2. Exercise Sheet to Numerical Methods for Quantum Dynamics

Programming Exercise 2: Oh no! A signal has been heavily polluted by (additive) noise. We provided the measurements on the website. Taken at the points x_equid.csv, the signal is saved in noisy_signal.csv. Can you reconstruct the original signal (which is suspected to be $e^{-c x^{2}}$ for some constant $c>0$)? You can assume that the original signal is smooth and 2π-periodic.

Hint: The function np.genfromtext reads .csv files into vectors. Use the discrete Fourier Transformation!
$\underline{\text { Programming Exercise 3: The following approximation to the Laplace operator in } 1-\mathrm{D} \text { is deri- }}$ ved from collocation

$$
\Delta \approx \mathcal{F}_{K}^{-1} D_{K}^{2} \mathcal{F}_{K}
$$

Implement this operator, by using library functions for the fft, for example in the form of the following functionality. The function $\operatorname{approx} \operatorname{lap}(v)$ takes a vector v, assumed to be evaluations of a 2π-periodic function at equidistant points, and returns a vector with approximations at those equidistant points. (Other reasonable functions are accepted, as long as the above functionality is implemented.)
Test your implementation with the test function $f(x)=e^{-10 x^{2}}$ on the interval $[-\pi, \pi]$. Plot the errors (e.g. the maximum error in space), in a reasonable way, for several values of K. (Note that you can compute an exact solution easily by hand).
Programming Exercise 4: Consider the spatially discrete formulation of the free Schrödinger equation (i.e. $V=0$)

$$
\begin{aligned}
i \partial_{t} U(t) & =-\mathcal{F}_{K}^{-1} D_{K}^{2} \mathcal{F}_{K} U(t) \\
U(0) & =U_{0}
\end{aligned}
$$

We can directly realize the exact solution via

$$
U(t)=e^{i t \mathcal{F}_{K}^{-1} D_{K}^{2} \mathcal{F}_{K}} U_{0}=\mathcal{F}_{K}^{-1} e^{i t D_{K}^{2} \mathcal{F}_{K} U_{0} .}
$$

The matrix exponential on the right-hand side is easy to compute, since D_{K} is a diagonal matrix. Write a code that computes the solution on the time interval $[0,0.2]$, for $U_{0}=e^{-10 x^{2}+10 i x}$, on the space interval $[-\pi, \pi]$. Visualize the solution with $K=128$ space points and $N=100$ time points.
Programming Exercise 5: Implement the Strang splitting discussed in the lectures, for the $\overline{\text { Schrödinger equation in the setting of Programming exercise 1. Compute the solution with } K=128}$ and $N=50$. Do you observe a qualitative difference to the explicit Euler? Make a time convergence plot with a reference solution through the following steps:

- Compute a reference solution with $K=128$ and $N=1024$;
- Compute the numerical solutions with $K=128$ and $N=8,16,32,64,128,256$;
- Compute the maximal absolute differences of the solutions with the reference solution (at the final time T) and store them in a vector;
- Plot (double logarithmically through $\log \log$), the error of the scheme against the different τ.

Try to interpret the result.
Discussed in the exercise in S08, on wednesday the 16.11 .2022 , from 10.15-12.

