62



Chapter III.
Numerical Methods for the Time-Dependent
Schrodinger Equation

chap: num t dse |

This chapter deals with numerical methods for linear tirrpahdent Schrodinger equa-
tions, of low to moderate dimension (less than 10, say).Algh the emphasis is on
time-dependent aspects, we begin with a section on spacetization, where we de-
scribe the Galerkin and collocation approaches on the itapbexamples of Hermite and
Fourier bases, including their extension to higher dimamsusing hyperbolic cross ap-
proximations and sparse grids for which the computatiomakwgrows only mildly with
the dimension.

We then turn to time-stepping methods: polynomial appraions to the exponen-
tial of the Hamiltonian based on the Lanczos method or on ¢dtedy polynomials, and
splitting methods and their high-order refinements by caositipm and processing. We
conclude the chapter with integrators for Schrodingeaéiqns with a time-varying po-
tential.

The time-dependent Schrddinger equation consideredisnctirapter (unless stated
otherwise) is ind > 1 space dimensions, has= 1 and reads

i%_lf:Hd), H=T+V, (0.1) [I11:schrod-eq
with the kinetic energy operatdf = —5-A with a positive mass parametgrand a

potentialV («). In the final section we consider a time-dependent poteVitial ¢).

[11.1 Space Discretization by Spectral Methods

We follow two tracks (among many possible) for the discidion of the Schrodinger

equation in space: the Galerkin method with a basis of Herfaitctions and collocation

with trigonometric polynomials. Both cases are instandespectral or pseudospectral
methods, which are of common use in many application aress;esg., Canuto, Hus-

saini, Quarteroni & Zang (2006), Fornberg (1996), Gottielrszag (1977), and Tre-

fethen (2000). Both cases are studied here for the Sctgédéguation in one and several
dimensions, with the extension to higher dimensions by Hygeally reduced tensor

product bases.
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I11.1.1 Galerkin Method, 1D Hermite Basis

Galerkin Method. We consider an approximation spagg C L2?(R%) spanned byk
basis functiongy, . . ., ¢ x 1. We determine an approximate wave function(t) € Vi
by the condition that at every instantits time derivative is determined by the condition

0 im0 vpeve Q)

— €V such that < ‘ i
dt K Pl
This is, of course, the time-dependent variational prilec{fl.1.2) on the linear approxi-
mation spac&’x . In particular, we know from Sect. II.1 that norm, energy apthplectic
structure are preserved. Writing the approximation asealicombination of basis func-
tions

K—1
Vi (t) = Z ek (t) o (1.2)
k=0

and inserting in (1.1), we obtain for the time-dependenffenent vectorc = (cx) the
linear system of ordinary differential equations

iMgé= Hge (1.3) [I11:gal-coeff |

with the matrices
K-1 K-1 :
Mg = (<‘pﬂ'|9"k>)j,k:0’ Hy = (<<pj|H|(pk>)j7k:0. (1.4) |I I :gal-matrlx|

The matrix M becomes the identity matrix in the case of an orthonormasbesere
(@i lpr) = djk-

Hermite Basis in 1D.After a suitable rescaling and shift— «x + 3, this is the choice
of basis functions

1 1 2
_ —xz/2 R : _
vr(z) = ey o] Hi(z)e . (1.5) [111:hernite-formla

Here, Hy(z) is the Hermite polynomial of degrée which is thekth orthogonal poly-
nomial with respect to the weight functierr®” on R; see, e.g., Abramowitz & Stegun
(1965). While formula (1.5) does not fail to impress, it isther useful for computations
nor for understanding the approximation properties of tisisis. We therefore now turn
to another way of writing the Hermite functiopg, which also provides some motivation
for the use of this basis.

Ladder Operators. We recall the canonical commutator relation (1.4.8) betwie one-
dimensional position operatgrgiven by(qv))(z) = z(x) and the momentum operator
p=—id/dx:

1

It follows that theladder operatorglefined by

1

. (a—in) 8)

sl
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satisfy the relations
1 1 1 1
ATA:§(p2+q2)—§, AAT=§(p2+q2)+§, (1.7) [111:AdA

so thatAt A and AA" have the same eigenfunctions as the Hamiltonian of the haomo
oscillator, (p? + ¢*). We also note

AAT = ATA+1. (1.8) [111: AdA-comute|

Moreover,A' is adjoint toA on the Schwartz spacg of smooth rapidly decaying func-

tions:
(Alp|9) = (o] A)  VpueS. (1.9)

Harmonic Oscillator Eigenfunctions. We note that the Gaussian (z) = e=®/2isin
the kernel ofA: Apy = 0. Moreover, it is checked that multiples ¢f are the onlyL?
functions in the kernel oft, whereasA' has only the trivial kerne). With (1.8) it follows
that

AAT Gy = AT Ao + do = o,
and hencey, is an eigenfunction ofLA' to the eigenvalué. Applying the operatori®
to both sides of this equation, we see that= Af¢, is an eigenfunction oAt A to
the eigenvalud, and again by (1.8) an eigenfunction dfA’ to the eigenvalu@. We
continue in this way to construct successively,; = Af¢, for k > 0. We thus obtain
eigenfunctionsy;, to AT A, with eigenvaluek, and toA AT, with eigenvalue: + 1. These
eigenfunctions are not yet normalized. To achieve this, ate that by (1.9),

[ ATpr||? = (ATy | ATdr) = (on | AATd) = (k + 1) || -

We therefore obtain eigenfunctionsAoi’ and AT A of unit L? norm by setting

1 - -
1 T . .
¢k+1=ﬁA‘Pk for £>0. (2.12) |Ill:raising

SinceApy 1 = ﬁ AAT g, =k + 1y, we also have (replacing+ 1 by k)

1 .
Y1 = ﬁAwk for k>0. (1.12)

These relations explain the namesaising operatorandlowering operatorfor AT and
A, respectively, and dadder operatordor both of them. Multiplying (1.11) by/k + 1
and (1.12) bw/k, summing the resulting formulas and using the definitiond ahd Af,
we obtain the three-term recurrence relation

VE+1ops1(2) =2z pp(x) = Vkor1(z) for k>0, (1.13) [11l:hermite-rec

with ¢_1(z) = 0. This allows us to evaluate,(x) at any required point. We state
essential properties of these functions.

and
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Fig. 1.1.Hermite functionspy, for k = 0, 4, 16, 64.

'l -t hm her ni te| Theorem 1.1 (Hermite Functions).The functionsp, defined by (1.10) and (1.11) form

a completel.?-orthonormal set of functions, the eigenfunctions of thertemic oscillator
Hamiltonian%(p2 + ¢?). They are identical to the Hermite functions given by (1.5).

Proof. From the above construction it is clear that eaghs an oscillator eigenfunction
to the eigenvalué + % As normalized eigenfunctions of a self-adjoint operatto,p;,
are orthonormal. It is also clear from the recurrence refathatyy, is a polynomial of
degreek timese—="/2, By the orthonormality, this polynomial must be a multipfetioe
kth Hermite polynomial, which yields (1.5). For the proof afnepleteness we refer to
Thaller (2000), Sect. 7.8. O

The completeness together with orthonormality yields évaty functionf € L?(R)
can be expanded as the series

f:i<‘ﬁk|f>90ka (1.14) [I11:hermite-series

k=0
where the convergence of the series is understood as cemez@f the partial sums in
the L2 norm.
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Approximation Properties. We denote byPx the orthogonal projector ontvx =
Spar(9007 IR QOKfl), given by

Pif =" {or|f)en-

k<K

This is the best approximation tf in Vi with respect to thel? norm. We have the

following approximation result, for which we recall = %(m +d/dx).

hermit e-approx| Theorem 1.2 (Approximation by Hermite Functions). For every integes < K and

every functionf in the Schwartz spac§,

1
I =Pl = =D

[A*fI -

Given sufficient smoothness and decay of the function, tipeceqimation error thus de-
cays ag)(K —*/?) for growing K and any fixeds.

Proof. Using subsequently (1.14), (1.11) and (1.9) we obtain

f=Pxf = > {orlf) e

E>K
_ 1 .
- z§<\//€(k—1)...(/€—s+1)<m)90k*5|f><pk
- Z - (prp—s | A°f) vk .

kZK\/k(k—l)...(k—s+1)

By orthonormality, this yields

1 2
_ 2 < | AS
If = Prfl? < K(K_l)._.(K_SH);\WAM
_ 1 s 2
O K(K-1)...(K—s+1) 141
which is the desired result. O

Since the set of linear combinations of shifted Gaussiark@vn to be den2se in
L?*(R) (e.g., Thaller, 2000, p. 40), it is instructive to see thécmcof A5 one~(*=*)7/2,
A short calculation yieldst e~ (@=2)*/2 = \/Li ae~(@=a°/2 and hence

AS ef(mfa)z/Q — 275/2 a® ef(zfa)z/Q )
No surprise, the approximation of (@=0)*/2 by Hermite functionsp;, centered ad is

slow to converge for large shifta| >> 1. According to Theorem 1.2, the error becomes
small fromK > $a? onwards (on choosing= K and using Stirling’s formula fok!).



68 [ll. Numerical Methods for the Time-Dependent SchrgeinEquation

Error of the Galerkin Method with Hermite Basis in 1D. We are now in the position to
prove the following error bound. For a related result wertfé-aou & Gradinaru (2007).

rmite-gal erkin| Theorem 1.3 (Galerkin Error). Consider the Galerkin method with the one-dimen-
sional Hermite basi$yy, . . ., ¢x—1), applied to a 1D Sclirdinger equation (0.1) with a
potential V(x) = (1 + 2?)B(x) with boundedB, with initial value (0) = Pk1(0).
Then, if the exact solution is iR (A*+2) for some integes < K/2, the error is bounded
by

Iae(t) = 6(t)| < C K2 (1+1) max, |A25()]

whereC is independent ok andt, is bounded by < ¢2%/2 in dependence of, and
depends linearly on the bound Bf

Proof. (a) We write the Galerkin equation (1.1) as
itk = P HPribr

with the Hermitian matrixPx H P, and the Schrodinger equation (0.1), acted oPRy
as
iPgtp = Px HPy Pgtp + P HPRE,

where Pz = I — Pk is the complementary orthogonal projection. Subtractiregttvo
equations and taking the inner product with — Pk yields, by the same argument as
in the proof of Theorem 11.1.5,

19 (t) = Preyp(t)]| < [1¢x(0) = Preyp(0)]| +/0 |1 Prc H P (7) | dr .

We show in part (b) of the proof that

| Pl PR < C K52 452y (1.15)

The result then follows together with Theorem 1.2, appliethw + 2 instead ofs, to
estimatey (t) — Px(t).
(b) It remains to prove (1.15). We recall thelt = .p” + B(1 + ¢°). By (1.6) we
have
P=—f(A-A, @=L (A+ Al

With (1.11) and (1.12) this gives

Pon = —3(VEE=Dgis — 2k +Dor+ VT 2+ D prsa)
Pon = H(VEE—Dgra+ 2+ Doy + v+ 2+ 1) orra).

This yields, withe, = (o | ¥),

Pgp*Pitp = e VK (K — 1) o —2 + e/ (K + DK pxc_1 .
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Estimating the coefficients, as in the proof of Theorem 1.2 with+ 2 instead ofs, we
obtain
|Pxp*Pgp]| < C K2 A2y
Similarly, we get
lg* Pl < C K2 | A2y

Together with the boundednessBf these two estimates imply the bound (1.15). O

We remark that from Theorem I1.1.5, we can alternativelyagbtin a posteriori error
boundC' K ~%/2t maxo<,<¢ (|| A*T2¢k (7)[|+ ] A*+? Bk (7)]|), where the approximate
solutiony g instead of the exact solutiah appears in the estimate.

Computation of the Matrix Elements. To compute the entries of the matiiik, of (1.4),
we split into the harmonic oscillator and the remaining ptsd,

1 1
H:D+WE—(p2+q2)+(V——q2).
21 21

and consider the corresponding matrices
K-1 K-1
Dk = ((¢j | Dl¢r);hmor Wi = ({0 |Wler), —o-

By Theorem 1.1 Dy is diagonal with entriegl, = (k + %)/M- To computelWy, we
useGauss—Hermite quadraturthat is, Gaussian quadrature for the weight functiot’
overR (see, e.g., Gautschi 1997): fof > K, letx; (: = 1,..., M) be the zeros of the
Mth Hermite polynomialH ,;(x). With the corresponding weights; or w; = w; e,
the quadrature formula

%) g M Jo%) M
/ e " h(zx)dr ~ Zwi h(x;) or / flx)de =~ Zwi f(z)
i=1 > i=1

— 00

is exact for all polynomialé of degree up t@M — 1. If f(z) = g(z) - e="/2 with a
functiong € L*(R) for which the coefficients, = (¢ | g) in the Hermite expansion
(1.14) of g satisfy|cx| < C (1+k)~" with» > 1, we then obtain that the quadrature error
is bounded byO(M ).

We thus approximate

M
(@i | W | pr) ~ Zwi (i) W) or(xi) (2.26) |I11:quad
i=1

using M evaluations of the potential for al> matrix elements, and evaluating (z;)
via the recurrence relation (1.13). To obtain all matrixedats with good accuracy, one
would have to choos@/ distinctly larger thank, but in practice a popular choice is
M = K. Though the lower right block in the matrix is then inaccerahis does not
impair the asymptotic accuracy of the overall numericalhudtfor largeK, since the
inaccurate matrix elements only meet with the small coeffits that correspond to high-
order Hermite functions. This observation can be turnealliigorous estimates with the
arguments of the above proofs.
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[11.1.2 Higher Dimensions: Hyperbolic Cross and Sparse Gris

Ibsec: hermte-d |

We now turn to the Galerkin method with a tensor-product Herrbasis for thed-
dimensional Schrodinger equation (0.1).

Full Tensor-Product Basis. The theory of the preceding section immediately extends to
a full tensor-product basis of Hermite functions: for allltrindicesk = (k1, ..., kq)
with integer9) < k,, < K, take the product functions

Olheryoka) (1505 2a) = Ohy (T1) - - 1y (Ta)

or briefly

Pk = Pk @+ Q P, (2.17) |III:phi-tensor

as the basis functions in the Galerkin method. While thi©iéotetically satisfactory, it
is computationally infeasible in higher dimensions: thentwer of basis functions, the
number of coefficients, the computational work all grow lik¢, exponentially with the

dimensiond to the large bas& .

kz k2

k1 k1

Fig. 1.2.Full and hyperbolically reduced tensor badis £ 32). I11:fig:hyp

Hyperbolic Reduced Tensor-Product Basisinstead of takingll tensor products with
k; < K, we only take a subset of multi-indices: for a bouiidlet the hyperbolic multi-
index setk be given as

d
K=K(dK)={(k,....ka) : kn >0, [J( +kn) <K} (1.18)
n=1

This is illustrated ford = 2 and K = 32 in Fig. 1.2. Taking only the tensor products
of (1.17) withk € K as the basis functions in the Galerkin method greatly resitiosir
number:
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Lemma 1.4. The numbeiV (d, K) of multi-indices inkC(d, K ) is bounded by

N(d,K) < K (log K)*'. (1.19)

Proof. We clearly haveV (1, K) = K. We then note

K K K K
< — — — .. — <
N(2,K) < Tty Tt < KlogK ,
where the terms in the sum correspondio= 0,1, ..., K — 1, respectively. In general,

we have
N(d,K)< Nd-1,K)+ Nd-1,K/2)+---+ Nd—-1,K/K),
which by induction leads to the stated bound. O

Computations with the Galerkin method on the reduced tepsmuct approximation
space

Vi = span{yy : k € K} (1.20) |111:hyp-space

thus appear to become feasible up to fairly large dimengion

Approximation Properties. Can we still get decent approximations on this reduced
space? As we show next, this is possible under more strimggutarity assumptions
on the functions to be approximated. We denoté’ythe orthogonal projector onddc,

given by
Pef= Z<<ﬁk|f><ﬁk-
kel
We let 4,, = \/%(:vn + d/dx,) and for a multi-indexsc = (o4,...,04), we denote

A7 = AT ... A7, We then have the following approximation result.

rmite-approx-d| Theorem1.5 (Approximation by the Reduced Tensor Hermite Bais).For every fixed
integers and every functiorf in the Schwartz spacg(R?),

If = Pefll < Cls,d) K=/ nax, 1A% £,

where the maximum is taken overall= (o4, ..., 04) With0 < o,, < s for eachn.

Proof. For every multi-indext = (k1,...,kqs) we define the multi-index (k) by the
conditionk,, — o(k), = (k, — s)+ (with a; = max{a,0})foralln =1,...,d, and note
that0 < o(k),, < s. Similar to the proof of Theorem 1.2 we have

F=Pef = D (el f)en

k¢K
= Z Ak, s <(AT)U(k)(Pk7cr(k) | f) e
k¢K

Z Ak s <90k—s | Aa(k)f> Pk

ke K
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where the coefficients; s come about by (1.11) and are given as

d
1
S U Sy ey s e e

n

They satisfy, fork ¢ K,

d
jaol? < 42D (1.2

because by the definition (1.18) kfwe have the bound, fdr ¢ K andwithr = 1,... s,

d d
L+ (kn — 7))t —d
1;[1+k—7° > K EWZK(T‘FU

By orthonormality, (1.21) yields

C
1 = P2 < S5 S g ao® gy

k

Since there are? different possible values of(k), a crude estimation yields

ste(s,d
D x4

— Pcfl? <
If = Pefl? < =955 mas

which is the stated result. O

We note that for a shifted-dimensional Gaussia#—2*/2 we have than?e—lz—al*/2 —
(a/v/2)7e~l7=a*/2 and so we now neell >> [T?_, (1 + |a,|?) to obtain good approx-
imation.

Error of the Galerkin Method with Reduced Tensor Hermite Basis. With the proof of
Theorem 1.3 we then obtain the following result from Theofefk

ite-gal erkin-d| Theorem1.6 (Galerkin Error). Consider the Galerkin method with the hyperbolically
reduced tensor Hermite basis applied td-alimensional Sclirdinger equation (0.1) with
apotentialV (z) = (1 + |=|?)B(z) with bounded3, with initial value (0) = Pic(0).
Then, for any fixed integerthe error is bounded by

i (t) = ()] < C(s,d) K~/* (1 +1) max max_[|A%y(7)]|

0<7<t 0|00 <s+2
with the maximum over alt = (o1, ...,04) With0 < 0,, < s+ 2 for eachn. O
Numerical Integration Using Sparse Grids. The matrix elementsy; | H | ) for

J, k € K contain high-dimensional integrals. These can be apprabeédiby numerical in-
tegration on sparse grids, following Smolyak (1963), Zer{®891), Gerstner & Griebel
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(1998) and using an adaptation that takes care of the inngdg®scillatory behaviour of
the high-order Hermite functions.

We describe Smolyak’s sparse grid quadrature when basetedimensional Gauss—
Hermite quadrature in every coordinate direction. Fet 0,1,2, ..., letz! denote the
zeros of the Hermite polynomial of degré‘e and letw! be the corresponding weights and

w! = w! e@)?, so that we have the one-dimensiodaboint Gauss—Hermite quadrature

=

formula
2¢ 00
Quf =Yt~ [ fads,
i=1 -0
We introduce the difference formulas between successiadsle

Aof =Quf — Qe f,

and for the lowest level we sely f = Qo f. The full tensor quadrature approximation at
level L to ad-dimensional integrafRd flz1,...,zq)dxy ... dxy reads

2k 2k
QL®...®QLf:Z...Zwi...wif(xfl,...,xi),

ii=1  ig=1

which can be rewritten as

L L
QLe..0QLf=> .Y A,®..®@A,f (1.22)

¢1=0 £4=0

and useg2”)¢ grid points at whichf is evaluated. This number is substantially reduced
in Smolyak’s algorithmwhich neglects all contributions from the difference terwith
l1 + ...+ ¢4 > L and thus arrives at the quadrature formula

> Avewduix [ S m) e do. (1.23)
Rd

L4 +HLg<L

Here, f is evaluated only at the points of teparse grid

I ={(zh )+ g < LY,

i1y

which has onlyO(2% - L4=1) points; as an illustration see Fig.lIl.1.2 fér = 5 and
d=2.1f f(z) = g(z) - e~ 1=I"/2 with a functiong € L2(R%) for which the coefficients
¢m = {¢m | g) In the Hermite expansion gf satisfy

d
lem| < C [T +ma)™" (1.24)
n=1

with » > 1, then the contribution of the omitted terms with+ ... + ¢4 > L and hence
the quadrature error can be shown, by a tedious exercise,folmded by)((2£)~").
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)
o
'
H

-8 6 -4 -2 0 2 4 6 8
Fig. 1.3.Gauss—Hermite sparse grifl & 5, d = 2).

Remark A disadvantage of Gauss—Hermite quadrature formulas ifattiehat they are
not nested: the quadrature points of le¢el 1 are not a subset of those of levelAs an
alternative, which will not be explored here, one might ¢destransformation to a finite
interval and using the trapezoidal rule or Clenshaw-Cguesdrature there. With a nested
quadrature, the sparse grid contains approximately hatfzasy grid points as for the case
of a non-nested basic quadrature formula with the same nuaflspiadrature points. It
is not clear if the otherwise excellent properties of Gatiesmite quadrature are indeed
offset by nested quadratures for suitably truncated osfoamed integrals.

Computation of the Matrix Elements. The integrand;;; in the matrix element

w1 Wied = [ ei@Wa e o= [ fuwd

becomes highly oscillatory for multi-indicgsand & with large components. In this situ-
ation, an estimate of the type (1.24) cannot be expectedltbthee with a constant that
is uniform inj andk, but rather (witha . = max{a,0})

d
|C7H(.77k)| SCH(1+(mn_]n_kn)+)_T (125) 11 :Cj km
n=1

for the Hermite coefficients,, (j, k) of g;x(z) = f;.(x)e/*I"/2. This suggests a mod-
ification of Smolyak’s algorithm in which terms in the sumZ42) are discarded only
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if they are of sizeO((2)~") under condition (1.25). Such an adaptation of the algo-
rithnj reads as follows: for a Qair of multi-indicgsandk, let ¢4, ...,¢,; be such that
c- 271 < max{j,, k,} < c- 2% forachosen constant We discard only terms with

(51 —2\1)++...+(€d—z\d>+ > L.
In the case of a hyperbolically reduced multi-index set&},.tve have actually
171 —i—...—i—Zd < 2logy K + ad,

wherea € R depends only om. Such a modification can thus be implemented by in-
creasingL in dependence oK by 2 log, K. The number of evaluations of the potential
on the resulting sparse grid thus beconi¥gs? - 2% - (L + 21log, K)9~1) and hence

is essentially quadratic ik of (1.18). The choice of. depends on the smoothness and
growth properties of the potential.

111.1.3 Collocation Method, 1D Fourier Basis

Truncation, Periodization, Rescaling.We start from the one-dimensional Schrodinger
equation (0.1) on the real line. If we expect the wavefumctimbe negligible outside an
interval[a, b] on the considered time interval, we may replace the equaticthe whole
real line by that on the finite interval with periodic boungaonditions. After a rescaling
and shiftr — ax + 5 we may assume that the space intervghis, 7

3_1/)( t)f_iaz_w
ot N T 24 Ox2

(z,t) + V(2)p(x,t), € [-m ], (1.26) |111:schrod-1d

with periodic boundary conditionss(—, t) = ¥ (x, t) for all ¢.

Collocation by Trigonometric Polynomials. We look for an approximation to the wave
functiony(z, t) by a trigonometric polynomial at every instant

K/2-1
Ve rie = Y a®d, sclmd,  @27)
k=—K/2

where K is a given even integer. We might determine the unknown Eounefficients
c,(t) by a Galerkin method on the space of trigonometric polyndsiaa in the previous
section. Here, we consider instead the approachdbypcation which requires that the
approximation satisfy the Schrddinger equation in a finiteber of grid points, as many
points as there are unknown coefficients. We thus choos&tkequidistant grid points
z; =j-2r/K withj = —-K/2,...,K/2 —1and require that

31/)1(( _ )7_i321/)1(
at ot = 21 Ox?

1

(j,t) + V(zj)Y(zj,t) (j=-K/2,...,K/2—-1).

1.28)
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This condition is equivalent to a system of ordinary differal equations for the coeffi-
cientsc (), as we show next.

Discrete Fourier Transform. Let Fi : CX — CX denote theliscrete Fourier transform
of length K, defined by

K/2—-1
) 1 i
7=Fgv Wwith o = ' 2}:{/2@““]'2”/1( v (k=-K/2,...,K/2—1).
J=—

(1.29)

The inverse transform is thef,' = K77, thatis,

K/2—1
v=Fg'0  with o= Y KL (j=—K/2,..., K/2—1). (1.30)
k=—K/2

The familiarfast Fourier transform(FFT) algorithm (see, e.g., the informative Wikipedia
article on this topic) computes either transform waltiK log K') complex multiplications
and additions, instead of thi€2 operations needed for a naive direct computation from
the definition.

Differential Equations for the Fourier Coefficients and Grid Values.From (1.27) we
note that the vector of grid values ¢f is the inverse discrete Fourier transform of the

coefficient vector:
(Vxc(@),1)) = Fi' (en(®)) - (1.31)

This relation and differentiation of (1.27) yield that thellocation condition (1.28) is
equivalent to the following differential equation for theatorc = (i) of Fourier coeffi-
cients: with the diagonal matricd3yx = o; diag(k®) andVx = diag(V (z;)),

ié = Dice + FeVieFie. 1.32)

Alternatively, by taking the inverse Fourier transform atbsides of (1.32) and recalling
(1.31), we obtain a system of differential equations fordtid valuesu; (t) = ¥ x (x;, t):

for the vectoru = (u;),

it = Fi' DxFru+ Viu. (1.33)
We observe that the matrices on the right-hand sides of (ar&2(1.33) are all Hermitian,
because/K Fx is a unitary transformation.

Approximation by Trigonometric Interpolation. For a continuou&r-periodic function
f we denote by f the trigonometric polynomial witli’ Fourier modes ranging from
—K/2to K/2 — 1 which interpolateg in the K equidistant grid points,; = j - 27/ K:

K/2-1

If(@)= > ce™ with (cx) = Fr(f(x;)).

k=—K/2
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Theorem 1.7 (Interpolation Error). Suppose thaf is a2x-periodic function for which

the s-th derivativeds f € L2, for somes > 1. Then, the interpolation error is bounded in
L? by

If=Zxfl <CK |01l
whereC depends only os.

Proof. We write the Fourier series gfand the trigonometric interpolation polynomial as

00 K/2—1
flz) = Z ap ' , Ik f(x) = Z o e
k=—o0 k=—K/2

From the interpolation condition it is verified that the da@énts are related by thedias-

ing formula
o0
Ckp = Z Ak+LK -

l=—o0

Using Parseval’'s formula and the Cauchy—Schwarz inequalé thus obtain

K/2—1 )
Hf—ZKfH2 = Z (’ZakJrlK’ +Z|ak+m|2)
k=—K/2 {#0 040
K/2—1
< ¥ (Z(kJréK)*QS (k) g e
k=—K/2 {#0 040
3 ) (o L) g o)
040
< CPKTE Y Ral’ = CPET o),
k=—oc0
which is the desired result. O

In the same way it is shown that for every integee> 1,

|0 (f —Ir f)|| < CK~* |9zt f . (1.34) [111:ipol-diff

Error of the Collocation Method with Fourier Basis in 1D. We obtain the following
error bound.

thm col [ -error | Theorem 1.8 (Collocation Error). Suppose that the exact solutigrit) = (-, t) has

d3+24)(t) € L for everyt > 0, for somes > 1. Then, the error of the Fourier collocation
method (1.28) with initial valué (z,0) = Zx(z,0) is bounded inL? by

lorc(t) =) < CK™ (1 +1) max 195724 (T)]]

whereC depends only os.
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Proof. The error analysis is based on reformulating method (1.28raequation with
continuous argument: by interpolation on both sides off},.2

OV 1 9%k

(z,t) + I (Vi) (2, 1), T € [-m, 7. (1.35) [111:coll-cont

1

T Y =

On the other hand, using thak Vv = Tk VZk1, we obtain that the interpolant to the
solution satisfies the equation

OTg) 1 9°TIky
i——(z,t) = ——
ot 2 Oz?

(z,t) + (Zx VIk)(z,t) + 6x (1), (1.36) [I11:coll-ipol

with the defect

1 0%  O0*Igy
= (Zg— — .
O 2/1( K922 Ox? )
The errorz i = ¥, — Tkt thus satisfies the equation
,aEK - 1 626}(

In terms of the Fourier coefficients= (ej,) andd = (dy) given by

K/2-1 K/2—-1
ex(t)= Y e(t)e™, dx(x,t)= Y d(t)e™”,
k=—K/2 k=—K/2

this reads, as in (1.32):
i¢ = Dxe+ FrViFrle—d,

with Hermitian matrices on the right-hand side, sirf€g is unitary. Forming the Eu-
clidean inner product witl, taking the real part and integrating we obtain, by the same
argument as in the proof of Theorem 11.1.5,

le(®)]] < lle(0)]) + / ld(r)]l dr

By Parseval’s formula, this is the same as

t
lex(®ll < lexO)] + [ 6x(r)ldr.
We estimaté§ i (7) using Theorem 1.7 fa92¢(-, 7) and (1.34) withm = 2:
65 (T)II < CK* [0 29 (-, 7))l -

Recalling that x = ¥k —Zx 1 and using Theorem 1.7 to estimate the interpolation error
I — 1, we obtain the stated result. O
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Comparison with the Fourier Galerkin Method. If we use the Galerkin method (1.1)
with the basis~** (k = —K/2,..., K/2 — 1), then we obtain equations for the coeffi-
cients that are very similar to (1.32):

it = Dice+ Vice. (1.37)

Here,V is the matrix with the entryl. [ =47 V(z) ¢*** dz at position(j, k). In the
collocation method (1.32), this integral is simply repldbg the trapezoidal sum approxi-
mation+ Y-, e~ "% V() e, with no harm to the error of the method as Theorem 1.8
shows.

[11.1.4 Higher Dimensions: Hyperbolic Cross and Sparse Grds

The above results extend immediately to a full tensor-gpigraximation in higher di-
mensions. The number of grid points and Fourier coefficiembe dealt with is thed ¢

in dimensiond with K grid points in each direction. An approach to a reduced cempu
tational cost uses a hyperbolically reduced tensor basgménentials and an associated
sparse grid, leading to a discretization working wiiti/ (log K)9~1) grid points and
Fourier coefficients. The construction is based on a disdfetirier transform on sparse
grids given by Hallatschek (1992).

Hyperbolic Cross.Instead of considering the full tensor product badig’ = e*171  ¢ikawa
with —K/2 < k, < K/2 — 1, we consider a reduced set of multi-indices=
(k1,...,kq), which is constructed as follows. We order the set of integeto differ-
ent levels by settin@o = {0},Z, = {-1},Z> = {-2,1},Z3 = {—4,-3,2,3},and in

general
Zy={kelZ:-2""<k<-202or22 <k <21}, (1.38)

This yields a partition of the integers into different levels indicated in the following
diagram of the line of integers:

8 7 6 5 -4 -3 2 -1
4 4 4 4 3 3 2 1

We then define thbyperbolic cross

0 1 2 3 4 5 6 7
0 2 3 3 4 4 4 4

K=K%=1{(ki,...,kq): Thereare,,... Lawith¢; + ...+ <L

such thatk,, € Z,, forn=1,...,d}. (1.39) |I I'l:hyp-cross

We will work with the basis of exponentiaéé®* with k € K. As in Lemma 1.4 it is seen
thatC hasO (2 - L4~1) elements.

Sparse Grid. As we now show, the wave vectors in the hyperbolic cross aaeifective
correspondence with a set of grid point$in2x]¢. Consider first the hierarchical ordering
of grid points in the interval0, 27) obtained by setting{, = {0}, X; = {n}, X2 =

{Z,35}, X3 ={F,3, 5% T} and in general
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ko

k1

Fig. 1.4.Hyperbolic cross and sparse grid (L=6).

Xy = {(Qj -1)

27

2¢

g

2
27

—1.... 25—1}.

Clearly, each grid point it/ is in a one-to-one correspondence with an integ&in\Ve
define thesparse gridcorresponding to the hyperbolic crossas

=TI ={(x1,...,2q4): Thereardy,... ,lywithl; 4+ ...+ 04 <L
such thatz, € X,, forn=1,...,d}.

We will use quadrature and trigonometric interpolationlois grid.

(1.40) [111:sparse-grid

Smolyak’s Sparse-Grid Quadrature. We consider the trapezoidal (or rectangle) rule
approximation to the one-dimensional integﬁllfowr g(z) dx of a27-periodic function

gy
2t—1

4
Q=2 0(im) =" 3 o),
j=0

and the difference between two levels,

Apg = Qug — Qr19,

m=0ze€X,,

Aog = Qog -

As in Section Ill.1.2, we consider Smolyak’s quadrature domulti-variate function
f(z1,...,2q), which uses values of only on the sparse griff = I'Z:

Srf=5¢f=

b1+ +La<L

It has the following useful property.

>

Ag1®...®Agdf.

(1.41) |111:sparse-snol yak

Lemma 1.9. Smolyak’s quadrature (1.41) is exact for the exponentidt§ for all multi-

indicesk in the hyperbolic cros&¢ .
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Proof. We first note that the one-dimensional trapezoidal @jayives the exact valu@
for exponentialg?** whenevelk is not an integral multiple of, and it gives the correct
valuel for k£ = 0. With the formula

L
Sif=> A®Sif,
=0
the result then follows by induction over the dimension. O

Remark 1.10. Unlike the full-grid case, the quadratuf is not exact for products
e~ zeike with j, k € K¢. The problem arises with terms suchjas (—2£-1,0,0,...,0)
andk = (0, —2L710,...,0). Sincek — j € K4, for j, k € K¢, we note that such prod-

1

ucts are integrated exactly 18§, , hence with roughly the squared number of grid points.

(Cf. the similar situation in the Hermite case discussetieend of Section 111.1.2.)

Sparse-Grid Trigonometric Interpolation. The one-dimensional trigonometric interpo-

lation of a27-periodic functionf on a grid of2¢ equidistant grid points is given as

2¢-1_1
Iig(z) = Z cLe* with ¢ = Qe *%g).

k=—20-1

We letA, = I, — I,_; denote the difference operators between successive Igvidhs
Ay = Ip). The trigonometric interpolation of a multivariate fuiwet f on the full tensor
grid with 2 grid points in every coordinate direction can then be wnitis

L L
Z...ZAgl®...®Agdf(xl,...,xd).

£1=0 £L4=0

Hallatschek (1992) introduces the corresponding opexaitbrevaluations off only on
the sparse grid” = I'¢ as

Irf(zr,...oxa)= >, Ay ®...® A, f(21,...,2a) (1.42)
L1+ +04<L

and notes the following important property.
Lemma 1.11. Zr f interpolatesf on the sparse grid".

Proof. This follows from the observation that the terms omittedvirthe full-grid inter-
polation operator all vanish on the sparse grid. O

Sparse Discrete Fourier Transform.We observe thaf, f(z) forx = (z1,...,z4) IS @
linear combination of exponentiadé®® with k in the hyperbolic cros = K¢:

|I I'l:sparse-ipol -operator
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Irf(z)= Z cp et

ke

This defines a discrete Fourier transform

Fr:Cl'—=ck: (f(@)) pep = (cr)rex - (1.43) [111:sparse-dft |
With the map that determines the grid values of a trigonoimptilynomial from its co-
efficients,
T : CF =l ik 1.44) [111: -idft
c — (Ck)ke)c — (];Ccke )zer’ (1.44) | spar se-i |

we have from the interpolation property thatFf = f forall f = (f(x))zer, and
henceFr is invertible and

Fil=1x. (1.45) |I I'l:sparse-i nverse|

Both Fr and its inverse can be implemented with{2” - L.¢) operations, using one-
dimensional FFTs and hierarchical bases; see Hallatsdl®8R] and Gradinaru (2007).

There is no discrete Parseval formula t6p, but by Remark 1.10, the following
restricted Parseval relation is still valid: with the inpeoduct(f | g)r = Sr(fg) onI"
and the Euclidean inner produgct ) on IC,

(Frle|Frtdyr = (c|d)x  if ey =di, =0 for k € K¢ \ K g - (1.46) |111:sparse-parseval

Approximation by Sparse-Grid Trigonometric Interpolatio n. Error bounds are given
by Hallatschek (1992) in the maximum norm, and by Gradin2008) inL? and related
norms. TheL? error bound reads

IZrf — fIl < C(d,s) (L+ 1) (25) = |05 .. o5t £l (1.47) [111:sparse-ipol -error

The estimate is obtained by carefully estimating the terftas® ... ® Ay, f that have
been omitted in (1.42).

Collocation of the Schiddinger Equation on Sparse Grids.Gradinaru (2008) studies
the collocation method, which approximates the solutiomlisigonometric polynomial
with coefficients on the hyperbolic cross,

Yic(x,t) = Z cr(t) et (1.48) ‘I I'l:sparse-psi K
kek

and requires the Schrodinger equation to hold in the paifiise sparse grid. This yields
the system for the Fourier coefficients= (cx)kex,

ic = D,Cc—i—}'pr}';lc, (1.49) | I'11:sparse-ode

where(Dic), = 2% |k|%c for k € K, and VT is the diagonal matrix with entrielg(x)
for x € I'. Gradinaru (2008) shows that the error of the collocatiothme over bounded
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time intervals is bounded b§ (L~ (2)~*) if mixed derivatives up to ordes + 2 in
each coordinate direction are bounded.in

An unpleasant feature in (1.49) is the fact that the ma?Fﬁ'Wp}‘;l is not Hermitian,
since the sparse-grid Fourier transfoffp is not a scalar multiple of a unitary operator,
unlike the full tensor-grid case. This can give numerictgfacts such as the loss of con-
servation of norm and in theory may lead to an exponentistiead of linear, error growth
in time, with a rate that is given by a bound of the skew-Heanipart of}'prfgl.
Moreover, some of the time-stepping methods considereaeistibsequent sections are
not applicable in the case of non-Hermitian matrices.

Discretizations on Sparse Grids Having Hermitian Matrices Are there methods with
similar complexity and approximation properties to therspagrid collocation method
but which have a Hermitian matrix? We start from the intetaien of the collocation
method as a Galerkin method with trapezoidal rule approtionaf the integrals in the
matrix elements, as noted at the end of Section I11.1.3, @&md'er a multi-dimensional,
sparse-grid extension that approximates the matrix elesisnSmolyak’s quadrature.
We consider the inner product @i’ defined by Smolyak’s quadrature on the sparse
grid,
(fla)r = Sr(f9).

and the Euclidean inner produgt -),c on C* . With respect to these inner products, we
take the adjointF')* of '

(Frlalfir=(a|(Fr") fix VfeCl aeCr.

Then,(F.')*f = (Sr(e=**f)), ., » and we obtain that

FryVeFst = (Sr(e V(@) ee))
(Fr)'VrFr F(e (z)e ) JkeK
is the Hermitian matrix that contains the sparse-grid gatale approximations to the
Galerkin matrix elements.

Instead of (1.49) we would like to determine the coefficiaftél.48) from

i¢ = D+ (FpH)*VrFrle. (1.50) | I'11: sparse-ode-symm

This method can be rewritten as a quasi-Galerkin method @hyperbolic-cross space
Vi = spar{e™? : k € K}: determine)(t) € V (i.e., of the form (1.48)) such that

<@K Ok

ot
Here, the last inner product is the discrete inner producthensparse grid instead of
the usualL? inner product. Unfortunately, it appears that this doesgive a convergent
discretization for the hyperbolic cro&s = K¢ and the sparse grifi = I'¢ of the same
level L. We describe three ways to cope with this difficulty:

1

> = <<p;¢ ‘ - iAU);C> + <<p;c ’ V1/);¢>F Veox € V. (L.51) [I11:sparse-qgal
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1. Discrete Galerkin Method with a Simplified Mass Matike replace thé? inner
products in (1.51) by the discrete inner product/on= I'¢. Then we obtain a standard
Galerkin method with a discrete inner product. The assediatthogonal projection to
Vi is just the interpolatiod . Optimal error bounds are then obtained with the standard
proof for Galerkin methods, as in Theorem 1.3. However esthe exponentials® = k €
IC, do not form an orthonormal basis with respect to the disdreter product, there are
now non-diagonal matrices

My = (mjk)j,ke/c = ({7 |eik'w>r)j,ke/c’ T = i(j ' kmj’“)j,kelc
in the differential equations for the coefficients:
Myé = Tie+ (Fp')*VrFrle.
By (1.46), the mass matrix partitioned into blocks corregping to’{ ,, andk¢ \ K7 /,

takes the form .
I B
we=(5 )

with sparse matriceB and N. An approximate Choleski factor df/« is given by

(I 0 . 4 (T 0 r (I BT
o= (5 ) wn o= (1, 0) e cot= (5 ).

where only the lower diagonal block differs from thatific. ReplacingMy by CC7,
we obtain forb = C”'¢

b=C'TcC Th+ C~HF ) VpF O b

Since only the lower diagonal block dffx has been changed, we can still get error
bounds as for the full Galerkin method, but with” replaced by —%/2,

2. Discrete Galerkin Method with Refined Sparse GBg.Lemma 1.9, the mass ma-
trix becomes the identity matrix if we choose the finer grid

r=rg

with 2L instead ofL levels and thus, alas, roughly the squared number of gridtgoi
In that case, thé? inner products (1.51) are equal to the discrete inner prisdue!’,
and we obtain a standard Galerkin method with a discrete imroeluct. The associated
orthogonal projection t¥x is PicZr, wherePg is the orthogonal projection with respect
to the L? inner product. Optimal error bounds are then obtained wi¢hstandard proof
for Galerkin methods, as in Theorem 1.3.

3. Galerkin Method with an Approximated PotentisiVe use the standard Galerkin
method with L2 inner products, and compute the matrix elements of the gaten
(e'I7 |V |e*), exactlyfor an approximated potentidf(z) ~ >, c v Ume™ " (POS-
sibly over a coarser hyperbolic crogd C K), noting that(e?® | "™ ==} £ () only
for j = k + m. This requiresO(#M - #K) operations for computing a matrix-vector
product.
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[11.2 Polynomial Approximations to the Matrix
Exponential

After space discretization, we are left with a linear systédmdifferential equations

i = Ay @)

with a Hermitian matrixA of large dimension and of large norm, such as (1.3) or (1.32)
or (1.50). The solution to the initial valug0) = y, is given by the matrix exponential

y(t) = e yq . (2.2) |111:matrix-exp

We study time stepping methods that advance the approxsoatton' from timet” to

tntl =+ At, fromy” toy™ L. In the present section we consider methods that require
only multiplications of the matrix4 with vectors, and hence are given by polynomial
approximationg’? (At A) to the exponential:

y" = P(AtA) y" .

We consider in detail th€hebyshev methodhere the polynomial is choserpriori from
given information on the extreme eigenvaluesdgfand theLanczos methqdvhere the
polynomial is determined by a Galerkin method on the Krylolkspace, which consists
of the products of all polynomials aht A of a given degree with the starting vector.

We mention in passing that there are further interestinchout that require only
matrix-vector products withd: the Leja point methodas similar approximation prop-
erties to the Chebyshev method but in contrast to the Chelbysiethod, higher-degree
polynomials of the family are constructed by reusing the potations for the lower-
degree polynomials, cf. Caliari, Vianello & Bergamascli§); explicitsymplectic meth-
odspreserve the symplectic structure of the differential ¢ignasee Gray & Manolopou-
los (1996) and Blanes, Casas & Murua (2006).

[11.2.1 Chebyshev Method

A near-optimal polynomial approximation to the expondnigagiven by its truncated
Chebyshev expansion. We describe this approach, whicheicdhtext of Schrodinger
equations was put forward by Tal-Ezer & Kosloff (1984), ange@n error analysis based
on Bernstein’s theorem on polynomial approximations tdyditgfunctions on an interval.
We refer to Rivlin (1990) for background information on Cligbev polynomials and
to Markushevich (1977), Chap. 111.3, for the polynomial ampgmation theory based on
Faber polynomials.

Chebyshev PolynomialsFor every non-negative integkr the function defined by

Ty (z) = cos(kf)  with 6 = arccosz € [0,7], for z € [-1,1] (2.3)

! The time step numbet will always be indicated as superscript in the notation.
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is in fact a polynomial of degrek, named theith Chebyshev polynomialhis fact is
seen from the recurrence relation

Tioi1(z) = 22Tk(2) — Tpor(z),  k>1, (2.9

starting fromTy(z) = 1 andT;(z) = x, which is obtained from the trigonometric iden-
tity cos((n + 1)0) 4 cos((n — 1)0) = 2 cosf cos(nd). The Chebyshev polynomials are
orthogonal polynomials with respect to the weight functior- z2)~'/2 on|[—1, 1]:

! dzr
T:(x) T ——=0 for j#k, 2.5) |Ill:cheb-orth

as is seen by substituting= cos# anddxz/v/1 — 22 = df and using the orthogonality
of the complex exponentials.
Another useful formula is

2T (z) = (:v—i—\/:v?—l)k—i— (z— v:ﬁ—l)k, (2.6) [111:cheb-sqrt-formila

again verified by substituting = cos 6. TheJoukowski transform

w=P(z)=z+V22 -1, z=V(w)= %(w—i— %) (2.7) [111:cheb-j oukouski |
is the conformal map between the exterior of the intefvl, 1] and the exterior of the

unit disk, |w| > 1. (The branch of the square root is chosen such¥h&t— 1 ~ z for

z — o00.) The level setd. = {z : |®(2)| = r} = {¥(w) : |w| = r} forr > 1 are

ellipses with foci+1, major semi-axig- 4+ r~! and minor semi-axis — r~*. Since the

Laurent expansion ato of (z — /22 — 1)* contains only powers~7 with j > k, the

integral of that function over a closed contdurencircling the interval—1, 1] vanishes

by Cauchy’s theorem. With Cauchy’s integral formula we thbgin from (2.6)

1 [ &(z)"
2Tk(x)*—/ﬁdz, x € [-1,1], (2.8) [111:cheb-faber
r

211 zZ—x

which establishes an important relationship between thebgshev polynomials and the
conformal map: the Chebyshev polynomials are Faber polynomialdor the interval
[—1, 1]; cf. Markushevich (1977), Sect. 111.3.14.

Chebyshev and Fourier SeriesGiven a (smooth) complex-valued functigiiz) on the
interval—1 < z < 1, we expand thér-periodic, symmetric function

9(0) = f(cos0)

as a Fourier series:

oo

. _ 1 [T
g(0) = Z cpe™®  with ¢ = %/ e~ g(6) dh

k=—0o0
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or in fact, by the symmetry(—0) = ¢(9),
oo ] 1 sy
g(0) =co+2 Z cicos(kf)  with ¢ = — / cos(k6) g(0) db .
T Jo
k=1

Substitutinge = cos 6 anddz/+/1 — 22 = df, we obtain theChebyshev expansion

™

f(x)_co+2§cka(x) with ck_l/llTk(x)f(a:)\/ldf_ﬁ. (2.9) [111:cheb-series

Chebyshev Approximation of Holomorphic Functions.We study the approximation of
a holomorphic functiory (x) by the truncated series with terms,

m—1

I, f(x) =co+2 Z ek Te(x),
k=1

which is a polynomial of degreev — 1. The following is a version of a theorem by
Bernstein (1912); see Markushevich (1977), Sect. lIl.3Hé&red(z) = 2 + /22 — 1 is
again the conformal map (2.7) from the complement of thevialé—1, 1] to the exterior
of the unit disk, an@ (w) = £ (w + ) is the inverse map.

. thm bernstein] Theorem 2.1 (Chebyshev Approximation)Letr > 1, and suppose thaf(z) is holo-

morphic in the interior of the ellipsgd(z)| < r and continuous on the closure. Then, the
error of the truncated Chebyshev series is bounded by
F@) = Tnf @) £20(f7) T—  for —1<a<1,
-Tr
with the mean valug(f,r) = 5 wjr [ F (@ (w))] - |dw].

Proof. We start from the Cauchy integral formula over the elligse= {z : |&(z)
r} = {¥(w) : |w| = r} and substitute = ¥(w):

_ 1 flz) 1 v (w) : .
fl@) =5 . o dz= %/w_rf@(w))mdw. (2.10) [I11:cheb-f-int

We expand in negative powers of

U (w) —p—1
— = E ak(x)w for |w| > 1, (2.11) |111:cheb-res
U(w) —x — (z) ol

where the Taylor coefficients at are given as

1 e P (w) 1
=— ————dw = — dz.
ar(2) 271 v U(w) —x YT om /FT PR

|w|=r
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By (2.8), these coefficients turn out to be simply
a(z) = 2 Ty(z).

Inserting (2.11) into (2.10) therefore yields

o) =t f o) = 5 [ 1) 2 3 T ut .
Since|Ty(z)| < 1for -1 <z <1, we have folw|=r>1
= k-1 S
P N
and the result follows. O

Chebyshev Approximation of Complex ExponentialsThe complex exponentiaf«®

is an entire function, and we can choase Theorem 2.1 dependent amto balance the
growth of u(e*“=, r) with r against the decay of ™. This gives the following corollary
showing superlinear convergence after a stagnation up 4o |w|. Since the polynomial
must capture the extrema and zeros®f{wz) andsin(wz) for a uniform approximation,
it is obvious that at least a degree proportional to|w| is needed to obtain an error
uniformly smaller than 1. Once this barrier is surmountbd,érror decays very rapidly
with growing degreen.

| : thm cheb- exp | Theorem 2.2 (Eventual Superlinear Convergence tei“*). The error of the Chebyshev

approximationp,,_1(z) of degreem — 1 to the complex exponentiat*® with real w is

bounded by
_max |pm—1(z) — ™| <4 ((glf(vJ/Qm)2 %) for m > |w|. (2.12) |111:cheb-exp-error

Proof. We haveu(e™?,r) < max.cr, [¢?| = el“l"=7")/2 where the maximum is
attained at = +3(ir + ;=) on the minor semi-axis. Theorem 2.1 thus gives us the bound

max  |pp_1(z) — 7| < 2r ™ eloltr=r=1/2

_1<z<1 1—p-1

Choosingr = 2m/|w| > 2 then yields the stated result, which could be slightly refine
O

The Chebyshev coefficients &f* are given explicitly by Bessel functions of the first
kind: by formula (9.1.21) in Abramowitz & Stegun (1965),

T[T i eos
cp = _/ e oY cos(kf) do = i* Ji(w) . (2.13) [I11:cheb- bessel
0

™
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Fig. 2.1. Chebyshev approximation ef*““. Maximum error on[—1, 1] versus degree, fap =
4,8, 16, 32. Dashed: Error bounds of Theorem 2.2.

Frome™?® with —1 < 2 < 1, uniform polynomial approximation of % for o <
¢ < s obtained by transforming

2 a+f _a+f 0 —«
x_ﬂ—a(g 2 ) = tr—H—
We then approximate % = e~ Hat0)/2¢-iw(f-a)/2 yging e~ @(F-)/2 ~ ¢; +

230 e Tio() with ¢ = %0, (= 252) = (—i)*J, (252), so that

m—1
» iy 2
e~y o—ilatB)/2 <CO+2;—1: cka<ﬂ_a(§_ Oé;ﬁ))) for a<&<p.

Chebyshev Method for the Matrix Exponential Operator. Let A be a Hermitian matrix
all of whose eigenvalues are known to lie in the inteffuab]. As proposed by Tal-Ezer
& Kosloff (1984), we approximate the action of the matrix erpntial on a vector by

m—1
—iAtA, o —iAt(a+b)/2 2 _ (a+D) ; . .
¢ Ve <cov 42 ;;—1 ch Tk((b_ 3 (A ; I) v| (2.14) [TT1:cheb-exp-A

with ¢, = (—i)*Ji,(At(b—a)/2). We denote the right-hand side of (2.14)as 1 (At A)v
and observe that it is in fact a function of the produetA. The actual way to compute
(2.14) is by a recursive algorithm proposed by Clenshaw 21 96r the evaluation of
truncated Chebyshev expansions of functions:
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. 2 B (a+10) . -
Clenshaw Algorithmtet X = o—a) (A 2 I), setd,,+1 = d, = 0and

dk:Ckv+2Xdk+1—dk+2 for k=m-1,m-2,...,0.
The approximation (2.14) is then given as
Pm_l(AtA)’U = do — dg .

This identity is readily verified using the Chebyshev reenoe relation (2.4) for the
terms in the sum, descending from the terms of highest deg@teealgorithm requires
m matrix-vector multiplications to computg,,_; (At A)v and needs to keep only three
vectors in memory.

hm cheb- net hod | Theorem 2.3 (Error of the Chebyshev Method)Let A be a Hermitian matrix with all

its eigenvalues in the intervéd, b], and letv be a vector of unit Euclidean norm. Then,
the error of the Chebyshev approximation (2.14) is bounddte Euclidean norm by

| P_1 (At Ayv — e~ 44| < 4 (el_(“’/Qm)2 Qi) for m>w
m

with w = At (b —a)/2.

Proof. For a diagonal matrix4, the estimate follows immediately from Theorem 2.2
and the linear transformation between the interyalsa, At b] and[—1, 1]. Since every
Hermitian matrixA can be unitarily transformed to diagonal form, we obtainrdsult as
stated. O

Step Size Restriction.The conditionn > w can be read as a restriction of the step size
for given degreen:
Al < 2m

b—a
This can also be viewed as saying that at least one matritormeuiltiplication is needed
on every time interval of length/(b — a). In the treatment of the Schrddinger equation,
this length shrinks as the spatial discretization is refif@dllustration, consider Fourier
collocation in one space dimension, wikh Fourier modes. For the matrit = Dg +
FrViFg' of (1.32), the eigenvalues lie in the interyal b] with

1 K?

a:mwinV(x), b:ﬂT—i_meV(x)'

For largeK, or smallAz = 27 /K, we have thatw = At(b — a)/2 is approximately
proportional toAt K2, or

At
w ~ E .
The conditionm > 2w for the onset of error reduction therefore translates irgtep-size
restriction
At < C'm Ax?, (2.15) [111: cheb-dt dx

and the number of matrix-vector multiplications to cover>aed time interval is thus
inversely proportional ta\z2.
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I11.2.2 Lanczos Method

A different approach to approximately computieigf2*“v using only the action oft on
vectors is based on a Galerkin approximatiorigto= Ay on the Krylov space spanned
by v, Av,..., A™ 1y, A suitable basis for this space is given by the Lanczostitara
named after Lanczos (1950), which has become a classic iemcathlinear algebra pri-
marily because of its use for eigenvalue problems and splvirear systems; see, e.g.,
Golub & Van Loan (1996), Chap. 9, and Trefethen & Bau (199Rg€ VI. The use of the
Lanczos method for approximatirg*“*4v was first proposed by Park & Light (1986),
properly in the context of approximating the evolution gger of the Schrodinger equa-
tion. Krylov subspace approximation to the matrix exporamperator has since been
found useful in a variety of application areas — and has besmobrably included as
the twentieth of the “Nineteen dubious ways to compute thoegntial of a matrix”
by Moler & Van Loan (2003). Error analyses, both for the Hetam and non-Hermitian
case, have been given by Druskin & Knizhnerman (1995), Hanatib& Lubich (1997),
and Saad (1992).

Krylov Subspace and Lanczos Basid.et A be anN x N Hermitian matrix, and let
be a non-zero compleX-vector. Themth Krylov subspacef CV with respect ta4 and
vis

Ko (A, v) = sparfv, Av, A%v,..., A" 1), (2.16) [I11:krylov-space

that is, the space of all polynomials dfup to degreen — 1 acting on the vectow.

The Hermitian Lanczos methdouilds an orthonormal basis of this space by Gram-
Schmidt orthogonalization: beginning with = v/||v]|, it constructsv,.; recursively
fork =1,2,... by orthogonalizingdv, against the previous; and normalizing:

k
Tht1,k V41 = Avg — E Tik Uj (2.17) ‘I I'l:krylov-lanczos-iter
j=1

with 7, = vy Avy, for j < k, and with7,41 ; > 0 determined such that, is of
unit Euclidean norm — unless the right-hand side is zero hitlwvcase the dimension of
Km(A,v)is k for m > k and the process terminates.

By the mth step, the method generates fiiex m matrix V,,, = (v; ...v,,) having
the orthonormal Lanczos vectars as columns, and the x m matrix T,,, = () with
T = 0for j —k > 1. Because of (2.17), these matrices are related by

AV = Vi T + Ton 1.mUm 1€, (2.18) | I11:kryl ov- AV

whereel = (0...01) is themth unit vector. By the orthonormality of the Lanczos
vectorsuy, this equation implies

= VA, @19

which shows in particular thék,, is a Hermitian matrix, and hence a tridiagonal matrix:
75 = 0for|j — k| > 1. The sum in (2.17) therefore actually contains only the tvonis
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for j = k — 1, k. For a careful practical implementation, error propagadiod the loss of
orthogonality due to rounding errors are a concern for largesee Golub & Van Loan
(1996), Sect.9.2.

Galerkin Method on the Krylov Subspace.Following Park & Light (1986), we consider
the Galerkin method (1.1) for the approximation of the alitialue problem

ig=Ay, y0)=v with |v||=1

on the Krylov subspack,, (A4, v) with m < N (m < 20, say): we determine an ap-
proximationu,, (t) € K, (4, v) with u,,(0) = v such that at every instant the time
derivative satisfies

(Wi | #0m () — Aum(B)) =0 Ywm, € Kin(4,0).
Writing u,, (t) in the Lanczos basis,
um(t) =Y ck(t)ve = Vine(t)  with  c(t) = (ck(t))
k=1
we obtain for the coefficients the linear differential edomat
ic(t) = Trnc(t), c(0) =e; = (1,0,...,0)T

with the Lanczos matrif’,, = (U;Avk);nkzl of (2.19). Clearly, the solution is given by

c(t) = e~ #Tmey. The Galerkin approximation,, (t) = V;,c(t) at time At is thus the
result of the

Lanczos method: e "4ty ~ Ve A Tm ¢y (2.20) [111:kryl ov-exp

For the small tridiagonal Hermitian matri,,, the exponential is readily computed from
a diagonalization of;,,. The algorithm needs to keep all the Lanczos vectors in mgmor
which may not be feasible for large problems. In such a sdnathe Lanczos iteration
may be run twice with only four vectors in memory: in a first fencomputing7’,,, and
in a second run (without recomputing the already known immeducts) for forming the
linear combination of the Lanczos vectors according toQR.2

By the interpretation of (2.20) as a Galerkin method, we kriimwn Sect. 1.1 that
norm and energy are preserved.

A Posteriori Error Bound and Stopping Criterion. From Theorem I1.1.5 with the
Krylov subspace as approximation space we have the erracbou

[lum () —y(t)] < /0 dist( Aun, (s), Kim (A, v)) ds .

By (2.18) we have
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At (8) = AV e 5T ey =V, T e 777 €1 + Ty 1.m U e €750 ¢y
and therefore
dist( At (), Kon(4,0)) = v [~

m,1|’

where[],,.1 denotes thém, 1) element of a matrix. This gives us the following com-
putable error bound.

Theorem 2.4 (A Posteriori Error Bound). Let A be a Hermitian matrix, and a vector
of unit Euclidean norm. Then, the error of theth Lanczos approximation i@ %4y is
bounded by

At
|Vine™ 40T ¢ — e=idtAy| <7y / [T |ds. DO
i |

If we approximate the integral on the right-hand side by thbtrendpoint rectangle
rule, we arrive at &topping criterionfor the Lanczos iteration (for givedt) or alterna-
tively at astep-size selection criterigfior givenm),

At T |[e7 2] ] < tol

for an error toleranctl, or without the factorAt for an error tolerance per unit step. This
criterion has previously been considered with differetaripretations by Saad (1992) and
Hochbruck, Lubich & Selhofer (1998). In view of Theorem 2adsafer choice would be
to take a quadrature rule with more than one function evislna¢Vvith a diagonalized’,,,
this is inexpensive to evaluate.

Lanczos Method for Approximating f(A)v. The following lemma follows directly from
the Lanczos relations (2.18) and (2.19).

Lemma 2.5. Let A be a Hermitian matrix an@ a vector of unit norm.

(a) If all eigenvalues ofA are in the intervala, b], then so are those @f,,.
(b) For every polynomiap,,, 1 of degree at most — 1, it holds that

Pt (A0 = Vo s (T e @2y

Proof. (a) If 6 is an eigenvalue df,, to the eigenvectow of unit norm, thenu = V,,,w
is again of unit norm, and by (2.19),= w*T,,w = u*Au, which is in[a, b].
(b) Clearly,v = V,,,e;. From (2.18) it follows by induction ovet = 1,2, . .. that
ARVier = Vi T eq

as long as the lower left entef, TX~1e; = 0. SinceT*~! is a matrix withk — 1 subdi-
agonals, this holds fdt < m — 1. O

For any complex-valued functiofi defined on[a, b], we havef(A) given via the
diagonalizationd = U diag\;)U* as f(A4) = U diag f(A;))U*. Justified by (a) and
motivated by (b), we can consider the approximation

FA % Vi £ (T . @2.22)

For f(x) = e~"A!® this is (2.20). Lemma 2.5 immediately implies the followingeful
approximation result.
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Theorem 2.6 (Optimality of the Lanczos Method).Let f be a complex-valued function
defined on an intervdh, b] that contains the eigenvalues of the Hermitian matti>and
let v be a vector of unit norm. Then, the error of the Lanczos appration to f(A)v is
bounded by

Vi f (Tm)ex — f(A)vl <2 inf max [pp_1(z) = f(2)],

Pm—1 z€a,b]
where the infimum is taken over all polynomials of degree attmo— 1.

Proof. By Lemma 2.5 (b), we have for every polynomigl _; of degree at most — 1,

Vinf(Trm)er = f(A)v = Vi (f (T) = Prm—1(Tm)) €1 = (f(A) = pm-1(4))v.

Diagonalization ofA andT,,, and Lemma 2.5 (a) show that each of the two terms to the
rightis bounded bynax,c(q,p) | f (%) — pm—1(z)]. O

Error Bound of the Lanczos Method for the Matrix Exponential Operator. Combin-
ing Theorems 2.6 and 2.2, together with the linear transition from the intervala, b]
to [—1, 1], yields the following result.

Theorem 2.7 (Eventual Superlinear Error Decay).Let A be a Hermitian matrix all of
whose eigenvalues are in the intery@) b], and letv be a vector of unit Euclidean norm.
Then, the error of the Lanczos method (2.20) is bounded by

) . 2w \™m
||VmesztTmel — efZAtAvH <8 (617(“’/27”) 2—) for m>w
m

with w = At (b — a)/2. O

111.3 Splitting and Composition Methods

The methods of the previous section have the attractivaifeahat they only require
matrix-vector products with the discretized Hamiltonidrof (2.1). However, the maxi-
mum permitted step size is inversely proportional to themof A, which leads to a time
step restriction ta\t = O(Az?), as we recall from (2.15). The splitting methods consid-
ered in this section can achieve good accuracy with no swsthation, provided that the
wave function has sufficient spatial regularity.

[11.3.1 Splitting Between Kinetic Energy and Potential

We consider the Schrodinger equation

ip=Hy with H=T+V, (3.2) |III:spIit-schrod
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whereT and V' are the kinetic energy operator and the potential, respgtior the
corresponding discretized operators. We will assume nadbon the self-adjoint operator
or matrix7'. In our theoretical results we will assume bounds of the mi@kl”, but the
method to be described can work well under weaker assungpti@m the practical side,
the basic assumption is that the equations

=T and o=V

can both be solved more easily than the full equation (3.%)wA have seen in Chap.|,
on the analytical level this is definitely the case in the nigstretized Schrodinger equa-
tion: the free Schrodinger equation (orfly is solved by Fourier transformation, and the
equation with only the potentid is solved by multiplying the initial data with the scalar
exponentiak—"V (*) at every space point. This situation transfers, in particular, to the
Fourier collocation method of Section 111.1.3, where sotythe differential equations for
the kinetic and potential parts in (1.32) or (1.33) is domgally, using the exponentials
of diagonal matrices and FFTs.

Strang Splitting. We consider time stepping from an approximatighat timet” to the
new approximatiog™*! at timet"t! = t” + At by

A ) A
Pl = ISV g AT itV (32) [I11:split-strang

This symmetric operator splitting was apparently first @ddy Strang (1968) and in-
dependently by Marchuk (1968) in the context of dimensimspitting of advection
equations. It was proposed, in conjunction with the Foumethod in space, for non-
linear Schrodinger equations by Hardin & Tappert (1973) madiscovered for the linear
Schradinger equation, in the disguise of the Fresnel émuaff laser optics, by Fleck,
Morris & Feit (1976). The scheme was introduced to chemibgkics by Feit, Fleck &
Steiger (1982). In combination with Fourier collocationsipace, the method is usually
known as thesplit-step Fourier methoth the chemical and physical literature.

Algorithm of the Split-Step Fourier method. In the notation of Sect. 111.1.3, we recall
the differential equation (1.33) for the vector= (u,) of grid valuesu, (t) = ¥k (z;,1):

it = Fi' DgFru+ Viu

with the diagonal matrice® = ﬁ diag(k?) andVx = diag(V (z;)), wherek and;j
range from—N/2 to N/2 — 1. With method (3.2), a time step is computed in a way that
alternates between pointwise operations and FFTs, owargithe approximation at time
t" by that at timet"+1:

replacey; := e~ 2" V@), (j=—-N/2,...,N/2—1)
FFT: v := Fru

replaceyy, := e~ *AR /@y, (k= —N/2,... N/2—1)
inverse FFTiu := Fy'u

replaceu; := emi%" V@dy; (j=-N/2,...,N/2—1).

SAREIR A
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The exponentials in Substep 5 and Substep 1 of the next tepecain be combined into
a single exponential if the output at tine*! is not needed.

Unitarity, Symplecticity, Time-Reversibility. The Strang splitting has interesting struc-
ture-preserving properties. For self-adjdihandV, the exponentialsi4t 7 ande—i3" V
are unitary (they preserve the norm) and symplectic (theggave the canonical symplec-
tic two-formw (¢, ) = —2Im (£ | n), see Theorem 11.1.2), and so does their composition.
The time-step operator of the Strang splitting is thus batiiany and symplectic. We
remark that neither holds for the Chebyshev method, whéhedsanczos method is uni-
tary, but symplectic only in the restriction to the Krylovtspace, which changes from
one time step to the next. Moreover, the Strang splittingnietreversible: a step of the
method starting fromy™*! with negative step size At leads us back to the old,,, or
more formally, exchanging < n + 1 and At < — At in the method gives the same
method again. We note that neither the Chebyshev methodhadranczos method are
time-reversible.

[11.3.2 Error Bounds for the Strang Splitting

For bounded” andV, Taylor expansion of the exponentials readily shows

e itV omiALT —iGt V. —iAH(T+V) + (’)(At3(|\T|| + ||VH)3) )

However, such an error bound is of no use wiiear V' are of large norm. SincgT’|| ~
(Az)~2 (as in (2.15)), this error bound would indicate a small eamly for At < Az?,
whereas numerical experiments clearly indicate that thar @f the Strang splitting for
initial data of moderately bounded energy is bounded inddgetly of Az for a given
At. For problems with smooth potential and smooth initial daterror is numerically
observed to b&(At?) uniformly in Az after one step of the method, a@{t" At?) at
time¢™ aftern steps, uniformly im and Az.

In the following we present an error analysis from Jahnke &ich (2000), which
explains this favourable behaviour of the splitting methiddre we assume thdt and
V' are self-adjoint operators on a Hilbert spdg¢eand? is positive semi-definite. We
require no bound fof’, but we assume a (moderate) bound/of

V| < Bl Vi e H. (3.3) |III:spIit-V—bound|

We introduce the norms
el = (| T+ 1I|g)'/?
lllz = (| (T + 1) | )2

which are the usual Sobolev norms in the cas&'cE — A, and can be viewed as discrete
Sobolev norms in the spatially discrete case.

Our main assumptions concern the commutfol’] = TV — VT and the repeated
commutatof T, [T, V]] = T?V — 2TVT + VT?. We assume that there are constants
andc; such that the commutator bounds

(3.4) ‘III:spIit-norms‘
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T VIel < ellelh (35) [I11:split-comm]

T[T, V]]ell < cllellz (3.6) |I Il:split- corm12|

are satisfied for alp in a dense domain dfi. In the spatially continuous case with=
—Aand a potentidl (z) that is bounded together with its first- to fourth-order datives,
we see from the identities

(A, V] AV p4+2VV -V

(A AV = AV +AVAV -Vo+4 > 0,0V 9,010
7,0

that the commutator bounds (3.5)—(3.6) are indeed validspatial discretization by the
Fourier method, it is shown by Jahnke & Lubich (2000) thastheommutator bounds
hold with constantg; andc; that are independent of the discretization parameter. We
then have the following second-order error bound.

hmsplit-error| Theorem3.1 (Error Bound for the Strang Splitting). Under the above conditions, the

error of the splitting method (3.2) at= ¢ is bounded by
n __ 2
o™ =¥ (@)l < C A7t max Jlio(7)]]2

whereC' depends only on the bourdgiof (3.3) and orcy, ¢; of (3.5)—(3.6).

Itis a noteworthy fact that the time discretization errothaf splitting method depends
on thespatialregularity of the wave function, not on its temporal regiffaimhe proof is
done in the usual way by studying the local error of the me(tiuat is, the error after one
step) and the error propagation. For the local error we Hawéallowing bounds.

em split-local | Lemma 3.2 (Local Error). (a) Under conditions (3.3) and (3.5),

—i GtV AT —i GtV

@ — e ATl < Oy A2 o)1, (3.7)

lle

whereC; depends only on; and B.
(b) Under conditions (3.3) and (3.5)—(3.6),

He—i%ve—iAtTe—i%Vso _ e—iAt(T-Q—V)(p” < Cy A H‘PH% (3.8)
whereC; depends only ony, ¢, and B.

The local error bound (3.8) together with the telescopingifda

n—1
Y — (") = S0 — Engp® = > §" IS — B) EVy (3.9)
j=0

with § = e 12" Ve iAT—i5V and E = ¢~ *AUT+V) immediately yields the error
bound of Theorem 3.1. It thus remains to prove the lemma. @kilidea of the following
proof is the reduction of the local error to quadrature exror
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Proof. (a) We start from the variation-of-constants formula
At
e TAUTHY) ) o—iMT Z/ eI =i A=) T+V) o, g
0
Expressing the last term under the integral once more byaime $ormula yields
At
e*iAt(T“rV)(p — e*iAtT(p _ 71/ ef’isTVef’i(Atfs)T(pdS 4 thp ’
0
where the remainder

At At—s
Rl _ _/ esTV/ e—iaTVe—i(At—s—U)(T+V) do ds
0 0

is bounded in the operator norm R, || < %AtQBQ. On the other hand, using the

exponential series far2* V' leads to
e~ GEV miAT j—i Gt VSD _ e—iAtTSD _ %At(ve—iAtT + e—iAtTV)SD + Rop,
where||Rz|| < %AtQBQ. Consequently, the error is of the form

e—i%ve—iAtTe—i%Vw _ e—iAt(T-i—V)(p =d+r, (3.10) EI

wherer = Ry — Ry and, withf(s) = —i e T Ve #(At=9)T
At
d = %At (£(0) + f(AL) — [ f(s)ds (3.11) [d]
t1 , 1 ' "
= —At2/0 (5= 0) ['(0At) df = EAt?’/O 6(1 —0)f"(0.At) db

is the error of the trapezoidal rule, written in first- and@®d-order Peano form. Since
f'(s) = —e T[T, V]e~"At=9)Ty, condition (3.5) yields the error bound (3.7).

(b) For the error bound (3.8), we ugé&(s) = ie T[T, [T, V]e A=5)T¢ and
condition (3.6) to bound

1
ld]l < 35 e2 A8 ell2 - (3.12)

It remains to study = Rov — Ryv. We have
At ) At—s ) ) _
Ry = _/ e—stv/ e—zUTVe—z(At—s—a)T do ds + Ry
0 0

with || Ry || < CAt*B3, and

R, = _% At2 (VQefiAtT i 2VefiAtTV_i_efiAtTV2) i }}2
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with || R|| < CAt®B3. We thus obtain

r=d+T7, (3.13)

where? = Ryp — Ryp is bounded by||7|| < CAt B3 ||¢| and, with g(s,0) =
—e_iSTVe_iUTVS_i(At_S_U)T(p,

~ 1 At pAt—s
d= 3 At? (g(O, 0) + 2¢(0, At) 4+ g(At, O)) - / / g(s,0)dods
o Jo

is the error of a quadrature formula that integrates coh&tiaetions exactly. Hence,

9g
oo ’
where the maxima are taken over the triarigke s < At, 0 < o < At — s. Since

a_-g (S, 0,) _ '6715T [T, V]efzaTVefl(Atfsfa)Tso_i_Z- €7ZSTV€7WT [T, V]efz(Atfsfa)Tso’

we obtain, using (3.5),

|d|| < At (max

0
a—iH—i—max

0
Ha—iH <eci(aa+B) el +Be el -

Similarly, ||0g/dc|| < B¢y ||¢||1, so that finally

ldll < CAE |l -

Together with the above bounds foandd this yields the error bound (3.8). O

[11.3.3 Higher-Order Compositions

| : hi gher - order |

The Strang splittings(At) = e~i2"Ve iATc~i%"V yields a second-order method.
Higher-order methods can be obtained by a suitable coniposif steps of different
size of the basic method:

YT = S(yAt) ... S(y A"
with symmetrically arranged coefficients = ~,,1_, determined such that
S(1AL) ... S(q At) = e AT L O(AFH (| T + [V ])PH)

with an orderp > 2. Composition methods of this or similar type have been aevisy
Suzuki (1990) and Yoshida (1990), and improved methods k@ been constructed,
e.g., by McLachlan (1995), Kahan & Li (1997), Blanes & Moa®@2), Sofroniou &
Spaletta (2005). We refer to Hairer, Lubich & Wanner (20@ct. V.3, and McLachlan
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& Quispel (2002) for reviews of composition methods, foritrarder theory, for their
coefficients, and for further references. For example, aelesnt method of ordey = 8
with s = 17 by Kahan & Li (1997) has the coefficients

v =7 = 0.13020248308889008087881763
Y2 =716 = 0.56116298177510838456196441
v3 = y15 = —0.38947496264484728640807860
va =714 = 0.15884190655515560089621075
v5 = 113 = —0.39590389413323757733623154 (3.14) |eq: conp_or der 8a
Y6 =712 = 0.18453964097831570709183254
v7 =711 = 0.25837438768632204729397911
Y8 =7v10 = 0.29501172360931029887096624
Yo = —0.60550853383003451169892108

As with the basic Strang splitting method, the presence ofeps of | T’|| in the error
bound would seem to make a step-size restriction<. Az? necessary, but indeed this
is not the case. Thalhammer (2008) proves high-order eandbs for such methods that
require no bound of". By a formidable extension of the approach in the proof oféFhe
rem 3.1, using-fold repeated commutator bounds and achieving a redutdiguadra-
ture errors, it is shown that in the spatially continuousocagh 7' = — A and a smooth
bounded potential, there igith-order error bound at= ¢"

67 = ()] < C APt max, [¥(D)],

with the pth-order Sobolev norm. It is to be expected that in the sihatiéscretized case,
the required commutator bounds hold uniformlydn: so that the error bound becomes
uniform in the spatial discretization parameter.

l11.4 Integrators for Time-Dependent Potentials

[11.4.1 Magnus Methods

[11.4.2 Adiabatic Integrators



