

Mathematisch-Naturwissenschaftliche Fakultät

Fachbereich Mathematik

Dr. Fabian Merle

Mathematik für Informatik 4: Numerik

Sommersemester 23

Tübingen, 02.05.2023

Übungsblatt 2

Problem 1. Beweisen Sie: Auf dem \mathbb{R}^n sind alle (Vektor-)Normen äquivalent, d.h: Zu je zwei Normen $\|\cdot\|_a$ und $\|\cdot\|_b$ auf dem \mathbb{R}^n gibt es positive Zahlen m, M, sodaß

$$m\|\vec{x}\|_a \le \|\vec{x}\|_b \le M\|\vec{x}\|_a \qquad \forall \vec{x} \in \mathbb{R}^n.$$

Hinweis: Zum Nachweis dieser Aussage reicht es, konkret z.B. $\|\cdot\|_b = \|\cdot\|_\infty$ zu verwenden.

Problem 2. Sei $\|\cdot\|$ eine (Vektor-)Norm auf \mathbb{R}^n , und $A \in \mathbb{R}^{n \times n}$ eine $(n \times n)$ -Matrix. Wir definieren

$$|||\boldsymbol{A}||| := \sup_{\vec{0} \neq \vec{x} \in \mathbb{R}^n} \frac{\|\boldsymbol{A}\vec{x}\|}{\|\vec{x}\|}.$$

- a) Zeigen Sie für die Einheitsmatrix $I \in \mathbb{R}^{n \times n}$, daß |||I||| = 1 ist.
- b) Zeigen Sie für zwei Matrizen $A, B \in \mathbb{R}^{n \times n}$, daß $|||AB||| \le |||A||| |||B|||$.
- c) Zeigen Sie, daß $|||A||| = \sup_{\|\vec{x}\|=1} \|A\vec{x}\|.$
- d) Zeigen Sie, daß für jedes $\vec{x} \in \mathbb{R}^n$ die Abschätzung $||A\vec{x}|| \le |||A||| ||\vec{x}||$ gilt.
- e) Zeigen Sie, daß $|||\cdot|||$ eine Norm auf dem Raum der $(n \times n)$ -Matrizen ist.

Problem 3. Sei $R \in \mathbb{R}^{n \times n}$ eine rechte obere Dreiecksmatrix mit nicht verschwindender Diagonale, d.h.

$$\begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & r_{n-1,n} \\ 0 & \dots & 0 & r_{nn} \end{pmatrix}$$

mit $r_{ii} \neq 0$ für alle $i = 1, \dots n$. Sei weiter $\vec{b} \in \mathbb{R}^n$.

- a) Entwickeln Sie einen Algorithmus, mit welchem Sie das lineare Gleichungssystem $\mathbf{R}\vec{x}=\vec{b}$ lösen können. Wieviele elementare Rechenschritte (abhängig von der Dimension n) benötigen Sie hierfür?
- b) Wie berechnen Sie die Determinante von *R* mit möglichst wenig Rechenoperationen? Wieviele Rechenoperationen sind hierfür nötig?

c) Was ändert sich, wenn es sich um eine linke untere Dreiecksmatrix $m{L}$ handelt?
Hinweis: Ein elementarer Rechenschritt ist eine Addition, Subtraktion, Multiplikation oder Division.
•