2. Exercise Sheet to Numerical Methods for Quantum Dynamics

Programming Exercise 2: Oh no! A signal has been heavily polluted by (additive) noise. We provided the measurements on the website. Taken at the points **x_equid.csv**, the signal is saved in **noisy_signal.csv**. Can you reconstruct the original signal (which is suspected to be e^{-cx^2} for some constant c > 0)? You can assume that the original signal is smooth and 2π -periodic.

Hint: The function **np.genfromtext** reads .csv files into vectors. Use the discrete Fourier Transformation!

Programming Exercise 3: The following approximation to the Laplace operator in 1-D is derived from collocation

$$\Delta \approx \mathcal{F}_K^{-1} D_K^2 \mathcal{F}_K.$$

Implement this operator, by using library functions for the fft, for example in the form of the following functionality. The function $\operatorname{approx_lap}(v)$ takes a vector v, assumed to be evaluations of a 2π -periodic function at equidistant points, and returns a vector with approximations at those equidistant points. (Other reasonable functions are accepted, as long as the above functionality is implemented.)

Test your implementation with the test function $f(x) = e^{-10x^2}$ on the interval $[-\pi, \pi]$. Plot the errors (e.g. the maximum error in space), in a reasonable way, for several values of K. (Note that you can compute an exact solution easily by hand).

Programming Exercise 4: Consider the spatially discrete formulation of the free Schrödinger equation (i.e. V = 0)

$$i\partial_t U(t) = -\mathcal{F}_K^{-1} D_K^2 \mathcal{F}_K U(t),$$

$$U(0) = U_0.$$

We can directly realize the exact solution via

$$U(t) = e^{it\mathcal{F}_K^{-1}D_K^2\mathcal{F}_K}U_0 = \mathcal{F}_K^{-1}e^{itD_K^2}\mathcal{F}_K U_0.$$

The matrix exponential on the right-hand side is easy to compute, since D_K is a diagonal matrix. Write a code that computes the solution on the time interval [0, 0.2], for $U_0 = e^{-10x^2+10ix}$, on the space interval $[-\pi, \pi]$. Visualize the solution with K = 128 space points and N = 100 time points.

Programming Exercise 5: Implement the Strang splitting discussed in the lectures, for the Schrödinger equation in the setting of Programming exercise 1. Compute the solution with K = 128 and N = 50. Do you observe a qualitative difference to the explicit Euler? Make a time convergence plot with a reference solution through the following steps:

- Compute a reference solution with K = 128 and N = 1024;
- Compute the numerical solutions with K = 128 and N = 8, 16, 32, 64, 128, 256;
- Compute the maximal absolute differences of the solutions with the reference solution (at the final time T) and store them in a vector;
- Plot (double logarithmically through $\log \log$), the error of the scheme against the different τ .

Try to interpret the result.

Discussed in the exercise in S08, on wednesday the 16.11.2022, from 10.15–12.