6. Übungsblatt zur Numerischen Mathematik für Informatiker und Bioinformatiker

Aufgabe 16:

Gegeben sei die Funktion $f(x) = xe^{x-2} - 1$

- (1) Zeigen Sie, dass f genau eine Nullstelle x^* im Intervall [1,2] besitzt.
- (2) Zeigen Sie, dass die Funktionen

$$F_1(x) := e^{2-x}$$

 $F_2(x) := 2 - \ln(x)$

Iterationsverfahren zur Berechnung von x^* bilden, d.h. die Fixpunkte von F_i mit den Nullstellen von f übereinstimmen. Treffen Sie Aussagen über die Konvergenz der Fixpunktiteration

$$x_{k+1} = F_i(x_k),$$

indem Sie verschiedene Startwerte x_0 im Intervall [1,2] wählen und einige Iterationen durchführen.

(3) Wenden Sie ebenfalls das Newton-Verfahren auf die Gleichung f(x) = 0 an.

Aufgabe 17:

Zeigen Sie, dass die Iteration $x_{k+1} = \cos(x_k)$ für alle Startwerte $x_0 \in \mathbb{R}$ gegen den einzigen Fixpunkt $x^* = \cos(x^*)$ konvergiert.

Aufgabe 18 (Bisektionsverfahren):

Sei $f:[a,b]\to\mathbb{R}$ stetig mit $f(a)\cdot f(b)<0$. Nach dem Zwischenwertsatz existiert eine Nullstelle x^* in [a,b].

Das Bisektionsverfahren versucht durch Intervallhalbierung eine Nullstelle genauer zu lokalisieren. Im ersten Schritt bildet man dazu $s = \frac{1}{2}(a+b)$ und berechnet f(s).

- 1) f(s) = 0. Dann ist s eine Nullstelle von f.
- 2) f(a)f(s) < 0. Dann liegt eine Nullstelle x^* in [a,s].
- 3) f(s)f(b) < 0. Dann liegt eine Nullstelle x^* in [s,b].

Mit dem entsprechenden Intervall wird der Schritt wiederholt.

(1) Zeigen Sie: Wählt man nach der k-ten Wiederholung des oben beschriebenen Vorgehens ein x aus dem verbleibenden Intervall als Näherung, so gilt:

$$|x^* - x| \le \frac{b - a}{2^k}$$

- (2) Erläutern Sie das Vorgehen bis zum 3-ten Schritt anhand einer grafischen Darstellung.
- (3) Formulieren Sie einen Algorithmus in Pseudo-Code.

Besprechung und Abgabe der Aufgaben in der nächsten Übungsstunde.