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Chapter III.
Numerical Methods for the Time-Dependent
Schrödinger Equation

chap:num-tdse
This chapter deals with numerical methods for linear time-dependent Schrödinger equa-
tions, of low to moderate dimension (less than 10, say). Although the emphasis is on
time-dependent aspects, we begin with a section on space discretization, where we de-
scribe the Galerkin and collocation approaches on the important examples of Hermite and
Fourier bases, including their extension to higher dimensions using hyperbolic cross ap-
proximations and sparse grids for which the computational work grows only mildly with
the dimension.

We then turn to time-stepping methods: polynomial approximations to the exponen-
tial of the Hamiltonian based on the Lanczos method or on Chebyshev polynomials, and
splitting methods and their high-order refinements by composition and processing. We
conclude the chapter with integrators for Schrödinger equations with a time-varying po-
tential.

The time-dependent Schrödinger equation considered in this chapter (unless stated
otherwise) is ind ≥ 1 space dimensions, has~ = 1 and reads

i
∂ψ

∂t
= Hψ , H = T + V , (0.1) III:schrod-eq

with the kinetic energy operatorT = − 1
2µ∆ with a positive mass parameterµ and a

potentialV (x). In the final section we consider a time-dependent potentialV (x, t).

III.1 Space Discretization by Spectral Methods

We follow two tracks (among many possible) for the discretization of the Schrödinger
equation in space: the Galerkin method with a basis of Hermite functions and collocation
with trigonometric polynomials. Both cases are instances of spectral or pseudospectral
methods, which are of common use in many application areas; see, e.g., Canuto, Hus-
saini, Quarteroni & Zang (2006), Fornberg (1996), Gottlieb& Orszag (1977), and Tre-
fethen (2000). Both cases are studied here for the Schrödinger equation in one and several
dimensions, with the extension to higher dimensions by hyperbolically reduced tensor
product bases.
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III.1.1 Galerkin Method, 1D Hermite Basis

Galerkin Method. We consider an approximation spaceVK ⊂ L2(Rd) spanned byK
basis functionsϕ0, . . . , ϕK−1. We determine an approximate wave functionψK(t) ∈ VK

by the condition that at every instantt, its time derivative is determined by the condition

dψK

dt
∈ VK such that

〈
ϕ
∣∣∣ i
dψK

dt
−HψK

〉
= 0 ∀ϕ ∈ VK . (1.1) III:galerkin

This is, of course, the time-dependent variational principle (II.1.2) on the linear approxi-
mation spaceVK . In particular, we know from Sect. II.1 that norm, energy andsymplectic
structure are preserved. Writing the approximation as a linear combination of basis func-
tions

ψK(t) =

K−1∑

k=0

ck(t)ϕk (1.2) III:gal-sum

and inserting in (1.1), we obtain for the time-dependent coefficient vectorc = (ck) the
linear system of ordinary differential equations

iMK ċ = HKc (1.3) III:gal-coeff

with the matrices

MK =
(
〈ϕj |ϕk〉

)K−1

j,k=0
, HK =

(
〈ϕj |H |ϕk〉

)K−1

j,k=0
. (1.4) III:gal-matrix

The matrixMK becomes the identity matrix in the case of an orthonormal basis, where
〈ϕj |ϕk〉 = δjk.

Hermite Basis in 1D.After a suitable rescaling and shiftx → αx + β, this is the choice
of basis functions

ϕk(x) =
1

π1/4

1√
2kk!

Hk(x) e−x2/2 . (1.5) III:hermite-formula

Here,Hk(x) is the Hermite polynomial of degreek, which is thekth orthogonal poly-
nomial with respect to the weight functione−x2

on R; see, e.g., Abramowitz & Stegun
(1965). While formula (1.5) does not fail to impress, it is neither useful for computations
nor for understanding the approximation properties of thisbasis. We therefore now turn
to another way of writing the Hermite functionsϕk, which also provides some motivation
for the use of this basis.

Ladder Operators. We recall the canonical commutator relation (I.4.8) between the one-
dimensional position operatorq given by(qψ)(x) = xψ(x) and the momentum operator
p = −i d/dx :

1

i
[q, p] = 1.

It follows that theladder operatorsdefined by

A =
1√
2

(q + ip) , A† =
1√
2

(q − ip) (1.6) III:ladder
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satisfy the relations

A†A =
1

2
(p2 + q2) − 1

2
, AA† =

1

2
(p2 + q2) +

1

2
, (1.7) III:AdA

so thatA†A andAA† have the same eigenfunctions as the Hamiltonian of the harmonic
oscillator,12 (p2 + q2). We also note

AA† = A†A+ 1 . (1.8) III:AdA-commute

Moreover,A† is adjoint toA on the Schwartz spaceS of smooth rapidly decaying func-
tions:

〈A†ϕ |ψ〉 = 〈ϕ |Aψ〉 ∀ϕ, ψ ∈ S . (1.9) III:A-adj

Harmonic Oscillator Eigenfunctions. We note that the Gaussianφ0(x) = e−x2/2 is in
the kernel ofA: Aφ0 = 0. Moreover, it is checked that multiples ofφ0 are the onlyL2

functions in the kernel ofA, whereasA† has only the trivial kernel0. With (1.8) it follows
that

AA†φ0 = A†Aφ0 + φ0 = φ0 ,

and henceφ0 is an eigenfunction ofAA† to the eigenvalue1. Applying the operatorA†

to both sides of this equation, we see thatφ1 = A†φ0 is an eigenfunction ofA†A to
the eigenvalue1, and again by (1.8) an eigenfunction ofAA† to the eigenvalue2. We
continue in this way to construct successivelyφk+1 = A†φk for k ≥ 0. We thus obtain
eigenfunctionsφk toA†A, with eigenvaluek, and toAA†, with eigenvaluek + 1. These
eigenfunctions are not yet normalized. To achieve this, we note that by (1.9),

‖A†φk‖2 = 〈A†φk |A†φk〉 = 〈φk |AA†φk〉 = (k + 1) ‖φk‖2 .

We therefore obtain eigenfunctions toAA† andA†A of unitL2 norm by setting

ϕ0(x) =
1

π1/4
e−x2/2 (1.10) III:phi0

and

ϕk+1 =
1√
k + 1

A†ϕk for k ≥ 0 . (1.11) III:raising

SinceAϕk+1 = 1√
k+1

AA†ϕk =
√
k + 1ϕk, we also have (replacingk + 1 by k)

ϕk−1 =
1√
k
Aϕk for k ≥ 0 . (1.12) III:lowering

These relations explain the names ofraising operatorandlowering operatorfor A† and
A, respectively, and ofladder operatorsfor both of them. Multiplying (1.11) by

√
k + 1

and (1.12) by
√
k, summing the resulting formulas and using the definitions ofA andA†,

we obtain the three-term recurrence relation
√
k + 1ϕk+1(x) =

√
2 xϕk(x) −

√
k ϕk−1(x) for k ≥ 0 , (1.13) III:hermite-rec

with ϕ−1(x) = 0. This allows us to evaluateϕk(x) at any required pointx. We state
essential properties of these functions.
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Fig. 1.1.Hermite functionsϕk for k = 0, 4, 16, 64.

Theorem 1.1 (Hermite Functions).The functionsϕk defined by (1.10) and (1.11) formIII:thm:hermite
a completeL2-orthonormal set of functions, the eigenfunctions of the harmonic oscillator
Hamiltonian 1

2 (p2 + q2). They are identical to the Hermite functions given by (1.5).

Proof. From the above construction it is clear that eachϕk is an oscillator eigenfunction
to the eigenvaluek + 1

2 . As normalized eigenfunctions of a self-adjoint operator,theϕk

are orthonormal. It is also clear from the recurrence relation thatϕk is a polynomial of
degreek timese−x2/2. By the orthonormality, this polynomial must be a multiple of the
kth Hermite polynomial, which yields (1.5). For the proof of completeness we refer to
Thaller (2000), Sect. 7.8. ⊓⊔

The completeness together with orthonormality yields thatevery functionf ∈ L2(R)
can be expanded as the series

f =
∞∑

k=0

〈ϕk | f〉ϕk , (1.14) III:hermite-series

where the convergence of the series is understood as convergence of the partial sums in
theL2 norm.
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Approximation Properties. We denote byPK the orthogonal projector ontoVK =
span(ϕ0, . . . , ϕK−1), given by

PKf =
∑

k<K

〈ϕk | f〉ϕk .

This is the best approximation tof in VK with respect to theL2 norm. We have the
following approximation result, for which we recallA = 1√

2
(x + d/dx).

Theorem 1.2 (Approximation by Hermite Functions). For every integers ≤ K andIII:thm:hermite-approx
every functionf in the Schwartz spaceS,

‖f − PKf‖ ≤ 1√
K(K − 1) . . . (K − s+ 1)

‖Asf‖ .

Given sufficient smoothness and decay of the function, the approximation error thus de-
cays asO(K−s/2) for growingK and any fixeds.

Proof. Using subsequently (1.14), (1.11) and (1.9) we obtain

f − PKf =
∑

k≥K

〈ϕk | f〉ϕk

=
∑

k≥K

1√
k(k − 1) . . . (k − s+ 1)

〈(A†)sϕk−s | f〉ϕk

=
∑

k≥K

1√
k(k − 1) . . . (k − s+ 1)

〈ϕk−s |Asf〉ϕk .

By orthonormality, this yields

‖f − PKf‖2 ≤ 1

K(K − 1) . . . (K − s+ 1)

∑

j≥0

∣∣〈ϕj |Asf〉
∣∣2

=
1

K(K − 1) . . . (K − s+ 1)
‖Asf‖2 ,

which is the desired result. ⊓⊔

Since the set of linear combinations of shifted Gaussians isknown to be dense in
L2(R) (e.g., Thaller, 2000, p. 40), it is instructive to see the action ofAs on e−(x−a)2/2.
A short calculation yieldsAe−(x−a)2/2 = 1√

2
a e−(x−a)2/2 and hence

As e−(x−a)2/2 = 2−s/2 as e−(x−a)2/2 .

No surprise, the approximation ofe−(x−a)2/2 by Hermite functionsϕk centered at0 is
slow to converge for large shifts|a| ≫ 1. According to Theorem 1.2, the error becomes
small fromK > e

2a
2 onwards (on choosings = K and using Stirling’s formula forK!).
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Error of the Galerkin Method with Hermite Basis in 1D. We are now in the position to
prove the following error bound. For a related result we refer to Faou & Gradinaru (2007).

Theorem 1.3 (Galerkin Error). Consider the Galerkin method with the one-dimen-III:thm:hermite-galerkin
sional Hermite basis(ϕ0, . . . , ϕK−1), applied to a 1D Schr̈odinger equation (0.1) with a
potentialV (x) = (1 + x2)B(x) with boundedB, with initial valueψK(0) = PKψ(0).
Then, if the exact solution is inD(As+2) for some integers ≤ K/2, the error is bounded
by

‖ψK(t) − ψ(t)‖ ≤ C K−s/2 (1 + t) max
0≤τ≤t

‖As+2ψ(τ)‖ ,

whereC is independent ofK and t, is bounded byC ≤ c 2s/2 in dependence ofs, and
depends linearly on the bound ofB.

Proof. (a) We write the Galerkin equation (1.1) as

iψ̇K = PKHPKψK

with the Hermitian matrixPKHPK , and the Schrödinger equation (0.1), acted on byPK ,
as

iPK ψ̇ = PKHPK PKψ + PKHP
⊥
Kψ ,

whereP⊥
K = I − PK is the complementary orthogonal projection. Subtracting the two

equations and taking the inner product withψK − PKψ yields, by the same argument as
in the proof of Theorem II.1.5,

‖ψK(t) − PKψ(t)‖ ≤ ‖ψK(0) − PKψ(0)‖ +

∫ t

0

‖PKHP
⊥
Kψ(τ)‖ dτ .

We show in part (b) of the proof that

‖PKHP
⊥
Kψ‖ ≤ C K−s/2 ‖As+2ψ‖ . (1.15) III:skew-est

The result then follows together with Theorem 1.2, applied with s + 2 instead ofs, to
estimateψ(t) − PKψ(t).

(b) It remains to prove (1.15). We recall thatH = 1
2µp

2 + B(1 + q2). By (1.6) we
have

p2 = −1

2
(A−A†)2 , q2 =

1

2
(A+A†)2 .

With (1.11) and (1.12) this gives

p2ϕk = −1

2

(√
k(k − 1)ϕk−2 − (2k + 1)ϕk +

√
(k + 2)(k + 1)ϕk+2

)

q2ϕk =
1

2

(√
k(k − 1)ϕk−2 + (2k + 1)ϕk +

√
(k + 2)(k + 1)ϕk+2

)
.

This yields, withck = 〈ϕk |ψ〉,

PKp
2P⊥

Kψ = cK
√
K(K − 1)ϕK−2 + cK+1

√
(K + 1)K ϕK−1 .
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Estimating the coefficientsck as in the proof of Theorem 1.2 withs+ 2 instead ofs, we
obtain

‖PKp
2P⊥

Kψ‖ ≤ C K−s/2 ‖As+2ψ‖ .
Similarly, we get

‖q2P⊥
Kψ‖ ≤ C K−s/2 ‖As+2ψ‖ .

Together with the boundedness ofB, these two estimates imply the bound (1.15). ⊓⊔
We remark that from Theorem II.1.5, we can alternatively obtain an a posteriori error

boundC K−s/2 t max0≤τ≤t

(
‖As+2ψK(τ)‖+‖As+2BψK(τ)‖

)
, where the approximate

solutionψK instead of the exact solutionψ appears in the estimate.

Computation of the Matrix Elements. To compute the entries of the matrixHK of (1.4),
we split into the harmonic oscillator and the remaining potential,

H = D +W ≡ 1

2µ
(p2 + q2) +

(
V − 1

2µ
q2
)
.

and consider the corresponding matrices

DK =
(
〈ϕj |D |ϕk〉

)K−1

j,k=0
, WK =

(
〈ϕj |W |ϕk〉

)K−1

j,k=0
.

By Theorem 1.1,DK is diagonal with entriesdk = (k + 1
2 )/µ. To computeWK , we

useGauss–Hermite quadrature, that is, Gaussian quadrature for the weight functione−x2

overR (see, e.g., Gautschi 1997): forM ≥ K, let xi (i = 1, . . . ,M ) be the zeros of the
M th Hermite polynomialHM (x). With the corresponding weightswi or ωi = wi e

x2

i ,
the quadrature formula

∫ ∞

−∞
e−x2

h(x) dx ≈
M∑

i=1

wi h(xi) or
∫ ∞

−∞
f(x) dx ≈

M∑

i=1

ωi f(xi)

is exact for all polynomialsh of degree up to2M − 1. If f(x) = g(x) · e−x2/2 with a
functiong ∈ L2(R) for which the coefficientsck = 〈ϕk | g〉 in the Hermite expansion
(1.14) ofg satisfy|ck| ≤ C (1+k)−r with r > 1, we then obtain that the quadrature error
is bounded byO(M−r).

We thus approximate

〈ϕj |W |ϕk〉 ≈
M∑

i=1

ωi ϕj(xi)W (xi)ϕk(xi) , (1.16) III:quad

usingM evaluations of the potential for allK2 matrix elements, and evaluatingϕj(xi)
via the recurrence relation (1.13). To obtain all matrix elements with good accuracy, one
would have to chooseM distinctly larger thanK, but in practice a popular choice is
M = K. Though the lower right block in the matrix is then inaccurate, this does not
impair the asymptotic accuracy of the overall numerical method for largeK, since the
inaccurate matrix elements only meet with the small coefficients that correspond to high-
order Hermite functions. This observation can be turned into rigorous estimates with the
arguments of the above proofs.
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III.1.2 Higher Dimensions: Hyperbolic Cross and Sparse Grids
III:subsec:hermite-d

We now turn to the Galerkin method with a tensor-product Hermite basis for thed-
dimensional Schrödinger equation (0.1).

Full Tensor-Product Basis.The theory of the preceding section immediately extends to
a full tensor-product basis of Hermite functions: for all multi-indicesk = (k1, . . . , kd)
with integers0 ≤ kn < K, take the product functions

ϕ(k1,...,kd)(x1, . . . , xd) = ϕk1
(x1) . . . ϕkd

(xd)

or briefly
ϕk = ϕk1

⊗ · · · ⊗ ϕkd
(1.17) III:phi-tensor

as the basis functions in the Galerkin method. While this is theoretically satisfactory, it
is computationally infeasible in higher dimensions: the number of basis functions, the
number of coefficients, the computational work all grow likeKd, exponentially with the
dimensiond to the large baseK.

k1

k2

k1

k2

Fig. 1.2.Full and hyperbolically reduced tensor basis (K = 32). III:fig:hyp

Hyperbolic Reduced Tensor-Product Basis.Instead of takingall tensor products with
kj < K, we only take a subset of multi-indices: for a boundK, let the hyperbolic multi-
index setK be given as

K = K(d,K) =
{
(k1, . . . , kd) : kn ≥ 0,

d∏

n=1

(1 + kn) ≤ K
}
. (1.18) III:hyp-set

This is illustrated ford = 2 andK = 32 in Fig. 1.2. Taking only the tensor productsϕk

of (1.17) withk ∈ K as the basis functions in the Galerkin method greatly reduces their
number:
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III:lem:K Lemma 1.4. The numberN(d,K) of multi-indices inK(d,K) is bounded by

N(d,K) ≤ K (logK)d−1 . (1.19) III:card-K

Proof. We clearly haveN(1,K) = K. We then note

N(2,K) ≤ K

1
+
K

2
+
K

3
· · · + K

K
≤ K logK ,

where the terms in the sum correspond tok2 = 0, 1, . . . ,K − 1, respectively. In general,
we have

N(d,K) ≤ N(d− 1,K) +N(d− 1,K/2) + · · · +N(d− 1,K/K) ,

which by induction leads to the stated bound. ⊓⊔

Computations with the Galerkin method on the reduced tensor-product approximation
space

VK = span{ϕk : k ∈ K} (1.20) III:hyp-space

thus appear to become feasible up to fairly large dimensiond.

Approximation Properties. Can we still get decent approximations on this reduced
space? As we show next, this is possible under more stringentregularity assumptions
on the functions to be approximated. We denote byPK the orthogonal projector ontoVK,
given by

PKf =
∑

k∈K
〈ϕk | f〉ϕk .

We let An = 1√
2
(xn + d/dxn) and for a multi-indexσ = (σ1, . . . , σd), we denote

Aσ = Aσ1

1 . . . Aσd

d . We then have the following approximation result.

Theorem 1.5 (Approximation by the Reduced Tensor Hermite Basis).For every fixedIII:thm:hermite-approx-d
integers and every functionf in the Schwartz spaceS(Rd),

‖f − PKf‖ ≤ C(s, d)K−s/2 max
|σ|∞≤s

‖Aσf‖ ,

where the maximum is taken over allσ = (σ1, . . . , σd) with 0 ≤ σn ≤ s for eachn.

Proof. For every multi-indexk = (k1, . . . , kd) we define the multi-indexσ(k) by the
conditionkn−σ(k)n = (kn−s)+ (with a+ = max{a, 0}) for all n = 1, . . . , d, and note
that0 ≤ σ(k)n ≤ s. Similar to the proof of Theorem 1.2 we have

f − PKf =
∑

k/∈K
〈ϕk | f〉ϕk

=
∑

k/∈K
ak,s 〈(A†)σ(k)ϕk−σ(k) | f〉ϕk

=
∑

k/∈K
ak,s 〈ϕk−s |Aσ(k)f〉ϕk ,
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where the coefficientsak,s come about by (1.11) and are given as

ak,s =

d∏

n=1

1√
(1 + (kn − 1)+) . . . (1 + (kn − s)+)

.

They satisfy, fork /∈ K,

|ak,s|2 ≤ c(s, d)

Ks
, (1.21) III:a-coeff

because by the definition (1.18) ofK we have the bound, fork /∈ K and withr = 1, . . . , s,

d∏

n=1

(
1 + (kn − r)+

)
≥ K

d∏

n=1

1 + (kn − r)+
1 + kn

≥ K (r + 1)−d .

By orthonormality, (1.21) yields

‖f − PKf‖2 ≤ c(s, d)

Ks

∑

k

∣∣〈ϕk |Aσ(k)f〉
∣∣2 .

Since there aresd different possible values ofσ(k), a crude estimation yields

‖f − PKf‖2 ≤ sd c(s, d)

Ks
max

|σ|∞≤s
‖Aσf‖2 ,

which is the stated result. ⊓⊔

We note that for a shiftedd-dimensional Gaussiane−|x−a|2/2, we have thatAσe−|x−a|2/2 =
(a/

√
2)σe−|x−a|2/2, and so we now needK ≫∏d

n=1(1 + |an|2) to obtain good approx-
imation.

Error of the Galerkin Method with Reduced Tensor Hermite Basis. With the proof of
Theorem 1.3 we then obtain the following result from Theorem1.5.

Theorem 1.6 (Galerkin Error). Consider the Galerkin method with the hyperbolicallyIII:thm:hermite-galerkin-d
reduced tensor Hermite basis applied to ad-dimensional Schr̈odinger equation (0.1) with
a potentialV (x) = (1+ |x|2)B(x) with boundedB, with initial valueψK(0) = PKψ(0).
Then, for any fixed integers the error is bounded by

‖ψK(t) − ψ(t)‖ ≤ C(s, d)K−s/2 (1 + t) max
0≤τ≤t

max
|σ|∞≤s+2

‖Aσψ(τ)‖

with the maximum over allσ = (σ1, . . . , σd) with 0 ≤ σn ≤ s+ 2 for eachn. ⊓⊔

Numerical Integration Using Sparse Grids. The matrix elements〈ϕj |H |ϕk〉 for
j, k ∈ K contain high-dimensional integrals. These can be approximated by numerical in-
tegration on sparse grids, following Smolyak (1963), Zenger (1991), Gerstner & Griebel
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(1998) and using an adaptation that takes care of the increasingly oscillatory behaviour of
the high-order Hermite functions.

We describe Smolyak’s sparse grid quadrature when based on one-dimensional Gauss–
Hermite quadrature in every coordinate direction. Forℓ = 0, 1, 2, . . . , let xℓ

i denote the
zeros of the Hermite polynomial of degree2ℓ, and letwℓ

i be the corresponding weights and
ωℓ

i = wℓ
i e

(xℓ
i)

2

, so that we have the one-dimensional2ℓ-point Gauss–Hermite quadrature
formula

Qℓf =

2ℓ∑

i=1

ωℓ
i f(xℓ

i) ≈
∫ ∞

−∞
f(x) dx .

We introduce the difference formulas between successive levels,

∆ℓf = Qℓf −Qℓ−1f ,

and for the lowest level we set∆0f = Q0f . The full tensor quadrature approximation at
levelL to ad-dimensional integral

∫
Rd f(x1, . . . , xd) dx1 . . . dxd reads

QL ⊗ . . .⊗QLf =
2L∑

i1=1

. . .
2L∑

id=1

ωL
i1 . . . ω

L
id
f(xL

i1 , . . . , x
L
id

) ,

which can be rewritten as

QL ⊗ . . .⊗QLf =

L∑

ℓ1=0

. . .

L∑

ℓd=0

∆ℓ1 ⊗ . . .⊗∆ℓd
f (1.22) III:Q-full

and uses(2L)d grid points at whichf is evaluated. This number is substantially reduced
in Smolyak’s algorithm, which neglects all contributions from the difference terms with
ℓ1 + . . .+ ℓd > L and thus arrives at the quadrature formula

∑

ℓ1+...+ℓd≤L

∆ℓ1 ⊗ . . .⊗∆ℓd
f ≈

∫

Rd

f(x1, . . . , xd) dx1 . . . dxd . (1.23) III:smolyak

Here,f is evaluated only at the points of thesparse grid

Γ d
L = {(xℓ1

i1
, . . . , xℓd

id
) : ℓ1 + . . .+ ℓd ≤ L} ,

which has onlyO(2L · Ld−1) points; as an illustration see Fig. III.1.2 forL = 5 and
d = 2. If f(x) = g(x) · e−|x|2/2 with a functiong ∈ L2(Rd) for which the coefficients
cm = 〈ϕm | g〉 in the Hermite expansion ofg satisfy

|cm| ≤ C
d∏

n=1

(1 +mn)−r (1.24) III:cm

with r > 1, then the contribution of the omitted terms withℓ1 + . . .+ ℓd > L and hence
the quadrature error can be shown, by a tedious exercise, to be bounded byO((2L)−r).
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III:fig:sparse-hermite
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Fig. 1.3.Gauss–Hermite sparse grid (L = 5, d = 2).

Remark.A disadvantage of Gauss–Hermite quadrature formulas is thefact that they are
not nested: the quadrature points of levelℓ− 1 are not a subset of those of levelℓ. As an
alternative, which will not be explored here, one might consider transformation to a finite
interval and using the trapezoidal rule or Clenshaw-Curtisquadrature there. With a nested
quadrature, the sparse grid contains approximately half asmany grid points as for the case
of a non-nested basic quadrature formula with the same number of quadrature points. It
is not clear if the otherwise excellent properties of Gauss–Hermite quadrature are indeed
offset by nested quadratures for suitably truncated or transformed integrals.

Computation of the Matrix Elements. The integrandfjk in the matrix element

〈ϕj |W |ϕk〉 =

∫

Rd

ϕj(x)W (x)ϕk(x) dx ≡
∫

Rd

fjk(x) dx

becomes highly oscillatory for multi-indicesj andk with large components. In this situ-
ation, an estimate of the type (1.24) cannot be expected to hold true with a constant that
is uniform inj andk, but rather (witha+ = max{a, 0})

|cm(j, k)| ≤ C

d∏

n=1

(
1 + (mn − jn − kn)+

)−r
(1.25) III:cjkm

for the Hermite coefficientscm(j, k) of gjk(x) = fjk(x) e|x|
2/2. This suggests a mod-

ification of Smolyak’s algorithm in which terms in the sum (1.22) are discarded only
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if they are of sizeO((2L)−r) under condition (1.25). Such an adaptation of the algo-
rithm reads as follows: for a pair of multi-indicesj andk, let ℓ̂1, . . . , ℓ̂d be such that
c · 2bℓn−1 < max{jn, kn} ≤ c · 2bℓn for a chosen constantc. We discard only terms with

(ℓ1 − ℓ̂1)+ + . . .+ (ℓd − ℓ̂d)+ > L .

In the case of a hyperbolically reduced multi-index set (1.18), we have actually

ℓ̂1 + . . .+ ℓ̂d ≤ 2 log2K + αd ,

whereα ∈ R depends only onc. Such a modification can thus be implemented by in-
creasingL in dependence ofK by 2 log2K. The number of evaluations of the potential
on the resulting sparse grid thus becomesO(K2 · 2L · (L + 2 log2K)d−1) and hence
is essentially quadratic inK of (1.18). The choice ofL depends on the smoothness and
growth properties of the potential.

III.1.3 Collocation Method, 1D Fourier Basis
III:subsec:fourier-1d

Truncation, Periodization, Rescaling.We start from the one-dimensional Schrödinger
equation (0.1) on the real line. If we expect the wavefunction to be negligible outside an
interval [a, b] on the considered time interval, we may replace the equationon the whole
real line by that on the finite interval with periodic boundary conditions. After a rescaling
and shiftx→ αx+ β we may assume that the space interval is[−π, π]:

i
∂ψ

∂t
(x, t) = − 1

2µ

∂2ψ

∂x2
(x, t) + V (x)ψ(x, t) , x ∈ [−π, π] , (1.26) III:schrod-1d

with periodic boundary conditions:ψ(−π, t) = ψ(π, t) for all t.

Collocation by Trigonometric Polynomials.We look for an approximation to the wave
functionψ(x, t) by a trigonometric polynomial at every instantt,

ψ(x, t) ≈ ψK(x, t) =

K/2−1∑

k=−K/2

ck(t) eikx , x ∈ [−π, π] , (1.27) III:trig-pol

whereK is a given even integer. We might determine the unknown Fourier coefficients
ck(t) by a Galerkin method on the space of trigonometric polynomials as in the previous
section. Here, we consider instead the approach bycollocation, which requires that the
approximation satisfy the Schrödinger equation in a finitenumber of grid points, as many
points as there are unknown coefficients. We thus choose theK equidistant grid points
xj = j · 2π/K with j = −K/2, . . . ,K/2 − 1 and require that

i
∂ψK

∂t
(xj , t) = − 1

2µ

∂2ψK

∂x2
(xj , t) + V (xj)ψ(xj , t) (j = −K/2, . . . ,K/2 − 1).

(1.28) III:coll
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This condition is equivalent to a system of ordinary differential equations for the coeffi-
cientsck(t), as we show next.

Discrete Fourier Transform. LetFK : C
K → C

K denote thediscrete Fourier transform
of lengthK, defined by

v̂ = FKv with v̂k =
1

K

K/2−1∑

j=−K/2

e−ikj·2π/K vj (k = −K/2, . . . ,K/2 − 1).

(1.29) III:dft

The inverse transform is thenF−1
K = KF∗

K , that is,

v = F−1
K v̂ with vj =

K/2−1∑

k=−K/2

eijk·2π/K v̂k (j = −K/2, . . . ,K/2 − 1). (1.30) III:dftinv

The familiarfast Fourier transform(FFT) algorithm (see, e.g., the informative Wikipedia
article on this topic) computes either transform withO(K logK) complex multiplications
and additions, instead of theK2 operations needed for a naive direct computation from
the definition.

Differential Equations for the Fourier Coefficients and Grid Values.From (1.27) we
note that the vector of grid values ofψK is the inverse discrete Fourier transform of the
coefficient vector: (

ψK(xj , t)
)

= F−1
K

(
ck(t)

)
. (1.31) III:c-psi

This relation and differentiation of (1.27) yield that the collocation condition (1.28) is
equivalent to the following differential equation for the vectorc = (ck) of Fourier coeffi-
cients: with the diagonal matricesDK = 1

2µ diag(k2) andVK = diag
(
V (xj)

)
,

iċ = DKc+ FKVKF−1
K c . (1.32) III:coll-c

Alternatively, by taking the inverse Fourier transform on both sides of (1.32) and recalling
(1.31), we obtain a system of differential equations for thegrid valuesuj(t) = ψK(xj , t):
for the vectoru = (uj),

iu̇ = F−1
K DKFKu+ VKu . (1.33) III:coll-u

We observe that the matrices on the right-hand sides of (1.32) and (1.33) are all Hermitian,
because

√
KFK is a unitary transformation.

Approximation by Trigonometric Interpolation. For a continuous2π-periodic function
f we denote byIKf the trigonometric polynomial withK Fourier modes ranging from
−K/2 toK/2 − 1 which interpolatesf in theK equidistant grid pointsxj = j · 2π/K:

IKf(x) =

K/2−1∑

k=−K/2

ck e
ikx with (ck) = FK

(
f(xj)

)
.
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Theorem 1.7 (Interpolation Error). Suppose thatf is a2π-periodic function for whichIII:thm:ipol
thes-th derivative∂s

xf ∈ L2, for somes ≥ 1. Then, the interpolation error is bounded in
L2 by

‖f − IKf‖ ≤ C K−s ‖∂s
xf‖ ,

whereC depends only ons.

Proof. We write the Fourier series off and the trigonometric interpolation polynomial as

f(x) =

∞∑

k=−∞
ak e

ikx , IKf(x) =

K/2−1∑

k=−K/2

ck e
ikx .

From the interpolation condition it is verified that the coefficients are related by thealias-
ing formula

ck =

∞∑

ℓ=−∞
ak+ℓK .

Using Parseval’s formula and the Cauchy–Schwarz inequality, we thus obtain

‖f − IKf‖2 =

K/2−1∑

k=−K/2

(∣∣∣
∑

ℓ 6=0

ak+ℓK

∣∣∣
2

+
∑

ℓ 6=0

|ak+ℓK |2
)

≤
K/2−1∑

k=−K/2

(∑

ℓ 6=0

(k + ℓK)−2s ·
∑

ℓ 6=0

(k + ℓK)2s|ak+ℓK |2

+
∑

ℓ 6=0

(k + ℓK)−2s · (k + ℓK)2s|ak+ℓK |2
)

≤ C2K−2s
∞∑

k=−∞
|ksak|2 = C2K−2s ‖∂s

xf‖2 ,

which is the desired result. ⊓⊔
In the same way it is shown that for every integerm ≥ 1,

‖∂m
x (f − IKf)‖ ≤ C K−s ‖∂s+m

x f‖ . (1.34) III:ipol-diff

Error of the Collocation Method with Fourier Basis in 1D. We obtain the following
error bound.

Theorem 1.8 (Collocation Error). Suppose that the exact solutionψ(t) = ψ(·, t) hasIII:thm:coll-error
∂s+2

x ψ(t) ∈ L2 for everyt ≥ 0, for somes ≥ 1. Then, the error of the Fourier collocation
method (1.28) with initial valueψK(x, 0) = IKψ(x, 0) is bounded inL2 by

‖ψK(t) − ψ(t)‖ ≤ C K−s (1 + t) max
0≤τ≤t

‖∂s+2
x ψ(τ)‖ ,

whereC depends only ons.
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Proof. The error analysis is based on reformulating method (1.28) as an equation with
continuous argument: by interpolation on both sides of (1.28),

i
∂ψK

∂t
(x, t) = − 1

2µ

∂2ψK

∂x2
(x, t) + IK(V ψK)(x, t) , x ∈ [−π, π] . (1.35) III:coll-cont

On the other hand, using thatIKV ψ = IKV IKψ, we obtain that the interpolant to the
solution satisfies the equation

i
∂IKψ

∂t
(x, t) = − 1

2µ

∂2IKψ

∂x2
(x, t) + (IKV IKψ)(x, t) + δK(x, t) , (1.36) III:coll-ipol

with the defect

δK = − 1

2µ

(
IK

∂2ψ

∂x2
− ∂2IKψ

∂x2

)
.

The errorεK = ψk − IKψ thus satisfies the equation

i
∂εK

∂t
= − 1

2µ

∂2εK

∂x2
+ IK(V εK) − δK .

In terms of the Fourier coefficientse = (ek) andd = (dk) given by

εK(x, t) =

K/2−1∑

k=−K/2

ek(t) eikx , δK(x, t) =

K/2−1∑

k=−K/2

dk(t) eikx ,

this reads, as in (1.32):
iė = DKe+ FKVKF−1

K e− d ,

with Hermitian matrices on the right-hand side, sinceFK is unitary. Forming the Eu-
clidean inner product withe, taking the real part and integrating we obtain, by the same
argument as in the proof of Theorem II.1.5,

‖e(t)‖ ≤ ‖e(0)‖ +

∫ t

0

‖d(τ)‖ dτ .

By Parseval’s formula, this is the same as

‖εK(t)‖ ≤ ‖εK(0)‖ +

∫ t

0

‖δK(τ)‖ dτ .

We estimateδK(τ) using Theorem 1.7 for∂2
xψ(·, τ) and (1.34) withm = 2:

‖δK(τ)‖ ≤ CK−s ‖∂s+2
x ψ(·, τ)‖ .

Recalling thatεK = ψK −IKψ and using Theorem 1.7 to estimate the interpolation error
IKψ − ψ, we obtain the stated result. ⊓⊔
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Comparison with the Fourier Galerkin Method. If we use the Galerkin method (1.1)
with the basise−ikx (k = −K/2, . . . ,K/2− 1), then we obtain equations for the coeffi-
cients that are very similar to (1.32):

iċ = DKc+ V̂Kc . (1.37) III:gal-c

Here,V̂K is the matrix with the entry1
2π

∫ π

−π e
−ijx V (x) eikx dx at position(j, k). In the

collocation method (1.32), this integral is simply replaced by the trapezoidal sum approxi-
mation 1

K

∑
l e

−ikxl V (xl) e
imxl , with no harm to the error of the method as Theorem 1.8

shows.

III.1.4 Higher Dimensions: Hyperbolic Cross and Sparse Grids

The above results extend immediately to a full tensor-grid approximation in higher di-
mensions. The number of grid points and Fourier coefficientsto be dealt with is thenKd

in dimensiond with K grid points in each direction. An approach to a reduced compu-
tational cost uses a hyperbolically reduced tensor basis ofexponentials and an associated
sparse grid, leading to a discretization working withO(K(logK)d−1) grid points and
Fourier coefficients. The construction is based on a discrete Fourier transform on sparse
grids given by Hallatschek (1992).

Hyperbolic Cross.Instead of considering the full tensor product basiseik·x = eik1x1 . . . eikdxd

with −K/2 ≤ kn ≤ K/2 − 1, we consider a reduced set of multi-indicesk =
(k1, . . . , kd), which is constructed as follows. We order the set of integers into differ-
ent levels by settingZ0 = {0}, Z1 = {−1}, Z2 = {−2, 1}, Z3 = {−4,−3, 2, 3}, and in
general

Zℓ = {k ∈ Z : −2ℓ−1 ≤ k < −2ℓ−2 or 2ℓ−2 ≤ k < 2ℓ−1} . (1.38) III:Zl

This yields a partition of the integers into different levels as indicated in the following
diagram of the line of integers:

. . . -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 . . .

. . . 4 4 4 4 3 3 2 1 0 2 3 3 4 4 4 4 . . .

We then define thehyperbolic cross

K = Kd
L = {(k1, . . . , kd) : There areℓ1, . . . , ℓd with ℓ1 + . . .+ ℓd ≤ L

such thatkn ∈ Zℓn
for n = 1, . . . , d} . (1.39) III:hyp-cross

We will work with the basis of exponentialseik·x with k ∈ K. As in Lemma 1.4 it is seen
thatK hasO(2L · Ld−1) elements.

Sparse Grid.As we now show, the wave vectors in the hyperbolic cross are ina bijective
correspondence with a set of grid points in[0, 2π]d. Consider first the hierarchical ordering
of grid points in the interval[0, 2π) obtained by settingX0 = {0}, X1 = {π}, X2 =
{π

2 ,
3π
2 },X3 = {π

4 ,
3π
4 ,

5π
4 ,

7π
4 }, and in general



80 III. Numerical Methods for the Time-Dependent Schrödinger Equation

k1

k2

x1

x2

2π
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0
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Fig. 1.4.Hyperbolic cross and sparse grid (L=6).

Xℓ =
{

(2j − 1)
2π

2ℓ
: j = 1, . . . , 2ℓ−1

}
.

Clearly, each grid point inXℓ is in a one-to-one correspondence with an integer inZℓ. We
define thesparse gridcorresponding to the hyperbolic crossK as

Γ = Γ d
L = {(x1, . . . , xd) : There areℓ1, . . . , ℓd with ℓ1 + . . .+ ℓd ≤ L

such thatxn ∈ Xℓn
for n = 1, . . . , d} . (1.40) III:sparse-grid

We will use quadrature and trigonometric interpolation on this grid.

Smolyak’s Sparse-Grid Quadrature. We consider the trapezoidal (or rectangle) rule
approximation to the one-dimensional integral1

2π

∫ 2π

0 g(x) dx of a 2π-periodic function
g,

Qℓg = 2−ℓ
2ℓ−1∑

j=0

g
(
j
2π

2ℓ

)
= 2−ℓ

ℓ∑

m=0

∑

x∈Xm

g(x) ,

and the difference between two levels,

∆ℓg = Qℓg −Qℓ−1g , ∆0g = Q0g .

As in Section III.1.2, we consider Smolyak’s quadrature fora multi-variate function
f(x1, . . . , xd), which uses values off only on the sparse gridΓ = Γ d

L:

SΓ f = Sd
Lf =

∑

ℓ1+...+ℓd≤L

∆ℓ1 ⊗ . . .⊗∆ℓd
f . (1.41) III:sparse-smolyak

It has the following useful property.

III:lem:exp Lemma 1.9. Smolyak’s quadrature (1.41) is exact for the exponentialseik·x for all multi-
indicesk in the hyperbolic crossKd

L.
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Proof. We first note that the one-dimensional trapezoidal ruleQℓ gives the exact value0
for exponentialseikx wheneverk is not an integral multiple of2ℓ, and it gives the correct
value1 for k = 0. With the formula

Sd
Lf =

L∑

ℓ=0

∆ℓ ⊗ Sd−1
L−ℓf ,

the result then follows by induction over the dimension. ⊓⊔

III:rem:exp Remark 1.10. Unlike the full-grid case, the quadratureSd
L is not exact for products

e−ijxeikx with j, k ∈ Kd
L. The problem arises with terms such asj = (−2L−1, 0, 0, . . . , 0)

andk = (0,−2L−1, 0, . . . , 0). Sincek − j ∈ Kd
2L for j, k ∈ Kd

L, we note that such prod-
ucts are integrated exactly bySd

2L, hence with roughly the squared number of grid points.
(Cf. the similar situation in the Hermite case discussed at the end of Section III.1.2.)

Sparse-Grid Trigonometric Interpolation. The one-dimensional trigonometric interpo-
lation of a2π-periodic functionf on a grid of2ℓ equidistant grid points is given as

Iℓg(x) =

2ℓ−1−1∑

k=−2ℓ−1

cℓk e
ikx with cℓk = Qℓ(e

−ikxg) .

We letΛℓ = Iℓ − Iℓ−1 denote the difference operators between successive levels(with
Λ0 = I0). The trigonometric interpolation of a multivariate function f on the full tensor
grid with 2L grid points in every coordinate direction can then be written as

L∑

ℓ1=0

. . .
L∑

ℓd=0

Λℓ1 ⊗ . . .⊗ Λℓd
f(x1, . . . , xd) .

Hallatschek (1992) introduces the corresponding operatorwith evaluations off only on
the sparse gridΓ = Γ d

L as

IΓ f(x1, . . . , xd) =
∑

ℓ1+...+ℓd≤L

Λℓ1 ⊗ . . .⊗ Λℓd
f(x1, . . . , xd) (1.42) III:sparse-ipol-operator

and notes the following important property.

III:lem:sparse-ipol Lemma 1.11. IΓ f interpolatesf on the sparse gridΓ .

Proof. This follows from the observation that the terms omitted from the full-grid inter-
polation operator all vanish on the sparse grid. ⊓⊔

Sparse Discrete Fourier Transform.We observe thatIΓ f(x) for x = (x1, . . . , xd) is a
linear combination of exponentialseik·x with k in the hyperbolic crossK = Kd

L:
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IΓ f(x) =
∑

k∈K
ck e

ik·x .

This defines a discrete Fourier transform

FΓ : C
Γ → C

K :
(
f(x)

)
x∈Γ

7→
(
ck)k∈K . (1.43) III:sparse-dft

With the map that determines the grid values of a trigonometric polynomial from its co-
efficients,

TK : C
K → C

Γ :
(
ck
)
k∈K 7→

(∑

k∈K
cke

ik·x
)

x∈Γ
, (1.44) III:sparse-idft

we have from the interpolation property thatTKFΓ f = f for all f = (f(x))x∈Γ , and
henceFΓ is invertible and

F−1
Γ = TK . (1.45) III:sparse-inverse

Both FΓ and its inverse can be implemented withO(2L · Ld) operations, using one-
dimensional FFTs and hierarchical bases; see Hallatschek (1992) and Gradinaru (2007).

There is no discrete Parseval formula forFΓ , but by Remark 1.10, the following
restricted Parseval relation is still valid: with the innerproduct〈f | g〉Γ = SΓ (fg) onΓ
and the Euclidean inner product〈· | ·〉K onK,

〈F−1
Γ c | F−1

Γ d〉Γ = 〈c | d〉K if ck = dk = 0 for k ∈ Kd
L \ Kd

L/2 . (1.46) III:sparse-parseval

Approximation by Sparse-Grid Trigonometric Interpolatio n. Error bounds are given
by Hallatschek (1992) in the maximum norm, and by Gradinaru (2008) inL2 and related
norms. TheL2 error bound reads

‖IΓ f − f‖ ≤ C(d, s) (L + 1)d−1 (2L)−s ‖∂s+1
x1

. . . ∂s+1
xd

f‖ . (1.47) III:sparse-ipol-error

The estimate is obtained by carefully estimating the termsΛℓ1 ⊗ . . . ⊗ Λℓd
f that have

been omitted in (1.42).

Collocation of the Schr̈odinger Equation on Sparse Grids.Gradinaru (2008) studies
the collocation method, which approximates the solution bya trigonometric polynomial
with coefficients on the hyperbolic cross,

ψK(x, t) =
∑

k∈K
ck(t) eik·x , (1.48) III:sparse-psiK

and requires the Schrödinger equation to hold in the pointsof the sparse grid. This yields
the system for the Fourier coefficientsc = (ck)k∈K,

iċ = DKc+ FΓVΓF−1
Γ c , (1.49) III:sparse-ode

where(DKc)k = 1
2µ |k|2ck for k ∈ K, andVΓ is the diagonal matrix with entriesV (x)

for x ∈ Γ . Gradinaru (2008) shows that the error of the collocation method over bounded
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time intervals is bounded byO(Ld−1 (2L)−s) if mixed derivatives up to orders + 2 in
each coordinate direction are bounded inL2.

An unpleasant feature in (1.49) is the fact that the matrixFΓVΓF−1
Γ is not Hermitian,

since the sparse-grid Fourier transformFΓ is not a scalar multiple of a unitary operator,
unlike the full tensor-grid case. This can give numerical artefacts such as the loss of con-
servation of norm and in theory may lead to an exponential, instead of linear, error growth
in time, with a rate that is given by a bound of the skew-Hermitian part ofFΓVΓF−1

Γ .
Moreover, some of the time-stepping methods considered in the subsequent sections are
not applicable in the case of non-Hermitian matrices.

Discretizations on Sparse Grids Having Hermitian Matrices. Are there methods with
similar complexity and approximation properties to the sparse-grid collocation method
but which have a Hermitian matrix? We start from the interpretation of the collocation
method as a Galerkin method with trapezoidal rule approximation of the integrals in the
matrix elements, as noted at the end of Section III.1.3, and aim for a multi-dimensional,
sparse-grid extension that approximates the matrix elements by Smolyak’s quadrature.

We consider the inner product onCΓ defined by Smolyak’s quadrature on the sparse
grid,

〈f | g〉Γ = SΓ (fg) ,

and the Euclidean inner product〈· | ·〉K on CK . With respect to these inner products, we
take the adjoint(F−1

Γ )∗ of F−1
Γ :

〈F−1
Γ a | f〉Γ = 〈a | (F−1

Γ )∗f〉K ∀ f ∈ C
Γ , a ∈ C

K.

Then,(F−1
Γ )∗f =

(
SΓ (e−ik·xf)

)
k∈K , and we obtain that

(F−1
Γ )∗VΓF−1

Γ =
(
SΓ

(
e−ij·xV (x) eik·x))

j,k∈K

is the Hermitian matrix that contains the sparse-grid quadrature approximations to the
Galerkin matrix elements.

Instead of (1.49) we would like to determine the coefficientsof (1.48) from

iċ = DKc+ (F−1
Γ )∗VΓF−1

Γ c . (1.50) III:sparse-ode-symm

This method can be rewritten as a quasi-Galerkin method on the hyperbolic-cross space
VK = span{eik·x : k ∈ K} : determineψK(t) ∈ VK (i.e., of the form (1.48)) such that

〈
ϕK
∣∣∣ i
∂ψK
∂t

〉
=
〈
ϕK
∣∣∣ − 1

2µ
∆ψK

〉
+
〈
ϕK
∣∣∣V ψK

〉

Γ
∀ϕK ∈ VK . (1.51) III:sparse-qgal

Here, the last inner product is the discrete inner product onthe sparse grid instead of
the usualL2 inner product. Unfortunately, it appears that this doesnot give a convergent
discretization for the hyperbolic crossK = Kd

L and the sparse gridΓ = Γ d
L of the same

levelL. We describe three ways to cope with this difficulty:
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1. Discrete Galerkin Method with a Simplified Mass Matrix:We replace theL2 inner
products in (1.51) by the discrete inner product onΓ = Γ d

L. Then we obtain a standard
Galerkin method with a discrete inner product. The associated orthogonal projection to
VK is just the interpolationIΓ . Optimal error bounds are then obtained with the standard
proof for Galerkin methods, as in Theorem 1.3. However, since the exponentialseik·x, k ∈
K, do not form an orthonormal basis with respect to the discrete inner product, there are
now non-diagonal matrices

MK =
(
mjk

)
j,k∈K =

(
〈eij·x | eik·x〉Γ

)
j,k∈K , TK =

1

2µ

(
j · k mjk

)
j,k∈K

in the differential equations for the coefficients:

MKċ = TKc+ (F−1
Γ )∗VΓF−1

Γ c .

By (1.46), the mass matrix partitioned into blocks corresponding toKd
L/2 andKd

L \Kd
L/2

takes the form

MK =

(
I BT

B N

)

with sparse matricesB andN . An approximate Choleski factor ofMK is given by

C =

(
I 0
B I

)
with C−1 =

(
I 0

−B I

)
and CCT =

(
I BT

B I +BBT

)
,

where only the lower diagonal block differs from that inMK. ReplacingMK by CCT ,
we obtain forb = CT c

ḃ = C−1TKC
−T b + C−1(F−1

Γ )∗VΓF−1
Γ C−T b .

Since only the lower diagonal block ofMK has been changed, we can still get error
bounds as for the full Galerkin method, but with2−L replaced by2−L/2.

2. Discrete Galerkin Method with Refined Sparse Grid.By Lemma 1.9, the mass ma-
trix becomes the identity matrix if we choose the finer grid

Γ = Γ d
2L

with 2L instead ofL levels and thus, alas, roughly the squared number of grid points.
In that case, theL2 inner products (1.51) are equal to the discrete inner products onΓ ,
and we obtain a standard Galerkin method with a discrete inner product. The associated
orthogonal projection toVK isPKIΓ , wherePK is the orthogonal projection with respect
to theL2 inner product. Optimal error bounds are then obtained with the standard proof
for Galerkin methods, as in Theorem 1.3.

3. Galerkin Method with an Approximated Potential.We use the standard Galerkin
method withL2 inner products, and compute the matrix elements of the potential,
〈eij·x |V | eik·x〉, exactlyfor an approximated potentialV (x) ≈ ∑

m∈M vme
im·x (pos-

sibly over a coarser hyperbolic crossM ⊂ K), noting that〈eij·x | eim·xeik·x〉 6= 0 only
for j = k + m. This requiresO(#M · #K) operations for computing a matrix-vector
product.
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III.2 Polynomial Approximations to the Matrix
Exponential

After space discretization, we are left with a linear systemof differential equations

iẏ = Ay (2.1) III:lin-ode

with a Hermitian matrixA of large dimension and of large norm, such as (1.3) or (1.32)
or (1.50). The solution to the initial valuey(0) = y0 is given by the matrix exponential

y(t) = e−itAy0 . (2.2) III:matrix-exp

We study time stepping methods that advance the approximatesolution1 from timetn to
tn+1 = tn +∆t, fromyn to yn+1. In the present section we consider methods that require
only multiplications of the matrixA with vectors, and hence are given by polynomial
approximationsP (∆tA) to the exponential:

yn+1 = P (∆tA) yn .

We consider in detail theChebyshev method, where the polynomial is chosena priori from
given information on the extreme eigenvalues ofA, and theLanczos method, where the
polynomial is determined by a Galerkin method on the Krylov subspace, which consists
of the products of all polynomials of∆tA of a given degree with the starting vector.

We mention in passing that there are further interesting methods that require only
matrix-vector products withA: the Leja point methodhas similar approximation prop-
erties to the Chebyshev method but in contrast to the Chebyshev method, higher-degree
polynomials of the family are constructed by reusing the computations for the lower-
degree polynomials, cf. Caliari, Vianello & Bergamaschi (2004); explicitsymplectic meth-
odspreserve the symplectic structure of the differential equation, see Gray & Manolopou-
los (1996) and Blanes, Casas & Murua (2006).

III.2.1 Chebyshev Method

A near-optimal polynomial approximation to the exponential is given by its truncated
Chebyshev expansion. We describe this approach, which in the context of Schrödinger
equations was put forward by Tal-Ezer & Kosloff (1984), and give an error analysis based
on Bernstein’s theorem on polynomial approximations to analytic functions on an interval.
We refer to Rivlin (1990) for background information on Chebyshev polynomials and
to Markushevich (1977), Chap. III.3, for the polynomial approximation theory based on
Faber polynomials.

Chebyshev Polynomials.For every non-negative integerk, the function defined by

Tk(x) = cos(kθ) with θ = arccosx ∈ [0, π], for x ∈ [−1, 1] (2.3) III:cheb-cos

1 The time step numbern will always be indicated as superscript in the notation.
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is in fact a polynomial of degreek, named thekth Chebyshev polynomial. This fact is
seen from the recurrence relation

Tk+1(x) = 2xTk(x) − Tk−1(x) , k ≥ 1 , (2.4) III:cheb-rec

starting fromT0(x) = 1 andT1(x) = x, which is obtained from the trigonometric iden-
tity cos((n + 1)θ) + cos((n − 1)θ) = 2 cos θ cos(nθ). The Chebyshev polynomials are
orthogonal polynomials with respect to the weight function(1 − x2)−1/2 on [−1, 1]:

∫ 1

−1

Tj(x)Tk(x)
dx√

1 − x2
= 0 for j 6= k , (2.5) III:cheb-orth

as is seen by substitutingx = cos θ anddx/
√

1 − x2 = dθ and using the orthogonality
of the complex exponentials.

Another useful formula is

2Tk(x) =
(
x+

√
x2 − 1

)k
+
(
x−

√
x2 − 1

)k
, (2.6) III:cheb-sqrt-formula

again verified by substitutingx = cos θ. TheJoukowski transform

w = Φ(z) = z +
√
z2 − 1 , z = Ψ(w) =

1

2

(
w +

1

w

)
(2.7) III:cheb-joukowski

is the conformal map between the exterior of the interval[−1, 1] and the exterior of the
unit disk, |w| > 1. (The branch of the square root is chosen such that

√
z2 − 1 ∼ z for

z → ∞.) The level setsΓr = {z : |Φ(z)| = r} = {Ψ(w) : |w| = r} for r > 1 are
ellipses with foci±1, major semi-axisr + r−1 and minor semi-axisr − r−1. Since the
Laurent expansion at∞ of (z −

√
z2 − 1)k contains only powersz−j with j ≥ k, the

integral of that function over a closed contourΓ encircling the interval[−1, 1] vanishes
by Cauchy’s theorem. With Cauchy’s integral formula we thusobtain from (2.6)

2Tk(x) =
1

2πi

∫

Γ

Φ(z)k

z − x
dz , x ∈ [−1, 1], (2.8) III:cheb-faber

which establishes an important relationship between the Chebyshev polynomials and the
conformal map: the Chebyshev polynomials are theFaber polynomialsfor the interval
[−1, 1]; cf. Markushevich (1977), Sect. III.3.14.

Chebyshev and Fourier Series.Given a (smooth) complex-valued functionf(x) on the
interval−1 ≤ x ≤ 1, we expand the2π-periodic, symmetric function

g(θ) = f(cos θ)

as a Fourier series:

g(θ) =

∞∑

k=−∞
ck e

ikθ with ck =
1

2π

∫ π

−π

e−ikθ g(θ) dθ
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or in fact, by the symmetryg(−θ) = g(θ),

g(θ) = c0 + 2
∞∑

k=1

ck cos(kθ) with ck =
1

π

∫ π

0

cos(kθ) g(θ) dθ .

Substitutingx = cos θ anddx/
√

1 − x2 = dθ, we obtain theChebyshev expansion

f(x) = c0 + 2

∞∑

k=1

ck Tk(x) with ck =
1

π

∫ 1

−1

Tk(x) f(x)
dx√

1 − x2
. (2.9) III:cheb-series

Chebyshev Approximation of Holomorphic Functions.We study the approximation of
a holomorphic functionf(x) by the truncated series withm terms,

Πmf(x) = c0 + 2

m−1∑

k=1

ck Tk(x) ,

which is a polynomial of degreem − 1. The following is a version of a theorem by
Bernstein (1912); see Markushevich (1977), Sect. III.3.15. HereΦ(z) = z +

√
z2 − 1 is

again the conformal map (2.7) from the complement of the interval [−1, 1] to the exterior
of the unit disk, andΨ(w) = 1

2 (w + 1
w ) is the inverse map.

Theorem 2.1 (Chebyshev Approximation).Let r > 1, and suppose thatf(z) is holo-III:thm:bernstein
morphic in the interior of the ellipse|Φ(z)| < r and continuous on the closure. Then, the
error of the truncated Chebyshev series is bounded by

|f(x) −Πmf(x)| ≤ 2µ(f, r)
r−m

1 − r−1
for − 1 ≤ x ≤ 1,

with the mean valueµ(f, r) = 1
2πr

∫
|w|=r |f(Ψ(w))| · |dw|.

Proof. We start from the Cauchy integral formula over the ellipseΓr = {z : |Φ(z)| =
r} = {Ψ(w) : |w| = r} and substitutez = Ψ(w):

f(x) =
1

2πi

∫

Γr

f(z)

z − x
dz =

1

2πi

∫

|w|=r

f(Ψ(w))
Ψ ′(w)

Ψ(w) − x
dw . (2.10) III:cheb-f-int

We expand in negative powers ofw,

Ψ ′(w)

Ψ(w) − x
=

∞∑

k=0

ak(x)w−k−1 for |w| > 1, (2.11) III:cheb-res

where the Taylor coefficients at∞ are given as

ak(x) =
1

2πi

∫

|w|=r

wk Ψ ′(w)

Ψ(w) − x
dw =

1

2πi

∫

Γr

Φ(z)k

z − x
dz .
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By (2.8), these coefficients turn out to be simply

ak(x) = 2Tk(x).

Inserting (2.11) into (2.10) therefore yields

f(x) −Πmf(x) =
1

2πi

∫

|w|=r

f(Ψ(w)) · 2
∞∑

k=m

Tk(x)w−k−1 dw .

Since|Tk(x)| ≤ 1 for −1 ≤ x ≤ 1, we have for|w| = r > 1

∣∣∣
∞∑

k=m

Tk(x)w−k−1
∣∣∣ ≤

∞∑

k=m

r−k−1 =
r−m−1

1 − r−1
,

and the result follows. ⊓⊔

Chebyshev Approximation of Complex Exponentials.The complex exponentialeiωx

is an entire function, and we can chooser in Theorem 2.1 dependent onm to balance the
growth ofµ(eiωz , r) with r against the decay ofr−m. This gives the following corollary
showing superlinear convergence after a stagnation up tom ≈ |ω|. Since the polynomial
must capture the extrema and zeros ofcos(ωx) andsin(ωx) for a uniform approximation,
it is obvious that at least a degreem proportional to|ω| is needed to obtain an error
uniformly smaller than 1. Once this barrier is surmounted, the error decays very rapidly
with growing degreem.

Theorem 2.2 (Eventual Superlinear Convergence toeiωωωx). The error of the ChebyshevIII:thm:cheb-exp
approximationpm−1(x) of degreem − 1 to the complex exponentialeiωx with realω is
bounded by

max
−1≤x≤1

|pm−1(x) − eiωx| ≤ 4
(
e1−(ω/2m)2 |ω|

2m

)m

for m ≥ |ω| . (2.12) III:cheb-exp-error

Proof. We haveµ(eiωz , r) ≤ maxz∈Γr
|eiωz | = e|ω|(r−r−1)/2, where the maximum is

attained atz = ± 1
2 (ir+ 1

ir ) on the minor semi-axis. Theorem 2.1 thus gives us the bound

max
−1≤x≤1

|pm−1(x) − eiωx| ≤ 2r−m

1 − r−1
e|ω|(r−r−1)/2 .

Choosingr = 2m/|ω| ≥ 2 then yields the stated result, which could be slightly refined.
⊓⊔

The Chebyshev coefficients ofeiωx are given explicitly by Bessel functions of the first
kind: by formula (9.1.21) in Abramowitz & Stegun (1965),

ck =
1

π

∫ π

0

eiω cos θ cos(kθ) dθ = ikJk(ω) . (2.13) III:cheb-bessel
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Fig. 2.1. Chebyshev approximation ofeiωx. Maximum error on[−1, 1] versus degree, forω =
4, 8, 16, 32. Dashed: Error bounds of Theorem 2.2.

From eiωx with −1 ≤ x ≤ 1, uniform polynomial approximation ofe−iξ for α ≤
ξ ≤ β is obtained by transforming

x =
2

β − α

(
ξ − α+ β

2

)
, ξ =

α+ β

2
+ x

β − α

2
.

We then approximatee−iξ = e−i(α+β)/2 e−ix(β−α)/2 using e−ix(β−α)/2 ≈ c0 +
2
∑m−1

k=1 ck Tk(x) with ck = ikJk

(
−β−α

2

)
= (−i)kJk

(
β−α

2

)
, so that

e−iξ ≈ e−i(α+β)/2

(
c0 + 2

m−1∑

k=1

ck Tk

(
2

β − α

(
ξ − α + β

2

)))
for α ≤ ξ ≤ β .

Chebyshev Method for the Matrix Exponential Operator. LetA be a Hermitian matrix
all of whose eigenvalues are known to lie in the interval[a, b]. As proposed by Tal-Ezer
& Kosloff (1984), we approximate the action of the matrix exponential on a vectorv by

e−i∆tAv ≈ e−i∆t(a+b)/2

(
c0v + 2

m−1∑

k=1

ck Tk

(
2

(b − a)

(
A− (a + b)

2
I
))

v

)
(2.14) III:cheb-exp-A

with ck = (−i)kJk(∆t(b−a)/2). We denote the right-hand side of (2.14) asPm−1(∆tA)v
and observe that it is in fact a function of the product∆tA. The actual way to compute
(2.14) is by a recursive algorithm proposed by Clenshaw (1962) for the evaluation of
truncated Chebyshev expansions of functions:
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Clenshaw Algorithm:letX =
2

(b − a)

(
A− (a + b)

2
I
)

, setdm+1 = dm = 0 and

dk = ckv + 2Xdk+1 − dk+2 for k = m− 1,m− 2, . . . , 0 .

The approximation (2.14) is then given as

Pm−1(∆tA)v = d0 − d2 .

This identity is readily verified using the Chebyshev recurrence relation (2.4) for the
terms in the sum, descending from the terms of highest degree. The algorithm requires
m matrix-vector multiplications to computePm−1(∆tA)v and needs to keep only three
vectors in memory.

Theorem 2.3 (Error of the Chebyshev Method).LetA be a Hermitian matrix with allIII:thm:cheb-method
its eigenvalues in the interval[a, b], and letv be a vector of unit Euclidean norm. Then,
the error of the Chebyshev approximation (2.14) is bounded in the Euclidean norm by

‖Pm−1(∆tA)v − e−i∆tAv‖ ≤ 4
(
e1−(ω/2m)2 ω

2m

)m

for m ≥ ω

with ω = ∆t (b − a)/2.

Proof. For a diagonal matrixA, the estimate follows immediately from Theorem 2.2
and the linear transformation between the intervals[∆ta,∆t b] and[−1, 1]. Since every
Hermitian matrixA can be unitarily transformed to diagonal form, we obtain theresult as
stated. ⊓⊔

Step Size Restriction.The conditionm ≥ ω can be read as a restriction of the step size
for given degreem:

∆t ≤ 2m

b− a
.

This can also be viewed as saying that at least one matrix-vector multiplication is needed
on every time interval of length1/(b − a). In the treatment of the Schrödinger equation,
this length shrinks as the spatial discretization is refined: for illustration, consider Fourier
collocation in one space dimension, withK Fourier modes. For the matrixA = DK +
FKVKF−1

K of (1.32), the eigenvalues lie in the interval[a, b] with

a = min
x
V (x) , b =

1

2µ

K2

4
+ max

x
V (x) .

For largeK, or small∆x = 2π/K, we have thatω = ∆t(b − a)/2 is approximately
proportional to∆tK2, or

ω ∼ ∆t

∆x2
.

The conditionm ≥ 2ω for the onset of error reduction therefore translates into astep-size
restriction

∆t ≤ Cm∆x2 , (2.15) III:cheb-dtdx

and the number of matrix-vector multiplications to cover a fixed time interval is thus
inversely proportional to∆x2.
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III.2.2 Lanczos Method

A different approach to approximately computinge−i∆tAv using only the action ofA on
vectors is based on a Galerkin approximation toiẏ = Ay on the Krylov space spanned
by v,Av, . . . , Am−1v. A suitable basis for this space is given by the Lanczos iteration,
named after Lanczos (1950), which has become a classic in numerical linear algebra pri-
marily because of its use for eigenvalue problems and solving linear systems; see, e.g.,
Golub & Van Loan (1996), Chap. 9, and Trefethen & Bau (1997), Chap. VI. The use of the
Lanczos method for approximatinge−i∆tAv was first proposed by Park & Light (1986),
properly in the context of approximating the evolution operator of the Schrödinger equa-
tion. Krylov subspace approximation to the matrix exponential operator has since been
found useful in a variety of application areas — and has been honourably included as
the twentieth of the “Nineteen dubious ways to compute the exponential of a matrix”
by Moler & Van Loan (2003). Error analyses, both for the Hermitian and non-Hermitian
case, have been given by Druskin & Knizhnerman (1995), Hochbruck & Lubich (1997),
and Saad (1992).

Krylov Subspace and Lanczos Basis.Let A be anN × N Hermitian matrix, and letv
be a non-zero complexN -vector. Themth Krylov subspaceof CN with respect toA and
v is

Km(A, v) = span(v,Av,A2v, . . . , Am−1v) , (2.16) III:krylov-space

that is, the space of all polynomials ofA up to degreem− 1 acting on the vectorv.
TheHermitian Lanczos methodbuilds an orthonormal basis of this space by Gram-

Schmidt orthogonalization: beginning withv1 = v/‖v‖, it constructsvk+1 recursively
for k = 1, 2, . . . by orthogonalizingAvk against the previousvj and normalizing:

τk+1,k vk+1 = Avk −
k∑

j=1

τjk vj (2.17) III:krylov-lanczos-iter

with τjk = v∗jAvk for j ≤ k, and withτk+1,k > 0 determined such thatvk+1 is of
unit Euclidean norm — unless the right-hand side is zero, in which case the dimension of
Km(A, v) is k for m ≥ k and the process terminates.

By themth step, the method generates theN ×m matrixVm = (v1 . . . vm) having
the orthonormal Lanczos vectorsvk as columns, and them×m matrixTm = (τjk) with
τjk = 0 for j − k > 1. Because of (2.17), these matrices are related by

AVm = VmTm + τm+1,mvm+1e
T
m, (2.18) III:krylov-AV

whereeT
m = (0 . . . 0 1) is themth unit vector. By the orthonormality of the Lanczos

vectorsvk, this equation implies

Tm = V ∗
mAVm , (2.19) III:krylov-T

which shows in particular thatTm is a Hermitian matrix, and hence a tridiagonal matrix:
τjk = 0 for |j − k| > 1. The sum in (2.17) therefore actually contains only the two terms
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for j = k− 1, k. For a careful practical implementation, error propagation and the loss of
orthogonality due to rounding errors are a concern for larger m; see Golub & Van Loan
(1996), Sect. 9.2.

Galerkin Method on the Krylov Subspace.Following Park & Light (1986), we consider
the Galerkin method (1.1) for the approximation of the initial value problem

iẏ = Ay , y(0) = v with ‖v‖ = 1

on the Krylov subspaceKm(A, v) with m ≪ N (m ≤ 20, say): we determine an ap-
proximationum(t) ∈ Km(A, v) with um(0) = v such that at every instantt, the time
derivative satisfies

〈wm | iu̇m(t) −Aum(t)〉 = 0 ∀wm ∈ Km(A, v) .

Writing um(t) in the Lanczos basis,

um(t) =
m∑

k=1

ck(t) vk = Vmc(t) with c(t) =
(
ck(t)

)
,

we obtain for the coefficients the linear differential equation

iċ(t) = Tmc(t) , c(0) = e1 = (1, 0, . . . , 0)T

with the Lanczos matrixTm = (v∗jAvk)m
j,k=1 of (2.19). Clearly, the solution is given by

c(t) = e−itTme1. The Galerkin approximationum(t) = Vmc(t) at time∆t is thus the
result of the

Lanczos method: e−i∆tAv ≈ Vme
−i∆tTm e1 . (2.20) III:krylov-exp

For the small tridiagonal Hermitian matrixTm, the exponential is readily computed from
a diagonalization ofTm. The algorithm needs to keep all the Lanczos vectors in memory,
which may not be feasible for large problems. In such a situation, the Lanczos iteration
may be run twice with only four vectors in memory: in a first runfor computingTm, and
in a second run (without recomputing the already known innerproducts) for forming the
linear combination of the Lanczos vectors according to (2.20).

By the interpretation of (2.20) as a Galerkin method, we knowfrom Sect. II.1 that
norm and energy are preserved.

A Posteriori Error Bound and Stopping Criterion. From Theorem II.1.5 with the
Krylov subspace as approximation space we have the error bound

‖um(t) − y(t)‖ ≤
∫ t

0

dist
(
Aum(s),Km(A, v)

)
ds .

By (2.18) we have
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Aum(s) = AVm e−isTm e1 = VmTm e−isTm e1 + τm+1,m vm+1 e
T
m e−isTm e1

and therefore

dist
(
Aum(s),Km(A, v)

)
= τm+1,m

∣∣[e−isTm
]
m,1

∣∣ ,

where[·]m.1 denotes the(m, 1) element of a matrix. This gives us the following com-
putable error bound.

Theorem 2.4 (A Posteriori Error Bound). LetA be a Hermitian matrix, andv a vectorIII:thm:krylov-apost
of unit Euclidean norm. Then, the error of themth Lanczos approximation toe−i∆tAv is
bounded by

‖Vme
−i∆tTm e1 − e−i∆tAv‖ ≤ τm+1,m

∫ ∆t

0

∣∣[e−isTm
]
m,1

∣∣ ds . ⊓⊔

If we approximate the integral on the right-hand side by the right-endpoint rectangle
rule, we arrive at astopping criterionfor the Lanczos iteration (for given∆t) or alterna-
tively at astep-size selection criterion(for givenm),

∆t τm+1,m

∣∣[e−i∆t Tm
]
m,1

∣∣ ≤ tol

for an error tolerancetol, or without the factor∆t for an error tolerance per unit step. This
criterion has previously been considered with different interpretations by Saad (1992) and
Hochbruck, Lubich & Selhofer (1998). In view of Theorem 2.4,a safer choice would be
to take a quadrature rule with more than one function evaluation. With a diagonalizedTm,
this is inexpensive to evaluate.

Lanczos Method for Approximating fff (AAA)vvv. The following lemma follows directly from
the Lanczos relations (2.18) and (2.19).

III:lem:lanczos Lemma 2.5. LetA be a Hermitian matrix andv a vector of unit norm.
(a) If all eigenvalues ofA are in the interval[a, b], then so are those ofTm.
(b) For every polynomialpm−1 of degree at mostm− 1, it holds that

pm−1(A)v = Vm pm−1(Tm) e1 . (2.21) III:krylov-p

Proof. (a) If θ is an eigenvalue ofTm to the eigenvectorw of unit norm, thenu = Vmw
is again of unit norm, and by (2.19),θ = w∗Tmw = u∗Au, which is in[a, b].

(b) Clearly,v = Vme1. From (2.18) it follows by induction overk = 1, 2, . . . that

AkVme1 = VmT
k
me1

as long as the lower left entryeT
mT

k−1
m e1 = 0. SinceT k−1

m is a matrix withk − 1 subdi-
agonals, this holds fork ≤ m− 1. ⊓⊔

For any complex-valued functionf defined on[a, b], we havef(A) given via the
diagonalizationA = U diag(λj)U

∗ asf(A) = U diag(f(λj))U
∗. Justified by (a) and

motivated by (b), we can consider the approximation

f(A)v ≈ Vm f(Tm) e1 . (2.22) III:krylov-f

For f(x) = e−i∆t x this is (2.20). Lemma 2.5 immediately implies the followinguseful
approximation result.
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Theorem 2.6 (Optimality of the Lanczos Method).Letf be a complex-valued functionIII:thm:krylov-f
defined on an interval[a, b] that contains the eigenvalues of the Hermitian matrixA, and
let v be a vector of unit norm. Then, the error of the Lanczos approximation tof(A)v is
bounded by

‖Vmf(Tm)e1 − f(A)v‖ ≤ 2 inf
pm−1

max
x∈[a,b]

|pm−1(x) − f(x)| ,

where the infimum is taken over all polynomials of degree at mostm− 1.

Proof. By Lemma 2.5 (b), we have for every polynomialpm−1 of degree at mostm− 1,

Vmf(Tm)e1 − f(A)v = Vm

(
f(Tm) − pm−1(Tm)

)
e1 −

(
f(A) − pm−1(A)

)
v.

Diagonalization ofA andTm and Lemma 2.5 (a) show that each of the two terms to the
right is bounded bymaxx∈[a,b] |f(x) − pm−1(x)|. ⊓⊔

Error Bound of the Lanczos Method for the Matrix Exponential Operator. Combin-
ing Theorems 2.6 and 2.2, together with the linear transformation from the interval[a, b]
to [−1, 1], yields the following result.

Theorem 2.7 (Eventual Superlinear Error Decay).LetA be a Hermitian matrix all ofIII:thm:krylov-exp
whose eigenvalues are in the interval[a, b], and letv be a vector of unit Euclidean norm.
Then, the error of the Lanczos method (2.20) is bounded by

‖Vme
−i∆t Tme1 − e−i∆t Av‖ ≤ 8

(
e1−(ω/2m)2 ω

2m

)m

for m ≥ ω

with ω = ∆t (b − a)/2. ⊓⊔

III.3 Splitting and Composition Methods

The methods of the previous section have the attractive feature that they only require
matrix-vector products with the discretized HamiltonianA of (2.1). However, the maxi-
mum permitted step size is inversely proportional to the norm ofA, which leads to a time
step restriction to∆t = O(∆x2), as we recall from (2.15). The splitting methods consid-
ered in this section can achieve good accuracy with no such restriction, provided that the
wave function has sufficient spatial regularity.

III.3.1 Splitting Between Kinetic Energy and Potential

We consider the Schrödinger equation

iψ̇ = Hψ with H = T + V , (3.1) III:split-schrod
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whereT andV are the kinetic energy operator and the potential, respectively, or the
corresponding discretized operators. We will assume no bound on the self-adjoint operator
or matrixT . In our theoretical results we will assume bounds of the potential V , but the
method to be described can work well under weaker assumptions. On the practical side,
the basic assumption is that the equations

iθ̇ = Tθ and iφ̇ = V φ

can both be solved more easily than the full equation (3.1). As we have seen in Chap. I,
on the analytical level this is definitely the case in the non-discretized Schrödinger equa-
tion: the free Schrödinger equation (onlyT ) is solved by Fourier transformation, and the
equation with only the potentialV is solved by multiplying the initial data with the scalar
exponentiale−iV (x) at every space pointx. This situation transfers, in particular, to the
Fourier collocation method of Section III.1.3, where solving the differential equations for
the kinetic and potential parts in (1.32) or (1.33) is done trivially, using the exponentials
of diagonal matrices and FFTs.

Strang Splitting. We consider time stepping from an approximationψn at timetn to the
new approximationψn+1 at timetn+1 = tn +∆t by

ψn+1 = e−i ∆t
2

V e−i∆t T e−i ∆t
2

V ψn . (3.2) III:split-strang

This symmetric operator splitting was apparently first studied by Strang (1968) and in-
dependently by Marchuk (1968) in the context of dimensionalsplitting of advection
equations. It was proposed, in conjunction with the Fouriermethod in space, for non-
linear Schrödinger equations by Hardin & Tappert (1973) and rediscovered for the linear
Schrödinger equation, in the disguise of the Fresnel equation of laser optics, by Fleck,
Morris & Feit (1976). The scheme was introduced to chemical physics by Feit, Fleck &
Steiger (1982). In combination with Fourier collocation inspace, the method is usually
known as thesplit-step Fourier methodin the chemical and physical literature.

Algorithm of the Split-Step Fourier method. In the notation of Sect. III.1.3, we recall
the differential equation (1.33) for the vectoru = (uj) of grid valuesuj(t) = ψK(xj , t):

iu̇ = F−1
K DKFKu+ VKu

with the diagonal matricesDK = 1
2µ diag(k2) andVK = diag

(
V (xj)

)
, wherek andj

range from−N/2 toN/2 − 1. With method (3.2), a time step is computed in a way that
alternates between pointwise operations and FFTs, overwriting the approximation at time
tn by that at timetn+1:

1. replaceuj := e−i ∆t
2

V (xj)uj (j = −N/2, . . . , N/2 − 1)
2. FFT: u := FKu
3. replaceuk := e−i∆tk2/(2µ)uk (k = −N/2, . . . , N/2 − 1)
4. inverse FFT:u := F−1

K u

5. replaceuj := e−i ∆t
2

V (xj)uj (j = −N/2, . . . , N/2 − 1).
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The exponentials in Substep 5 and Substep 1 of the next time step can be combined into
a single exponential if the output at timetn+1 is not needed.

Unitarity, Symplecticity, Time-Reversibility. The Strang splitting has interesting struc-
ture-preserving properties. For self-adjointT andV , the exponentialse−i∆t T ande−i ∆t

2
V

are unitary (they preserve the norm) and symplectic (they preserve the canonical symplec-
tic two-formω(ξ, η) = −2 Im 〈ξ | η〉, see Theorem II.1.2), and so does their composition.
The time-step operator of the Strang splitting is thus both unitary and symplectic. We
remark that neither holds for the Chebyshev method, whereasthe Lanczos method is uni-
tary, but symplectic only in the restriction to the Krylov subspace, which changes from
one time step to the next. Moreover, the Strang splitting is time-reversible: a step of the
method starting fromψn+1 with negative step size−∆t leads us back to the oldψn, or
more formally, exchangingn ↔ n + 1 and∆t ↔ −∆t in the method gives the same
method again. We note that neither the Chebyshev method nor the Lanczos method are
time-reversible.

III.3.2 Error Bounds for the Strang Splitting

For boundedT andV , Taylor expansion of the exponentials readily shows

e−i ∆t
2

V e−i∆t T e−i ∆t
2

V = e−i∆t(T+V ) + O
(
∆t3(‖T ‖ + ‖V ‖)3

)
.

However, such an error bound is of no use whenT or V are of large norm. Since‖T ‖ ∼
(∆x)−2 (as in (2.15)), this error bound would indicate a small erroronly for∆t≪ ∆x2,
whereas numerical experiments clearly indicate that the error of the Strang splitting for
initial data of moderately bounded energy is bounded independently of∆x for a given
∆t. For problems with smooth potential and smooth initial datathe error is numerically
observed to beO(∆t3) uniformly in∆x after one step of the method, andO(tn∆t2) at
time tn aftern steps, uniformly inn and∆x.

In the following we present an error analysis from Jahnke & Lubich (2000), which
explains this favourable behaviour of the splitting method. Here we assume thatT and
V are self-adjoint operators on a Hilbert spaceH, andT is positive semi-definite. We
require no bound forT , but we assume a (moderate) bound ofV :

‖V ψ‖ ≤ B‖ψ‖ ∀ψ ∈ H . (3.3) III:split-V-bound

We introduce the norms

‖ϕ‖1 = 〈ϕ |T + I |ϕ〉1/2

‖ϕ‖2 = 〈ϕ | (T + I)2 |ϕ〉1/2
(3.4) III:split-norms

which are the usual Sobolev norms in the case ofT = −∆, and can be viewed as discrete
Sobolev norms in the spatially discrete case.

Our main assumptions concern the commutator[T, V ] = TV − V T and the repeated
commutator[T, [T, V ]] = T 2V − 2TV T + V T 2. We assume that there are constantsc1
andc2 such that the commutator bounds
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‖ [T, V ]ϕ‖ ≤ c1 ‖ϕ‖1 (3.5) III:split-comm1

‖ [T, [T, V ]]ϕ‖ ≤ c2 ‖ϕ‖2 (3.6) III:split-comm2

are satisfied for allϕ in a dense domain ofH. In the spatially continuous case withT =
−∆ and a potentialV (x) that is bounded together with its first- to fourth-order derivatives,
we see from the identities

[∆,V ]ϕ = ∆V ϕ+ 2∇V · ∇ϕ
[∆, [∆,V ]]ϕ = ∆2V ϕ+ 4∇∆V · ∇ϕ+ 4

∑

j,l

∂j∂lV ∂j∂lϕ

that the commutator bounds (3.5)–(3.6) are indeed valid. For spatial discretization by the
Fourier method, it is shown by Jahnke & Lubich (2000) that these commutator bounds
hold with constantsc1 andc2 that are independent of the discretization parameter. We
then have the following second-order error bound.

Theorem 3.1 (Error Bound for the Strang Splitting). Under the above conditions, theIII:thm:split-error
error of the splitting method (3.2) att = tn is bounded by

‖ψn − ψ(t)‖ ≤ C ∆t2 t max
0≤τ≤t

‖ψ(τ)‖2 ,

whereC depends only on the boundB of (3.3) and onc1, c2 of (3.5)–(3.6).

It is a noteworthy fact that the time discretization error ofthe splitting method depends
on thespatialregularity of the wave function, not on its temporal regularity. The proof is
done in the usual way by studying the local error of the method(that is, the error after one
step) and the error propagation. For the local error we have the following bounds.

Lemma 3.2 (Local Error). (a) Under conditions (3.3) and (3.5),III:lem:split-local

‖e−i ∆t
2

V e−i∆tT e−i ∆t
2

V ϕ− e−i∆t(T+V )ϕ‖ ≤ C1∆t
2 ‖ϕ‖1 , (3.7) le1

whereC1 depends only onc1 andB.
(b) Under conditions (3.3) and (3.5)–(3.6),

‖e−i ∆t
2

V e−i∆tT e−i ∆t
2

V ϕ− e−i∆t(T+V )ϕ‖ ≤ C2∆t
3 ‖ϕ‖2 , (3.8) le2

whereC2 depends only onc1, c2 andB.

The local error bound (3.8) together with the telescoping formula

ψn − ψ(tn) = Snψ0 − Enψ0 =

n−1∑

j=0

Sn−j−1(S − E)Ejψ0 , (3.9) tele

with S = e−i ∆t
2

V e−i∆tT e−i ∆t
2

V andE = e−i∆t(T+V ), immediately yields the error
bound of Theorem 3.1. It thus remains to prove the lemma. The basic idea of the following
proof is the reduction of the local error to quadrature errors.
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Proof. (a) We start from the variation-of-constants formula

e−i∆t(T+V )ϕ = e−i∆tTϕ− i

∫ ∆t

0

e−isTV e−i(∆t−s)(T+V )ϕds .

Expressing the last term under the integral once more by the same formula yields

e−i∆t(T+V )ϕ = e−i∆tTϕ− i

∫ ∆t

0

e−isTV e−i(∆t−s)Tϕds+R1ϕ ,

where the remainder

R1 = −
∫ ∆t

0

esTV

∫ ∆t−s

0

e−iσTV e−i(∆t−s−σ)(T+V ) dσ ds

is bounded in the operator norm by‖R1‖ ≤ 1

2
∆t2B2. On the other hand, using the

exponential series fore−i ∆t
2

V leads to

e−i ∆t
2

V e−i∆tT e−i ∆t
2

V ϕ = e−i∆tTϕ− i

2
∆t
(
V e−i∆tT + e−i∆tTV

)
ϕ+R2ϕ ,

where‖R2‖ ≤ 1

2
∆t2B2. Consequently, the error is of the form

e−i ∆t
2

V e−i∆tT e−i ∆t
2

V ϕ− e−i∆t(T+V )ϕ = d+ r , (3.10) e

wherer = R2ϕ−R1ϕ and, withf(s) = −i e−isTV e−i(∆t−s)Tϕ,

d =
1

2
∆t
(
f(0) + f(∆t)

)
−
∫ ∆t

0

f(s) ds (3.11) d

= −∆t2
∫ 1

0

(
1

2
− θ) f ′(θ∆t) dθ =

1

2
∆t3

∫ 1

0

θ(1 − θ)f ′′(θ∆t) dθ

is the error of the trapezoidal rule, written in first- and second-order Peano form. Since
f ′(s) = −e−isT [T, V ]e−i(∆t−s)Tϕ, condition (3.5) yields the error bound (3.7).

(b) For the error bound (3.8), we usef ′′(s) = i e−isT [T, [T, V ]]e−i(∆t−s)Tϕ and
condition (3.6) to bound

‖d‖ ≤ 1

12
c2∆t

3 ‖ϕ‖2 . (3.12) d2

It remains to studyr = R2v −R1v. We have

R1 = −
∫ ∆t

0

e−isTV

∫ ∆t−s

0

e−iσTV e−i(∆t−s−σ)T dσ ds+ R̃1

with ‖R̃1‖ ≤ C∆t3B3, and

R2 = −1

8
∆t2

(
V 2e−i∆tT + 2V e−i∆tTV + e−i∆tTV 2

)
+ R̃2
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with ‖R̃2‖ ≤ C∆t3B3. We thus obtain

r = d̃+ r̃ , (3.13) r

where r̃ = R̃2ϕ − R̃1ϕ is bounded by‖r̃‖ ≤ C∆t3B3 ‖ϕ‖ and, with g(s, σ) =
−e−isTV e−iσTV e−i(∆t−s−σ)Tϕ,

d̃ =
1

8
∆t2

(
g(0, 0) + 2g(0, ∆t) + g(∆t, 0)

)
−
∫ ∆t

0

∫ ∆t−s

0

g(s, σ) dσ ds

is the error of a quadrature formula that integrates constant functions exactly. Hence,

‖d̃‖ ≤ c̃ ∆t3
(

max

∥∥∥∥
∂g

∂s

∥∥∥∥+ max

∥∥∥∥
∂g

∂σ

∥∥∥∥
)
,

where the maxima are taken over the triangle0 ≤ s ≤ ∆t, 0 ≤ σ ≤ ∆t− s. Since

∂g

∂s
(s, σ) = i e−isT [T, V ]e−iσTV e−i(∆t−s−σ)Tϕ+i e−isTV e−iσT [T, V ]e−i(∆t−s−σ)Tϕ ,

we obtain, using (3.5),
∥∥∥∥
∂g

∂s

∥∥∥∥ ≤ c1 (c1 +B) ‖ϕ‖1 +B c1 ‖ϕ‖1 .

Similarly, ‖∂g/∂σ‖ ≤ B c1 ‖ϕ‖1, so that finally

‖d̃‖ ≤ C∆t3 ‖ϕ‖1 .

Together with the above bounds forr̃ andd this yields the error bound (3.8). ⊓⊔

III.3.3 Higher-Order Compositions
III:higher-order

The Strang splittingS(∆t) = e−i ∆t
2

V e−i∆tT e−i ∆t
2

V yields a second-order method.
Higher-order methods can be obtained by a suitable composition of steps of different
size of the basic method:

ψn+1 = S(γs∆t) . . . S(γ1∆t)ψ
n

with symmetrically arranged coefficientsγj = γs+1−j determined such that

S(γs∆t) . . . S(γ1∆t) = e−i∆t(T+V ) + O
(
∆tp+1(‖T ‖ + ‖V ‖)p+1

)

with an orderp > 2. Composition methods of this or similar type have been devised by
Suzuki (1990) and Yoshida (1990), and improved methods havesince been constructed,
e.g., by McLachlan (1995), Kahan & Li (1997), Blanes & Moan (2002), Sofroniou &
Spaletta (2005). We refer to Hairer, Lubich & Wanner (2006),Sect. V.3, and McLachlan
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& Quispel (2002) for reviews of composition methods, for their order theory, for their
coefficients, and for further references. For example, an excellent method of orderp = 8
with s = 17 by Kahan & Li (1997) has the coefficients

γ1 = γ17 = 0.13020248308889008087881763
γ2 = γ16 = 0.56116298177510838456196441
γ3 = γ15 = −0.38947496264484728640807860
γ4 = γ14 = 0.15884190655515560089621075
γ5 = γ13 = −0.39590389413323757733623154
γ6 = γ12 = 0.18453964097831570709183254
γ7 = γ11 = 0.25837438768632204729397911
γ8 = γ10 = 0.29501172360931029887096624

γ9 = −0.60550853383003451169892108

(3.14) eq:comp_order8a

As with the basic Strang splitting method, the presence of powers of‖T ‖ in the error
bound would seem to make a step-size restriction∆t ≪ ∆x2 necessary, but indeed this
is not the case. Thalhammer (2008) proves high-order error bounds for such methods that
require no bound ofT . By a formidable extension of the approach in the proof of Theo-
rem 3.1, usingp-fold repeated commutator bounds and achieving a reductionto quadra-
ture errors, it is shown that in the spatially continuous case withT = −∆ and a smooth
bounded potential, there is apth-order error bound att = tn

‖ψn − ψ(t)‖ ≤ C ∆tp t max
0≤τ≤t

‖ψ(τ)‖p

with thepth-order Sobolev norm. It is to be expected that in the spatially discretized case,
the required commutator bounds hold uniformly in∆x so that the error bound becomes
uniform in the spatial discretization parameter.

III.4 Integrators for Time-Dependent Potentials

III.4.1 Magnus Methods

III.4.2 Adiabatic Integrators


