to an unstable matrix?”. He considered both complex and real perturbations and
came up with heuristic algorithms for approximating the smallest perturbations that shift
an eigenvalue to the imaginary axis. His starting point was the characterization of the
distance to instability under complex unstructured perturbations of the matrix A as

β(A) = min
ω∈R

σmin(A− iωI) (6.1) stab-rad

and an intricate characterization of the distance to instability under real perturbations.
For the complex case, Byers (1988) showed that the Hamiltonian matrix

H(σ) =

(
A −σI
σI A∗

)
has a purely imaginary eigenvalue if and only if σ ≥ β(A); cf. Lemma III.2.1. Based
on this result, he proposed a bisection method for computing the distance to the nearest
complex matrix with an eigenvalue on the imaginary axis (the complex stability radius).
Each step of the method requires the solution of an eigenvalue problem of the Hamiltonian
matrix H(σ) for varying σ > 0. Byers (1988) also gave an extension of the algorithm to
compute the distance to the nearest complex matrix with an eigenvalue on the unit circle.

Conceptually related Hamiltonian eigenvalue methods by Boyd & Balakrishnan (1990)
and Bruinsma & Steinbuch (1990) for the more general problem of computing the H∞-
norm of a transfer function also apply to computing the distance to stability. These meth-
ods converge locally quadratically.

He and Watson (1999) developed a method for computing the distance to instabil-
ity that is better suited for large sparse matrices A. They use a method based on in-
verse iteration for singular values to compute a stationary point of the function f(ω) =
σmin(A − iωI). They then check whether the stationary point reached is a global mini-
mum by solving an eigenvalue problem for H(σ). An alternative method for large sparse
matrices was devised by Kressner (2006) who worked with inverse iterations using sparse
LU factorizations of imaginary shifts of Hamiltonian matrices H(σ).

For σ = β(A), the Hamiltonian matrix H(σ) has an eigenvalue of even multiplicity
on the imaginary axis. Generically, it is expected to be a defective double eigenvalue.
Freitag & Spence (2011) used a Newton-based method to find the parameters σ and ω
such that H(σ) − iωI has a zero eigenvalue corresponding to a two-dimensional Jordan
block.

A different approach is to combine an algorithm for computing the ε-pseudospectral
abscissa αε(A) (see Section III.2) with a root-finding algorithm for determining ε⋆ > 0
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such that αε⋆(A) = 0. Then, ε⋆ is the distance to instability. This two-level approach
can be used efficiently for large sparse matrices with the rank-1 iteration of Guglielmi
& Overton (2011), with the subspace method of Kressner & Vandereycken (2014), and
with the discretized rank-1 differential equation of Guglielmi & Lubich (2011). The latter,
differential equation based approach is described here in Section IV.2. It extends in a direct
way to computing the distance to instability under real or structured perturbations.

Distance to instability (stability radius) under real unstructured perturbations. Qiu,
Bernhardsson, Rantzer, Davison, Young & Doyle (1995) characterized the real stability
radius rR(A) as

1

rR(A)
= sup

ω∈R
inf

0<γ≤1
σ2

(
ReMω −γ ImMω

γ−1ImMω ReMω

)
with Mω = (A− iωI)−1,

where σ2(·) is the second largest singular value of a matrix. An algorithm for the compu-
tation of rR(A) via this formula was proposed by Sreedhar, Van Dooren & Tits (1996).
Based on a reformulation of this formula and using Byers’ connection between singular
values and eigenvalues of Hamiltonian matrices, Freitag & Spence (2014) also developed
an algorithm to deal efficiently with this two-dimensional optimization.

In a different approach, Guglielmi & Manetta (2015) studied an algorithm that is
well-suited also for large sparse matrices. It corresponds to the general two-level ap-
proach taken in Section IV.2. In the inner iteration, the algorithm computes the real ε-
pseudospectral abscissa via rank-2 matrix differential equations of Guglielmi & Lubich
(2013) (which are given there for both the matrix 2-norm and the Frobenius norm). In the
outer iteration, it uses a combined Newton / bisection method to optimize the perturbation
size ε to yield ε⋆ such that the real ε⋆-pseudospectral abscissa becomes zero. The New-
ton iteration used the simple derivative formula of Theorem 2.2 for the particular case of
the real gradient G = Re(xy∗). A related method based on a real version of the itera-
tion method of Guglielmi & Overton (2011) was proposed by Rostami (2015) and further
developed and analysed by Guglielmi (2016).

Structured stability radii. In the control systems literature, Hinrichsen & Pritchard
(1986a,1986b,1990) considered complex and real stability radii (i.e. distance to instability
under complex and real perturbations) and also structured stability radii

r(A,B,C) = min{∥∆∥ : A+B∆C has some eigenvalue of nonnegative real part},

whereA is a Hurwitz-stable matrix andB and C are given matrices of compatible dimen-
sions. The perturbation matrix∆ is assumed to be real or complex. Most of the algorithms
mentioned above extend to this situation of range- and corange-restricted perturbations.
For example, Hinrichsen, Kelb & Linnemann (1989) extended Byers’ algorithm to com-
pute the complex structured stability radius rC(A,B,C).

We note that this notion of structured stability radius minimizes the norm of the pa-
rameter matrix ∆ and not of the structured perturbation B∆C of A. The latter would fit
directly into the framework of Section IV.2, whereas controlling the norm of ∆ requires
some (minor) modifications to the algorithm.
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We are not aware of algorithms for other structured stability radii (distance to instabil-
ity under complex or real structured perturbations) in the literature, e.g. for perturbations
with a given sparsity pattern and/or symmetry, or Toeplitz perturbations etc. The two-level
algorithm of Section IV.2 addresses such problems with general linear structures.

Matrix stabilization. Finding the smallest (complex, real or structured) stabilizing per-
turbation to a given matrix is a harder problem than the complementary problem of finding
the smallest destabilizing perturbation as discussed above. Several conceptually different
algorithms for matrix stabilization with complex or real unstructured perturbations have
been proposed in the literature.

A black-box approach is to consider the problem of finding the nearest stable matrix
as a nonsmooth (but almost everywhere smooth), nonconvex, constrained optimization
problem and apply general software for this class of problems, such as given by Curtis,
Mitchell & Overton (2017).

Orbandexivry, Nesterov & Van Dooren (2013) presented a matrix stabilization algo-
rithm that uses successive convex approximations. They started from Lyapunov’s charac-
terization of stability to reformulate the matrix stabilization problem as finding complex
n× n matrices X and P that give

inf
X,P

1
2∥X −A∥2F such that P = P ∗ and XP + PX∗ are both positive definite.

This nonconvex optimization problem is related to the convex problem of finding, for
given X and P ,

inf
H

1
2∥X +H −A∥2F such that H is in a suitable ellipsoid defined by P and X.

This update for X is complemented with a procedure that associates an admissible P
to X . With an O(n5) complexity per iteration, the algorithm is limited to small matrices.

Gillis & Sharma (2017) showed that a real square matrix A is stable if and only if it
can be written as the matrix of a dissipative Hamiltonian system, i.e. A = (J − R)Q,
where J is skew-symmetric, R is positive semidefinite and Q is positive definite. This
reformulation results in an equivalent nonconvex optimization problem with a convex fea-
sible region onto which points can be projected easily. The authors proposed a projected
gradient method (among other strategies) to solve the problem in the variables (J,R,Q),
with O(n3) complexity per iteration. Gillis, Karow & Sharma (2019) made an analogous
approach to Schur stablilization, based on their characterization of a Schur-stable matrix
as being of the form A = S−1UBS, where S is positive definite, U is orthogonal, and B
is a positive semidefinite contraction. Choudhary, Gillis & Sharma (2020) extended the
approach to finding the nearest matrix with eigenvalues in more general closed setsΩ that
are a finite intersection of disks, conical sectors and vertical strips.

Noferini & Poloni (2021) reformulated matrix stabilization as an optimization prob-
lem on the Riemannian manifold of orthogonal or unitary matrices. The problem is then
solved using standard methods from Riemannian optimization. The problem of finding
the nearest complex Hurwitz-stable matrix is shown to be equivalent to solving
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min
U∈U(n)

∥L(U∗AU)∥2F ,

where L(Z) is the lower triangular matrix whose part below the diagonal coincides with
that of Z, and the diagonal elements are changed to L(Z)ii = (Re zii)+. A related re-
formulation with orthogonal matrices is given for the real case. The approach is actually
formulated for the problem of finding the nearest matrix with eigenvalues in an arbitrary
prescribed closed set, thus including Hurwitz- and Schur-stability as special cases.

Guglielmi & Lubich (2017) studied an exterior two-level approach to matrix stabi-
lization, with a gradient flow in the inner iteration and a combined Newton / bisection
method in the outer iteration, as in Section IV.4.1 but with a different functional that aims
at aligning a fixed number of eigenvalues on the imaginary axis. The interior two-level
algorithm for matrix stabilization described in Section IV.4.2 is remarkably similar to the
two-level algorithm for computing the (complex, real or structured) distance to instabil-
ity. This interior algorithm has not appeared in the literature before, but it is related to
algorithms for Hamiltonian matrix nearness problems and for the passivation of control
systems proposed by Guglielmi, Kressner & Lubich (2015) and Fazzi, Guglielmi & Lu-
bich (2021), respectively. In contrast to other methods in the literature, the exterior and
interior two-level approaches of Section IV.4 can exploit sparsity of the given matrix A
(in combination with low-rank perturbations) and they readily extend to matrix stabiliza-
tion by perturbations with a prescribed linear structure, e.g. for perturbations with a given
sparsity pattern.

The problem of finding the nearest nonnegative stable matrix was studied by Guglielmi
& Protasov (2018) for the Frobenius norm, whereas Nesterov & Protasov (2020) consid-
ered the maximum norm.
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Fig. 4.4. Spectrum of the initial matrix stabilizing (4.15), computed by Overton’s algorithm (ma-
genta circles) and of the the matrix A+ ε⋆E(ε⋆) (blue circles) computed by the interior method. fig1
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Fig. 5.1. The approximated structured Sylvester ε-pseudospectrum for ε = 1
2

for Example (5.7) is
filled with blue. The red curve represents the boundary of the set of eigenvalues obtained by con-
sidering arbitrary complex perturbations (that is omitting the constraint of real Sylvester structure)
of norm bounded by 1

2
. fig:illS
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Chapter V.
Matrix nearness problems of different kinds

chap:mnp-mix
In this chapter we discuss extensions of the two-level approach of the previous chapter to
matrix nearness problems that either

– require special attention to the structure, as in Hamiltonian matrix nearness problems,

or are of different types that are not covered by the framework of Chapter IV, be it because

– the functional in the associated eigenvalue optimization problem depends on eigen-
vectors, as in the Wilkinson problem of computing the distance to singularity of the
eigenvalue condition number, which amounts to finding the nearest matrix with defec-
tive eigenvalues; or

– the nearness problem deals with matrix pencils, as in the problem of finding the nearest
matrix pencil that is singular or additionally has a common null-vector; or

– it deals with eigenvalue problems that are nonlinear in the eigenvalues, as in computing
the stability radius of linear delay differential equations; or

– it treats simultaneously both structured and unstructured perturbations, as in the prob-
lem of bounding transient behaviour of linear differential equations with structured
perturbations to the matrix, which leads to the notion of structured ε-stability radius.

These items are exemplary, not exhaustive. They form the sections of this chapter. The
sections can be read independently of each other, but we give fewer details in the later
sections.

This chapter illustrates the versatility of the two-level approach that uses rank-
constrained gradient flows in the inner iteration and combined Newton-type / bisection
methods in the outer iteration. It enriches the toolbox for applications in various fields,
such as those considered in the final chapters.

V.1 Hamiltonian matrix nearness problems
sec:Hamilton

In this section we apply the two-level algorithmic approach of the previous chapter to
matrix nearness problems for real Hamiltonian matrices, where ‘nearest’ again refers to
the smallest distance in the Frobenius norm:

• Problem A. Given a Hamiltonian matrix with no eigenvalues on the imaginary axis,
find a nearest Hamiltonian matrix having some purely imaginary eigenvalue.
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• Problem B. Given a Hamiltonian matrix with some eigenvalues on the imaginary axis,
find a nearest Hamiltonian matrix such that arbitrarily close to that matrix there exist
Hamiltonian matrices with no eigenvalues on the imaginary axis.

Such and related Hamiltonian matrix nearness problems arise in the passivation of lin-
ear time-invariant control systems and in the stabilization of gyroscopic systems; see the
references in the notes at the end of this chapter.

We deal here with structured matrix nearness problems with the structure space S
given as the space Ham(Rn,n) of real Hamiltonian matrices (with even dimension n =
2d), consisting of those matrices A ∈ Rn,n for which

JA is real symmetric, where J =

(
0 Id

−Id 0

)
.

We note that the eigenvalues of a real Hamiltonian matrix lie symmetric to both the real
axis and the imaginary axis: with any eigenvalue λ, also λ,−λ,−λ are eigenvalues. In
fact, if x is a left eigenvector ofA to the eigenvalue λ, then Jx is a right eigenvector ofA to
the eigenvalue −λ, since AJx = J−1(JA)Jx = −JA⊤J⊤Jx = −J(x∗A)∗ = −λJx.

V.1.1 Problem A: Moving eigenvalues to the imaginary axis
subsec:ham-A

For a real Hamiltonian matrix M , we let in the following the target eigenvalue λ(M) be
the eigenvalue of minimal real part in the first quadrant {λ ∈ C : Reλ ≥ 0, Imλ ≥ 0}.
(If this eigenvalue is not unique, we choose the one with minimal imaginary part.) We
follow the two-level approach of Section IV.2:

– Inner iteration: Given ε > 0, we aim to compute a matrix E(ε) ∈ S = Ham(Rn,n)
of unit Frobenius norm, such that Reλ(A+ εE) is minimized:

E(ε) = arg min
E∈Ham(Rn,n),∥E∥F=1

Reλ(A+ εE). (1.1) E-eps-ham

– Outer iteration: We compute the smallest positive value ε⋆ with

ϕ(ε⋆) = 0, (1.2) eq:zero-ham

where ϕ(ε) = Reλ(A+ εE(ε)).

We note that the inner iteration aims to find a leftmost point, in the first quadrant, of the
structured ε-pseudospectrumΛS

ε (A) = {λ ∈ C : λ is an eigenvalue of A+ εE for some
E ∈ S with ∥E∥F = 1}.

We recall from Section II.3.2 that the orthogonal projection ΠS from Cn,n onto S =
Ham(Rn,n) is given by

ΠSZ = J−1Sym(Re JZ), Z ∈ Cn,n. (1.3) Pi-Ham-recall
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We already know from Section II.3.3 that if λ(A + εE(ε)) is a simple eigenvalue, then
the optimizer E(ε) is a stationary point of the structure-constrained gradient flow given
in (II.3.6), viz.,

Ė = −GS
ε (E) + Re⟨GS

ε (E), E⟩E
with the projected gradient GS

ε (E) = ΠS(xy∗), (1.4) ode-E-S-recall

where x and y are again left and right eigenvectors of A + εE with ∥x∥ = ∥y∥ = 1 and
x∗y > 0. With the given definitions and the orthogonality of J , this becomes

JĖ = −Sym(Re Jxy∗) + ⟨Sym(Re Jxy∗), JE⟩JE. (1.5) ode-E-ham

In a stationary point, E is a real multiple of GS
ε (E) = J−1Sym(Re Jxy∗), which is of

rank at most 4. The precise rank is as follows.

Theorem 1.1 (Rank of optimizers). For a real Hamiltonian matrix A and ε > 0, letthm:rank-ham
E ∈ Rn,n with ∥E∥F = 1 be a stationary point of the differential equation (1.5) such
that the eigenvalue λ = λ(A+ εE) is simple and λ /∈ iR. Then,

– E has rank 4 if λ /∈ R.
– E has rank 2 if λ ∈ R.

Proof. If x is a left eigenvector to the eigenvalue λ, then Jx is a right eigenvector to −λ.
For a real Hamiltonian matrix, we have in addition that Jx and y are eigenvectors to −λ
and λ, respectively.

Under the assumption λ /∈ R∪ iR we have four different eigenvalues lying symmetric
to the real as well as the imaginary axis. The corresponding right eigenvectors Jx, Jx, y, y
are linearly independent, and so are their real and imaginary parts JxR, yR, JxI , yI .
Therefore, the matrix JGS

ε (E)), which is proportional to JE, equals

Sym(Re Jxy∗) = 1
4 (JxR, yR, JxI , yI)


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 (JxR, yR, JxI , yI)
T ,

which has rank 4. Hence, GS
ε (E) = J−1Sym(J Rexy∗) has rank 4, and so has its

nonzero real multiple E.
If λ is real and nonzero, then Jx and y are real, and they are linearly independent as

eigenvectors to −λ and λ. It follows that GS
ε (E) and hence E are of rank 2. ⊓⊔

V.1.2 Inner iteration: rank-4 dynamics
subsec:rank-four-dyn

In view of Theorem 1.1, we restrict the gradient flow (1.4) to Hamiltonian rank-4 matrices,
i.e., JE will be constrained to lie in the manifold of symmetric rank-4 matrices and hence
can be represented as
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JE = USU⊤,

where U ∈ Rn×4 has orthonormal columns and S ∈ R4×4 is symmetric and invertible.
Like in Section II.2.3, the orthogonal projection onto the tangent space at JE is given as

PJE(Z) = Z − (I − UU⊤)Z(I − UU⊤), Z ∈ Rn×n.

We consider the rank-4 projected gradient flow

JĖ = PJE

(
−Sym(Re Jxy∗) + ⟨Sym(Re Jxy∗), JE⟩JE

)
, (1.6) ode-E-4

where x and y are again left and right eigenvectors of A + εE with ∥x∥ = ∥y∥ = 1 and
x∗y > 0 to the target eigenvalue λ(A + εE). Similarly to Sections II.1.7 and II.2.4, we
have the following properties.

Theorem 1.2 (Monotonicity). Let E(t) of unit Frobenius norm be a solution to the dif-thm:monotone-ham
ferential equation (1.6). If the eigenvalue λ(t) = λ(A+ εE(t)) is simple, then

d

dt
Reλ(t) ≤ 0. (1.7) eq:mon-ham

Proof. We abbreviate G = GS
ε (E) = J−1Sym(Re Jxy∗) and obtain from (II.3.4) with

f(λ, λ) = 1
2 (λ+ λ) = Reλ and κ = 1/(x∗y) > 0, using the orthogonality of J ,

1

εκ

d

dt
Reλ(t) = ⟨G, Ė⟩ = ⟨JG, JĖ⟩

= ⟨JG,PJE

(
−JG− ⟨JG, JE⟩E

)
⟩

=
(
−∥PJE(JG)∥2F +

(
Re ⟨PJE(JG), JE⟩

)2) ≤ 0, (1.8) c-s-1-ham

where we used PJE(JE) = JE in the last equality, and ∥JE∥F = 1 and the Cauchy–
Schwarz inequality in the final inequality. ⊓⊔

Theorem 1.3 (Stationary points). Let E be a real Hamiltonian rank-4 matrix of unitthm:stat-ham
Frobenius norm and suppose that PJE(JG

S
ε (E)) ̸= 0. If E is a stationary point of the

projected differential equation (1.6), thenE is already a stationary point of the differential
equation (1.4).

Proof. The proof is similar to the proof of Theorem II.2.4. We show that E is a real
multiple of GS

ε (E). By (II.4.14), E is then a stationary point of the differential equation
(II.3.6), which is the same as (1.4).

For a stationary pointE of (1.6), we must have equality in the estimate of the previous
proof, which shows that PJE(JG) (with G = GS

ε (E)) is a nonzero real multiple of E.
Hence, in view of PJE(JE) = JE, we can write G as

G = µE +W, where µ ̸= 0 and PJE(JW ) = 0.

With JE = USU⊤ as above, we then have
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JW = JW − PJE(JW ) = (I − UU⊤)JW (I − UU⊤).

Since G is of rank at most 4 and real Hamiltonian, it can be written in the form JG =
XRX⊤, where X ∈ Rn,4 has orthonormal columns and R ∈ R4,4. So we have

XRX⊤ = µUSU⊤ + (I − UU⊤)JW (I − UU⊤).

Multiplying from the right with U yields X(RX⊤U) = µUS, which shows that X
has the same range as U . Hence, JG has the same range as JE, which implies that
PJE(JG) = JG. Since we already know that PJE(JG) is a nonzero real multiple of
PJE(JE) = JE, it follows thatG is the same real multiple of E. Hence E is a stationary
point of (1.4). ⊓⊔

We further remark that for real simple eigenvalues λ we have an analogous rank-2
dynamics.

A robust integrator. The following time-stepping method is an adaptation to (1.6) of the
low-rank integrator of Ceruti & Lubich (2021), similarly to the integrator in Section II.2.5.
It first updates the basis matrix U with orthonormal columns and then computes an update
of the symmetric 4× 4 matrix S by a Galerkin approximation to the differential equation
(1.6) in the updated basis. This integrator is robust to the presence of small singular val-
ues, which appear in the case of a target eigenvalue near the real axis, where the rank
degenerates from 4 to 2.

One time step of integration from time tk to tk+1 = tk + h starting from a factored
rank-4 matrix JEk = UkSkU

⊤
k of unit Frobenius norm computes an updated rank-r

factorization JEk+1 = Uk+1Sk+1U
⊤
k+1 of unit Frobenius norm as follows.

1. Update the basis matrix Uk → Uk+1:
Integrate from t = tk to tk+1 = tk + h the n× r matrix differential equation

K̇(t) = −JGS
ε (K(t)U⊤

k )Uk, K(tk) = UkSk.

Perform a QR factorization K(tk+1) = Uk+1Rk+1 and compute the r × r matrix
M = U⊤

k+1Uk.

2. Update the symmetric matrix Sk → Sk+1 :
Integrate from t = tk to tk+1 the r × r matrix differential equation

Ṡ(t) = −U⊤
k+1JG

S
ε (Uk+1S(t)U

⊤
k+1)Uk+1, S(tk) =

MSkM
⊤

∥MSkM⊤∥F
,

and set Sk+1 = S(tk+1)/∥S(tk+1)∥F .

The differential equations in the substeps are solved approximately by a step of some stan-
dard numerical integrator, e.g. the explicit Euler method or a low-order explicit Runge–
Kutta method such as the second-order Heun method. The stepsize selection is done as in
Section II.2.5, using an Armijo-type line search.
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V.1.3 Non-imaginary eigenvalues close to coalescence on the
imaginary axis

sec:eps
This theoretical section serves as a preparation for the algorithm of the outer iteration
that will be presented in the next section. Let E(ε) of unit Frobenius norm be a local
minimizer of the optimization problem (1.1). We let λ(ε) be the eigenvalue of smallest
positive real part (and nonnegative imaginary part) of the Hamiltonian matrix

M(ε) := A+ εE(ε)

and x(ε) and y(ε) are corresponding left and right eigenvectors normalized by ∥x(ε)∥ =
∥y(ε)∥ = 1 and x(ε)∗y(ε) > 0. We let ε⋆ be the smallest value of ε such that

ϕ(ε) = Reλ(ε)

becomes zero:

ϕ(ε) > 0 for 0 < ε < ε⋆ and ϕ(ε) = 0 for ε ≥ ε⋆ near ε⋆.

Under Assumption IV.2.1, the function ϕ is continuously differentiable in a left neigh-
bourhood of ε⋆ and its derivative is given by Theorem IV.2.2. In the following we show
that under further assumptions, the function ϕ has a square-root behavior ϕ(ε) ∼

√
ε⋆ − ε

as ε↗ ε⋆.

assumpt-epsstar Assumption 1.4. We assume that the limit M(ε⋆) := limε↗ε⋆ M(ε) of the Hamiltonian
matrices exists and that the purely imaginary eigenvalue λ(ε⋆) = limε↗ε⋆ λ(ε) ofM(ε⋆)
has algebraic multiplicity two and is defective (that is, the zero singular value ofM(ε⋆)−
λ(ε⋆)I is simple).

By definition of ε⋆, the eigenvalue λ(ε⋆) is on the imaginary axis and has even mul-
tiplicity because of the symmetry of the eigenvalues with respect to the imaginary axis.
Here we assume multiplicity two. The defectivity appears to be generic (we have no proof
for this but observed defectivity in all our numerical experiments).

Under Assumption 1.4, the eigenvalue λ(ε⋆) of M(ε⋆) is non-derogatory, that is,
only a single Jordan block corresponds to this eigenvalue, and hence its left and right
eigenspaces are of dimension 1. Since λ(ε⋆) is a defective eigenvalue, left and right eigen-
vectors at ε⋆ are orthogonal to each other: x(ε⋆)∗y(ε⋆) = 0.

We need the following result.

Theorem 1.5 (Eigenvectors at coalescence). Let M(ε), ε ∈ [ε0, ε⋆], be a continuousthm:yJx
path of real Hamiltonian matrices, and λ(ε) be a path of eigenvalues of M(ε) that are
simple and not purely imaginary for ε < ε⋆ and satisfy Assumption 1.4 at ε⋆. Under a
nondegeneracy condition on eigenvectors of M(ε) stated in (1.20) below, there exist left
and right eigenvectors x(ε) and y(ε) to the eigenvalue λ(ε), normalized to unit norm and
with x(ε)∗y(ε) > 0 for ε < ε⋆, which depend continuously on ε in the closed interval
[ε0, ε⋆]. In particular, the eigenvectors converge for ε↗ ε⋆. In the limit we have

y(ε⋆) = ±Jx(ε⋆),

where the sign depends on x(ε) for ε near ε⋆.
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The important fact here is that y(ε⋆) is not just a complex multiple of Jx(ε⋆), as
would easily be obtained from the symmetry of eigenvalues with respect to the imaginary
axis, but that it is a real multiple.

Proof. By a result of Paige & Van Loan (1981), Theorem 5.1, the Hamiltonian matrix
M(ε) with no imaginary eigenvalues (for ε < ε⋆) admits a real Schur-Hamiltonian
decomposition, that is, there exists an orthogonal symplectic real matrix S(ε) (i.e.,
S(ε)⊤S(ε) = I and S(ε)⊤JS(ε) = J) for ε > ε⋆) that transforms M(ε) to a block
triangular Hamiltonian matrix

M0(ε) = S(ε)−1M(ε)S(ε) =

(
F (ε) H(ε)
0 −F (ε)⊤

)
, (1.9)

where H(ε) is symmetric and F (ε) is upper quasi-triangular.
For the eigenvalue λ(ε), the left and right eigenvectors of M0(ε) are related to those

of M(ε) by
x0(ε) = S(ε)⊤x(ε), y0(ε) = S(ε)−1y(ε). (1.10) x-x0

We assume that x(ε) and y(ε) are normalized to norm 1 and such that x(ε)∗y(ε) > 0 for
ε > ε⋆, and hence we have also

x0(ε) and y0(ε) are of norm 1 and x0(ε)
∗y0(ε) > 0. (1.11) x0y0pos

We observe that the lower half of the right eigenvector y0(ε) to the block triangular matrix
M0(ε) consists only of zeros and we split the eigenvectors into the upper and the lower
n/2-dimensional subvectors as

y0(ε) =

(
−p(ε)

0

)
, x0(ε) =

(
−s(ε)
r(ε)

)
. (1.12) yxpsr

By the Hamiltonian symmetry, left and right eigenvectors associated with the eigenvalue
−λ(ε), with positive inner product, are x̃0(ε) = Jy0(ε) and ỹ0(ε) = Jx0(ε), and so we
have

ỹ0(ε) =

(
r(ε)
s(ε)

)
, x̃0(ε) =

(
0

p(ε)

)
. (1.13)

By compactness, there exists a sequence (εn) with εn ↗ ε⋆ as n→ ∞ such that x0(εn),
y0(εn) and S(εn) converge to vectors x0,⋆, y0,⋆ of norm 1 and an orthogonal symplectic
real matrix S⋆. By the continuity of M(·) and λ(·) at ε⋆, the limit vectors x0,⋆, y0,⋆ are
then left and right eigenvectors corresponding to the purely imaginary eigenvalue λ(ε⋆)
of M(ε⋆).

By Assumption 1.4, the left and right eigenspaces to λ(ε⋆) are one-dimensional, and
so we have that for some complex ξ, η of unit modulus,

lim
n→∞

ỹ0(εn) = −η lim
n→∞

y0(εn), lim
n→∞

x̃0(εn) = ξ lim
n→∞

x0(εn). (1.14) y0-x0-limits

We thus obtain
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lim
n→∞

s(εn) = 0 (1.15) s-to-zero

and
lim
n→∞

r(εn) = η lim
n→∞

p(εn), lim
n→∞

p(εn) = ξ lim
n→∞

r(εn), (1.16) eq:limits

so that
ξ = η̄. (1.17)

By (1.11),
s(ε)∗p(ε) is real and positive for ε > ε⋆, (1.18) sp-pos

and in particular, s(ε) ̸= 0 for ε > ε⋆ (but recall (1.15)).
Moreover, from the fact that x0(ε) is a left eigenvalue of M0(ε), we infer that (omit-

ting the argument ε in the next few lines) s∗F = λs∗ and −s∗H − r∗F⊤ = λr∗. Multi-
plying the second equation with s from the right and using the first equation then yields
−s∗Hs = (λ+ λ) r∗s, which shows that

s(ε)∗r(ε) is real for ε > ε⋆. (1.19) sr-real

Under the nondegeneracy condition

lim inf
ε↗ε⋆

∣∣∣∣( s(ε)

∥s(ε)∥

)∗
r(ε)

∥r(ε)∥

∣∣∣∣ > 0, (1.20) nondeg-condition

which states that the normalizations of the vectors s and r are not asymptotically or-
thogonal, we conclude that there is a subsequence (ε′n) of (εn) such that the normalized
sequence

(
s(ε′n)/∥s(ε′n)∥

)
is convergent and (on noting that ∥r(εn)∥ → 1 because of

(1.12) and (1.15))

lim
n→∞

s(ε′n)
∗r(ε′n)

∥s(ε′n)∥
̸= 0. (1.21) sp-conv

As (1.16) implies that this nonzero limit equals

lim
n→∞

s(ε′n)
∗r(ε′n)

∥s(ε′n)∥
= η lim

n→∞

s(ε′n)
∗p(ε′n)

∥s(ε′n)∥

and the two limits in this formula are real by (1.18) and (1.19), it follows that η is real and
hence η equals 1 or −1. In view of (1.18) and (1.20), we actually have

η = lim
ε↗ε⋆

sign(s(ε)∗r(ε)) = ±1, (1.22) eta-sr

which depends only on the left eigenvector x0(ε). As a consequence, we obtain from
(1.14) that

y0,⋆ = −ηJx0,⋆ = ∓Jx0,⋆. (1.23) eq:limy0

By (1.10) we have

x(ε) =
(
S(ε)⊤

)−1
x0(ε) = −JS(ε)Jx0(ε), y(ε) = S(ε)y0(ε) = ±S(ε)Jx0(ε)

(1.24)
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and therefore the limits x⋆ = limn→∞ x(εn) and y⋆ = limn→∞ y(εn) exist and satisfy

y⋆ = ±Jx⋆. (1.25) eq:limy

We now use once again that by Assumption 1.4, the left and right eigenspaces to λ(ε⋆)
are one-dimensional. Hence x⋆ is a complex multiple of the unique left eigenvector x(ε⋆)
of norm 1 for which the first nonzero entry is positive. If we choose the eigenvectors x(ε)
such that their corresponding entry is also nonnegative, then we find that every convergent
subsequence (x(εn)) converges to the same limit x(ε⋆) as n → ∞, and hence x(ε)
converges to x(ε⋆) as ε ↗ ε⋆. To the left eigenvector x(ε), there corresponds a unique
right eigenvector y(ε) of norm 1 that satisfies x(ε)∗y(ε) > 0 for ε > ε⋆. By (1.25),
the limit of every convergent subsequence (y(εn)) converges to ±J limn→∞ x(εn) =
±Jx(ε⋆), and hence the limit y(ε⋆) := limε↗ε⋆ y(ε) exists, is a right eigenvector of
M(ε⋆) to the eigenvalue λ(ε⋆), and it equals

y(ε⋆) = lim
ε↗ε⋆

y(ε) = ±J lim
ε↗ε⋆

x(ε) = ±Jx(ε⋆),

which completes the proof. ⊓⊔

Remark 1.6. If additionally M(ε), ε ∈ [ε0, ε⋆], is continuously differentiable and
Rex(ε⋆)∗M ′(ε⋆)y(ε⋆) ̸= 0, then Theorem 1.5 implies that the eigenvalue λ(ε) ap-
proaches the imaginary axis in normal direction (i.e. horizontally in the complex plane).
This is because then we have, with κ(ε) = 1/(x(ε)∗y(ε)) > 0,

Im
λ′(ε)

κ(ε)
= Imx(ε)∗M ′(ε)y(ε) → Imx(ε⋆)

∗M ′(ε⋆)y(ε⋆)

= Im (Jx(ε⋆))
∗JM ′(ε⋆)y(ε⋆) = ± Im y(ε⋆)

∗JM ′(ε⋆)y(ε⋆) = 0

by the symmetry of JM ′(ε⋆). By assumption,

Re
λ′(ε)

κ(ε)
= Rex(ε)∗M ′(ε)y(ε) → Rex(ε⋆)∗M ′(ε⋆)y(ε⋆) ̸= 0.

Hence, Imλ′(ε) /Reλ′(ε) → 0 as ε ↗ ε⋆. This can, however, not be concluded when
M ′(ε) has no limit at ε⋆ and ∥M ′(ε)∥ → ∞ as ε↗ ε⋆.

We are now in a position to characterize the asymptotic behaviour of the function
ϕ(ε) = Reλ(ε) as ε↗ ε⋆, in the situation described at the beginning of this section.

Theorem 1.7 (Square root asymptotics). Under Assumptions IV.2.1 and 1.4 and thethm:sqrt
nondegeneracy condition (1.20), and under the further condition that the eigenvalue λ(ε)
of the Hamiltonian matrix M(ε) = A + εE(ε) does not approach the imaginary axis
tangentially as ε↗ ε⋆, we have

Reλ(ε) = γ
√
ε⋆ − ε (1 + o(1)) as ε↗ ε⋆

for some positive constant γ.
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Proof. We split the proof into four parts (a)-(d).
(a) For ε < ε⋆, let x(ε) and y(ε) be left and right eigenvectors of M(ε) = A + εE(ε)
to the simple eigenvalue λ(ε), of unit norm and with x(ε)∗y(ε) > 0 for ε < ε⋆ and
normalized such that their limits for ε↗ ε⋆ exist according to Theorem 1.5. We consider
the nonnegative function

ϑ(ε) :=
1

κ(ε)
= x(ε)∗y(ε) > 0 for ε ∈ (ε0, ε⋆), ϑ(ε⋆) = 0.

To compute the derivative of ϑ, we use Theorem VIII.1.5 for the left and right eigenvectors
of norm 1 and with positive inner product,

x′(ε)∗ = −x(ε)∗M ′(ε)Z(ε) + Re
(
x(ε)∗M ′(ε)Z(ε)x(ε)

)
x(ε)∗

y′(ε) = −Z(ε)M ′(ε)y(ε) + Re
(
y(ε)∗Z(ε)M ′(ε)y(ε)

)
y(ε),

where Z(ε) is the group inverse of N(ε) := M(ε) − λ(ε)I . Since Theorem VIII.1.4
shows that x(ε)∗Z(ε) = 0 and Z(ε)y(ε) = 0, these formulas imply

ϑ′(ε) = Re
(
x(ε)∗M ′(ε)Z(ε)x(ε) + y(ε)∗Z(ε)M ′(ε)y(ε)

)
ϑ(ε). (1.26) eq:derdelta

By Theorem VIII.1.4, the group inverse is related to the pseudoinverse N(ε)† by the
formulas

Z(ε) =
1

ϑ(ε)2
Ẑ(ε)

Ẑ(ε) =
(
ϑ(ε)I − y(ε)x(ε)∗

)
N(ε)†

(
ϑ(ε)I − y(ε)x(ε)∗

)
. (1.27)

By Assumption 1.4, the second smallest singular value σn−1(ε) of N(ε) does not con-
verge to zero. Therefore, N(ε)† has a finite limit as ε↗ ε⋆. We thus have

Ẑ(ε) = y(ε)x(ε)∗N(ε)†y(ε)x(ε)∗ +O(ϑ(ε)) (1.28)
= ν(ε)y(ε)x(ε)∗ +O(ϑ(ε))

with the factor
ν(ε) := x(ε)∗N(ε)†y(ε),

Furthermore, we set
µ(ε) := x(ε)∗M ′(ε)y(ε).

We insert the expression for the group inverse Z(ε) into (1.26) and note the identi-
ties N†(ε)x(ε) = 0 and y(ε)∗N†(ε) = 0, which follow from x(ε)∗N(ε) = 0 and
N(ε)y(ε) = 0, respectively. We then obtain

ϑ′(ε)ϑ(ε) = Re
(
x(ε)∗M ′(ε)Ẑ(ε)x(ε) + y(ε)∗Ẑ(ε)M ′(ε)y(ε)

)
= Re

(
2ν(ε)µ(ε) +O(ϑ(ε)µ(ε))

)
. (1.29) vartheta-prime
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(b) We now study the limit behaviour of ν(ε) as ε ↗ ε⋆. By Theorem 1.5, the limits of
the left and right eigenvectors for ε ↗ ε⋆ exist and satisfy y(ε⋆) = ±Jx(ε⋆) and further
x(ε⋆)

∗y(ε⋆) = 0. Since JN(ε⋆) is a hermitian matrix, we therefore obtain

ν(ε⋆) = x(ε⋆)
∗N(ε⋆)

†y(ε⋆) = x(ε⋆)
∗(JN(ε⋆))

†Jy(ε⋆)

= ∓x(ε⋆)
∗(JN(ε⋆))

†x(ε⋆) ∈ R.

We next show that ν(ε⋆) ̸= 0. Since x(ε⋆)⊥ y(ε⋆) and since x(ε⋆) spans the nullspace
of N(ε⋆)

∗ (by the defectivity condition in Assumption 1.4), we obtain

y(ε⋆) ∈ Ker(N(ε⋆)
∗)⊥ = Range (N(ε⋆)) .

Hence there exists z1 such that y(ε⋆) = N(ε⋆)z1. Assume, in a proof by contradiction,
N(ε⋆)

†y(ε⋆)⊥x(ε⋆), which means

N(ε⋆)
†y(ε⋆) ∈ Range (N(ε⋆)) .

Hence there exists z2 such that N(ε⋆)
†y(ε⋆) = N(ε⋆)z2.

Multiplying this equation with N(ε⋆)
2 we obtain (omitting the argument ε⋆ in the

following)
N3z2 = N2N†y = N NN†Nz1 = NNz1 = Ny = 0.

The null-space ofN3 is two-dimensional by Assumption 1.4 and contains the two nonzero
vectors y andN†y, sinceNy = 0 andN2N†y = 0. Note thatN†y ̸= 0 because otherwise
y would be in the nullspace of N†, which is the nullspace of N∗, which contradicts the
above observation that y ̸= 0 is in the orthogonal complement of the nullspace of N∗.
Moreover, y and N†y are linearly independent, since otherwise the relation y = cN†y
would yield, on multiplication with N , that

0 = Ny = cNN†y = cNN†Nz1 = cNz1 = cy,

which contradicts y ̸= 0. Therefore, the null-space of N3 is spanned by y and N†y, and
since we have shown that it contains z2, we obtain

z2 = c1y + c2N
†y.

Multiplying this equation with N then gives

N†y = Nz2 = c2NN
†Nz1 = c2Nz1 = c2y,

which contradicts the linear independence of y andN†y. We have thus led the assumption
N(ε⋆)

†y(ε⋆) ⊥ x(ε⋆) to a contradiction. Therefore, ν(ε⋆) ̸= 0. So we have shown that

ν⋆ := lim
ε↗ε⋆

ν(ε) exists and is real and nonzero. (1.30) nu-star

(c) We next study the limit behaviour of µ(ε) as ε↗ ε⋆. By Theorem VIII.1.1 we have
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µ(ε) = λ′(ε)ϑ(ε).

By Theorem IV.2.2 with the objective function ϕ(ε) = Reλ(ε) and the gradient Z(ε) =
Sym(Re Jx(ε)y(ε)∗), we thus have

Reµ(ε) = −∥Z(ε)∥F .

Since y(ε⋆) = ±Jx(ε⋆) by Theorem 1.5, we have in the limit ε↗ ε⋆ that

G(ε⋆) = Sym(Re Jx(ε⋆)y(ε⋆)∗) = ±Re y(ε⋆)y(ε⋆)∗ ̸= 0.

By assumption, λ(ε) does not approach the imaginary axis tangentially, and hence we
have

|Imµ(ε)|
|Reµ(ε)|

=
|Imλ′(ε)|
|Reλ′(ε)|

≤ C (1.31) Im-mu

for some constant C independent of ε ∈ (ε0, ε⋆). This implies that |Imµ(ε)| is bounded
independently of ε. In the following we let

ρ⋆ := − lim
ε↗ε⋆

Reµ(ε) = ∥G(ε⋆)∥F > 0. (1.32) mu-G

(d) From (1.30)–(1.32) we conclude that the right-hand side of (1.29) has a nonzero finite
real limit as ε↗ ε⋆. So we have

d

dε
ϑ(ε)2 = 2ϑ′(ε)ϑ(ε) = −4ρ⋆ν⋆(1 + o(1)) as ε↗ ε⋆.

Integrating this relation and using ϑ(ε⋆)2 = 0 yields

ϑ(ε)2 = (ε⋆ − ε) 4ρ⋆ν⋆(1 + o(1)).

This further allows us to conclude that ν⋆ is not only nonzero and real but actually positive.
We recall that ϑ(ε) > 0 for ε < ε⋆ and take the square root to obtain

ϑ(ε) =
√
ε⋆ − ε 2

√
ρ⋆ν⋆ (1 + o(1)). (1.33) vartheta-asymptote

On the other hand, since µ(ε) = λ′(ε)ϑ(ε), we find

Reλ′(ε) =
Reµ(ε)
ϑ(ε)

=
−ρ⋆
ϑ(ε)

(1 + o(1)).

Using (1.33) and setting γ =
√
ρ⋆/ν⋆, this yields

Reλ′(ε) = − γ

2
√
ε⋆ − ε

(1 + o(1)), (1.34) phi-prime

and integration then implies the stated result for Reλ(ε). ⊓⊔
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V.1.4 Outer iteration: Square root model and bisection

subsec:outer-it-sqrt

For a small positive parameter δ, we aim to find εδ as the minimal number such that

Reλ(εδ) = δ. (1.35) eps-delta

We can use the Newton/bisection method of Section IV.2.3 to compute εδ , but for small
δ, this can lead to many Newton step rejections and bisection steps. In the situation of
Theorem 1.7, using a square root model of ϕ(ε) = Reλ(ε) appears more appropriate.
The algorithm falls back to simple bisection if the local square root model fails.

For ε ↗ ε⋆, we have in the expected situation of Theorem 1.7 the square-root be-
haviour for ϕ(ε) = Reλ(ε) (and by (1.34) for ϕ′(ε))

ϕ(ε) = γ
√
ε⋆ − ε (1 + o(1))

ϕ′(ε) = − γ

2
√
ε⋆ − ε

(1 + o(1)).
(1.36)

For an iterative process, given εk, we use that ϕ′(εk) = −κ(ε)∥Z(ε)∥F by Theo-
rem IV.2.2 and solve (1.36) for γ and ε⋆, ignoring the o(1) terms. We denote the solution
as γk and ε̂k, i.e.,

γk =
√
−2ϕ(εk)ϕ′(εk), ε̂k = εk − ϕ(εk)

2ϕ′(εk)
. (1.37)

As a substitute for the equation ϕ(ε) = δ, we solve the equation γk
√
ε̂k − εk+1 = δ for

εk+1, which yields

εk+1 = ε̂k + δ2/γ2k. (1.38)

Algorithm 10 is based on these formulas. Here, tol is a tolerance that controls the desired
accuracy of the computed optimal ε (not to be chosen too small).
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Algorithm 10: Basic algorithm for computing the optimal perturbation for small
δ

alg:problemA
Data: δ, tol, θ (default 0.8), and ε0 (such that ϕ(ε0) > tol)
Result: ε̂δ , E(ε̂δ)
begin

1 Set Reject = False and k = 0
2 while |ϕ(εk)− δ| ≥ tol do
3 if Reject = False then
4 Set ε̃ = εk, θ̃ = θ

Compute γk and ε̂k by (1.37)
5 Set εk+1 = ε̂k + δ2/γ2k

else
Set εk+1 = θ̃ εk + (1− θ̃) ε̃

Set θ̃ = θθ̃

6 Set k = k + 1
7 Compute ϕ(εk) by solving the rank-4 differential equation (1.6) with

initial datum E(εk−1) into a stationary point E(εk) as in Section V.1.2
8 Compute ϕ′(εk) by (IV.2.3)
9 if ϕ(εk) < tol then

Set Reject = True
else

Set Reject = False

10 Return ε̂δ = εk

V.1.5 Problem B: Eigenvalues leaving the imaginary axis
subsec:ham-B

We describe two complementary approaches to Problem B. The first approach moves
eigenvalues on the imaginary axis, and the second approach moves eigenvalues off the
imaginary axis.

Moving eigenvalues on the imaginary axis to coalescence. Because of the symmetry
of eigenvalues of Hamiltonian matrices with respect to the imaginary axis, paths of eigen-
values can leave the imaginary axis only at multiple eigenvalues. Given a Hamiltonian
matrix with some simple eigenvalues on the imaginary axis, it is thus of interest to find its
distance to the nearest matrix where two previously adjacent eigenvalues coalesce. This
problem is addressed by an extension of the two-level approach considered before.

Let A be a real Hamiltonian matrix with a pair λ1(A) and λ2(A) of adjacent eigen-
values on the imaginary axis, with Imλ2(A) > Imλ1(A). In the inner iteration we de-
termine, for a fixed perturbation size ε > 0, a real Hamiltonian matrix E of Frobenius
norm 1 such that the functional

Fε(E) = Imλ2(A+ εE)− Imλ1(A+ εE)
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is minimized. As in previous sections, this minimization is carried out with a constrained
gradient flow. Along a path E(t) of real Hamiltonian matrices with simple eigenvalues
λk(t) = λk(A + εE(t)) (k = 1, 2) on the imaginary axis, corresponding left and right
eigenvectors xk(t), yk(t) of unit norm with positive inner product, and the eigenvalue
condition numbers κk(t) = 1/(xk(t)

∗yk(t)) we find (omitting the ubiquitous argument t)

d

dt
Fε(E(t)) = Im(λ̇2 − λ̇1) = Im(κ2x

∗
2Ėy2 − κ1x

∗
1Ėy1)

= ⟨Im(κ2x2y
∗
2 − κ1x1y

∗
1), Ė⟩

= ⟨Gε(E), Ė⟩

with the Hamiltonian gradient

Gε(E) = ΠS Im(κ2x2y
∗
2 − κ1x1y

∗
1) = J−1Sym

(
Im(κ2Jx2y

∗
2 − κ1Jx1y

∗
1)
)
,

which has rank at most 8. The corresponding norm-constrained gradient system is then
again

Ė = −Gε(E) + ⟨Gε(E), E⟩E,

along which Fε(E(t)) decreases monotonically. In a stationary point, E is a real multiple
of Gε(E), which is of rank at most 8. We can then solve numerically the rank-8 con-
strained gradient system into a stationary point in the same way as we did with the rank-4
system in Section V.1.2. In the outer iteration we aim to determine the smallest zero ε⋆ of
ϕ(ε) = Fε(E(ε)), where E(ε) is the minimizer corresponding to the perturbation size ε.
This is again done by a Newton/bisection algorithm (or using a square root model and
bisection) as discussed before.

We note, however, that a coalescence on the imaginary axis does not guarantee that the
coalescent eigenvalues can be moved off the imaginary axis by an arbitrarily small further
perturbation; see Mehrmann & Xu (2008), Theorem 3.2. Moreover, mere coalescence on
the imaginary axis does not give an answer to the related problem of finding a small-
est perturbation that moves the adjacent imaginary eigenvalues to a prescribed positive
distance δ to the imaginary axis.

Moving non-imaginary eigenvalues of perturbed Hamiltonian matrices back to co-
alescence on the imaginary axis. In a complementary approach, we first perturb the
given real Hamiltonian matrix A, which is assumed to have some eigenvalues on the
imaginary axis, to another Hamiltonian matrix A0 = A + ε0E0 (with ∥E0∥F = 1)
that has no eigenvalues on the imaginary axis, but which is not the one that is closest
to A. With a sufficiently large perturbation size ε0, this is always possible; just take
A0 = blockdiag(B,−B⊤), where B ∈ Rd,d is an arbitrary matrix having no purely
imaginary eigenvalues. For example, one might choose B as the left upper block of A,
if this has no imaginary eigenvalues, or else slightly shifted to have no imaginary eigen-
value. We remark that in our numerical experiments, the choice of A0 was not a critical
issue. Starting from A0, we reduce the perturbation size to ε < ε0 and in this way drive
eigenvalues back to the imaginary axis.
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We aim to find the largest perturbation size ε for whichA+εE has some eigenvalue on
the imaginary axis for every matrix E of Frobenius norm 1. This differs from Problem A,
where the aim was to find the smallest perturbation size ε for which A + εE (with A
having no purely imaginary eigenvalues) has eigenvalues on the imaginary axis for some
matrix E of Frobenius norm 1.

As in Section V.1.1, the target eigenvalue λ(M) of a Hamiltonian matrix M is taken
as an eigenvalue of minimal real part in the first quadrant. In the inner iteration we use
a rank-4-constrained gradient system to compute, for a given perturbation size ε > 0, a
real Hamiltonian matrix E(ε) of Frobenius norm 1 such that Reλ(A + εE) is (locally)
maximized (as opposed to minimized for Problem A):

E(ε) = arg max
E∈Ham(Rn,n),∥E∥F=1

Reλ(A+ εE). (1.39) E-eps-ham-max

The details of the algorithm are nearly identical to Section V.1.1, except that the sign of
the right-hand sides of the differential equations (1.4), (1.5) and (1.6) is switched, or in
other words, we go backward in time with the same differential equations.

In the outer iteration we compute, for a given small δ > 0, the perturbation size εδ as
the largest ε with Reλ(A+ εE(ε)) = δ, in the same way as in Section V.1.4.sec:symplectic

V.2 Nearest defective real matrix
sec:defective

Let A be a real n × n matrix with n distinct eigenvalues. A classical problem, known
as Wilkinson problem, is that of determining the nearest matrix to A with a defective
multiple eigenvalue, that is, the Jordan canonical form has a non-diagonal block. Note
that a Jordan block is non-diagonal if and only if the left and right eigenvectors of the
Jordan block are orthogonal to each other.

Here we restrict the problem to the space of real matrices. We are interested in com-
puting the following distance:

wR(A) = inf
{
∥∆∥F : ∆ ∈ Rn,n is such that A+∆ is defective

}
, (2.1)

i.e. the Frobenius-norm distance of A to the set of defective real matrices. This can be
interpreted as the distance to singularity of the eigenvalue condition number κ = 1/(x∗y),
where x and y are left and right eigenvectors of unit norm and with positive inner product.
This notion of eigenvalue condition number is due to Wilkinson (1965).

V.2.1 Two-level approach

For 0 < ε < wR(A) we introduce the functional Fε(E) (for matrices E ∈ Cn,n, which
will later be restricted to be real and of unit Frobenius norm) as follows: Let λ = λ(A+
εE) be a simple target eigenvalue of A + εE and let x and y be corresponding left and
right eigenvectors, respectively, normalized to unit norm and with positive inner product.
We set
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Fε(E) = x∗y > 0. (2.2) F-eps-def

In contrast to previous sections, the functional to be minimized now depends on eigen-
vectors instead of eigenvalues.

We follow the two-level approach of Section IV.2:

– Inner iteration: Given ε > 0, we aim to compute a matrix E(ε) ∈ Rn,n of unit
Frobenius norm that minimizes Fε:

E(ε) = arg min
E∈Rn,n,∥E∥F=1

Fε(E). (2.3) E-eps-def

– Outer iteration: For a small threshold δ > 0, we compute the smallest positive value
εδ with

ϕ(εδ) = δ, (2.4) zero-def

where ϕ(ε) = Fε(E(ε)) = x(ε)∗y(ε), where x(ε) and y(ε) are left and right eigenvec-
tors of A+ εE(ε) associated with λ(ε), of unit norm and with positive inner product.

Provided that these computations succeed, we then expect that ∆Aδ = εδE(εδ) ∈
Rn,n makes A+∆A close to a defective matrix and that, for an appropriate choice of the
target eigenvalue, the limit ε⋆ = limδ↘0 εδ exists and is equal to the distance wR(A) of
the matrix A to the set of defective real matrices. These steps are detailed in the following
subsections.

V.2.2 Constrained gradient flow for the inner iteration

As in Section II.2, we begin by computing the free (complex) and real gradients of the
functional Fε.

Lemma 2.1 (Free gradient). Let E(t) ∈ Cn,n, for real t near t0, be a continuouslylem:gradient-mp-cnv
differentiable path of matrices, with the derivative denoted by Ė(t). Assume that λ(t) is
a simple eigenvalue of A + εE(t) depending continuously on t, with corresponding left
and right eigenvectors x(t) and y(t), respectively, which are taken to be of unit norm and
with positive inner product. Let κ(t) = 1/(x(t)∗y(t)). Then, Fε(E(t)) = x(t)∗y(t) is
continuously differentiable w.r.t. t and

κ(t)

ε

d

dt
Fε(E(t)) = Re

〈
Gε(E(t)), Ė(t)

〉
, (2.5) eq:deriv-def

where the rescaled gradient of Fε is a matrix of rank at most 2, given by

Gε(E) = xx∗Z∗ + Z∗yy∗. (2.6) freegrad-def

Here, Z is the group inverse of A + εE − λI (see Chapter VIII) for the eigenvalue λ =
λ(A+εE), and x and y are the left and right normalized eigenvectors with positive inner
product.
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Proof. By (VIII.1.5) and using that Zy = 0, x∗Z = 0, we get

d

dt
(x∗y) = Re

(
ẋ∗y + x∗ẏ

)
=

= ε (x∗y)Re
(
x∗ĖZx+ y∗ZĖy

)
= ε (x∗y)Re ⟨xx∗Z∗ + Z∗yy∗, Ė⟩ = ε (x∗y)Re ⟨Gε(E), Ė⟩ ,

from which (2.5) follows. ⊓⊔

Real gradient. For a path of real matrices E(t) ∈ Rn,n, also Ė(t) is real, and hence the
right-hand side of (2.5) becomes

〈
ReGε(E(t)), Ė(t)

〉
with the real inner product. With

the real gradient

GR
ε (E) := ReGε(E) = Re(xx∗Z∗ + Z∗yy∗), (2.7) real-grad-def

which is a matrix of rank at most 4, we then have

κ(t)

ε

d

dt
Fε(E(t)) =

〈
GR

ε (E(t)), Ė(t)
〉
. (2.8) eq:deriv-real-def

With this real gradient, we now follow closely the programme of Section II.2.

Norm-constrained real gradient flow. We consider the gradient flow on the manifold
of matrices in Rn,n of unit Frobenius norm,

Ė = −GR
ε (E) + ⟨GR

ε (E), E⟩E. (2.9) ode-E-def

Monotonicity. Assuming simple eigenvalues along the trajectory, we again have the
monotonicity property of Theorem II.1.4 and (II.2.7),

d

dt
Fε(E(t)) = −∥GR

ε (E)− ⟨GR
ε (E), E⟩E∥2F ≤ 0. (2.10) eq:pos-def

Stationary points. Also the characterization of stationary points as given in Theo-
rem II.1.5 extends with the same proof: Let E ∈ Rn,n with ∥E∥F = 1 be such that
the eigenvalue λ(A+ εE) is simple and GR

ε (E) ̸= 0. Then,

E is a stationary point of the differential equation (3.6) stat-def

if and only if E is a real multiple of GR
ε (E).

(2.11) stat-def

Hence, in this situation the rank of an optimizer of (2.3) is at most 4.
This raises the question as to whether the real gradient GR

ε (E) = ReGε(E) =
Re(xx∗Z∗ + Z∗yy∗) can be the zero matrix. We first note that if x∗y = 1, then
Gε(E) = 0, because then x = y and we have Zy = 0 and x∗Z = 0. Hence, for a
normal matrix A+ εE the gradient is always zero.

The following result excludes a vanishing real gradient if x∗y < 1 and if the eigen-
value λ is not purely real.
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Theorem 2.2 (Non-vanishing real gradient). Assume that the real matrix B has a pairth:ReS
of simple complex conjugate eigenvalues λ and λ̄. Let x and y be left and right eigenvec-
tors of unit norm with positive inner product associated with λ and assume that x∗y < 1.
Let Z be the group inverse of B − λI and let G = xx∗Z∗ + Z∗yy∗ as in (2.6). Then,
ReG ̸= 0.

Proof. The proof is done by leading the assumption ReG = 0 to a contradiction. So let
us assume that G is purely imaginary. In part (a) of the proof we show that then {x, x}
and {y, y} span the same 2-dimensional invariant subspace. In part (b) we work on this
subspace and derive a contradiction.

(a) By definition of the matrix G, its range is given by

Ran(G) = span {x, Z∗y} .

If G is purely imaginary, then Ran(G) = Ran(G) and hence x ∈ Ran(G), i.e., we have
x = αx+βZ∗y. A left premultiplication with y∗ allows us to conclude α = 0, because (i)
y∗x = 0 by the bi-orthogonality of left and right eigenvectors corresponding to different
eigenvalues (here λ and λ), (ii) Zy = 0, a property of the group inverse Z, and (iii)
x∗y ̸= 0 as λ is a simple eigenvalue. This implies x ∝ Z∗y. Analogously, we obtain
ȳ ∝ Zx. So we have

Zx = γy, Z∗y = ηx, (2.12) eq:d1

with γ ̸= 0 and η ̸= 0.
Since y is in the null-space of B − λI and B is real, it follows that y is a right

eigenvector of B − λI to the eigenvalue µ = −2i Imλ ̸= 0. For the group inverse Z
of B − λI , this implies that y is a right eigenvector of Z to the eigenvalue ν = 1/µ.
Analogously we find that x is a left eigenvector of Z to the eigenvalue ν. So we have

Zy = νy, Z∗x = ν x, (2.13) eq:d2

with ν ̸= 0. Equations (2.12)–(2.13) show that Z(γ−1x− ν−1y) = 0, and since y spans
the null-space of Z, we find y ∝ γ−1x−ν−1y. Analogously we obtain x ∝ η−1y−ν−1x.
We conclude that

span {y, y} = span {x, x} . (2.14) span-x-y

(b) The two-dimensional space Y := span {y, y} is thus an invariant subspace of
both B and B⊤. We choose the real orthonormal basis (q1, q2) of Y that is obtained by
normalizing the orthogonal vectors y + y and i(y − y). We extend this basis of Y to a
real orthonormal basis Q = (q1, . . . , qn) of Cn. From (2.14) we infer the block-diagonal
structure

B̃ = Q⊤BQ =

(
B1 0
0 B2

)
.

The 2× 2 matrix

B1 =

(
ϱ σ
− τ ϱ

)
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is such that ϱ = Re(λ) and σ > 0, τ > 0 with στ = Im(λ)2 > 0 so that B1 has
eigenvalues λ and λ.

If σ = τ then B1 is normal, which implies that the pair of right and left eigenvectors
associated with λ, say ỹ, x̃ (scaled to have unit norm and positive inner product) is such
that x̃∗ỹ = 1. Since y = Qỹ and x = Qx̃, the orthogonality of Q implies x∗y = 1, which
contradicts the assumption x∗y < 1. So we must have σ ̸= τ .

By the properties of the group inverse we have that

Z̃ = Q⊤ZQ =

(
Z1 0
0 Z2

)
,

where Z1 is the group inverse of B1 − λI and Z2 is the inverse of the nonsingular matrix
B2 − λI . The following formula for the group inverse is verified by simply checking the
three conditions in Definition VIII.1.3:

Z1 =

(
i

4
√
στ

− 1
4τ

1
4σ

i
4
√
στ

)
.

It follows that also Q⊤GQ is block diagonal so that we write

G̃ = Q⊤GQ =

(
G1 0
0 G2

)
with G1 = x̃1x̃

∗
1Z

∗
1 + Z∗

1 ỹ1ỹ
∗
1 ,

where x̃1 ∈ C2 and ỹ1 ∈ C2 are the projections onto span(e1, e2) (the subspace spanned
by the first two vectors of the canonical basis) of the eigenvectors of B̃ associated with λ,
that is ỹ = Q⊤y and x̃ = Q⊤x,

ỹ = ν−1
y

(
i
√
σ√
τ

1 0 . . . 0
)⊤

x̃ = ν−1
x

(
− i

√
τ√
σ

1 0 . . . 0
)⊤

with νy =
√

σ
τ + 1 and νx =

√
τ
σ + 1 chosen such that x̃ and ỹ are of unit norm with

positive inner product. Finally we obtain

G1 =

(
0 τ−σ

2σ(σ+τ)
τ−σ

2τ(σ+τ) 0

)
,

which is real and cannot vanish due to the fact that σ ̸= τ .
Recalling that Q is real, if G were purely imaginary then G1 would be purely imagi-

nary as well, which would give a contradiction. ⊓⊔

V.2.3 Rank-4 constrained gradient flow
With the real gradient of rank r = 4, the rank-r constrained gradient flow and its dis-
cretization as described in Sections II.2.4 and II.2.5 can be used directly for the present
minimization problem. In the same way as in Theorem II.2.4 we find that the stationary
points are the same as for the gradient flow (2.9) provided that PEG

R
ε (E) ̸= 0, which

holds true if GR
ε (E) ̸= 0 and λ is not an eigenvalue of A.
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V.2.4 Outer iteration, update of ε

We proceed as in Section IV.2 and make an analogous assumption:

ass:E-eps-def Assumption 2.3. For ε close to ε⋆ and ε < ε⋆, we assume the following for the optimizer
E(ε) of (2.3):

– The eigenvalue λ(ε) = λ(A+ εE(ε)) is a simple eigenvalue.
– The map ε 7→ E(ε) is continuously differentiable.
– The real gradient GR(ε) = GR

ε (E(ε)) is nonzero.

In the same way as in Theorem IV.2.2, we calculate under this assumption the deriva-
tive of ϕ(ε) = Fε(E(ε)) = x(ε)∗y(ε), where x(ε) and y(ε) are left and right eigenvectors
of A+εE(ε) associated with λ(ε), of unit norm and with positive inner product. Here we
obtain (with ′ = d/dε)

ϕ′(ε) = −ϕ(ε) ∥GR(ε)∥F < 0. (2.15) eq:dereps-def

Starting from ε > 0 such that ϕ(ε) > δ, we want to compute the smallest root εδ > 0 of
the equation ϕ(ε) = δ. It is of interest to study the behaviour of ϕ(ε) as ε approaches ε⋆ =
limδ↘0 εδ , where eigenvalues coalesce to form a Jordan block. We make the following
generic assumption.

assumpt-epsstar-def Assumption 2.4. We assume the following in the limit ε↗ ε⋆:

– The eigenvalue λ(ε) coalesces with only one other eigenvalue as ε ↗ ε⋆ to form a
Jordan block.

– The limits x⋆ = limε↗ε⋆ x(ε), y⋆ = limε↗ε⋆ y(ε), and E⋆ = limε↗ε⋆ E(ε) exist.

We note that if the limit matrix E⋆ exists and the matrix A+ ε⋆E⋆ is non-derogatory, i.e.,
for each distinct eigenvalue there is only one Jordan block, then the existence of the limits
x⋆ and y⋆ of left and right eigenvectors is ensured by a theorem of Conway & Halmos
(1980). On the other hand, if the limits x⋆ and y⋆ of left and right eigenvectors exist, then
also the limit matrix E⋆ exists by (2.11) and (2.7).

Theorem 2.5 (Square root asymptotics). Under Assumptions 2.3 and 2.4 and the non-thm:sqrt-def
degeneracy condition that γ ≥ 0 defined in (2.16) below is nonzero, we have

ϕ(ε) = γ
√
ε⋆ − ε (1 + o(1)) as ε↗ ε⋆.

Proof. The result follows if we can show that ϕ(ε)ϕ′(ε) has a finite nonzero limit as
ε↗ ε⋆. By (2.15) we have

ϕ(ε)ϕ′(ε) = −ϕ(ε)2 ∥ReG(ε)∥F .

We recall from (2.6) that

G(ε) = x(ε)x(ε)∗Z(ε)∗ + Z(ε)∗y(ε)y(ε)∗,
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where Z(ε) is the group inverse of N(ε) := A+ εE(ε)− λ(ε)I . By Assumption 2.4, the
rank of the matrix N(ε) remains equal to n − 1 also as ε ↗ ε⋆. Therefore, the Moore-
Penrose pseudoinverse

B(ε) := N(ε)†

has a finite limit B⋆ as ε↗ ε⋆, and by the second part of Assumption 2.4 also

β(ε) := x(ε)∗B(ε)y(ε)

has a finite limit β⋆. By Theorem VIII.1.4, we have for ε↗ ε⋆

ϕ(ε)2Z(ε) = (ϕ(ε)I − y(ε)x(ε)∗)B(ε)(ϕ(ε)I − y(ε)x(ε)∗)

→ y⋆x
∗
⋆B⋆y⋆x

∗
⋆ = β⋆y⋆x

∗
⋆

and therefore by (2.6),

ϕ(ε)2 ReG(ε) = Re
(
x(ε)x(ε)∗ϕ(ε)2 Z(ε)∗ + ϕ(ε)2 Z(ε)∗y(ε)y(ε)∗

)
→ Re

(
2β⋆x⋆y

∗
⋆

)
,

so that finally using (2.15),

ϕ(ε)ϕ′(ε) = −ϕ(ε)2∥ReG(ε)∥F → − 1
2γ

2 := −2∥Re
(
β⋆x⋆y

∗
⋆

)
∥F . (2.16) gamma-def

The stated result then follows in the same way as in part (d) of the proof of Theorem 1.7
provided that γ ̸= 0 as is assumed. ⊓⊔

In view of the expected square root behaviour of Theorem 2.5, we use an outer itera-
tion based on a square root model and bisection as described in Section V.1.4. If δ is not
too small, a classical Newton iteration might also be used.

V.3 Nearest singular matrix pencil
sec:matrix-pencils

Let A and B be complex n × n matrices. The matrix pencil {A − µB : µ ∈ C}, or
equivalently the pair (A,B), is called singular if

A− µB is singular for all µ ∈ C. (3.1) mp-sing

This notion is fundamental in the theory of linear differential-algebraic equations
Bẏ(t) = Ay(t) + f(t) (which might arise as linearizations of nonlinear differential-
algebraic equations F (y, ẏ) = 0 near a stationary point). If the matrix pencil (A,B) is
singular, then there exists no initial value y(0) such that the corresponding initial value
problem has a unique solution.

A necessary condition for (A,B) to be singular is clearly that both A and B are sin-
gular matrices (i.e. non-invertible). A sufficient condition for (A,B) to be singular is that
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A and B have a common nonzero vector in their null-spaces. While this is a special case
of particular interest, the Kronecker normal form of a matrix pencil (see Gantmacher ?)
shows that a common null-vector is not a necessary condition for a matrix pencil to be
singular.

Given a matrix pencil (A,B) that is not singular, it is of interest to know how far it is
from a singular matrix pencil. In this section we fix B, which is assumed to be a singular
matrix, and consider structured perturbations ∆A ∈ S to A, where the structure space S
is an arbitrary complex- or real-linear subspace of Cn,n, as considered in Section II.3. For
example, S might be a space of real or complex matrices with a given sparsity pattern.
We consider the following two structured matrix nearness problems:

• Problem 1. Find ∆A ∈ S of minimal Frobenius norm such that (A + ∆A,B) is a
singular matrix pencil.

• Problem 2. Find ∆A ∈ S of minimal Frobenius norm such that A+∆A and B have
a common nonzero vector in their null-spaces.

If A itself is also in S, then both problems have a solution, because the trivial choice
∆A = −A gives us the singular matrix pencil (0, B) and because the set of perturbations
∆A yielding singular matrix pencils (A+∆A,B) is closed. We will approach both prob-
lems by a two-level method in the spirit of Chapter IV. We note that this approach would
equally allow us to treat analogous matrix nearness problems where also B is perturbed
(see the notes at the end of this chapter), but for ease of presentation we have chosen not
to do so here. Moreover, in the applications of interest to dynamical systems on networks,
B is typically an adjacency matrix or related fixed matrix depending only on the network
topology and hence is not subject to perturbations.

V.3.1 Distance to structured singular matrix pencils

Given n + 1 distinct complex numbers µ0, . . . , µn, the fundamental theorem of algebra
together with the fact that a matrix is singular if and only if its determinant vanishes,
shows that a matrix pencil (A,B) is singular if and only if

the n+ 1 matrices A− µkB are singular for k = 0, . . . , n. (3.2) mp-sing-d

Our numerical approach for Problem 1 is based on this criterion. The choice of the num-
bers µ0, . . . , µn did not appear to be a critical issue in our numerical experiments. We had
good experience with the choice µk = re2πki/(n+1) of modulus r = ∥A∥F /∥B∥F .

For ε > 0 we introduce the functional Fε (of matrices E ∈ S of unit Frobenius norm)
in the following way:

Fε(E) =
1

2

n∑
k=0

|λ(A+ εE − µkB)|2, (3.3) F-eps-mp

where λ(M) is an eigenvalue of smallest modulus of the matrix M . (Alternatively, we
might take the sum of the smallest singular values of these n+ 1 matrices.)

We follow the two-level approach of Section IV.2:
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– Inner iteration: Given ε > 0, we aim to compute a matrix E(ε) ∈ S of unit Frobenius
norm that minimizes Fε:

E(ε) = arg min
E∈S,∥E∥F=1

Fε(E). (3.4) E-eps-mp

– Outer iteration: We compute the smallest positive value ε⋆ with

ϕ(ε⋆) = 0, (3.5) zero-mp

where ϕ(ε) = Fε(E(ε)).

Provided that these computations succeed, we then have that ∆A⋆ = ε⋆E(ε⋆) ∈ S is
a solution to Problem 1 above, and ε⋆ is the distance of the matrix pencil (A,B) to the
set of structured singular matrix pencils of the form (A+∆A,B) with ∆A ∈ S.

V.3.2 Constrained gradient flow for the inner iteration
subsec:gradient-flow-mp

The programme of Section II.3.3 extends to the current situation as follows.

Structured gradient. We consider a path of matrices E(t) ∈ S and we assume that the
eigenvalues λk(t) = λ(A + εE(t) − µkB) are simple eigenvalues. As in Section II.3.3
and Lemma II.1.1, we find that

1

ε

d

dt
Fε(E(t)) = Re

〈
GS

ε (E(t)), Ė(t)
〉

(3.6) eq:deriv-S-mp

with the rescaled structured gradient

GS
ε (E) = ΠSGε(E) with Gε(E) =

n∑
k=0

αk xky
∗
k, (3.7) gradient-S-mp

where xk and yk are left and right eigenvectors corresponding to λk, chosen of unit norm
and with positive inner product, and αk = λk/(x

∗
kyk). Moreover,ΠS is again the orthog-

onal projection onto the structure space S; see Section II.3.2.

Structure- and norm-constrained gradient flow. We consider the gradient flow on the
manifold of matrices in S of unit Frobenius norm,

Ė = −GS
ε (E) + Re⟨GS

ε (E), E⟩E. (3.8) ode-E-S-mp

Monotonicity. Assuming simple eigenvalues along the trajectory, we again obtain the
monotonicity property of Theorem II.1.4,

d

dt
Fε(E(t)) ≤ 0. (3.9) eq:pos-S-mp
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Stationary points. Also the characterization of stationary points as given in Theo-
rem II.1.5 extends with the same proof: Let E ∈ S with ∥E∥F = 1 be such that the
eigenvalues λ(A+ εE − µkB) are simple for k = 0, . . . , n and GS

ε (E) ̸= 0. Then,

E is a stationary point of the differential equation (3.6) stat-S-mp

if and only if E is a real multiple of GS
ε (E).

(3.10) stat-S-mp

However, in contrast to Section II.3.3, this now does not imply that non-degenerate op-
timizers are projections of rank-1 matrices onto the structure space S, because GS

ε (E)
is no longer a projected rank-1 matrix. So we cannot work with rank-1 matrices here. In
the inner iteration we therefore follow the structure- and norm-constrained gradient flow
(3.8) into a stationary point.

V.3.3 Outer iteration, updating ε

We proceed as in Section IV.2 and make an analogous assumption: For ε close to ε⋆ and
ε < ε⋆, we assume the following for the optimizer E(ε) of (3.4):

– The eigenvalues λk(ε) = λ(A+εE(ε)−µkB) for k = 0, . . . , n are simple eigenvalues.
– The map ε 7→ E(ε) is continuously differentiable.
– The structured gradient GS(ε) = GS

ε (E(ε)) is nonzero.

In the same way as in Theorem IV.2.2, we obtain under this assumption a simple
expression for the derivative of ϕ(ε) = Fε(E(ε)), which here becomes (with ′ = d/dε)

ϕ′(ε) = −∥GS(ε)∥F < 0. (3.11) eq:dereps-mp

This expression can be used in a Newton / bisection method. Since the eigenvalues λk(ε)
that define ϕ(ε) = Fε(E(ε)) (see (3.3)) are assumed to be simple, ϕ(ε) can be expected
to behave asymptotically for ε↗ ε⋆ as

ϕ(ε) ≈ c (ε⋆ − ε)2.

The unknown quantities c and ε⋆ can be estimated using ϕ(ε) and ϕ′(ε), which is known
from (3.11) for ε < ε⋆. This gives

ε⋆ ≈ ε− 2
ϕ(ε)

ϕ′(ε)
, c ≈ ϕ′(ε)2

4ϕ(ε)
.

For ε = εk < ε⋆, we thus obtain the Newton-type iteration

εk+1 = εk − 2
ϕ(εk)

ϕ′(εk)
, (3.12) eq:Newton

which yields a locally quadratically convergent iteration from the left (if instead εk > ε⋆
occurs, then we should use bisection, which would give a linear reduction of the error
from the right).
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V.3.4 Distance to structured singular matrix pencils with common
null-vectors

We aim to find a perturbation ∆A ∈ S of minimal Frobenius norm such that there exists
a nonzero vector v that is in the null-spaces of both A + ∆A and B. To this end we
introduce, for ε > 0, a functional Fε (of matrices E ∈ S of unit Frobenius norm) as
follows: Let λ = λ(A + εE) be an eigenvalue of minimal modulus of A + εE and let y
be a corresponding (right) eigenvector of unit norm. With β = 1/∥B∥22, we set

Fε(E) =
1

2
|λ|2 + β

2
∥By∥22. (3.13) F-eps-mp-cnv

With this functional, which now depends on both an eigenvalue and an eigenvector, we
again follow the two-level approach (3.4)–(3.5). Provided that these computations suc-
ceed, we then have that ∆A⋆ = ε⋆E(ε⋆) ∈ S is a solution to Problem 2 above, and
ε⋆ is the distance of the matrix pencil (A,B) to the set of matrix pencils of the form
(A + ∆A,B) with ∆A ∈ S for which A + ∆A and B have a common nonzero null-
vector.

For the inner iteration, the programme of Section V.3.2 carries over to the present situ-
ation. The only additional difficulty is in calculating the gradient, for which we proceed as
in the proof of Lemma II.1.1 and now use the formulas for derivatives of both eigenvalues
and eigenvectors as given in the appendix. This straightforward though slightly lengthy
calculation yields the following result, which provides us once again with a gradient of
rank 1.

Lemma 3.1 (Free gradient). Let E(t) ∈ Cn,n, for real t near t0, be a continuouslylem:gradient-mp-cnv
differentiable path of matrices, with the derivative denoted by Ė(t). Assume that λ(t) is
a simple eigenvalue of A+ εE(t) depending continuously on t. Then, Fε(E(t)) of (3.13)
is continuously differentiable w.r.t. t and we have

1

ε

d

dt
Fε(E(t)) = Re

〈
Gε(E(t)), Ė(t)

〉
, (3.14) eq:deriv

where the rescaled gradient of Fε is the rank-1 matrix

Gε(E) = uy∗ ∈ Cn,n with u = κλx− βZ∗(B∗B − ∥By∥22 In
)
y, (3.15) eq:freegrad

with the eigenvalue λ = λ(A + εE) and the corresponding left and right normalized
eigenvectors x and y with positive inner product, with κ = 1/(x∗y) > 0 and with the
group inverse Z of A+ εE − λI .

With this rank-1 gradient (and its projection GS
ε (E) = ΠSGε(E) onto the structure

space S), the full programme of Section II.3 carries over to the present situation, including
the rank-1 differential equation (II.3.10) and its discretization, which were not available
for the (high-rank) gradient of Section V.3.2.

For the outer iteration, we again use a Newton / bisection method as in Section IV.2.
Here we have again ϕ′(ε) = −∥GS

ε (E(ε))∥F . Note that the factor κ(ε) does not appear
in this formula because it is already included in Gε(E).
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V.4 Stability radii for delay differential equations
sec:delay

V.4.1 A simple example

Consider scalar DDEs
ẋ(t) = ax(t) + bx(t− 1) (4.1) eq:abdde

with a, b ∈ R. Looking for solutions x(t) = ceλt gives the characteristic equation

λ− a− b e−λ = 0. (4.2) eq:charab
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Fig. 4.1. Region of the (a, b)-real plane such that the solution of (4.1) is asymptotically stable (white
set in the right illustration); roots of the characteristic equation (left) for a = 0.5, b = −1

A main feature of this problem is that the entire function λ − a − b e−λ (also called
quasi-polynomial) has infinitely many roots and stability can be proved if and only if all
the roots lie on the complex left-plane or - in other words - the rightmost root has negative
real part. This is what happens when a = 0.5, b = −1 as shown in Figure V.4.1 (left
illustration).

Clearly stability is more robust for problems s.t. (a, b) is far from the boundary.
The stability of a linear system of delay equations

ẋ(t) = A1x(t) +A2x (t− τ) , t > 0 (4.3)
x(t) = g(t), t ∈ [−τ, 0]

with A1, A2 given n× n matrices and τ > 0 constant delay, can be analyzed in a similar
way.

Inserting solutions of the form x(t) = v eλt (with v ∈ Cn) we get :(
λI −A1 −A2e

−λτ
)
v = 0 ⇐⇒ det

(
λI −A1 −A2e

−λτ
)
= 0, (4.4) eq:charsys
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a nonlinear eigenvalue problem.
If the infinitely many eigenvalues strictly lie within the complex left half-plane every

solution of (4.3) is asymptotically stable, independently of the initial data.
The main difficulty here is that in general the matrices A1 and A2 do not commute, so

that cannot be transformed simultaneously to a simple (diagonal) form, in contrast to the
case of linear ODEs.

Suitable algorithms for the numerical computation of characteristic roots of linear
systems are available (e.g Engelborghs and Roose, 2002, Breda, Maset and Vermiglio,
2005, Jarlebring, Meerbergen and Michiels, 2010 (based on Krylov solvers)).

Understanding robust stability of these systems is an important task.

V.4.2 The nonlinear eigenvalue problem

We consider the following class of nonlinear eigenvalue problems,(
m∑
i=0

Aifi(λ)

)
v = 0, λ ∈ C, v ∈ Cn, (4.5) eq:nonlin

where A0, . . . , Am are given n×n matrices and the functions f0, . . . , fm are assumed to
be entire, such that

fi(λ) = fi(λ), 0 ≤ i ≤ m.

As usual we denote the spectrum by Λ, i.e.

Λ :=

{
λ ∈ C : det

(
m∑
i=0

Aifi(λ)

)
= 0

}
(4.6)

and are interested in the effect of bounded perturbations ∆Ai of Ai, i.e. in studying(
m∑
i=0

(Ai +∆Ai)fi(λ)

)
v = 0, λ ∈ C, v ∈ Cn. (4.7) pert-init

We let

∆ :=

 ∆A0

...
∆Am

 .

In analogy to the classical definition of ε-pseudospectrum of a matrix, we allow the
perturbations to be complex.

Introducing weights wi > 0, i = 0, . . . ,m, we make use of the norm:

∥∆∥ :=

√√√√ m∑
i=0

w2
i ∥∆Ai∥2F



V.4 Stability radii for delay differential equations 129

In order to define the associated ε-pseudospectrum we consider bounded perturba-
tions,

∥∆∥ ≤ ε

Note that taking wi = +∞ implies that the matrix Ai is unperturbed.

Definition 4.1 (ε-pseudospectrum). The complex set

Λε =
⋃

∥∆∥≤ε

{
λ ∈ C : det

(
m∑
i=0

(Ai +∆Ai)fi(λ)

)
= 0

}

is the set of eigenvalues associated to all possible perturbed problems.
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Fig. 4.2. Rightmost roots of an example of system (4.4) and ε-pseudospectrum tangential to the
imaginary axis (showing d = ε).

In analogy the linear case the ε-pseudospectral abscissa is defined by

αε := sup {Re(λ) : λ ∈ Λε} . (4.8) defpsa

where in this case - due to the infinitely many eigenvalues - the max is replaced by the
sup.

Hurwitz stability is associated with the requirement that the spectrum be located in
the open left half plane and bounded away from the imaginary axis.

Then the distance to instability (stability radius) of a stable system is expressed as
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d := inf {ε > 0 : αε ≥ 0} .

Our aim is to construct methods able to approximately compute αε and d.

Some important assumptions For nonlinear eigenvalue problems the pseudospectral
abscissa may be equal to infinity (as in differential-algebraic equations), or a globally
rightmost point of the pseudospectrum may not exist.

Assumption 4.2. We assume the following:

(i) For all r ∈ R the set Λε ∩ {λ ∈ C : Re(λ) ≥ r} is bounded.
(ii) For an arbitrary but fixed ε > 0, αε < +∞.

As an example which does not fulfil assumption (i) consider the following neutral
equation

ẋ(t) = ẋ(t− τ)− 2x(t)− x(t− τ) (4.9) eq:neut

Its characteristic equation is given by
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Fig. 4.3. Rightmost roots of the neutral equation.

λ
(
1− e−λ

)
+ 2 + e−λ = 0

which has a sequence of roots approaching the imaginary axis with increasing imaginary
part.
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Here the spectral abscissa is equal to zero, yet there is no characteristic root with zero
real part.

When considering systems of the form A0ẋ(t) = A1x(t) + A2x (t− τ), with A0

singular (DDAEs), it is possible to have eigenvalues at +∞, in analogy to the ODE case.
As an illustration of such a situation where α0 = +∞ we consider the eigenvalue

problem ((
−1 2
−1 1

)
+ λ

(
1 0
0 0

)
+ e−λ

(
0 −1
0 0

))
v = 0. (4.10) quadeig

The shaded area in Figure V.4.2 corresponds to ε = 0.2 and weights (w1, w2) = (1, 1).
The component not connected to the eigenvalue λ = −1 can be interpreted as a result of
perturbations of the “eigenvalue at infinity”.

fig:ddae
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Fig. 4.4. ε-pseudospectrum of the eigenvalue problem (4.10).

V.4.3 General methodology for Hurwitz stability

We consider the special case

f(λ, λ) = −λ+ λ

2
= −Reλ

where the target eigenvalue is the rightmost, and assume (4.5) fulfils assumptions (i) and
(ii). Moreover we also assume that wi < ∞ for i = 0, . . . ,m (otherwise the matrices
associated to infinite weights are not perturbed). As usual we introduce perturbations

∆A0 = εE0, ∆A1 = εE1, . . . ∆Am = εEm
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with ∥∥∥∥∥∥∥∥∥


E0

E1

...
Em


∥∥∥∥∥∥∥∥∥
2

=

〈
w0E0

w1E1

...
wmEm

 ,


w0E0

w1E1

...
wmEm


〉

= 1

and indicate by S1 the unit ball of the norm ∥ · ∥; then we look for

max
(E0 E1 ...Em)⊤∈S1

{
Reλ : det

(
f0(λ)(A0 + εE0) + . . .+ fm(λ)(Am + εEm)

)
= 0
}
.

With the functional to minimize, Fε (E0, E1, . . . , Em) = −Re (λ), λ being the right-
most (target) eigenvalue of the eigenvalue problem (4.16) we construct smooth matrix
valued functions {Ei(t)}i=0,1,...,m such that Fε (E0(t), E1(t), . . . , Em(t)) is decreasing,
λ(t) being the rightmost root of

det
(
f0(λ)(A0 + εE0(t)) + f1(λ)(A1 + εE1(t)) + . . .+ fm(λ)(Am + εEm(t))

)
= 0

In this way we obtain - by applying the standard first order perturbation result
(VIII.1.1)

1

εκ(t)

d

dt
Fε (E0(t), . . . , Em(t))) = −x(t)∗

(
f0(λ(t))Ė1(t) + . . .+ fm(λ(t))Ėm(t)

)
y(t)

= −
(〈

f0(λ(t))x(t)y(t)
∗, Ė0(t)

〉
+ . . .

+
〈
fm(λ(t))x(t)y(t)∗, Ėm(t)

〉)
where (λ(t), x(t), y(t)) is an eigen-triplet of (4.5) with perturbed matrices Ai + εEi(t)
and κ(t) = 1/(x(t)∗y(t)).

This gives us the free gradient of the functional Fε(E0, E1, . . . , Em):

G0 = − f0(λ)xy
∗, G1 = − f1(λ)xy

∗, , Gm = − fm(λ)xy∗

which are the directions for E0, E1, . . . , Em of maximal increase of Fε.

Constrained gradient flow

Differentiating the norm constraint yields

d

dt

∥∥∥∥∥∥∥∥∥


E0

E1

...
Em


∥∥∥∥∥∥∥∥∥
2

= 2Re

〈
w0Ė0

w1Ė1

...
wmĖm

 ,


w0E0

w1E1

...
wmEm


〉

= 0 (4.11) eq:normcon
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Lemma 4.3. Let G = (G0 G1 . . . Gm)
⊤ and Z = (Z0 Z1 . . . Zm)

⊤. A solution to
the optimization problem

Z⋆ = arg max
Z∈C(m+1)n,n

Re ⟨G,Z⟩

subj.to Re
〈

w0E0

w1E1

...
wmEm

 ,


w0Z0

w1Z1

...
wmZm


〉

= 0

and ∥Z∥F = 1 (for uniqueness)

is given by

µZ⋆ =


G0 − ηE0

G1 − ηE1

...
Gm − ηEm


with

η = Re

〈
w0G0

w1G1

...
wmGm

 ,


w0E0

w1E1

...
wmEm


〉

(4.12) eq:eta

and µ a normalization factor.

Proof. Analogous to the one of Lemma (II.1.3).

In order to preserve the norm the gradient has to be projected and an easy calculation
allows us to write the constrained gradient flow

Ė0 = −G0 + ηE0

Ė1 = −G1 + ηE1

...

Ėm = −Gm + ηEm

(4.13) ode-E

with η given by (4.12).

Theorem 4.4 (Stationary points). LetE0(t), E1(t), . . . , Em(t) be the solution of (4.13)
passing through (Ê0, Ê1, . . . , Êm) with λ simple rightmost root of the characteristic
equation. Then the following are equivalent:

1.
d

dt
Fε

(
Ê0, Ê1, . . . , Êm

)
= 0

2.
(
Ê0, Ê1, . . . , Êm

)⊤
is a stationary point of the differential equation (4.13) stat-S.

3. Êi is a real multiple of Gi, i = 0, 1, . . . ,m.
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Since Gi = −fi(λ)xy∗ all extremizers Êi have rank-1, which motivates the search of
rank-1 ODEs with the same qualitative properties of (4.13).

Rank-1 ODEs
As we have seen in Chapter II the idea is that to project the ODE to the rank-1 manifold
M1. In full analogy we obtain the projected system in M1,

Ẏ1 = PY0G0 − ηY0

Ẏ2 = PY1G1 − ηY1
...

Ẏm = PYm
Gm − ηYm

(4.14) ode-E-1-delay

with Yi = σiuiv
∗
i of rank-1 with ∥ui∥ = ∥vi∥ = |σi = 1 for all i, PY the ortogonal

projection onto the tangent plane at Y ∈ M1, and

η = Re

〈
w0PY0

G0

w1PY1
G1

...
wmPYmGm

 ,


w0Y0
w1Y1

...
wmYm


〉

the coupling quantity.
Similarly to the prototype case considered in Chapter II, it can be shown that the

projected ODE preserves the norm, the monotonicity and the stationary points of the
unprojected one, which again determines a significant reduction in CPU time and storage.

V.4.4 Stability radii
For the computation of stability radii we still make use of the two-step methodology:

(i) Inner iteration: Given ε > 0 computeE01(ε), E1(ε), . . . , Em(ε) (stationary points
of (4.13), similarly of (1.23)), the associated free gradient G0(ε), G1(ε), . . . , Gm(ε)
and let

φ(ε) = Fε (E1(ε), E2(ε), . . . , Em(ε)) .

(ii) Outer iteration: We compute the smallest positive value ε⋆ with

φ(ε⋆) = 0,

where we use the costless formula

d

dε
φ(ε) = − κ(ε)

∥∥∥∥∥∥∥∥∥


w0G0(ε)
w1G1(ε)

...
wmGm(ε)


∥∥∥∥∥∥∥∥∥

which can be used by a Newton-based iterative method.
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V.4.5 Illustrative example: a linear system of DDEs
Consider the linear system of delay equations

A0ẋ(t) = A1x(t) +A2x (t− 1) , t > 0 (4.15)
x(t) = g(t), t ∈ [−τ, 0]

with A0, A1, A2 given n× n matrices and τ = 1 constant delay.
It is possible to prove that if A0 is nonsingular (4.15) fulfils assumptions (i) and (ii).
The associated nonlinear eigenvalue problem is given by

det
(
λA0 −A1 −A2e

−λ
)
= 0, (4.16) eq:nlep

so that - in the considered setting -

f0(λ) = λ, f1(λ) = −1, f2(λ) = −e−λ

We setA0 = I andw0 = ∞ implying this way the identity matrixA0 is not perturbed.
This gives us a system of the form (4.13) (equivalently (1.23)) with matrices E1 and E2

(Y1 and Y2). Note that E0 (Y0) is missing because w0 = +∞..

α (w1, w2) ε αε #steps
-3.312133337e-1 (1/2, 1/2) 1.e-3 -3.297978515e-1 2

1.e-2 -3.170982221e-1 3
1.e-1 -1.937166436e-1 4
1.e0 8.647127140e-1 8

(1/4,∞) 1.e-3 -3.300292687e-1 2
1.e-2 -3.193270916e-1 3
1.e-1 -2.075848221e-1 4
1+00 +1.641134830e00 10

(∞,1/4) 1.e-3 -3.295667765e-1 2
1.e-2 -3.149018637e-1 3
1.e-1 -1.816328080e-1 4
1+00 +5.599912563e-1 7

Table 4.1. Pseudospectral abscissa αε = −φ(ε) for the delayed PDE problem described in ?. tabelpde

Fast convergence of Newton method can be observed in Figure V.4.5.

A PDE with a delay
Consider the problem (Jarlebring et al., 2010)

∂v(x, t)

∂t
=
∂2v(x, t)

∂x2
+ a0(x)v(x, t) + a1(x)v(π − x, t− 1), (4.17) eq:pdde

where a0(x) = −2 sin(x), a1(x) = 2 sin(x), vx(0, t) = vx(π, t) = 0.
Space derivatives approximated by central differences. This gives a delay eigenvalue

problem of the considered form with one delay and sparse matrices A0 and A1. The
dimension is n = 5000.
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fig:newt
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Fig. 4.5. The ε-pseudospectral abscissa αε = −φ(ε) and the Newton iterates for the space-
discretized delayed PDE (4.17).

V.5 ε-stability radii
sec:eps-rad

Pseudospectra come with different uses:

– The structured and unstructured pseudospectra provide information as to how the spec-
trum changes under (possibly structured) perturbations;

– The complex unstructured pseudosectrum provides information on the transient be-
haviour of linear differential equations, for which the pseudospectral abscissa αε(A)
and the stability radius ε⋆ with αε⋆(A) = 0 are key quantities.

The two items are combined in the following matrix nearness problem, where S ⊂ Cn,n

is again a structure space, e.g., the space of real matrices or a space of complex or real
matrices with a given sparsity pattern.

Problem. Given ε > 0 and a matrix A ∈ Cn,n with negative (unstructured) ε-
pseudospectral abscissa αε(A) < 0, find a structured matrixΘ ∈ S of minimal Frobenius
norm such that the ε-pseudospectral abscissa of the perturbed matrix A+Θ is zero:

αε(A+Θ) = 0.
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This equation means that there exists an (unstructured) matrix ∆ ∈ Cn,n of Frobenius
norm ε such that the rightmost eigenvalues of A+Θ +∆ are on the imaginary axis.

The Frobenius norm θε = θSε (A) of a minimizer Θε is called the S-structured ε-
stability radius of the matrixA. Note that for ε = 0 this becomes the S-structured stability
radius considered previously, and also note that ε is the stability radius of A + Θε. The
problem can thus be rephrased as asking for a structured perturbation Θ ∈ S of minimal
Frobenius norm such that A+Θ has the prescribed stability radius ε.

For the unstructured case S = Cn,n we have clearly θε = ε⋆ − ε, where ε⋆ is the
stability radius of A. For structured cases S ≠ Cn,n, however, the S-structured ε-stability
radius θε can be significantly larger than ε⋆ − ε.

By definition of θε, we have αε(A+Θ) ≤ 0 for every Θ ∈ S with ∥Θ∥F ≤ θε. This
implies that the stability radius of A + Θ is at least ε, and so (III.1.10) yields the robust
resolvent bound

max
Reλ≥0

∥(A+Θ − λI)−1∥2 ≤ 1

ε
for every Θ ∈ S with ∥Θ∥F ≤ θε. (5.1) robust-res-bound

As in (III.1.13), this implies that solutions to perturbed inhomogeneous linear differential
equations ẋ(t) = (A + Θ)x(t) + f(t) with zero initial value share the bound, for every
perturbation Θ ∈ S with ∥Θ∥F ≤ θε,(∫ T

0

∥x(t)∥2 dt
)1/2

≤ 1

ε

(∫ T

0

∥f(t)∥2 dt
)1/2

, 0 ≤ T ≤ ∞. (5.2) robust-L2-bound

Moreover, we obtain a robust uniform bound of the matrix exponential: for every Θ ∈ S
with ∥Θ∥F ≤ θε and every t > 0,∥∥et(A+Θ)

∥∥
2
≤ 1

2πε

∫
Γ

|etλ| |dλ| ≤ |Γ |
2πε

, (5.3) robust-transient-bound

where Γ is a closed contour in the closed left complex half-plane that is a union of (i)
the part in the left half-plane of a contour (or union of several contours) that surrounds
the pseudospectrum Λε+θε(A) and (ii) one or several intervals on the imaginary axis that
close the contour; and |Γ | is the length of Γ . The proof of this bound is analogous to the
proof of (III.1.11), using (i)Λε(A+Θ) ⊂ Λε+θε(A), which implies ∥(A+Θ−λI)−1∥2 ≤
1/ε for λ in the closure of C \ Λε+θε(A), and (ii) the bound (5.1) on the imaginary axis.

V.5.1 Two-level iteration

Let a fixed ε > 0 be given. The target eigenvalue λ(M) of a matrix M is again chosen
as an eigenvalue of M of maximal real part (and among those, the one with maximal
imaginary part). For varying θ > 0 we introduce the functional

Fθ(E
S , E) = −Reλ(A+ θES + εE) (5.4) F-delta

for ES ∈ S and E ∈ Cn,n, both of unit Frobenius norm. With this functional we follow
the two-level approach of Section IV.2:
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– Inner iteration: For a given θ > 0, we aim to compute matrices ES(θ) ∈ S and
E(θ) ∈ Cn,n, both of unit Frobenius norm, that minimize Fθ:

(ES(θ), E(θ)) = arg min
ES∈S,E∈Cn,n

∥ES∥F =∥E∥F =1

Fθ(E
S , E). (5.5) E-delta

– Outer iteration: We compute the smallest positive value θε with

ϕ(θε) = 0, (5.6) zero-delta

where ϕ(θ) = Fθ(E
S(θ), E(θ)) = αε

(
A+ θES(θ)

)
.

Provided that these computations succeed, we have that Θε = θεE
S(θε) ∈ S is a

solution to the matrix nearness problem stated above, and θε is the S-structured ε-stability
radius of A.

V.5.2 Rank-1 matrix differential equations for the inner iteration
subsec:r1-ode-eps-rad

We combine the procedures of Sections II.1 and II.3. As in these sections, we find that
along a path (ES(t), E(t)) in S × Cn,n we have, assuming simple target eigenvalues
λ(A+ θES(t) + εE(t)),

1

κ(t)

d

dt
Fθ(E

S(t), E(t)) = Re⟨ΠSGθ(E
S(t), E(t)), θĖS(t)⟩

+ Re⟨Gθ(E
S(t), E(t)), εĖ(t)⟩

with the rescaled gradient

Gθ(E
S , E) = xy∗,

where x and y are left and right eigenvectors, of unit norm and with positive inner product,
associated with the simple target eigenvalue λ ofA+θES+εE. Moreover, κ = 1/(x∗y),
and ΠS again denotes the orthogonal projection onto the structure space S.

Norm-constrained gradient flow. Along solutions of the system of differential equa-
tions, with G = Gθ(E

S , E) for short,

θĖS = −ΠSG+ Re⟨G,ES⟩ES

εĖ = −G+ Re⟨G,E⟩E,
(5.7) ode-ES-E

the unit norms of ES(t) ∈ S and E(t) are preserved, and the functional Fθ(E
S(t), E(t))

decreases monotonically. Provided that ΠSG ̸= 0, we have at stationary points that ES

is a real multiple of ΠSG and E is a real multiple of G, and we note that G is of rank 1.
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Rank-1 matrix differential equations. To make use of the rank-1 structure of optimiz-
ers, we follow the approaches of Sections II.1 and II.3 and consider differential equations
for rank-1 matrices E(t) and Y (t), where the latter yields ES(t) = ΠSY (t). These dif-
ferential equations are obtained from (5.7) by replacingG = Gθ(E

S , E) by its projection
onto the tangent space of the manifold of rank-1 matrices at E and Y , respectively:

θ Ẏ = −PYG+ Re⟨PYG,E
S⟩Y with ES = ΠSY,

εĖ = −PEG+ Re⟨G,E⟩E.
(5.8) ode-ES-E-1

These differential equations yield rank-1 matrices Y (t) and E(t) and preserve the unit
Frobenius norm of ES(t) and E(t). As in Sections II.1 and II.3 it is shown that under
a nondegeneracy condition, the stationary points (Y,E) of (5.8) correspond bijectively
to the stationary points (ES , E) of (5.7) via ES = ΠSY and with the same E. The
differential equations are integrated numerically into a stationary point (ES , E) in the
way described in Sections II.1 and II.3, working with the vectors that define the rank-1
matrices Y and E and advancing them in time using a tailor-made splitting method.

V.5.3 Outer iteration, updating θ

For the solution of the scalar equation ϕ(θ) = 0 we use a combined Newton / bisection
method as in Section IV.2. The derivative of ϕ for the Newton iteration is obtained with
the arguments of the proof of Theorem IV.2.2 (under analogous assumptions), yielding
essentially the same formula,

ϕ′(θ) = −κ(θ) ∥ΠSGθ(E
S(θ), E(θ))∥F = −κ(θ) ∥ΠS(x(θ)y(θ)∗)∥F ,

where x(θ) and y(θ) are left and right normalized eigenvectors associated with the right-
most eigenvalue of A+ θES(θ) + εE(θ), and κ(θ) = 1/(x(θ)∗y(θ)) > 0.

V.6 Notes

V.6.1 Hamiltonian matrix nearness problems

Hamiltonian eigenvalue perturbation problems. Such problems were studied in detail
by Mehrmann & Xu (2008) and Alam, Bora, Karow, Mehrmann & Moro (2011), mo-
tivated by the passivation of linear control systems and the stabilization of gyroscopic
mechanical systems, where eigenvalues of Hamiltonian matrices need to be moved to or
away from the imaginary axis. In this context, a solution to Problem A considered here
yields a lower bound on the distance to non-passivity of a passive system and a solution
to Problem B yields a lower bound of the distance to passivity of a non-passive system.
The stabilization of a gyroscopic system requires to move all eigenvalues of a Hamilto-
nian matrix onto the imaginary axis. Those applications have an additional structure of
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admissible perturbations, which have not been taken into account in this chapter where
we consider general real Hamiltonian perturbations. Understanding this general case is,
however, basic to addressing the more specific demands of the applications to control sys-
tems or mechanical systems. This will become clear in Section VI.3, where we describe
algorithms for finding the nearest passive or non-passive system, which are conceptually
close to our treatment of Problems B and A, respectively.

Two-level approach to Hamiltonian matrix nearness problems. Guglielmi, Kressner
& Lubich (2015) studied a two-level approach to Problems A and B in the matrix 2-norm
instead of the Frobenius norm as considered here. This equally leads to rank-4 differen-
tial equations along which the real part of the target eigenvalue decreases (or increases)
monotonically. Contrary to the Frobenius norm case, those differential equations cannot
be interpreted as constrained gradient systems.

Theorem 1.7 on the square root behaviour of the real parts of eigenvalues near a defec-
tive coalescence on the imaginary axis was first stated by Guglielmi, Kressner & Lubich
(2015). Here we give a corrected proof based on Theorem 1.5 about the eigenvectors at a
defective coalescence, which was first proved by Fazzi, Guglielmi & Lubich (2021).

Complex Hamiltonian matrices. An analogous approach to this chapter can be given
for complex Hamiltonian matrices (i.e. matrices A for which JA is hermitian). This case
is slightly simpler, as it leads to rank-2 differential equations. Guglielmi, Kressner &
Lubich (2015) studied the two-level approach to matrix nearness problems in the complex
Hamiltonian case for the matrix 2-norm.

Hamiltonian eigenvalue solver. Structure-preserving eigenvalue solvers as implemented
in the SLICOT library (http://slicot.org/), see Benner, Mehrmann, Sima, Van Huffel &
Varga (1999), are distinctly favourable over using a standard general eigenvalue solver,
especially for eigenvalues on and close to the imaginary axis as are of interest here; see,
e.g., Benner, Losse, Mehrmann & Voigt (2015) and references therein.



Chapter VI.
Control systems

chap:lti
In this chapter we reconsider basic problems of robust control of linear time-invariant
systems, which we rephrase as eigenvalue optimization problems and matrix (or operator)
nearness problems. The problems considered from this perspective include the following:

– computing the H∞-norm of the matrix transfer function, which is the L2-norm of the
input-output map;

– computing the H∞-distance to uncontrollability of a controllable system;
– passivity enforcement by a perturbation to a system matrix that minimizes the H∞-

norm of the perturbation to the matrix transfer function; and
– computing the distance to loss of contractivity under structured perturbations to the

state matrix.

The distances from systems with undesired properties are important robustness measures
of a given control system, whereas algorithms for finding a nearby control system with
prescribed desired properties are important design tools. The algorithmic approach to
eigenvalue optimization via low-rank matrix differential equations and the two-level ap-
proach to matrix nearness problems of previous chapters is extended to a variety of prob-
lems from the area of robust control and is shown to yield versatile and efficient algo-
rithms.

We consider the continuous-time linear time-invariant dynamical system with inputs
u(t) ∈ Cp, outputs y(t) ∈ Cm and states z(t) ∈ Cn related by

ż(t) = Az(t) +Bu(t) (0.1)
y(t) = Cz(t) +Du(t)

with the real system matrices A ∈ Rn,n, B ∈ Rn,p, C ∈ Rm,n and D ∈ Rm,p, and with
the initial state z(0) = 0. In this chapter we always assume that all eigenvalues of A have
negative real part.

In the final section of this chapter we consider descriptor systems, where ż(t) in (0.1)
appears multiplied with a singular matrix E ∈ Rn,n, which yields a differential-algebraic
equation instead of the differential equation in (0.1). Descriptor systems play an essential
role in modeling and composing networks of systems. We present an algorithm for com-
puting the H∞-norm of the associated matrix transfer function, which now needs to be
appropriately weighted if the descriptor system has an index higher than 1.
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VI.1 H∞-norm of the matrix transfer function
sec:Hinf

The matrix-valued transfer function associated with the system (0.1) is

H(λ) = C(λI −A)−1B +D for λ ∈ C\Λ(A) (1.1) tfmatdef

where Λ(A) denotes the spectrum of A. If all eigenvalues of A have negative real part, as
we assumed, then H is a matrix-valued holomorphic function on a domain that includes
the closed right half-plane Reλ ≥ 0.

The input–output map u 7→ y given by the variation-of-constants formula,

y(t) =

∫ t

0

Ce(t−τ)ABu(τ) dτ +Du(t), t ≥ 0,

is the convolution with the inverse Laplace transform of H:

y = H(∂t)u := (L−1H) ∗ u.

Taking Laplace transforms, we get the formula that explains the name “transfer function”,

Ly(λ) = H(λ)Lu(λ), Reλ ≥ 0. (1.2) Hu

The Plancherel formula for the Fourier transform (Fy)(ω) = (Ly)(iω) for ω ∈ R (where
y is extended by zero to t < 0) then yields that the operator norm of the input–output map
H(∂t) : L

2(0,∞;Cp) → L2(0,∞;Cm) equals supω∈R ∥H(iω)∥2, since∫ ∞

0

∥y(t)∥2 dt =
∫
R
∥(Ly)(iω)∥2 dω =

∫
R
∥H(iω)(Lu)(iω)∥2 dω

≤ sup
ω∈R

∥H(iω)∥22
∫
R
∥(Lu)(iω)∥2 dω = sup

ω∈R
∥H(iω)∥22

∫ ∞

0

∥u(t)∥2 dt

and an approximate δ-function argument shows that supω∈R ∥H(iω)∥22 is the smallest
such bound that holds for all square-integrable functions u.

def:hinfnormcont Definition 1.1. The H∞-norm of the matrix transfer function H is

∥H∥∞ := sup
Reλ≥0

∥H(λ)∥2 = sup
ω∈R

∥H(iω)∥2. (1.3) hinfnormequivcont

The supremum is a maximum if ∥D∥2 = ∥H(∞)∥2 is strictly smaller than ∥H∥∞, as will
be assumed from now on. The second equation in (1.3) is a consequence of the maximum
principle, which can be applied on noting that ∥H(λ)v∥2 is a subharmonic function of λ
for every v ∈ Cn.

As the L2 operator norm of the input-output map H(∂t), the H∞-norm of H is a
fundamental stability measure. Moreover, using the causality property that y(t) depends
only on u(τ) for τ ≤ t, we can rewrite the above bound as(∫ T

0

∥y(t)∥2 dt
)1/2

≤ ∥H∥∞
(∫ T

0

∥u(t)∥2 dt
)1/2

, 0 ≤ T ≤ ∞, (1.4) yu-bound

and ∥H∥∞ is the smallest such bound.
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Problem. Compute the H∞-norm of the matrix transfer function H .

Making use of the theory of spectral value sets, which are suitable extensions of pseu-
dospectra presented e.g. in the monograph by Hinrichsen and Pritchard (2005), we will
show that the H∞-norm equals the reciprocal of the stability radius, which here is the
largest value of ε such that the associated ε-spectral value set is contained in the left
half-plane.

This characterization allows us to extend the algorithmic approach of previous sec-
tions, using rank-1 constrained gradient systems, from pseudospectra to spectral value
sets, and then use a scalar Newton-bisection method to approximate the H∞-norm.

VI.1.1 Matrix transfer function and perturbed state matrices
subsec:tf-psm

We start with discussing the relationship between the singular vectors of the transfer ma-
trix H(λ) and the eigenvectors of a corresponding set of matrices.

Given A,B,C,D defining the linear dynamical system (0.1), consider the perturbed
state matrix, for perturbations ∆ ∈ Cp,m such that I −D∆ is invertible,

M(∆) = A+B∆(I −D∆)−1C ∈ Cn,n (1.5) AEdef

and the associated transfer matrix (0.1). The next theorem relates the 2-norm of the trans-
fer matrix, which is its largest singular value, to eigenvalues of perturbed state matrices.
This result extends the basic characterization of complex pseudospectra given in Theo-
rem III.1.2 together with (III.1.8), to which it reduces for B = C = I and D = 0.

Theorem 1.2 (Singular values and eigenvalues). Let ε > 0 and ε∥D∥2 < 1. Then, forthm:basicequiv
λ ̸∈ Λ(A) the following two statements are equivalent:

(i) ∥H(λ)∥2 ≥ ε−1

(ii) λ is an eigenvalue of M(∆) for some ∆ ∈ Cp,m with ∥∆∥2 ≤ ε.twoequiv

Moreover, ∆ can be chosen to have rank 1, and the two inequalities can be replaced by
equalities in the equivalence.

Proof. We first observe that under the condition ε∥D∥2 < 1 we have that I − D∆ is
invertible when ∥∆∥2 ≤ ε, and hence M(∆) is then well-defined.

Suppose (i) holds true, with ρ = ∥H(λ)∥−1
2 ≤ ε. Let u and v be right and left singular

vectors of H(λ), respectively, corresponding to the largest singular value ρ−1, so that

ρH(λ)u = v, ρv∗H(λ) = u∗, and ∥u∥ = ∥v∥ = 1.

Define ∆ = ρuv∗ so that ∥∆∥2 = ρ ≤ ε. We have H(λ)∆ = vv∗, so

(C(λI −A)−1B +D)∆v = v. (1.6) tfmatEv

Next define Y = (I − D∆)−1C and Z = (λI − A)−1B∆, so we have Y Zv = v. It
follows that Zv ̸= 0 and ZY y = y, with y := Zv = ρ(λI − A)−1Bu an eigenvector of
ZY . Multiplying through by λI −A, we have
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B∆(I −D∆)−1Cy = (λI −A)y, (1.7) xeigvec

which is equivalent to M(∆)y = λy. This proves the second statement in (1.2).
Suppose (i) holds true, with ρ = ∥H(λ)∥−1

2 ≤ ε. Let u and v be right and left singular
vectors of H(λ), respectively, corresponding to the largest singular value ρ−1, so that

ρH(λ)u = v, ρv∗H(λ) = u∗, and ∥u∥ = ∥v∥ = 1.

Define ∆ = ρuv∗ so that ∥∆∥2 = ρ ≤ ε. We have H(λ)∆ = vv∗, so

H(λ)∆v = v. (1.8) tfmatEv

With Z = (λE−A)−1B∆we thus haveCZv = v. It follows that Zv ̸= 0 and ZCy = y,
with y := Zv = ρ(λE−A)−1Bu an eigenvector of ZC. Multiplying through by λI−A,
we have

B∆(I −D∆)−1Cy = (λI −A)y, (1.9) xeigvec

which is equivalent to M(∆)y = λy. This proves the second statement in (1.2).
Conversely, suppose that (ii) holds true. Then there exists y ̸= 0 such that (1.9) holds.

We have ZY y = y, so y is an eigenvector of ZY corresponding to the eigenvalue 1.
Consequently, Y Zw = w where w = Y y ̸= 0 is an eigenvector of Y Z. Multiplying by
I −D∆ and rearranging we have

(C(λI −A)−1B +D)∆w = w, i.e., H(λ)∆w = w.

This implies
ε∥H(λ)∥2 ≥ ∥H(λ)∆∥2 ≥ 1,

which proves the first statement in (1.2).
The equivalence (1.2) also holds if we restrict ∆ in the second statement to have rank

one. The proof remains unchanged. ⊓⊔

We reformulate the remarkable relationship between eigenvectors of M(∆) and sin-
gular vectors of H(λ) revealed by the previous proof in a separate corollary.

Corollary 1.3 (Singular vectors and eigenvectors). Let ε > 0 and ε∥D∥2 < 1, and letthm:evecssvecs
u ∈ Cp and v ∈ Cm with ∥u∥ = ∥v∥ = 1 be right and left singular vectors of H(λ),
respectively, corresponding to a singular value ε−1. Then, the nonzero vectors

ỹ = (λI −A)−1Bu and x̃ = (λI −A)−∗C∗v, (1.10) xyformulas

are (non-normalized) right and left eigenvectors associated with the eigenvalue λ of
M(∆) for ∆ = εuv∗.

Proof. In the proof of Theorem 1.2 we showed that ỹ is a right eigenvector of M(∆) for
∆ = εuv∗ to the eigenvalue λ. The proof for the left eigenvector x̃ is analogous. ⊓⊔
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VI.1.2 Spectral value sets
subsec:specvalsets

We define spectral value sets, which generalize the notion of pseudospectrum of a matrix
A to linear control systems with the matrices (A,B,C,D), and we show their relationship
with the 2-norm of the matrix transfer function.

Definition 1.4. Let ε ≥ 0 and ε∥D∥2 < 1, and define the spectral value set

Λε(A,B,C,D) =
⋃

{Λ(M(∆)) : ∆ ∈ Cp,m, ∥∆∥2 ≤ ε} .

Note thatΛε(A,B,C,D) ⊃ Λ0(A,B,C,D) = Λ(A), and note further thatΛε(A, I, I, 0)
equals the ε-pseudospectrum Λε(A). The following corollary of Theorem 1.2 is immedi-
ate.

Corollary 1.5 (Characterization of the spectral value set). Let ε > 0 and ε∥D∥2 < 1.cor:SVSequiv
Then,

Λε(A,B,C,D)\Λ(A) =
⋃

{Λ(M(∆)) : ∆ ∈ Cp,m, ∥∆∥2 ≤ ε, rank(∆) = 1}

=
⋃{

λ ∈ C\Λ(A) : ∥H(λ)∥2 ≥ ε−1
}
.

VI.1.3 H∞-norm and stability radius
sec:Hinfcont

For ε ≥ 0 with ε∥D∥2 < 1, the spectral value set abscissa is

αε(A,B,C,D) = max{Re λ : λ ∈ Λε(A,B,C,D)} (1.11) alepsdef

with α0(A,B,C,D) = α(A), the spectral abscissa of A. This definition extends the
notion of the pseudospectral abscissa αε(A).

The H∞-norm can be characterized as the reciprocal of the stability radius, which is
the largest ε such that Λε(A,B,C,D) is contained in the left half-plane. The following
theorem states this remarkable equality on which our algorithmic approach to computing
the H∞-norm will be based. It extends (III.1.10), to which it reduces for B = C = I and
D = 0.

Theorem 1.6 (H∞-norm via the stability radius). Assume that all eigenvalues of Athm:Hinf-oeps
have negative real part. Let the stability radius of the system (A,B,C,D) be

ε⋆ := inf{ε > 0 with ε∥D∥2 < 1 : αε(A,B,C,D) = 0},

where αε(A,B,C,D) is the spectral value set abscissa defined in (1.11). Then,

∥H∥∞ =
1

ε⋆
. (1.12) hinfnormdefcont
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Proof. We first consider the case where Λε(A,B,C,D) does not intersect the imaginary
axis for any ε > 0 with ε∥D∥2 < 1. Then we take the infimum in (1.12) to be 1/∥D∥2.
By Corollary 1.5, ∥H(iω)∥ < ε−1 for all ω ∈ R and all ε with ε∥D∥2 < 1, and hence
the supremum in (1.3) is at least ∥D∥2, and therefore equal to ∥D∥2 as is seen by letting
ω → ±∞. So we have equality in (1.12) in this degenerate case.

Otherwise, there exists a smallest ε⋆ with ε⋆∥D∥2 < 1 such that αε⋆(A,B,C,D) =
0. So there exists ω⋆ ∈ R such that iω⋆ ∈ Λε⋆(A,B,C,D). By Corollary 1.5, this implies
∥H(iω⋆)∥2 ≥ 1/ε⋆. Here we have actually equality, because ∥H(iω⋆)∥2 = 1/ε with
ε < ε⋆ would imply, again by Corollary 1.5, that iω⋆ ∈ Λε(A,B,C,D) and hence
αε(A,B,C,D) = 0, which contradicts the minimality of ε⋆. ⊓⊔

It follows from Corollary 1.5 that, for ε > 0 with ε∥D∥2 < 1, the spectral value set
abscissa in (1.11) equals

αε(A,B,C,D) = max
{

Re λ : λ ∈ Λ(A) or ∥H(λ)∥2 ≥ ε−1
}
. (1.13) alepsdef2

The set of admissible λ must include Λ(A) because of the possibility that the spectral
value set Λε(A,B,C,D) has isolated points. Excluding such points, we obtain local op-
timality conditions for (1.13).

In order to proceed we make the following generic assumptions.

assumptcont Assumption 1.7. Let ε > 0 with ε∥D∥2 < 1, and let λ ̸∈ Λ(A) be a locally rightmost
point of Λε(A,B,C,D). We assume:

1. The largest singular value ε−1 of H(λ) is simple.
2. Letting u and v be corresponding right and left singular vectors and setting ∆ =
εuv∗, the eigenvalue λ of M(∆) is simple.

Here we note that ε−1 equals the largest singular value of H(λ), i.e. ∥H(λ)∥2, by Corol-
lary 1.5 and the minimality argument at the end of the proof of Theorem 1.6, and λ is an
eigenvalue of M(∆) by Theorem 1.2.

Lemma 1.8 (Eigenvectors with positive inner product). Let ε > 0 with ε∥D∥2 < 1,lem:firstordercont
and let λ ̸∈ Λ(A) be a locally rightmost point of Λε(A,B,C,D). Under Assumption 1.7,
we then have that

x̃∗ỹ is real and positive, (1.14) firstordercont

where ỹ and x̃ are the (non-normalized) right and left eigenvectors to the eigenvalue λ of
M(∆) with ∆ = εuv∗ that, via (1.10), correspond to the right and left singular vectors
u and v associated with the largest singular value ε−1 of H(λ).

Proof. The standard first-order necessary condition for ζ̂ ∈ R2 to be a local maximizer
of an optimization problem max{f(ζ) : g(ζ) ≤ 0, ζ ∈ R2}, when f , g are continuously
differentiable and g(ζ̂) = 0, ∇g(ζ̂) ̸= 0, is the existence of a Lagrange multiplier µ ≥ 0

such that ∇f(ζ̂) = µ∇g(ζ̂). In our case, identifying λ ∈ C with ζ ∈ R2, the gradient of
the maximization objective is (1, 0)T , while the constraint function
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1

ε
− ∥C (λI −A)

−1
B +D∥2

is differentiable with respect to λ because of the first part of Assumption 1.7, and it has
the gradient (

Re(v∗C(λI −A)−2Bu)

Im(v∗C(λI −A)−2Bu)

)
using standard perturbation theory for singular values. Defining ∆ = εuv∗ and applying
Theorem 1.3 we know that x̃ and ỹ as defined in (1.10) are left and right eigenvectors of
M(∆), with inner product

x̃∗ỹ = v∗C(λI −A)−2Bu. (1.15) evecip

By the second part of Assumption 1.7, λ is a simple eigenvalue ofM(∆) and so x̃∗ỹ ̸= 0.
Therefore, the constraint gradient is nonzero implying that the Lagrange multiplier µ > 0
exists with v∗C(λI −A)−2Bu = 1/µ > 0, and by (1.15) we thus find x̃∗ỹ > 0. ⊓⊔

VI.1.4 Two-level iteration

Like for the matrix nearness problems in Chapter IV, we approach the computation of the
H∞-norm by a two-level method:

– Inner iteration: Given ε > 0, we aim to compute a matrix E(ε) of rank 1 and of unit
Frobenius norm, such that the functional

Fε(E) = −λ+ λ

2
= − Re(λ), for λ = λ(M(εE)),

where λ(M) is the rightmost eigenvalue of a matrix M , is minimized in the manifold
of rank-1 matrices of unit norm, i.e.

E(ε) = arg min
E∈M1,∥E∥F=1

Fε(E). (1.16) E-epsl

The obtained optimizer is denoted by E(ε) to emphasize its dependence on ε, and the
rightmost eigenvalue of M (εE(ε)) is denoted by λ(ε). (Note that the Frobenius norm
and the matrix 2-norm are the same for a rank-1 matrix.)

– Outer iteration: We compute the smallest positive value ε⋆ with

ϕ(ε⋆) = 0, (1.17) eq:zero

where ϕ(ε) = Fε (E(ε)) = −Reλ(ε) = −αε(A,B,C,D) is minus the spectral value
set abscissa.

If the numerical result computed by such a two-level iteration were exact, it would yield
the H∞-norm in view of Theorem 1.6,

∥H∥∞ =
1

ε⋆
.
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VI.1.5 Norm-constrained gradient flow
sec:specvalsetabsc

In this and the next subsection we show how to deal with the inner iteration, following a
programme that directly extends the programme of Section II.1.

As in (1.5), consider the perturbed matrix, for ∆ ∈ Cp,m,

M (∆) = A+B∆ (I −D∆)
−1
C.

We consider the eigenvalue optimization problem (1.16), but for the moment with respect
to all complex perturbations E ∈ Cp,m of unit Frobenius norm, although later we will
restrict to rank-1 matrices E. So we look for

arg min
E∈Cp,m, ∥E∥F=1

Fε(E). (1.18) eq:optim-sys

To treat this eigenvalue optimization problem, we will closely follow the course of Sec-
tion II.1 and adapt it to the present situation.

Free gradient. To derive the gradient of the functional Fε, we first state a simple auxiliary
result.

Lemma 1.9 (Derivative of the perturbed matrix). Given a smooth matrix valued func-
tion ∆(t) with ∥∆(t)∥2∥D∥2 < 1, we have

d

dt
M(∆(t)) = B (I −∆(t)D)

−1
∆̇(t) (I −D∆(t))

−1
C. (1.19)

lem:derE

Proof. For conciseness, we omit the dependence on t, differentiate and regroup terms as

d

dt

(
∆ (I −D∆)

−1

)
= ∆̇ (I −D∆)

−1
+∆

d

dt
(I −D∆)

−1

= ∆̇ (I −D∆)
−1

+∆ (I −D∆)
−1
D∆̇ (I −D∆)

−1

=
(
I +∆ (I −D∆)

−1
D
)
∆̇ (I −D∆)

−1
. (1.20) eq:matrix-Ft-deriv

We then observe that

I +∆ (I −D∆)
−1
D = I +∆

( ∞∑
k=0

(D∆)k
)
D = I +

∞∑
k=1

(∆D)k = (I −∆D)
−1
.

(1.21) eq:matrix-inf-series

Combining (1.20) and (1.21) yields

d

dt

(
∆(t) (I −D∆(t))

−1

)
= (I −∆(t)D)

−1
∆̇(t) (I −D∆(t))

−1
, (1.22)

which implies the result. ⊓⊔
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We will from now on use a normalization of the eigenvectors ofM(∆) of (1.5), which
we previously considered in this book:

∥x∥ = ∥y∥ = 1 and x∗y is real and positive. (1.23) eq:scaling-sys

In the following we work with the normalized left and right eigenvectors x and y instead
of the non-normalized x̃ and ỹ of Corollary 1.3.

Lemma 1.10 (Derivative of a simple eigenvalue). Let ∆(t) be a smooth matrix valuedlem:lambdaderiv-sys
function with ∥∆(t)∥2∥D∥2 ≤ 1. Suppose that λ(t) is a simple eigenvalue of M(∆(t))
depending continuously on t, with associated eigenvectors x(t) and y(t) normalized ac-
cording to (1.23), and let κ(t) = 1/(x(t)∗y(t)) > 0. Then, λ(t) is differentiable with

λ̇(t) = κ(t) r(t)∗∆̇(t)s(t)

with

r(t) = (I −∆(t)D)
−∗
B∗x(t), s(t) = (I −D∆(t))

−1
Cy(t). (1.24) eq:rsdef

Proof. Applying Theorem VIII.1.1 we get

λ̇ =
x∗Ṁy

x∗y

with
Ṁ = B (I −∆D)

−1
∆̇ (I −D∆)

−1
C (1.25) eq:optprob

where we omitted the dependence on t for brevity. The result is then immediate. ⊓⊔

A direct consequence of Lemma 1.10, for ∆(t) = εE(t), is that

1

εκ(t)

d

dt
Fε(E(t)) = Re⟨Gε(E(t)), Ė(t)⟩ (1.26) F-der-sys

with the (rescaled) gradient given by the rank-1 matrix

Gε(E) = −rs∗. (1.27) grad-sys

Let
ψε =

ε

1− εv∗Du
. (1.28) eq:psieps

For E = uv∗, using the formulas

(I − εuv∗D)
−1

= I + ψεuv
∗D, (I − εDuv∗)

−1
= I + ψεDuv

∗

we get (with β = u∗b, γ = v∗c)

r =
(
I + ψεD

∗vu∗
)
b = b+ ψεβD

∗v

s = (I + ψεDuv
∗) c = c+ ψεγDu.
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Norm-constrained gradient flow. In the same way as in Section II.1, this suggests to
consider the following constrained gradient flow on the manifold of p×m complex ma-
trices of unit Frobenius norm:

Ė = −Gε(E) + Re ⟨Gε(E), E⟩E, (1.29) ode-E-sys

where (λ(t), x(t), y(t)) is a rightmost eigentriple for the matrix M(εE(t)). Assume the
initial condition E(0) = E0, a given matrix with unit Frobenius norm, chosen so that
M(εE0) has a unique rightmost eigenvalue λ(0), which is simple.

We can now closely follow the programme of Section II.1 with straightforward minor
adaptations.

Monotonicity. Assuming simple eigenvalues along the trajectory of (1.29), we again have
the monotonicity property of Theorem II.1.4,

d

dt
Fε(E(t)) ≤ 0. (1.30) monotone-sys

Stationary points. Also the characterization of stationary points as given in Theo-
rem II.1.5 extends with the same proof: Let E ∈ Cp,m with ∥E∥F = 1 be such that
the rightmost eigenvalue λ of M(εE) is simple and r, s ̸= 0. Then,

E is a stationary point of the differential equation (1.29) stat-sys

if and only if E is a real multiple of rs∗. (1.31) stat-sys

Since local minima of Fε are necessarily stationary points of the constrained gradient
flow (1.29), this immediately implies the following.

Corollary 1.11 (Rank of optimizers). If E is an optimizer of problem (1.18) and wecor:rank-1-sys
have r, s ̸= 0, then E is of rank 1.

As in Section II.1, Corollary 1.11 motivates us to project the differential equation
(1.29) onto the manifold M1 of rank-1 matrices, which is computationally favourable.

VI.1.6 Rank-1 constrained gradient flow
subsec:rank-1-sys

Since stationary points of (1.29) have rank 1, we consider - as we have done in Chapter
II - the differential equation (1.29) projected onto the tangent space TEM1 at E of the
rank-1 manifold.

We recall that the orthogonal projection with respect to Frobenius inner product ⟨·, ·⟩
from Cp,m onto the tangent space TEM1 at E = uv∗ ∈ M1 (with u and v of Euclidean
norm 1) is given by Lemma II.1.11 as

PE(Z) = Z − (I − uu∗)Z(I − vv∗) for Z ∈ Cp,m. (1.32) P-formula-sys

As in Section II.1.7 we consider the projected gradient system
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Ė = −PE

(
Gε(E) + Re⟨PE(Gε(E)), E⟩E

)
(1.33) ode-E-1-sys

and find the following properties, again by the arguments of Section II.1.7.

Conservation of unit norm. Solutions E(t) of (1.33) have Frobenius norm 1 for all t,
provided that the initial value E(0) has Frobenius norm 1.

Differential equations for the two vectors. For an initial value E(0) = u(0)v(0)∗ with
u(0) and v(0) of unit norm, the solution of (1.33) is given as E(t) = u(t)v(t)∗, where u
and v solve the system of differential equations (for G = Gε(E) = −rs∗)

u̇ = − i
2 Im(u∗Gv)u− (I − uu∗)Gv

v̇ = − i
2 Im(v∗G∗u)v − (I − vv∗)G∗u,

(1.34) ode-uv-sys

which preserves ∥u(t)∥ = ∥v(t)∥ = 1 for all t. For its numerical integration we can again
use the splitting method of Section II.1.8.

Monotonicity. Assuming simple eigenvalues almost everywhere along the trajectory of
(1.33), we again have the monotonicity property of Theorem II.1.14,

d

dt
Fε(E(t)) ≤ 0. (1.35) mon-sys

Stationary points. LetE ∈ M1 be of unit Frobenius norm and assume thatPE(rs
∗) ̸= 0.

If E is a stationary point of the projected differential equation (1.33), then E is already a
stationary point of the differential equation (1.29).

VI.1.7 Approximating the H∞-norm (outer iteration)
subsec:hinf-cont

We wish to compute ∥H∥∞, using the characterization (1.12). We start by observing
that since the spectral value set abscissa αε(A,B,C,D) is a monotonically increasing
function of ε, we simply need to solve the equation

αε(A,B,C,D) = 0 (1.36) eq:fdef-sys

for ε > 0. The first step is to characterize how αε depends on ε.

thm:lambdaprime Theorem 1.12. Let λ(ε) denote the rightmost point of Λε(A,B,C,D) for ε > 0,
ε∥D∥ < 1, and assume that Assumption 1.7 holds for all such ε. Define u(ε) and v(ε) as
right and left singular vectors with unit norm corresponding to ε−1, the largest singular
value of H(λ(ε)), and applying Theorem 1.3 with ∆(ε) = εE(ε) = εu(ε)v(ε)∗, define
x̃(ε) and ỹ(ε) by (1.10). Furthermore, assume that at ε, the rightmost point λ(ε) is simple
and unique. Then λ is continuously differentiable at ε and its derivative is real, with

d

dε
αε(A,B,C,D) =

d

dε
λ(ε) =

1

x̃(ε)∗ỹ(ε)
> 0. (1.37) eq:deralpha
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Proof. For the purposes of differentiation, we identify λ ∈ C with ζ ∈ R2 as in the proof
of Lemma 1.8. The first part of Assumption 1.7 ensures that the largest singular value of
H(λ) is differentiable with respect to λ and that the singular vectors v(ε) and u(ε) are
well defined up to multiplication of both by a unimodular scalar, and that E(ε) is not only
well defined but differentiable with respect to ε. The second part ensures that x̃(ε)∗ỹ(ε)
is nonzero, using standard eigenvalue perturbation theory. As in the proof of Lemma 1.8,
observe that

1

ε
− ∥C (λ(ε)I −A)

−1
B +D∥2 = 0

so differentiating this with respect to ε and using the chain rule yields

dλ(ε)

dε
=

1

v∗C(λ(ε)I −A)−2Bu
.

Furthermore, (1.15) follows (for λ = λ(ε)) from (1.10). Combining these with the first-
order optimality conditions for (1.13) in (1.14) gives the result. ⊓⊔

Corollary 1.13. Make the same assumptions as in Theorem 1.12, except normalize x(ε)
and y(ε) so that they fulfil (1.5). This can be seen to be equivalent to scaling x̃(ε) and
ỹ(ε) by 1/β(ε) and 1/γ(ε) respectively where

β(ε) =
1− εu(ε)∗D∗v(ε)

u(ε)∗b(ε)
, γ(ε) =

1− εv(ε)∗Du(ε)

v(ε)∗c(ε)
. (1.38) beta-gamma-eps

Hence
d

dε
αε(A,B,C,D) =

d

dε
λ(ε) =

1

β(ε)γ(ε)
(
x(ε)∗y(ε)

) ∈ R+. (1.39) eq:deralphasc

If A,B,C,D are all real, then Λε(A,B,C,D) is symmetric with respect to the real
axis and hence its rightmost points must either be real or part of a conjugate pair. In the
latter case, the assumption that λ(ε) is unique does not hold but the result still holds if
there is no third rightmost point.

The derivative formula (1.39) naturally leads to a formulation of Newton’s method for
computing ∥H∥∞, similar to the one previously considered to compute stability radii in
Section IV.2.3.

VI.1.8 Algorithm

We present the algorithm in concise form

Since Newton’s method may not converge, it is standard practice to combine it with
a bisection method to enforce convergence, that maintains an interval known to contain
the root, bisecting when the Newton step is either outside the interval or does not yield
a sufficient decrease in the absolute function value (in this case |αεj (A,B,C,D)| =
|Re λj |).
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Algorithm 11: Basic algorithm to compute the H-infinity norm ∥H∥∞
Data: Matrices A,B,C,D, initial vectors u0, v0, ε0 > 0, tol a given positive tolerance
Result: εJ ≈ ∥H∥∞
begin

for j = 0, . . . , jmax do
1 Approximate numerically αεj (A,B,C,D) by integrating numerically (1.34) into

a stationary point
2 return rightmost point λj , and the associated left and right eigenvectors xj , yj and

corresponding scalars βj , γj defined as in (1.38), where b = B∗xj and c = Cyj

3 if |Re λj | < tol then
4 Set J = j

5 Return ∥H∥∞ ≈ 1/εJ

else
6 Set

εj+1 = εj −
(
Re λj)βjγj((xj)∗yj).

alg_Hinf

We emphasize, however, that this is still an idealized algorithm because there is no
guarantee that the computed stationary point of the ODE will return the correct value of
αεj (A,B,C,D).

The algorithm is much faster than the standard Boyd-Balakrishnan-Bruinsma-Stein-
buch algorithm to compute the H∞-norm when n ≫ max(m, p) and the matrix A is
sparse.

VI.1.9 Numerical examples

VI.2 H∞-distance to uncontrollability
sec:uncon

In this section we consider the operator nearness problem of finding the distance of a given
controllable system to the nearest uncontrollable system, where the distance is taken as
the H∞-norm of the perturbation to the transfer function. This is a natural metric that
measures the change in the input-output behaviour due to the perturbation of the system
matrices. We propose and study a two-level algorithm that extends the algorithm of the
preceding section.

VI.2.1 Uncontrollable system with nearest output

The linear time-invariant system (0.1) is controllable if and only if the n× (n+ p) matrix

(A− λI,B) has full row rank for all λ ∈ C. (2.1) controllable

For this, it obviously suffices that the condition holds for the eigenvalues of A. Hence,
a system is uncontrollable if and only if there exists an eigenvalue λA of A with corre-
sponding left eigenvector xA such that
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x∗AB = 0.

We consider the problem of finding the distance of a given controllable system (0.1) to
the set of uncontrollable systems with the same matrices A, C and D, but with perturbed
input-state matrix B̃ = B +∆B.

Here an important question arises: which distance? We might minimize the Frobenius
norm of∆B under the condition that the perturbed system becomes uncontrollable (which
would yield ∆B = −xAx∗AB for a left eigenvector xA to one of the eigenvalues of A),
but this choice of a distance is not invariant under similarity transformations of A,

A→ V −1AV, B → V −1B, C → CV, (2.2) A-sim

which leave the matrix transfer functionH(λ) = C(λI−A)−1B+D invariant and hence
also the input-output map y = H(∂t)u. We therefore measure the distance by the L2

operator norm of the difference of the perturbed and unperturbed input-output operators,
∆H(∂t) = H̃(∂t) −H(∂t). This L2 operator norm is the H∞-norm of the perturbation
∆H to the matrix transfer function. Considering real system matrices (A,B,C,D) and
real perturbations ∆B, we arrive at the following.

Problem. Given a controllable system (0.1), find a perturbation ∆B ∈ Rn,p such that
the perturbed input-state matrix B +∆B yields an uncontrollable system and such that
the perturbation to the transfer function, ∆H(λ) = C(λI −A)−1∆B for Reλ ≥ 0, is of
minimal H∞-norm.

The algorithm proposed below extends the two-level iterative method for the computation
of the H∞-norm given in the previous section.

VI.2.2 Two-level iteration

We use the following notation. For ε > 0 and for matrices E ∈ Cp,m and R ∈ Rn,p, we
define the perturbed state matrix

Mε(E,R) = A+ εREC ∈ Cn,n. (2.3) MER

This corresponds to (1.5) for ∆ = εE and for R = ∆B in the role of B and D = 0,
which are the system matrices in ∆H(λ) = C(λI −A)−1R.

We consider, for ε > 0 and E ∈ Cp,m with ∥E∥F = 1 and R ∈ Rn,p (we write R
instead of ∆B from now on), the functional

Fε(E,R) = −Reλ(Mε(E,R)) , (2.4) FER

where λ(Mε(E,R)) is a rightmost eigenvalue of Mε(E,R).
Let λA be an eigenvalue of A with normalized left eigenvector xA. We require the

uncontrollability condition x∗A(B +R) = 0, i.e.,

x∗AR = −x∗AB. (2.5) R-cond
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– Inner iteration: For a given ε > 0, solve the eigenvalue optimization problem, over
(E,R) ∈ Cp,m × Rn,p with ∥E∥F = 1,

(E(ε), R(ε)) = argmax
R

min
E

Fε(E,R) subject to (2.5) eig-opt-uncon. (2.6) eig-opt-uncon

This constrained saddle point problem is different from the eigenvalue optimization
problems considered so far. We will nevertheless use a gradient-based method with
rank-1 matrices E that is very similar to the gradient flows of previous chapters.
With the spectral value set abscissa

αε(R) := αε(A,R,C, 0) = max
E

Reλ(Mε(E,R)) = −min
E

Fε(E,R),

(2.6) amounts to
R(ε) = argmin

R
αε(R).

We note that

Fε(E(ε), R(ε)) = max
R

min
E

Fε(E,R) = min
E

Fε(E,R(ε)). (2.7) minmax-id

– Outer iteration: We compute ε⋆ as the smallest ε > 0 such that

ϕ(ε) := Reλ(Mε(E(ε), R(ε))) = 0. (2.8) phi-uncon

We use a combined Newton-bisection method for this scalar equation.

Theorem 2.1 (H∞-distance). Let ε⋆ > 0 be the exact solution of the problem (2.5)–thm:opt-uncon
(2.8). Then, B + R(ε⋆) is the perturbed input-state matrix that yields an uncontrollable
system with minimal H∞-distance between the transfer functions of the perturbed and
unperturbed systems. This H∞-distance equals 1/ε⋆.

Proof. Let R⋆ = R(ε⋆) and (∆H)⋆(λ) = C(λI −A)−1R⋆. By Theorem 1.6,

∥(∆H)⋆∥∞ =
1

ε⋆
.

For an arbitrary R with (2.5), let εR > 0 be minimal with the property that αεR(R) = 0.
By the definition of ε⋆ and by (2.7) we have

0 = Reλ(Mε⋆(E(ε⋆), R(ε⋆))) = αε⋆(R⋆) ≤ αε⋆(R),

and so we conclude that ε⋆ ≥ εR. Let ∆H(λ) = C(λI −A)−1R. By Theorem 1.6,

∥(∆H)⋆∥∞ =
1

ε⋆
≤ 1

εR
= ∥∆H∥∞,

which yields the result. ⊓⊔
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VI.2.3 Constrained gradient flow

As before, we start with the free gradient of the functional.

Lemma 2.2 (Free gradient). Let E(t) ∈ Cp,m and R(t) ∈ Rn,p, for real t near t0, belem:gradient-uncon
continuously differentiable paths of matrices, with the derivatives denoted by Ė(t) and
Ṙ(t). Assume that λ(t) is a simple eigenvalue of Mε(E(t), R(t)) depending continuously
on t, with associated left and right eigenvectors x(t) and y(t) normalized by (1.23), and
let κ(t) = 1/(x(t)∗y(t)) > 0. Then, the derivative of Fε(E(t), R(t)) is given by

1

εκ(t)

d

dt
Fε(E(t), R(t)) = Re

〈
GE(E(t), R(t)), Ė(t)

〉
+
〈
GR(E(t), R(t)), Ṙ(t)

〉
(2.9) eq:deriv-pass

with the (rescaled) gradient

GE(E,R) = −(RTx)(Cy)∗ ∈ Cp,m,

GR(E,R) = −Re
(
x(ECy)∗

)
∈ Rn,p.

(2.10) eq:grad-uncon

Proof. The proof is analogous to the proof of Lemma II.1.1. ⊓⊔

Choosing Ė such that it points in the direction of steepest admissible descent and Ṙ
in the direction of steepest admissible ascent, we arrive, with appropriate signs, at the
projected gradient system in which we take the constraints Re⟨E, Ė⟩ = 0 and x∗AṘ = 0
into account:

Ė = −GE(E,R) + Re
〈
GE(E,R), E

〉
E,

Ṙ = +(I − PxA
)GR(E,R),

(2.11) grad-sys-uncon

where PxA
is the orthogonal projection onto the range of (RexA, ImxA). With initial val-

ues (E0, R0) satisfying the constraints ∥E0∥F = 1 and x∗A(B +R0) = 0, the constraints
are then conserved for all t.

Remark 2.3 (Invariance). The differential equations (2.11) are invariant under transfor-
mations (2.2), as is checked by a straightforward lengthy calculation.

We cannot guarantee that all solutions of (2.11) converge to an optimum of (2.6) as
t → ∞. However, it can be shown by standard perturbation arguments that we get local
convergence near a stationary point at which the partial Hessians of Fε with respect to E
and R are positive definite and negative definite, respectively.

At stationary points, we find again that GE(E,R) is a multiple of E. This gives us
once again the rank-1 property of optimizers, as in Corollary 1.11.

Corollary 2.4 (Rank of optimizers). If (E,R) is an optimizer of problem (2.6) and ifcor:rank-1-uncon
RTx ̸= 0 and Cy ̸= 0, then E is of rank 1.

As in (1.33), we therefore search for E of rank 1, projecting the differential equation
for E to the tangent space at E of the manifold of rank-1 matrices. Numerically we treat
the resulting system of differential equations for the factors of E = uv∗ in the same way
as in Section II.1.8.
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VI.2.4 Outer iteration

For the outer iteration we again use a Newton method, which is justified under additional
conditions, and we fall back to bisection when the Newton iteration does not work satis-
factorily; cf. Section IV.2.3. Under the following assumption, the real function ϕ of (2.8)
is differentiable and we will give a simple formula for its derivative.

ass:E-eps-uncon Assumption 2.5. For ε close to ε⋆ and ε < ε⋆, we assume the following for the optimizer
(E(ε), R(ε)) of (2.6):

– The eigenvalue λ(ε) = λ(Mε(E(ε), R(ε))) is a simple eigenvalue.
– The map ε 7→ (E(ε), R(ε)) is continuously differentiable.
– The partial gradient GE(ε) = GE(E(ε), R(ε)) is nonzero.

Theorem IV.2.2 then extends to the present situation. We again denote the eigenvalue
condition number by

κ(ε) =
1

x(ε)∗y(ε)
> 0

with the corresponding left and right eigenvectors x(ε), y(ε).

Theorem 2.6 (Derivative for the Newton iteration). Under Assumption 2.5, the func-thm:phi-derivative-uncon
tion ϕ is continuously differentiable in a left neighbourhood of ε⋆ and its derivative is
given as

ϕ′(ε) = −κ(ε) ∥GE(ε)∥F < 0. (2.12) eq:dereps-uncon

Proof. By Lemma 4.1 we obtain, indicating by ′ differentiation w.r.t. ε,

1

κ(ε)

d

dε
Fε(E(ε)) = Re

〈
GE(ε), E(ε) + εE′(ε)

〉
+
〈
GR(ε), R

′(ε))
〉
.

As in the proof of Theorem 2.2 we find

Re
〈
GE(ε), E(ε) + εE′(ε)

〉
= −∥GE(ε)∥F .

In the stationary point (E(ε), R(ε)) of (2.11) we have (I − PxA
)GR(ε) = 0, that is,

GR(ε) = PxA
GR(ε). On the other hand, because of (2.5) we have PxA

R′(ε) = 0. Hence,〈
GR(ε), R

′(ε))
〉
=
〈
PxA

GR(ε), R
′(ε))

〉
=
〈
GR(ε), PxA

R′(ε))
〉
= 0.

This yields the stated result. ⊓⊔
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VI.2.5 Numerical example

VI.3 Nearest passive system
sec:pass

Consider the linear time-invariant system (0.1), which we here assume quadratic (p = m).
The system is called passive if every input u ∈ L2(R+,Rm) and its corresponding output
y satisfy the relation ∫ T

0

y(t)⊤u(t) dt ≥ 0 for all T > 0. (3.1) passive

Passivity is a fundamental property in control theory. When a given system is not passive,
it is often required to enforce passivity by modifying it such that it becomes passive,
yet remains ‘near’ the given system. One approach, as discussed by Grivet-Talocia &
Gustavsen (?) and to be adopted here, is to perturb only the state-output matrix C ∈ Rm,n

to C + ∆C and to minimize a suitable norm of the perturbation such that the perturbed
system is passive.

A favoured choice in the literature is to minimize the Frobenius norm of∆C L, where
L ∈ Rn,n is a Cholesky factor of the controllability Gramian Gc = LLT , which is
the unique solution of the Lyapunov equation AGc + GcA

⊤ = BB⊤. This Gramian is
symmetric positive definite for a controllable system, as will be assumed in the following.
The squared norm ⟨∆C Gc, ∆C⟩ = ∥∆C L∥2F is invariant under transformations (2.2) of
the system matrices, as is readily checked. Based on the characterization of passivity via
Hamiltonian matrices, we present a two-level algorithm for this minimization problem in
the Frobenius norm.

In a different direction that appears not to have been addressed in the literature before,
we present in Subsection VI.3.5 an algorithm for the problem of enforcing passivity by
perturbing C in such a way that the H∞-norm of the difference between the transfer
functions of the passive perturbed system and of the original system is minimized, similar
to the approach in Section VI.2.

VI.3.1 Hamiltonian matrix related to passivity

By the Plancherel formula and the relation (1.2) of the matrix transfer function H(λ), we
have (with u extended by 0 outside [0,T])∫ T

0

y(t)⊤u(t) dt = Re
∫
R
Ly(iω)∗Lu(iω) dω = Re

∫
R
L
(
H(iω)u(iω)

)
)∗Lu(iω) dω

=
1

2

∫
R
u(iω)∗

(
H(iω) +H(iω)∗

)
u(iω) dω,

and so we find that passivity (3.1) is equivalent to the property of positive realness of the
transfer function:
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H(iω) +H(iω)∗ is positive semi-definite for all ω ∈ R. (3.2) pr

Since H(iω) → D as ω → ∞, a necessary condition for (3.2) is that D +D⊤ is positive
semi-definite.

Strict positive realness is defined in the same way, with ‘positive definite’ instead of
‘positive semi-definite’ for all ω ∈ R∪ {∞}. A necessary condition is now that D+D⊤

is positive definite.
The following remarkable result can be found in Chapter 9 of the book by Grivet-

Talocia & Gustavsen (?). It goes back to Boyd, Balakrishnan & Kabamba (?) and in its
conceptual origins further back to Byers (1988). It characterizes strict positive realness,
which is a condition on the transfer function on the whole imaginary axis, by the location
of the eigenvalues of a single Hamiltonian matrix built from the system matrices.

Theorem 3.1 (Passivity and eigenvalues of a Hamiltonian matrix). The matrix trans-thm:passive-ham
fer function H(·) is strictly positive real if and only if D+D⊤ is positive definite and the
Hamiltonian matrix

K =

(
A 0
0 −AT

)
−
(

B
−C⊤

)
(D +D⊤)−1

(
C⊤

B

)⊤

∈ R2n×2n (3.3) K-pass

has no eigenvalues on the imaginary axis.

In the following we will consider the Hamiltonian matrix also for systems with per-
turbed state-output matrices C +∆C. To indicate the dependence on C, we write K(C)
for K of (3.3).

VI.3.2 Two-level iteration

Theorem 3.1 leads us to the following matrix nearness problem, which is reminiscent of
Problem B in Section V.1. Here, the matrix L ∈ Rn,n is usually chosen as a Cholesky
factor of the controllability Gramian, as mentioned above.

Problem (F). Given a system (0.1) with positive definite matrix D + D⊤ for which the
Hamiltonian matrix K(C) has some purely imaginary eigenvalues, and given δ > 0,
compute a perturbed state-output matrix C +∆C with minimal ∥∆C L∥F such that all
eigenvalues of K(C +∆C) have a real part of absolute value at least δ.

The proposed algorithm is a two-level iterative method similar to the second method of
Section V.1.5.

– Inner iteration: For a given ε > 0, we use a (low-rank) gradient system to solve the
eigenvalue optimization problem, over E ∈ Rp×n with ∥E∥F = 1,

E(ε) = arg max
∥E∥F=1

Reλ
(
K(C + εEL−1)

)
, (3.4) eig-opt-pass

where λ(K) is an eigenvalue of minimal nonnegative real part (chosen with the largest
nonnegative imaginary part) of a real Hamiltonian matrix K.
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– Outer iteration: We compute the smallest ε such that

ϕ(ε) := Reλ
(
K(C + εE(ε)L−1)

)
= δ (3.5) phi-pass

for the given small threshold δ > 0. This uses a mixed Newton/bisection method and,
for very small δ, the asymptotic square-root behavior ϕ(ε) ∼

√
ε− ε⋆ as the eigenvalue

tends to the imaginary axis at perturbation size ε⋆; see Theorem V.1.7.

VI.3.3 Norm- and rank-constrained gradient flows
subsec:gradientflows-pass

In this subsection we show how to deal with the inner iteration, once again following
and adapting the by now well-trodden path of Chapter II, here in the real version of Sec-
tion II.2.

In the resulting algorithm we do not move eigenvalues of Hamiltonian matrices on
the imaginary axis. Instead, like in the second algorithm of Section V.1.5, we work with
Hamiltonian matrices all whose eigenvalues are off the imaginary axis, corresponding to
perturbed matrices C that yield a passive system. We move eigenvalues with smallest
positive real part toward the imaginary axis, starting from a non-optimal passive pertur-
bation of the original, non-passive system. This starting perturbation can come from a
computationally inexpensive but non-optimal passivity enforcement algorithm.

Free gradient. The following lemma will allow us to compute the steepest descent direc-
tion of the functional Fε(E) = −Reλ

(
K(C + εEL−1)

)
.

Lemma 3.2 (Real gradient). Let E(t) ∈ Rm,n, for real t near t0, be a continuouslylem:gradient-pass
differentiable path of matrices, with the derivative denoted by Ė(t). Assume that λ(t) is
a simple eigenvalue of K(C + εE(t)L−1)

)
depending continuously on t, with associated

eigenvectors x(t) and y(t) normalized by (1.23), and let κ(t) = 1/(x(t)∗y(t)) > 0.
Then, the derivative of Fε(E(t)) = Reλ

(
K(C + εE(t)L−1)

)
is given by

1

εκ(t)

d

dt
Fε(E(t)) =

〈
Gε(E(t)), Ė(t)

〉
(3.6) eq:deriv-pass

with the (rescaled) real gradient

Gε(E) = K ′(C + εEL−1)∗[Re(xy∗)]L−⊤ ∈ Rm,n, (3.7) eq:grad-pass

whereK ′(C)∗ : R2n,2n → Rm,n is the adjoint of the derivativeK ′(C) : Rm,n → R2n,2n

defined by ⟨K ′(C)∗[W ], Z⟩ = ⟨W,K ′(C)[Z]⟩ for all W ∈ R2n,2n and Z ∈ Rm,n.

Proof. By the derivative formula for simple eigenvalues and the chain rule, we have (omit-
ting the ubiquitous argument t after the first equality sign)

d

dt
Reλ

(
K(C + εE(t)L−1)

)
= κRe

(
x∗K ′(C + εEL−1)[εĖL−1]y

)
= κ

〈
Re(xy∗),K ′(C + εEL−1)[εĖL−1]

〉
= κε

〈
K ′(C + εEL−1)∗[Re(xy∗)]L−⊤, Ė

〉
,

which yields the stated result. ⊓⊔
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An explicit formula for the adjoint of the derivative of K is given next.

Lemma 3.3 (Adjoint of the derivative). For W =

(
W11 W12

W21 W22

)
∈ R2n×2n parti-

lem:K-der-adj
tioned according to the n× n blocks of K(C), we have (with T = D +D⊤ for short)

K ′(C)∗[W ] = −T−1B⊤(W11 −W⊤
22) + T−1C (W21 +W⊤

21). (3.8) K-der-adj

rem:rank-pass Remark 3.4. A noteworthy consequence of (3.8) is that Gε(E) of (3.7) has rank at
most 8. (The rank is at most 4 for real eigenvalues.)

Proof. For any path C(t) we have K̇(t) = d
dtK(C(t)) = K ′(C(t))[Ċ(t)] and hence

⟨K ′(C)∗[W ], Ċ⟩ = ⟨W,K ′(C)[Ċ]⟩ = ⟨W, K̇⟩.

Differentiation of (3.3) yields

K̇ = −
(

0

−Ċ⊤

)
T−1

(
C⊤

B

)⊤

−
(

B
−C⊤

)
T−1

(
Ċ⊤

0

)⊤

.

We note that〈
W,

(
0

−Ċ⊤

)
T−1

(
C⊤

B

)⊤
〉

=

〈
W

(
C⊤

B

)
T−1,

(
0

−Ċ⊤

)〉
= −

〈
(W21C

⊤ +W22B)T−1, Ċ⊤〉 = −
〈
((W21C

⊤ +W22B)T−1)⊤, Ċ
〉

〈
W,

(
B

−C⊤

)
T−1

(
Ċ⊤

0

)⊤〉
= ⟨T−1(B⊤,−C)W, (Ċ, 0)⟩

=
〈
T−1(B⊤W11 − CW21), Ċ

〉
so that finally

⟨K ′(C)∗[W ], Ċ⟩ = ⟨W, K̇⟩ = ⟨−T−1B⊤(W11 −W⊤
22) + T−1C 2 Sym(W21), Ċ⟩

for all Ċ ∈ Rm,n. This yields K ′(C)∗[W ] as stated. ⊓⊔

Norm-constrained gradient flow. As in Section II.2, we consider the projected gradient
flow on the manifold of m× n real matrices of unit Frobenius norm:

Ė = −Gε(E) + ⟨Gε(E), E⟩E, (3.9) ode-E-pass

where Gε(E) is defined by (3.7) via an eigentriple (λ, x, y) of the Hamiltonian ma-
trix K(C + εEL−1) with λ the target eigenvalue of minimal nonnegative real part (and
among these, the one with largest nonnegative imaginary part). The Frobenius norm 1 is
conserved along trajectories.
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We now follow closely the programme of Section II.2: We again have the monotonic
decay of Fε(E(t)) as in (II.2.7), and the characterization of stationary points as given
in Theorem II.1.5 also extends: Let E ∈ Cm,n with ∥E∥F = 1 be such that the target
eigenvalue λ of K(C + εEL−1) is simple and Gε(E) ̸= 0. Then, E is a stationary point
of the differential equation (3.9) if and only if E is a real multiple of Gε(E). Together
with Remark 3.4, this implies the following.

Corollary 3.5 (Rank of optimizers). If E is an optimizer of the eigenvalue optimizationcor:rank-8-pass
problem (3.11) and if Gε(E) ̸= 0, then E is of rank at most 8.

As in Section II.2, this motivates us to constrain the differential equation (3.9) to a
manifold of real low-rank matrices, which turns out to be computationally favourable for
large systems.

Rank-8 constrained gradient flow. In the same way as in Section II.2.4, this time with
rank r = 8, we orthogonally project the right-hand side of (3.9) onto the tangent space
at E of the manifold Mr ⊂ Rm,n of real rank-r matrices, so that solutions starting with
rank r retain the rank r:

Ė = PE

(
−Gε(E) + ⟨Gε(E), E⟩E

)
. (3.10) ode-ErF-pass

Then also the Frobenius norm 1 is conserved (see (II.2.15)), and Fε(E(t)) decays mono-
tonically (see (II.2.17)).

Using the SVD-like factorization E = USV ⊤, where U ∈ Rm,r and V ∈ Rn,r have
orthonormal columns and S ∈ Rr,r, the seemingly abstract differential equation (3.10) is
solved numerically for the factors U, V, S as described in Section II.2.5.

Using the low-rank structure in the eigenvalue computation. For the computation
of the gradient matrix Gε(E), one needs to compute the eigenvalue of smallest posi-
tive real part and the associated left and right eigenvectors of the Hamiltonian matrix
K(C + εEL−1). Except in the very first step of the algorithm, one can make use of the
eigenvalue of smallest real part of the previous step in an inverse iteration (and possibly
of the eigenvalues of second and third smallest real part etc. to account for a possible
exchange of the leading eigenvalue).

Moreover, we get from a perturbation εEL−1 with E = UΣV ⊤ of rank 8 that C is
perturbed by ∆C = εEL−1 = ε(UΣ)(L−⊤V )⊤ of the same rank 8, which yields the
perturbed Hamiltonian matrix

K(C +∆C) = K(C) +∆K,

where the perturbation∆K is still of moderate rank in view of (3.3). This fact can be used
in the computation of the required eigenvalues in the case of a high-dimensional system,
using the Sherman–Morrison–Woodbury formula in an inverse iteration.

If p≪ n, then K(C) can be viewed as a low-rank perturbation to the matrix(
A 0
0 −A⊤

)
.
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With the Sherman–Morrison–Woodbury formula, this can yield an efficient inverse itera-
tion when A is a large and sparse matrix for which shifted linear systems can be solved
efficiently.

VI.3.4 Outer iteration

For the solution of the scalar nonlinear equation (3.5) we use a mixed Newton-bisection
method as in Section IV.2.3 or, for small δ, the square root model and bisection as in
Section V.1.4.

Numerical results obtained with the above method for passivity enforcement are given by
Fazzi, Guglielmi & Lubich (?).

VI.3.5 H∞-nearest passive system
subsec:pass-Hinfty

We extend the approach of Section VI.2 to the problem of H∞-optimal passivity enforce-
ment.

Problem (H∞). Given a system (0.1) with positive definite matrix D + D⊤ for which
the Hamiltonian matrix K(C) has some purely imaginary eigenvalues, and given δ > 0,
compute a perturbed state-output matrix C +∆C with minimal H∞-norm of the pertur-
bation to the transfer function, ∆H(λ) = ∆C(λI −A)−1B, such that all eigenvalues of
K(C +∆C) have a real part of absolute value at least δ.

We write S for ∆C and use the functional

FK(S) = −Reλ(K(C + S)),

where, as before, λ(K) is an eigenvalue of minimal nonnegative real part (chosen with
the largest nonnegative imaginary part) of a Hamiltonian matrix K ∈ R2n,2n.

For ε > 0 and for matrices E ∈ Cm,m with ∥E∥F = 1 and S ∈ Cm,n, we define the
perturbed state matrix, cf. (2.3),

Mε(E,S) = A+ εBES ∈ Cn,n.

We use the functional
FM
ε (E,S) = −Reλ(Mε(E,S)),

where now (with slight abuse of notation) λ(M) is a rightmost eigenvalue of a matrix
M ∈ Cn,n. With this functional we propose a two-level approach similar to Section VI.2.

– Inner iteration: For given δ > 0 and ε > 0, we use a constrained gradient system (with
E of rank 1) to solve the constrained eigenvalue optimization problem, over (E,S) ∈
Cm,m × Rm,n with ∥E∥F = 1,

(E(ε), S(ε)) = argmax
S

min
E

FM
ε (E,S) subject to − FK(S) ≥ δ. (3.11) eig-opt-pass
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– Outer iteration: We compute ε⋆ as the smallest ε > 0 such that

ϕ(ε) := Reλ(Mε(E(ε), S(ε))) = 0. (3.12) phi-pass-2

We again use a combined Newton-bisection method for this scalar equation.

We then have the following analogue of Theorem 2.1, which is proved by the same
argument based on Theorem 1.6.

Theorem 3.6 (H∞-distance). Let ε⋆ > 0 be the exact solution of the problem (3.11)–thm:opt-pass
(3.12). Then, the perturbed state-output matrix C +S(ε⋆) yields a passive system having
Reλ(K(C + S)) ≥ δ with minimal H∞-distance between the transfer functions of the
perturbed and unperturbed systems. This H∞-distance equals 1/ε⋆.

We formulate a gradient system for solving the constrained max-min eigenvalue opti-
mization problem (3.11). Let GM

E (E,S), GM
S (E,S) and GK(S) be the gradients of FM

ε

and FK obtained as in Lemmas 4.1 and 3.2, respectively. Choosing Ė and Ṡ in the direc-
tions of steepest admissible descent and ascent, respectively, yields the projected gradient
system

Ė = −GM
E (E,S) + Re⟨GM

E (E,S), E⟩E,
Ṡ = +GM

S (E,S)− µGK
S (S),

where the Lagrange multiplier µ equals 0 if −FK(S) > δ or if −FK(S) = δ
and −⟨GK(S), GM

S (E,S)⟩ ≥ 0, and else µ > 0 is determined from the condition
⟨GK(S), Ṡ⟩ = 0, i.e., µ = ⟨GK(S), GM

S (E,S)⟩ / ∥GK
S ∥2F . As previously, E can be

further constrained to be of rank 1.

VI.4 Structured contractivity radius

A linear time-invariant system (0.1) is called contractive if its transfer function H is
bounded by

∥H∥∞ ≤ 1,

and it is called strictly contractive if the above inequality is strict. Contractive systems
play an important role as subsystems in large networks, because their composition remains
contractive and thus yields well-controlled input-output relations. A strictly contractive
system may be susceptible to perturbations (or uncertainties) in the entries of its matrices
(A,B,C,D), and it is then of interest to know which size of perturbations still guarantees
contractivity. Here, we consider perturbations only in the state matrix A and allow for
structured perturbations Θ ∈ S , where the structure space S ⊂ Cn,n is a given complex-
or real-linear subspace, e.g. real matrices with a prescribed sparsity pattern. We study the
following problem in this section.
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Let (A,B,C,D) be the system matrices of a strictly contractive linear time-invariant
system. In particular, this implies ∥D∥2 < 1. We consider structured perturbations A →
A+Θ with Θ ∈ S, which yield perturbed transfer functions

HΘ(λ) = C(λI −A−Θ)−1B +D.

Problem. Find the largest possible perturbation size θ⋆ > 0 such that

∥HΘ∥∞ ≤ 1 for all Θ ∈ S with ∥Θ∥F ≤ θ⋆ .

The number θ⋆ > 0 measures the robustness of contractivity of a system and is called
the S-structured contractivity radius. We present and discuss a two-level algorithm that is
closely related to that of Section V.5 with ε = 1, to which it reduces for the special case
B = C = I and D = 0.

VI.4.1 Two-level iteration

We consider the matrix M(∆) of (1.5) that corresponds to A+Θ instead of A. So we let

M(Θ,∆) = A+Θ +B∆(I −D∆)−1C.

By Theorem 1.2, ∥HΘ∥∞ = 1 if and only if there exists ∆ ∈ Cp,m with ∥∆∥2 = 1 such
that M(Θ,∆) has an eigenvalue with nonnegative real part. Moreover, the optimizing
matrix ∆ is of rank 1, and hence its Frobenius and 2-norms are the same. We define the
functional Fθ(E

S , E) (for ES ∈ S and E ∈ Cp,m, both of unit Frobenius norm) by

Fθ(E
S , E) = −Reλ

(
M(θES , E)

)
, (4.1) F-eps-con

where λ(M) is the eigenvalue of M of largest real part (and among those, the one with
largest imaginary part). With this functional we follow the two-level approach of Sec-
tion IV.2:

– Inner iteration: For a given θ > 0, we aim to compute matrices ES(θ) ∈ S and
E(θ) ∈ Cp,m, both of unit Frobenius norm, that minimize Fθ:

(ES(θ), E(θ)) = arg min
ES∈S,E∈Cp,m
∥∆∥F =∥E∥F =1

Fθ(E
S , E). (4.2) E-theta

– Outer iteration: We compute the smallest positive value θ⋆ with

ϕ(θ⋆) = 0, (4.3) zero-delta

where ϕ(θ) = Fθ(E
S(θ), E(θ)) = αε(A+ θES(θ), B,C,D) for ε = 1.

Provided that these computations succeed, we have from Theorem 1.6 that Θ⋆ =
θ⋆E

S(θ⋆) ∈ S is a perturbation matrix with ∥HΘ⋆∥∞ = 1, and θ⋆ is the S-structured
contractivity radius.
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VI.4.2 Rank-1 matrix differential equations for the inner iteration

The following lemma is obtained as in the proof of Lemma 1.10.

Lemma 4.1 (Structured gradient). Let ES(t) ∈ S and E(t) ∈ Cp,m, for real t near t0,lem:gradient-uncon
be continuously differentiable paths of matrices. Assume that λ(t) is a simple eigenvalue
of M(θES(t), E(t)) depending continuously on t, with associated left and right eigen-
vectors x(t) and y(t) normalized by (1.23), and let κ(t) = 1/(x(t)∗y(t)) > 0. Then, the
derivative of Fθ(E

S(t), E(t)) is given by

1

κ(t)

d

dt
Fθ(E

S(t), E(t)) = Re
〈
GS

Θ(θE
S(t), E(t)), θĖS(t)

〉
+ Re

〈
G∆(θES(t), E(t)), Ė(t)

〉 (4.4) eq:deriv-pass

with the (rescaled) gradient

GS
Θ(Θ,∆) = ΠS(xy∗) ∈ S,

G∆(Θ,∆) = rs∗ ∈ Cp,m,
(4.5) eq:grad-uncon

where r, s are obtained from x, y via (1.24).

Norm- and structure-constrained gradient flow. Similar to Section V.5, we consider
the projected gradient flow, with GS

Θ = GS
Θ(θE

S , E) and G∆ = G∆(θES , E) for short,

θĖS = −GS
Θ + Re

〈
GS

Θ, E
S〉ES ,

Ė = −G∆ + Re ⟨G∆, E⟩E.
(4.6) ode-ES-E-contr

The unit Frobenius norm of ES and E is conserved along trajectories and the functional
Fθ(E

S(t), E(t)) decreases monotonically. At a non-degenerate stationary point (ES , E),
where GS

Θ and G∆ do not vanish, we find that ES and E are real multiples of GS
Θ and

G∆, respectively. Hence,ES is the projection onto S of a rank-1 matrix, andE is a rank-1
matrix.

Rank-1 matrix differential equations. To make use of the rank-1 structure of optimiz-
ers, we proceed as in Section V.5.2 and combine the rank-1 approaches of Sections II.1
and II.3. We consider differential equations for rank-1 matrices Y (t) and E(t), where
the former yields ES(t) = ΠSY (t). These differential equations are obtained from (5.7)
by replacing GS

Θ and G∆ by their projections PY and PE onto the tangent spaces of the
manifold of rank-1 matrices at Y and E, respectively:

θ Ẏ = −PYG
S
Θ + Re ⟨PYG

S
Θ, E

S⟩Y with ES = ΠSY,

Ė = −PEG∆ + Re ⟨G∆, E⟩E.
(4.7) ode-ES-E-1-contr

These differential equations yield rank-1 matrices Y (t) and E(t) and preserve the unit
Frobenius norm of ES(t) and E(t). As in Sections II.1 and II.3 it is shown that under
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a nondegeneracy condition, the stationary points (Y,E) of (4.7) correspond bijectively
to the stationary points (ES , E) of (4.6) via ES = ΠSY and with the same E. The
differential equations are integrated numerically into a stationary point (ES , E) as is done
in Sections II.1 and II.3, working with the vectors that define the rank-1 matrices Y and
E and advancing them in time with a suitable splitting method.

VI.4.3 Outer iteration, updating θ

For the solution of the scalar equation ϕ(θ) = 0 we use a combined Newton / bisection
method as in Section IV.2. The derivative of ϕ for the Newton iteration is obtained with the
arguments of the proof of Theorem IV.2.2 (under analogous assumptions), which yields

ϕ′(θ) = −κ(θ) ∥GS
Θ(θE

S(θ), E(θ))∥F = −κ(θ) ∥ΠS(x(θ)y(θ)∗)∥F ,

where x(θ) and y(θ) are left and right normalized eigenvectors associated with the right-
most eigenvalue of M(θES(θ), E(θ)), and κ(θ) = 1/(x(θ)∗y(θ)) > 0.

VI.5 Descriptor systems
sec:descriptor

We consider a descriptor system, which formally differs from the system (0.1) only in
that the derivative of the state vector is multiplied with a singular matrix1 E ∈ Rn,n: for
t ≥ 0,

Eż(t) = Az(t) +Bu(t) (5.1) descriptor

y(t) = Cz(t).

We choose zero initial values and assume that the input function u can be extended by
zero to a sufficiently differentiable function on the whole real axis. Since E is singular,
the equation for the state vector z is now a differential-algebraic equation instead of a pure
differential equation. Descriptor systems arise naturally in systems with state constraints
and in modelling and composing networks of such systems.

We assume that all finite eigenvalues of the matrix pencil A− λE have negative real
part, i.e.,

A− λE is invertible for all λ ∈ C with Reλ ≥ 0. (5.2) pencil-ass

In particular, the matrix A is invertible.
The matrix transfer function of the descriptor system is

H(λ) = C(λE −A)−1B, Reλ ≥ 0. (5.3) H-desc

1 In this section only we adhere to the convention in the control literature to denote E the matrix
multiplying the time derivative of the state vector and to work with the matrix pencil (A,E). In
the rest of this book E appears as a matrix of unit Frobenius norm when writing a perturbation
matrix as ∆ = εE. In this section we will write instead ∆ = εZ with Z of Frobenius norm 1,
choosing Z as the letter of last resort.
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Remark 5.1. In the equation for the output y in (5.1) we have set the feedthrough matrix
D = 0 for convenience. The term Du(t) could be added for nonzero D. The required
changes in the theory and algorithm of this section can be done by combining the con-
structions and arguments of Section VI.1 with those given here. As we wish to concentrate
on the effects of the singular matrix E, we chose to forego the technical complications
resulting from a nonzero feedthrough matrix D, which were already dealt with in Sec-
tion VI.1.

VI.5.1 Index and asymptotics of the transfer function at infinity

In contrast to (0.1), the transfer functionH(λ) of (5.3) need not be uniformly bounded for
Reλ ≥ 0. We show that, aside from exceptional choices of B and C, the norm of H(λ)
grows proportionally to |λ|k−1 as λ → ∞, where k ≥ 1 is the index of the differential-
algebraic equation Eż = Az + f . The index can be determined from the Schur normal
form of A−1E as follows.

We premultiply (5.1) with A−1 and λ−1 so that the Laplace-transformed state equa-
tion (λE −A)Lz(λ) = B Lu(λ) becomes(

A−1E − 1

λ
I
)
Lz(λ) = 1

λ
A−1B Lu(λ).

We want to understand the behaviour of the inverse of the matrix in brackets on the left-
hand side as λ→ ∞, which is not obvious as E is singular. To this end we transform to a
block Schur normal form

A−1E = Q

(
G K
0 N

)
Q⊤ (5.4) block-schur-dae

with an orthogonal matrix Q, an invertible matrix G and a nilpotent matrix N . The small-
est integer k ≥ 1 such that

Nk = 0

is called the index of the matrix pencil (A,E) (or of the differential-algebraic equation
Eż = Az + f , or of the descriptor system (5.1)).

We have, for Reλ ≥ 0 and ζ = 1/λ,

(A−1E − ζI)−1 = Q

(
(G− ζI)−1 −(G− ζI)−1K(N − ζI)−1

0 (N − ζI)−1

)
Q⊤.

Here we note that

−λ−1(N − λ−1I)−1 = (I − λN)−1 = I + λN + . . .+ λk−1Nk−1.

We conclude that the norm of H(λ) = C(A−1E − λ−1I)−1λ−1A−1B is bounded by
a constant times |λ|k−1 as λ → ∞, and for generic B and C the asymptotic growth is
actually proportional to |λ|k−1.
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VI.5.2 Weighted matrix transfer function and its H∞-norm

For a system of index k, we therefore want to bound the weighted matrix transfer function

H [k](λ) = (1 + λ)−(k−1)H(λ), Reλ ≥ 0. (5.5) H-k-desc

(In the scalar factor, λ should be replaced by τλ with a characteristic time scale τ > 0,
which we assume to be 1 for ease of presentation.) Note that the Laplace-transformed
input-output relation is

Ly(λ) = H(λ)Lu(λ) = H [k](λ) (1 + λ)k−1Lu(λ), Reλ ≥ 0, (5.6) yu-L-Hk

and that
(1 + λ)k−1Lu(λ) =

(
L(1 + d/dt)k−1u

)
(λ)

under our running assumption that u together with its extension by 0 to the negative
real half-axis is a sufficiently differentiable function. As in (1.4), since ∥H [k]∥∞ =
supReλ≥0 ∥H [k](λ)∥2 is finite, these relations imply that the output y is bounded in terms
of the input u as(∫ T

0

∥y(t)∥2 dt
)1/2

≤ ∥H [k]∥∞
(∫ T

0

∥(1 + d/dt)k−1u(t)∥2 dt
)1/2

, 0 ≤ T ≤ ∞.

(5.7) yu-bound-k

Note that for index k ≥ 2, the bound depends on derivatives of u up to order k − 1.
This raises the following problem.

Problem. Compute the H∞-norm of the weighted matrix transfer function H [k] of the
descriptor system.

In the following we restrict our attention to the case of principal interest where

∥H [k](∞)∥2 < ∥H [k]∥∞ = sup
Reλ≥0

∥H [k](λ)∥2. (5.8) ass:H-k-inf

Then the supremum is a maximum that is attained at a finite λ = iω on the imaginary
axis. We will modify the algorithm of Section VI.1 to compute ∥H [k]∥∞.

VI.5.3 H∞-norm via a stability radius

In this subsection we give analogues of Theorems 1.2 and 1.6 for the descriptor system
(5.1) with the transfer function H(λ) of (5.3). We use the notation

Λ(A,E) = {λ ∈ C : A− λE is singular}.

The following result will later be used with φ(λ) = (1 + λ)−(k−1), where k is the index
of the matrix pencil (A,E).
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Theorem 5.2 (Singular values and eigenvalues). Let ε > 0, λ ∈ C \ Λ(A,E), andthm:basicequiv-pen
nonzero φ(λ) ∈ C. The following two statements are equivalent:

(i) ∥φ(λ)H(λ)∥2 ≥ ε−1.

(ii) There exists ∆ ∈ Cp,m with ∥∆∥F ≤ ε such that λ is an eigenvalue of the following
nonlinear eigenvalue problem: There is an eigenvector y ∈ Cn \ {0} such that

(A+ φ(λ)B∆C − λE)y = 0. (5.9) twoequiv-pen

Moreover, ∆ can be chosen to have rank 1, and the two inequalities can be replaced by
equalities in the equivalence.

Proof. For φ(λ) = 1, we can repeat the proof of Theorem 1.2, noting that there the
replacement of A − λI by A − λE only leads to obvious changes. For general nonzero
φ(λ), we use the result with ε̃ = |φ(λ)|ε and ∆̃ = φ(λ)∆. ⊓⊔

Given a descriptor system such that the matrix pencil (A,E) satisfies (5.2) and is of
index k, and choosing φ(λ) = (1 + λ)−(k−1) so that H [k](λ) = φ(λ)H(λ), we proceed
as in Section VI.1 and define the corresponding spectral value set

Λ[k]
ε = {λ ∈ C \ Λ(A,E) : ∥H [k](λ)∥2 ≥ ε−1}

= {λ ∈ C \ Λ(A,E) : λ satisfies (ii) of Theorem 5.2}.

The spectral value abscissa

α[k]
ε = sup{Reλ : λ ∈ Λ[k]

ε }

then yields

sup
Reλ≥α

[k]
ε

∥H [k](λ)∥2 =
1

ε
,

and by (5.8), the supremum is a maximum if ε is so small that α[k]
ε ≤ 0. With the stability

radius
ε
[k]
⋆ = min{ε > 0 : α[k]

ε = 0},

we therefore again characterize the H∞-norm, which takes the maximum over Reλ ≥ 0,
as the inverse stability radius. Since this result is essential for our numerical approach, we
formulate it as a theorem.

Theorem 5.3 (H∞-norm via the stability radius). Let the descriptor system be suchthm:Hinf-oeps-k
that the matrix pencil (A,E) has all finite eigenvalues with negative real part and is of
index k. Then, the H∞-norm of the weighted matrix transfer function H [k] of (5.5) and
the stability radius ε[k]⋆ are related by

∥H [k]∥∞ =
1

ε
[k]
⋆

.
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VI.5.4 Two-level iteration

We use a two-level iteration similar to that of Section VI.1 to compute ∥H [k]∥∞.

– Inner iteration: For a given ε > 0, compute the spectral value abscissa α[k]
ε using

the nonlinear eigenvalue problem (5.9) with perturbation matrices ∆ of norm ε and of
rank 1, which are determined via a rank-1 projected gradient flow that aims to maximize
the real part of the rightmost eigenvalue.

– Outer iteration: Compute ε[k]⋆ as the smallest ε > 0 such that α[k]
ε = 0, using a mixed

Newton / bisection method.

Provided that these computations succeed, we obtain ∥H [k]∥∞ = 1/ε
[k]
⋆ by Theorem 5.3.

VI.5.5 Inner iteration: constrained gradient flow

We aim to find ∆ ∈ Cp,m of Frobenius norm ε and of rank 1 such that the rightmost
eigenvalue λ yielding a singular matrix

M(∆,λ) := A+ φ(λ)B∆C − λE

has maximal real part, which equals the ε-spectral value abscissa α[k]
ε . To this end we

extend the norm- and rank-constrained gradient flow approach of Section II.1 for doing
the inner iteration by a discretized rank-1 gradient flow. Instead of Lemma II.1.1 we now
have the following gradient.

Lemma 5.4 (Free gradient). Let ∆(t) ∈ Cp,m, for real t near t0, be a continuouslylem:gradient-desc
differentiable path of matrices. Let λ(t) be a unique continuously differentiable path of
eigenvalues that yield singular matrices M(∆(t), λ(t)) of co-rank 1, with associated left
and right eigenvectors x(t) and y(t). Assume that

η(t) := x(t)∗
(
E − φ′(λ(t))B∆(t)C

)
y(t) ̸= 0 and set γ(t) :=

1

η(t)
.

Then,
−Re λ̇(t) = Re

〈
G(∆(t)), ∆̇(t)

〉
(5.10) eq:deriv-desc

with the rank-1 matrix (omitting the argument t)

G(∆) = −
(
γφ(λ)Cyx∗B

)∗ ∈ Cp,m. (5.11) eq:freegrad-desc

Proof. Differentiating the matrix A + φ(λ(t))B∆(t)C − λ(t)E and multiplying with
x(t)∗ from the left and y(t) from the right yields (omitting the argument t)

−ηλ̇+ φ(λ)x∗B∆̇Cy = 0,

which implies

λ̇ = γφ(λ)x∗B∆̇Cy = ⟨x, γφ(λ)B∆̇Cy⟩ = ⟨γφ(λ)B∗xy∗C∗, ∆̇⟩

and hence yields the stated result. ⊓⊔
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With the gradient (5.11), the whole programme of Section II.1 carries through, as we
briefly sketch in the following. We write ∆ ∈ Cp,m of Frobenius norm ε as

∆ = εZ with ∥Z∥F = 1

(in previous sections we wrote∆ = εE with ∥E∥F = 1, but now E is the singular matrix
in the descriptor system) and

Gε(Z) = G(εZ).

As in II.4.13, we consider the gradient flow on the Frobenius-norm unit sphere of Cp,m,

Ż = −Gε(Z) + Re⟨Gε(Z), Z⟩Z. (5.12) ode-Z-desc

As in Theorem II.1.4 we have that −Reλ(t) decreases along solutions of (5.13), where
λ(t) is a rightmost eigenvalue yielding a singular matrix M(λ(t)), provided the assump-
tions of Lemma 5.4 are satisfied.

Stationary points Z⋆ of (5.13) are again real multiples of Gε(Z⋆) and are therefore
of rank 1, as in Corollary II.1.10. As in Section II.1.7 we therefore consider the rank-1-
constrained gradient flow

Ż = −PZ

(
Gε(Z)− Re⟨Gε(Z), Z⟩Z

)
, (5.13) ode-Z-desc

where PZ is the orthogonal projection onto the tangent space at Z of the manifold of
rank-1 matrices in Cp,m. This differential equation has the same properties as Equation
(II.1.23) and is discretized in the same way, as described in Section II.1.8.
Computing eigenvalues of the nonlinear eigenvalue problem. What differs from Sec-
tion II.1 is the computation of eigenvalues λ that yield a singular matrix M(λ). If ε is
sufficiently small, this can be done efficiently by a fixed-point iteration. Given an iterate
λn, we set An = A+ φ(λn)B∆C and compute λn+1 as the rightmost eigenvalue of the
matrix pencil An − λE, for which ζn+1 = (λn+1 + 1)/(λn+1 − 1) is the eigenvalue of
largest modulus of the matrix (An − E)−1(An + E). When ε is not small, one can use
algorithms for general nonlinear eigenvalue problems, such as the method of Beyn (?) or
other methods as reviewed by Güttel & Tisseur (?).

VI.5.6 Outer iteration, updating ε

We need to compute the zero of

ϕ(ε) = −α[k]
ε = −Reλε,

where λε is a rightmost eigenvalue of the nonlinear eigenvalue problem for the matrix-
valued function A+ φ(λ)BεZεC − λE and Zε maximizes the real part of the rightmost
eigenvalue among all matrices Z ∈ Cp,m of Frobenius norm 1. Note that Zε is to be
computed in the inner iteration.

As in Section IV.2 we use a mixed Newton / bisection method, for which we need the
derivative ϕ′(ε). As in Theorem IV.2.2 we find, under appropriate regularity assumptions,
that

ϕ′(ε) = −∥Gε(Zε)∥F .
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VI.6 Notes

The standard method to compute the H∞-norm is the Boyd-Balakrishnan-Bruinsma-
Steinbuch algorithm ?, henceforth called the BBBS algorithm, which generalizes and
improves an algorithm of Byers 1988 for computing the distance to instability for A.
The method relies on Lemma ??: for stable A, it needs only to maximize ∥H(iω)∥ for
ω ∈ R. The key idea is that, given any δ > 0, it is possible to determine whether or
not ω ∈ R exists such that ∥H(iω)∥ = δ by computing all eigenvalues of an associated
2n × 2n Hamiltonian matrix and determining whether any are imaginary. The algorithm
is quadratically convergent, but the computation of the eigenvalues and the evaluation of
the norm of the transfer matrix both require on the order of n3 operations which is not
practical when n is sufficiently large.

For discrete systems

xk+1 = Axk +Buk (6.1)
yk = Cxk +Duk.

an analogous approach can be adopted, with Fε(E) = −|λ|2 and ϕ(ε) = Fε (E(ε)) =
ρε(A,B,C,D), where

ρε(A,B,C,D) = max{|λ| : λ ∈ Λε(A,B,C,D)}. (6.2) rhoepsdef

is the spectral value set radius. Here one looks for the smallest solution of f(ε⋆) = 1.
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Chapter VIII.
Appendix

chap:appendix

VIII.1 Derivatives of eigenvalues and eigenvectors
sect:eig-deriv

In this section we provide a few basic results concerning first order perturbation theory of
eigenvalues and eigenvectors. We refer to Greenbaum, Li & Overton (2020) for a recent
review, which also traces the rich history of this subject area.

VIII.1.1 First order perturbation theory for simple eigenvalues

We often use the following standard perturbation result for eigenvalues; see e.g. Horn
& Johnson (1990), Lemma 6.3.10 and Theorem 6.3.12, and Greenbaum, Li & Overton
(2020), Theorem 1.

Theorem 1.1 (Derivative of simple eigenvalues). Consider a continuously differen-lem:eigderiv
tiable path of square complex matrices A(t) for t in an open interval I . Let λ(t), t ∈ I ,
be a continuous path of simple eigenvalues of A(t). Let x(t) and y(t) be left and right
eigenvectors, respectively, of A(t) to the eigenvalue λ(t). Then, x(t)∗y(t) ̸= 0 for t ∈ I
and λ is continuously differentiable on I with the derivative (denoted by a dot)

λ̇ =
x∗Ȧy

x∗y
. (1.1)

Moreover, “continuously differentiable” can be replaced with “analytic” in the assump-
tion and the conclusion.

Since we have x(t)∗y(t) ̸= 0, we can apply the normalization

∥x(t)∥ = 1, ∥y(t)∥ = 1, x(t)∗y(t) is real and positive. (1.2) eq:scalxy

Clearly, a pair of left and right eigenvectors x and y fulfilling (1.2) may be replaced by
µy and µx for any complex µ of modulus 1 without changing the property (1.2).

Next we turn to singular values. The following result is obtained from Theorem 1.1
by using the equivalence between singular values of M and eigenvalues of (0M ;M∗ 0);
see Horn & Johnson (1990), Theorem 7.3.7.
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Corollary 1.2 (Derivative of singular values). Consider a continuously differentiablelem:singderiv
path of matrices M(t) ∈ Cm,n for t in an open interval I . Let σ(t), t ∈ I , be a path
of simple singular values of M(t). Let u(t) and v(t) be left and right singular vectors
of M(t) to the singular value σ(t), that is, M(t)v(t) = σ(t)u(t) and u(t)∗M(t) =
σ(t)v(t)∗ with ∥u(t)∥ = ∥v(t)∥ = 1. Then, σ is differentiable on I with the derivative

σ̇ = Re(u∗Ṁv).

VIII.1.2 First order perturbation theory for eigenvectors

For the derivative of eigenvectors we need the notion of group inverse (or reduced resol-
vent); see Meyer & Stewart (1988) as well as Kato (1995), Section I.5.3.

Definition 1.3 (Group inverse). Let N ∈ Cn,n be a singular matrix with a simple zerodef:groupinv
eigenvalue. The group inverse (or reduced resolvent) of N is the unique matrix Z with

NZ = ZN, ZNZ = Z, and NZN = N. (1.3) group-inv-cond

It is known from Meyer & Stewart (1988) that if N is normal, then its group inverse
Z is equal to the better known Moore–Penrose pseudoinverse N†. In general, the two
pseudoinverses are not the same. They are, however, related by the following result, which
is a special case of a more general result in Appendix A of Guglielmi, Overton & Stewart
(2015) but is also simply verified directly.

Theorem 1.4 (Group inverse via Moore–Penrose pseudoinverse). Suppose that thethm:Ginv
matrix N has the simple eigenvalue 0 with corresponding left and right eigenvectors x
and y of unit norm and such that x∗y > 0. Let Z be the group inverse of N , and with
κ = 1/(x∗y) define the projection Π = I − κyx∗. Then, the group inverse Z of N is
related to the Moore–Penrose pseudoinverse N† by

Z = ΠN†Π. (1.4) groupinvformula

The Moore-Penrose pseudo-inverse N† is obtained from the singular value decom-
position N = UΣV ∗ with unitary matrices U and V and the diagonal matrix Σ =
(Σ+ 0; 0 0), where Σ+ is the diagonal matrix of the positive singular values. Then,
N† = V Σ†U∗, where Σ† = ((Σ+)

−1 0; 0 0). It is then a simple exercise to verify
that ΠN†Π satisfies the conditions (1.3) that define the group inverse Z. In particular,
we find NZ = ZN = Π , which implies the other two conditions.

The group inverse appears in the following result on the derivative of eigenvectors,
which is a variant of Theorem 2 of Meyer & Stewart (1988).

Theorem 1.5 (Derivative of eigenvectors). Consider an analytic path of square complexthm:eigvecderiv
matrices A(t) for t in an open interval I . Let λ(t), t ∈ I , be a path of simple eigenvalues
of A(t). Then, there exists a continuously differentiable path of associated left and right
eigenvectors x(t) and y(t), t ∈ I , which are of unit norm with x∗(t)y(t) > 0 and satisfy
the differential equations
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ẋ∗ = −x∗ȦZ + Re(x∗ȦZx)x∗,
ẏ = −ZȦy + Re(y∗ZȦy)y,

(1.5) deigvec

where Z(t) is the group inverse of A(t)− λ(t)I .

We note that the last terms on the right-hand sides of (1.5) are in the direction of x∗

and y. They serve to ensure that the unit norm of x(t) and y(t) is conserved and that
x(t)∗y(t) remains real (and hence positive by Theorem 1.1). This is shown by verifying
that (d/dt)(x∗y) is real and that (d/dt)∥x∥2 = 2Re ẋ∗x and (d/dt)∥y∥2 = 2Re y∗ẋ
vanish, using the relations x∗Z = 0 and Zy = 0, which follow from (1.4).

In Theorem 2 of Meyer & Stewart (1988), the last terms in (1.5) appear without tak-
ing the real part. While this preserves the unit norm of the left and right eigenvectors, the
positivity of their inner product is then not conserved. Dropping the last terms (which are
not analytic) altogether yields an analytic path of non-normalized left and right eigenvec-
tors x∗(t) and y(t) with constant inner product x∗(t)y(t); see Greenbaum, Li & Overton
(2020), Theorem 2 and Section 3.4.
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cations, Vol. 209. Birkhäuser, Basel, 2010. [III.4]

A. Fazzi, N. Guglielmi and C. Lubich. Finding the nearest passive or nonpassive system via Hamil-FGL21
tonian eigenvalue optimization. SIAM J. Matrix Anal. Appl., 42(4): 1553–1580, 2021. [IV.6],
[V.6]

M. A. Freitag and A. Spence. A Newton-based method for the calculation of the distance to insta-FreS11
bility. Linear Algebra Appl., 435(12): 3189–3205, 2011. [IV.6]

M. A. Freitag and A. Spence. A new approach for calculating the real stability radius. BIT, 54(2):FreS14
381–400, 2014. [IV.6]

N. Gillis, M. Karow and P. Sharma. Approximating the nearest stable discrete-time system. LinearGilKS19
Algebra Appl., 573, 37–53, 2019. [IV.6]

N. Gillis and P. Sharma. On computing the distance to stability for matrices using linear dissipativeGilS17
Hamiltonian systems. Automatica J. IFAC, 85: 113–121, 2017. [IV.6]

A. Greenbaum, R.-C. Li, and M. L. Overton. First-order perturbation theory for eigenvalues andGreLO20
eigenvectors. SIAM Rev., 62(2): 463–482, 2020. [VIII.1]

S. Grivet-Talocia and B. Gustavsen. Passive macromodeling: Theory and applications. John WileyGriG15
& Sons, 2015. [III.4]

N. Guglielmi. On the method by Rostami for computing the real stability radius of large and sparseGug16
matrices. SIAM J. Sci. Comput., 38(3): A1662–A1681, 2016. [IV.6]
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