Exercise Sheet-1

Optimal control problem with ODE
 Dr. Chaudhary

May 3, 2024

Exercise 1. Let $\alpha(t), \beta(t)$, where $\beta(t) \geq 0$, and $x(t)$ be continuous scalar valued functions on $[a, b]$ and let $x(t)$ satisfy the inequality

$$
x(t) \leq \alpha(t)+\int_{a}^{t} \beta(\tau) x(\tau) \mathrm{d} \tau, t \in[a, b] .
$$

Then for all $t \in[a, b]$, we have

$$
x(t) \leq \alpha(t)+\int_{a}^{t} \beta(\tau) g(t, \tau) \mathrm{d} \tau
$$

where

$$
g(t, \tau)=\alpha(\tau) \exp ^{\int_{\tau}^{t} \beta(\sigma) \mathrm{d} \sigma}
$$

Exercise 2. Let us state the linear quadratic problem

$$
\begin{gathered}
\min \frac{1}{2} x\left(t_{f}\right)^{T} Q_{0} x\left(t_{f}\right)+\frac{1}{2} \int_{0}^{T}\left[x(s)^{T} Q x(s)+u(s)^{T} R u(s)\right] \mathrm{d} t \\
\text { subj. to }\left\{\begin{array}{l}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=A x(t)+B u(t) \quad \forall t \in\left[0, t_{f}\right], \\
x(0)=x_{0} .
\end{array}\right.
\end{gathered}
$$

Where Q_{0} and Q are symmetric positive semi-definite matrices and R is a symmetric positive definite matrix. As an application of Pontryagin's minimum principle prove that the optimal control u^{*} satisfies

$$
u^{*}(t)=-R^{-1} B^{T} \lambda(t) \quad \forall t \in\left[0, t_{f}\right]
$$

where $\lambda(t)$ is the solution of the adjoint differential equation. Clearly write the adjoint system for this optimal control problem. Write also $u^{*}(t)$ in terms of given data x_{0}, Q, Q_{0}, R and A with help of the transition matrix as discussed in 3rd lecture, for details see Section $4.2 \& 5.1$ of lecture's notes.

Exercise 3. Consider the following problem

$$
\begin{gathered}
\min \left\|x\left(t_{f}\right)\right\|^{2}+\int_{0}^{t_{f}}\|u(t)\|^{2} \\
\text { subj to }\left\{\begin{array}{l}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=A x(t)+B u(t) \quad \forall t \in\left[0, t_{f}\right] \\
x(0)=\left[\begin{array}{c}
z_{0} \\
0
\end{array}\right],
\end{array}\right.
\end{gathered}
$$

where

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Show that optimal control u^{*} for the this problem is

$$
u^{*}(t)=\frac{1}{\left(1+t_{f}-t+\left(t_{f}-t\right)^{2} / 3+\left(t_{f}-t\right)^{4} / 12\right)}\left[\begin{array}{c}
t_{f}-t+\left(t_{f}-t\right)^{2} / 2 \\
1+\left(t_{f}-t\right)^{2}+\frac{1}{3}\left(t_{f}-t\right)^{3}
\end{array}\right]
$$

Deadline: 16th May 2024, 12:00.

Note: Please meet on 10th May, 12:00, Room S 06 for the tutorial session to discuss this exercise sheet, specially exercise 3.

