4. Exercise Sheet to Numerical Methods for Quantum Dynamics

Programming Exercise 6: Implement the Hermitian Lanczos Algorithm Without Reorthogonalization (found in the book in Algorithm 2.5). To test your implementation, you can check the following identity

$$
T_{m}=V_{m}^{*} A V_{m}
$$

Use these matrices to approximate

$$
\begin{equation*}
e^{-i \Delta t A} v \approx V_{m} e^{-i \Delta t T_{m}} e_{1} \tag{1}
\end{equation*}
$$

Hint: To compute the (small) $m \times m$ matrix exponential, you can diagonalize T_{m} with $n p$.linalg.eig.
Programming Exercise 7: Apply your implementation of (1) to the matrix

$$
A=\frac{\omega \Delta t}{2} \operatorname{tridiag}(-1,2,-1) \in \mathbb{R}^{1000 \times 1000}
$$

for $\Delta t=1$ with $\omega=8$ and $\omega=16$. Use $v=\frac{1}{\sqrt{N}} \mathbf{1}=\frac{1}{\sqrt{N}}(1)_{n=1}^{N}$. Plot the norms of the errors in a reasonable way for $m=1, \ldots, 40$. Further plot the a posteriori error bound approximated by the Simpson rule, in the book described in Equation (2.22).

Hint: To compute the error, you can use the implementation of scipy.linalg.expm, or diagonalize the large matrix as done in the previous exercise. Once you are confident in your implementation, you can use a reference solution.

Programming Exercise 8: We attempt to compute the matrix exponential (1) with the parameters $\Delta t=10$ and $\omega=100$ and $v=\frac{1}{\sqrt{N}} \mathbf{1}=\frac{1}{\sqrt{N}}(1)_{n=1}^{N}$ and A as before, such that the error is in the order of a given tolerance tol. Since the convergence of the direct method is very slow, we extend the method by time-stepping, which uses

$$
e^{-i \Delta t A} v=e^{-i \tau_{K} A} \ldots e^{-i \tau_{1} A} e^{-i \tau_{0} A} v
$$

with a (a priori unknown) sequence of time steps $\tau_{0}, \ldots, \tau_{K}$. To find an appropriate sequence, use the following adaptive method. Set $m=10, \tau=\Delta t$ and $t=0$. Repeat the following steps until $t=\Delta t$:

- Compute $\widetilde{v}=V_{m} e^{-i \Delta t T_{m}} e_{1}$ and the error estimate e with the previous exercise.
- If $\tau \boldsymbol{t o l}<e$, discard the intermediate result \widetilde{v}, set $\tau=\tau / 2$ and jump to the above step.
- Set $v=\widetilde{v}, t=t+\tau$.
- If $e<0.001 \cdot \tau \boldsymbol{t o l}$, set $\tau=2 \cdot \tau$.
- If $t+\tau>\Delta t$, set $\tau=\Delta t-\tau$.

Use the method for several values of the tolerances (e.g. tol $_{j}=2^{-j}$ for $j=0, \ldots, 20$) and plot the tolerances together with the error of the method.

Programming Exercise 9: Repeat the above algorithm, but instead of adaptively choosing τ, choose m adaptively in the same way (with m initially set to 4). Plot again the tolerances and errors accordingly.

Discussed in the exercise in S 08 , on wednesday the 14.12 .2022 , from $10.15-12$.

