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Chapter II.
Reduced Models via Variational
Approximation

There is a wide variety of models, or approximations, that are intermediate be-
tween the full time-dependent many-body quantum mechanicsand classical me-
chanics. Most of them are based on a time-dependent variational principle, first used
by Dirac (1930), which plays a similarly fundamental role for the time-dependent
Schrödinger equation as the Rayleigh-Ritz variational principle for the Schrödinger
eigenvalue problem. Indeed, several of the methods for the stationary problem, as
for example the Hartree–Fock method, have a time-dependentanalogue that comes
about by the same choice of approximation manifold to which the variational prin-
ciple is restricted. There are, however, different aspectsthat come into play in the
time-dependent situation, both in the modeling/approximation aspects and in the
numerical treatment of the reduced models.

We first give an abstract formulation and various interpretations of the time-
dependent variational principle, and then turn to some basic examples that take us
from the full molecular Schrödinger equation to classicalmolecular dynamics: the
adiabatic or time-dependent Born–Oppenheimer approximation that eliminates the
electronic degrees of freedom, the time-dependent self-consistent field approxima-
tion that separates the nuclei, and Gaussian wavepacket dynamics that parametrizes
the single-particle wave functions. At the end of the chapter we address the theoret-
ical question of approximation properties of variational approximations.

II.1 The Dirac–Frenkel Time-Dependent Variational
Principle

In this section we give the abstract formulation of the time-dependent variational
principle and discuss its structural properties.

II.1.1 Abstract Formulation

We consider an abstract Schrödinger equation on a complex Hilbert spaceH with
inner product〈·|·〉, with a HamiltonianH that is a self-adjoint linear operator onH,

dψ

dt
=

1

i~
Hψ . (1.1)
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Let M be a submanifold ofH, and foru ∈ M denote byTuM the tangent space
at u, which consists of the derivatives of all differentiable paths onM passing
throughu. We think ofM as an approximation manifold on which an approximate
solutionu(t) to the solutionψ(t) of (1.1) with initial datau(0) = ψ(0) ∈ M is
sought. The functiont 7→ u(t) ∈ M is determined from the condition that at every
time t, its derivativedu/dt (t), which lies in the tangent spaceTu(t)M, be such that
the residual in the Schrödinger equation is orthogonal to the tangent space:

du

dt
∈ TuM such that

〈
v

∣∣∣
du

dt
− 1

i~
Hu

〉
= 0 ∀ v ∈ TuM . (1.2)

The tangent spaceTuM is known to be a real-linear closed subspace ofH. We will
always assume that in fact

TuM is a complex linear space, (1.3)

that is, with v ∈ TuM, also iv ∈ TuM. In this situation we get the same condition
if we consider only the real part or the imaginary part of the inner product of (1.2).
We will see, however, that these two cases lead to very different interpretations: as an
orthogonal projection onto the tangent space in case of the real part, as a symplectic
projection and as the Euler–Lagrange equations of an actionfunctional in case of
the imaginary part.

We remark that from a numerical analysis point of view, condition (1.2) can be
seen as a Galerkin condition on the state-dependent approximation spaceTuM.

Historical Note. Dirac (1930) used condition (1.2) without further comment to de-
rive the equations of motion of what is now known as the time-dependent Hartree–
Fock method. Frenkel (1934), p. 253, gives the interpretation as an orthogonal pro-
jection and refers to the appendix of the Russian translation of Dirac’s book as the
origin of the argument. Some thirty years later, the Dirac–Frenkel reasoning was
taken up again by McLachlan (1964) and enriched by further examples. Condition
(1.2) is therefore often called the Dirac–Frenkel–McLachlan time-dependent varia-
tional principle in the chemical physics literature, see Heller (1976) and, e.g., Baer
& Billing (2002). In theoretical and nuclear physics, the derivation from Dirac’s
quantum-mechanical action functional and with it the symplectic viewpoint has
rather been emphasized; see Kerman & Koonin (1976), Rowe, Ryman & Rosen-
steel (1980), Kramer & Saraceno (1981) and, e.g., Feldmeier& Schnack (2000).

II.1.2 Interpretation as an Orthogonal Projection

Taking the real part in (1.2), we arrive at the minimum condition for the following
linear approximation problem:

du

dt
is chosen as thatw ∈ TuM for which

∥∥∥w − 1

i~
Hu

∥∥∥ is minimal. (1.4)

(Note that‖w + v − 1
i~Hu‖2 = ‖w − 1

i~Hu‖2 + 2 Re〈v , w − 1
i~Hu〉 + ‖v‖2.)
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In other words,du/dt is theorthogonal projectionof 1
i~Hu onto the tangent space

TuM. With the orthogonal projection operator ontoTuM denoted byP (u), we can
thus rewrite (1.2) as a differential equation on the manifoldM,

du

dt
= P (u)

1

i~
Hu , (1.5)

which isnonlinearunlessM is a linear subspace ofH. The (global or local in time)
existence of a solutionu(t) ∈ D(H) ∩ M can be ascertained only with further
specifications about the operatorH and the manifoldM. In the following we make
formal calculations which implicitly assume that a sufficiently regular solutionu(t)
exists.

II.1.3 Interpretation as a Symplectic Projection

The real-bilinear form

ω(ξ, η) = −2~ Im 〈ξ | η 〉 , ξ, η ∈ H ,

is antisymmetric, andω is called the canonicalsymplectic two-formon H. Since
TuM is a complex linear space, for everyϕ ∈ H there exists a unique

w = P (u)ϕ ∈ TuM such that ω(v, w) = ω(v, ϕ) ∀ v ∈ TuM .

This non-degeneracy of the two-formω makesM a symplectic submanifoldof H,
andP (u) is the symplectic projectionoperator ontoTuM. (HereP (u) actually
coincides with the orthogonal projection considered in theprevious subsection.)
Taking the imaginary part in condition (1.2) and multiplying with−2~ yields

ω
(
v,
du

dt

)
= 2 Re

〈
v

∣∣Hu
〉

∀ v ∈ TuM . (1.6)

With the average of the Hamiltonian

H(u) = 〈u |H |u〉 ,

the right-hand side in (1.6) is recognized as the derivativedH(u)v in the direction
of v. Now, (1.6) rewritten as

ω
(
v,
du

dt

)
= dH(u)v ∀ v ∈ TuM , (1.7)

is a Hamiltonian systemon the symplectic manifoldM with the Hamilton func-
tion H(u); see Marsden & Ratiu (1999), Chap. 5.4. Let us state and verify basic
properties of this system.

Theorem 1.1. The total energy〈H〉 is conserved along solutions of the Hamilto-
nian system (1.7) onM .
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Proof. We have (witḣ= d/dt)

d

dt
〈u |H |u〉 = 2 Re

〈
u̇

∣∣Hu
〉

= ω(u̇, u̇) = 0

on using (1.6) withv = u̇ ∈ TuM in the second equation. ⊓⊔

There is also the following important conservation property, which we first state
briefly and then explain in detail.

Theorem 1.2. The flow of the Hamiltonian system (1.7) is symplectic.

This means that the symplectic two-formω is preserved in the following sense: Let
u0 ∈ M, and letv0 ∈ Tu0

M be a tangent vector atu0. Then there is a pathγ(τ)
onM with γ(0) = u0 anddγ/dτ (0) = v0. Let u(t) = u(t, u0) be the solution of
(1.7) with initial datau0, and denote by

v(t) =
d

dτ

∣∣∣
τ=0

u(t, γ(τ)) ∈ Tu(t)M

the tangent vector propagated along the solutionu(t, u0) (note thatv(t) is the solu-
tion with initial datav0 to the differential equation linearized atu(t, u0)). Letw(t)
be another tangent vector propagated along the same solution, corresponding to an
initial tangent vectorw0 atu0. Then, the statement of Theorem 1.2 is that

d

dt
ω(v(t), w(t)) = 0 . (1.8)

Proof. By the bilinearity and antisymmetry ofω we have

d

dt
ω(v, w) = −ω(w, v̇) + ω(v, ẇ) .

Differentiating (1.6) with respect to the inital value, we obtain that this equals

d

dt
ω(v, w) = −2 Re

〈
w

∣∣Hv
〉
+2 Re

〈
v

∣∣Hw
〉
= 0 . ⊓⊔

We will further discuss symplectic and Hamiltonian aspectsin Section II.4.2
where we consider the non-canonical Hamiltonian structureof the equations of mo-
tion for parametrized wave functions.

II.1.4 Interpretation as an Action Principle

Taking the imaginary part in (1.2) also yields that every solution of (1.2) makes the
action functional

S(u) =

∫ t1

t0

〈
u(t)

∣∣∣ i~
du

dt
(t) −Hu(t)

〉
dt (1.9)
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stationary with respect to variations of paths on the manifold M with fixed end-
points, because by partial integration and the symmetry ofH ,

δS(u) =

∫ t1

t0

(〈
δu(t)

∣∣∣ i~
du

dt
(t) −Hu(t)

〉
+

〈
u(t)

∣∣∣ i~
dδu

dt
(t) −Hδu(t)

〉)
dt

= −2~

∫ t1

t0

Im
〈
δu(t)

∣∣∣
du

dt
(t) − 1

i~
Hu(t)

〉
dt .

The conditionδS = 0 is the quantum-mechanical analogue of Hamilton’s principle
in classical mechanics. Also note thatS(u) is real if‖u(t)‖2 = Const., as is seen by
partial integration in (1.9).

II.1.5 Conservation Properties

We know from the Heisenberg equation (4.4) that the average〈A〉 is conserved along
solutions of the Schrödinger equation ifA commutes with the HamiltonianH . For
variational approximations (1.2) there is the following criterion.

Theorem 1.3. Let the self-adjoint operatorA commute with the HamiltonianH ,
[A,H ] = 0. If

Au ∈ TuM ∀u ∈ M∩D(A) , (1.10)

then the average ofA along variational approximationsu(t) ∈ M ∩ D(A) is
conserved:〈u(t) |A |u(t)〉 = Const .

Proof. We have

d

dt
〈u |A |u〉 = 2 Re 〈Au | u̇〉 = 2 Re 〈Au | 1

i~
Hu〉 = 〈u | 1

i~
[A,H ] |u〉 = 0

on using (1.2) and (1.10) in the second equality. ⊓⊔

ChoosingA as the identity operator, we obtain the following useful corollary.

Theorem 1.4. The norm is conserved along variational approximations ifM con-
tains rays, that is, withu ∈ M alsoαu ∈ M for everyα > 0.

Proof. The stated condition impliesu ∈ TuM for u ∈ M, and hence the result
follows from Theorem 1.3. ⊓⊔

II.1.6 An A Posteriori Error Bound

A simple but sometimes useful general error bound for variational approximations
is obtained in terms of theL2 distance dist

(
1
i~Hu, TuM

)
of 1

i~Hu along the vari-
ational approximationu(t) to the corresponding tangent space.
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Theorem 1.5. If u(0) = ψ(0) ∈ M, then the error of the variational approxima-
tion is bounded by

‖u(t) − ψ(t)‖ ≤
∫ t

0

dist

(
1

i~
Hu(s), Tu(s)M

)
ds . (1.11)

Proof. We subtract (1.1) from (1.5), so that

d

dt
(u− ψ) =

1

i~
H(u− ψ) − P⊥(u)

1

i~
Hu with P⊥(u) = I − P (u) .

Multiplying with u− ψ and taking the real part gives

‖u− ψ‖ · d
dt

‖u− ψ‖ =
1

2

d

dt
‖u− ψ‖2 = Re

〈
u− ψ | d

dt
(u − ψ)

〉

= Re
〈
u− ψ | − P⊥(u)

1

i~
Hu

〉
≤ ‖u− ψ‖ · ‖P⊥(u)

1

i~
Hu‖ .

Dividing by ‖u− ψ‖, integrating from0 to t and noting

dist
( 1

i~
Hu, TuM

)
=

∥∥∥P⊥(u)
1

i~
Hu

∥∥∥ =
∥∥∥
du

dt
− 1

i~
Hu

∥∥∥

then yields the error bound (1.11). ⊓⊔

For the error in the average of an observableA along the variational approximation
we note the bound
∣∣〈u |A |u〉−〈ψ |A |ψ〉

∣∣ =
∣∣〈u−ψ |Au〉+〈Aψ |u−ψ〉

∣∣ ≤ ‖u−ψ‖·
(
‖Au‖+‖Aψ‖

)
.

II.2 Adiabatic / Born–Oppenheimer Approximation

In the following three sections we turn to basic examples of variational approxi-
mation, which take us in steps from the full molecular Schrödinger equation down
to classical molecular dynamics. We begin with the adiabatic approximation that
separates the motion of heavy nuclei and light electrons.

II.2.1 Electronic Schrödinger Equation

We return to the molecular Hamiltonian (I.5.6), viz.,

Hmol = TN + Te + V . (2.1)

In a first step we ignore the contribution from the kinetic energy of the nuclei,TN

(vaguely motivated by the fact thatMn ≫ m), and work with the electronic Hamil-
tonian
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He(x) = Te + V (x, ·) , (2.2)

which acts on functions of the electronic coordinatesy and depends parametri-
cally on the nuclear coordinatesx. We consider the electronic structure problem,
the Schrödinger eigenvalue problem

He(x)Φ(x, ·) = E(x)Φ(x, ·) , (2.3)

typically for the smallest eigenvalue, the ground state energy. Actually computing
eigenvalues and eigenfunctions of the electronic Schrödinger equation is the primary
concern of computatonal quantum chemistry; see, e.g., Szabo & Ostlund (1996), and
Le Bris (2003) from a more mathematical viewpoint. Here we just suppose that this
problem is solved in some satisfactory way.

We fix an eigenfunctionΦ(x, ·) ofHe(x) corresponding to the eigenvalueE(x),
and assume thatΦ(x, y) is of unitL2 norm as a function ofy and depends smoothly
onx. For fixed nuclear coordinatesx, the solution of thetime-dependent electronic
Schr̈odinger equation

i~
∂Ψe

∂t
= He(x)Ψe (2.4)

with initial dataψ0(x)Φ(x, ·) is given by

Ψe(x, y, t) = e−iE(x)t/~ψ0(x) · Φ(x, y) .

II.2.2 Schrödinger Equation for the Nuclei on an Electronic
Energy Surface

This motivates theadiabatic approximationto the molecular Schrödinger equation,
which is the variational approximation on

M = {u ∈ L2
x,y : u(x, y) = ψ(x)Φ(x, y), ψ ∈ L2

x} . (2.5)

HereL2
x = L2(R3N ) denotes the Lebesgue space of square integrable functions

depending only on the nuclear coordinatesx, andL2
x,y = L2(R3N ×R

3L) is theL2

space of functions depending on both nuclear and electroniccoordinates. Note that
hereM is a linear space so thatTuM = M for all u ∈ M. As we show below, the
Dirac-Frenkel variational principle (1.2) then leads to aSchr̈odinger equation for
the nucleion the electronic energy surfaceE:

i~
∂ψ

∂t
= HNψ with HN = TN + E +B1 +B2 , (2.6)

B1 =
N∑

n=1

~

Mn
Im 〈∇xn

Φ |Φ〉L2
y
· pn , B2 =

N∑

n=1

~2

2Mn
‖∇xn

Φ‖2
L2

y
,

with pn = −i~∇xn
. The HamiltonianHN acts on functions of only the nuclear

coordinatesx, with the electronic eigenvalueE as a potential. The last two terms
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B1 andB2 contain derivatives of the electronic wave functionΦ with respect to
the nuclear coordinatesx. They are usually neglected in computations, first because
they are expensive to compute or simply not available and second by the formal
argument – to be taken with caution – that they carry the largemassesMn in the
denominator and are of lower differentiation order than thekinetic energy term. The
resulting simplified approximation with the Hamiltonian

HBO = TN + E

is known as thetime-dependent Born–Oppenheimer approximation. It describes the
motion of the nuclei as driven by the potential energy surfaceE of the electrons. It
underlies the vast majority of computations in molecular dynamics.

The termB2 can indeed be safely neglected since it can be shown that this
omission introduces an error that is of the same magnitude asthe approximation
error in the adiabatic approximation.

The termB1, known as theBerry connection, vanishes for real eigenfunctionsΦ
and, more generally, it can be made to vanish by a gauge transformationΦ(x, y) →
eiθ(x)Φ(x, y) with θ satisfying∇xn

θ(x) = −Im 〈∇xn
Φ |Φ〉L2

y
. This transformation

of Φ changesψ(x, t) → e−iθ(x)ψ(x, t). Note thatθ is uniquely determined up to
a constant ifΦ is indeed a smooth function ofx on all of R3N , but is only locally
uniquely determined ifΦ is a differentiable function ofx only on a domain that
is not simply connected. In the latter case,B1 can cause physical effects that are
not retained in the model otherwise; see the extensive literature on Berry’s phase,
starting with Berry (1984) and Simon (1983).

Derivation of (2.6):We note that foru(x, y) = ψ(x)Φ(x, y) we have

TNu = −
N∑

n=1

~2

2Mn

(
∆xn

ψ · Φ+ 2∇xn
ψ · ∇xn

Φ+ ψ ·∆xn
Φ
)
,

and recall that‖Φ(x, ·)‖2
L2

y
= 1 for all x. We then obtain from (1.2) withv(x, y) =

ϕ(x)Φ(x, y) for arbitraryϕ ∈ L2
x that

〈
ϕ

∣∣∣ i~
∂ψ

∂t
− Eψ +

N∑

n=1

~2

2Mn

(
∆xn

ψ + 2 〈∇xn
Φ |Φ〉L2

y
· ∇xn

ψ

− 〈∇xn
Φ | ∇xn

Φ〉L2
y
ψ

)〉

L2
x

= 0 .

On noting that0 = ∇xn
‖Φ‖2

L2
y

= 2 Re〈∇xn
Φ |Φ〉L2

y
, we obtain (2.6). ⊓⊔

II.2.3 Semiclassical Scaling

One property to the success of the adiabatic approximation is the smallness of the
mass ratio of electrons and nuclei,
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ε2 =
m

M
≪ 1 (2.7)

with M = minnMn. For ease of presentation we assume in the following that the
masses of the nuclei are all equal:Mn = M for all n. In atomic units (~ = 1,
m = 1, r = 1, e = 1) and with the small parameterε of (2.7), the molecular
Hamiltonian then takes the form

Hε
mol = −ε2

2
∆x +He(x) with He(x) = −1

2
∆y − V (x, ·) . (2.8)

We are interested in solutions to the Schrödinger equationof bounded energy, and
in particular of bounded kinetic energy

〈Ψ | − ε2

2
∆x |Ψ〉 =

1

2
‖ε∇xΨ‖2 = O(1) .

For a wavepacketeip·xa(x) this condition corresponds to a momentump ∼ ε−1 and
hence to a velocityv = p/M ∼ ε. Motion of the nuclei over a distance∼ 1 can
thus be expected on a time scaleε−1. We therefore rescale time

t→ t/ε ,

so that with respect to the new time nuclear motion over distances∼ 1 can be
expected to occur at time∼ 1. The molecular Schrödinger equation in the rescaled
time then takes the form

iε
∂Ψ

∂t
= Hε

molΨ . (2.9)

The Schrödinger equation (2.6) for the nuclei becomes

iε
∂ψ

∂t
= Hε

Nψ with Hε
N = −ε2

2
∆x + E + εB1 + ε2B2 , (2.10)

B1 = Im 〈∇xΦ |Φ〉L2
y
· p , B2 =

1

2
‖∇xΦ‖2

L2
y
,

with p = −iε∇x. We are interested in solutions over timest = O(1).

II.2.4 Spectral Gap Condition

A small error of the adiabatic approximation will be seen to be caused by two prop-
erties: in addition to the smallness of the mass ratioε2 = m/M , we require a
separation of the eigenvalueE(x) from the remainder of the spectrumσ(He(x)) of
the electronic HamiltonianHe(x),

dist
(
E(x), σ(He(x)) \ {E(x)}

)
≥ δ > 0 , (2.11)

uniformly for allx in a region where the wavefunction remains approximately local-
ized. We will give a result on the approximation error in the situation of a globally
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well-separated single eigenvalueE(x), where (2.11) is assumed to hold uniformly
for all x ∈ R3N .

Remark.It is known that the adiabatic approximation generally breaks down near
crossings of eigenvalues. A remedy then is to enlarge the approximation space by
including several energy bands that are well separated fromthe remaining ones in
the region of physical interest, e.g., using

M = {u ∈ L2
x,y : u(x, y) = ψ1(x)Φ1(x, y) + ψ2(x)Φ2(x, y), ψ1, ψ2 ∈ L2

x} ,
(2.12)

whereΦ1(x, ·), Φ2(x, ·) span an invariant subspace of the electronic Hamiltonian
He(x). The variational approximation onM then leads to a system of coupled
Schrödinger equations:

i~
∂ψ

∂t
= TNψ +B1ψ +B2ψ + V ψ for ψ =

(
ψ1

ψ2

)
(2.13)

with the matrix-valued potential

V =

(
V11 V12

V21 V22

)
with Vij(x) = 〈Φi(x, ·) |He(x) |Φj(x, ·)〉L2

y
(2.14)

and with the diagonal operatorsBj =

(
B1

j 0
0 B2

j

)
, whereBk

j are defined asBj in

(2.6) withΦk instead ofΦ.
The non-adiabatic solution behaviour near eigenvalue crossings has attracted

much attention in recent years; see, e.g., Baer & Billing (2002), Domcke, Yarkony
& Köppel (2004), and Lasser & Teufel (2005).

II.2.5 Approximation Error

We derive an error bound of the adiabatic approximation thatworks for a modified
Hamiltonian where the Coulomb interactions of the nuclei are mollified to smooth
bounded potentials. We assume

‖∇xV (x, y)‖ ≤ CV for x ∈ R
3N , y ∈ R

3L (2.15)

and consider initial data on the approximation spaceM of (2.5),

Ψ0(x, y) = ψ0(x)Φ(x, y) with ‖Hε
Nψ0‖ ≤ C0 , ‖ψ0‖ = 1 . (2.16)

We consider the adiabatic approximationu(t) = u(·, ·, t), with initial dataΨ0, de-
termined by the time-dependent variational principle:

∂u

∂t
∈ M such that

〈
v

∣∣∣ ∂u

∂t
− 1

iε
Hε

molu
〉

= 0 ∀ v ∈ M . (2.17)

We know already that
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u(x, y, t) = ψ(x, t)Φ(x, y) ,

whereψ(x, t) is the solution of the nuclear Schrödinger equation (2.10)with ini-
tial dataψ0(x). This is compared with the exact solutionΨ(t) = Ψ(·, ·, t) of the
molecular Schrödinger equation (2.9) with initial dataΨ0(x, y) = ψ0(x)Φ(x, y).

Theorem 2.1 (Space-Adiabatic Theorem, Teufel 2003).Under the above condi-
tions, the error of the adiabatic approximation is bounded by

‖u(t) − Ψ(t)‖ ≤ C (1 + t) ε for t ≥ 0 ,

whereC is independent ofε andt but depends on the gapδ of (2.11) (uniform for
x ∈ R3N ), on bounds of partial derivatives with respect tox up to third order of the
eigenfunctionsΦ, and on the boundsCV of (2.15) andC0 of (2.16).

Teufel (2003) gives a more general result, including the case of higher-dimensional
invariant subspaces as in (2.12), and a wealth of related theory. The result is also
related to the time-adiabatic theorem of Born & Fock (1928) and Kato (1950), which
states that in a quantum system with a slowly time-varying Hamiltonian a wave
function that is an eigenfunction initially, approximately remains an eigenfunction
of the Hamiltonian at any instant for long times.

Proof. We letH = Hε
mol for brevity. With the orthogonal projectionP ontoM, we

reformulate (2.17) as

iε
∂u

∂t
= Ku with K = PHP .

We then have

u(t) = e−itK/εΨ0 = Pe−itK/εΨ0 ∈ M , Ψ(t) = e−itH/εΨ0 ,

and by the variation-of-constants formula,

u(t) − Ψ(t) = e−itK/εΨ0 − e−itH/εΨ0

= − 1

iε

∫ t

0

e−i(t−s)H/ε(H −K)Pe−isK/εΨ0 ds .

We note that(H −K)P = P⊥HP (with P⊥ = I − P the complementary orthog-
onal projection). The key idea is now to writeP⊥HP essentially as a commutator
with H , which becomes possible by the gap condition (2.11). Lemma 2.2 below
tells us thatP⊥HP = ε[H,G] + ε2R with operatorsG andR that are bounded
independently ofε in appropriate norms as stated there. The remainder termε2R
immediately gives anO(ε) bound on time intervals of lengthO(1) as desired. We
then have

u(t) − Ψ(t) = ie−itH/ε

∫ t

0

eisH/ε [H,G] e−isH/ε · eisH/ε e−isK/ε Ψ0 ds+ O(ε) ,
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where we note that

eisH/ε [H,G]e−isH/ε = −iε d
ds

(
eisH/ε Ge−isH/ε

)
.

We now use partial integration and observe

d

ds

(
eisH/ε e−isK/εΨ0

)
=
i

ε
eisH/ε (H −K)P e−isK/εΨ0 .

Expressing once again(H −K)P = P⊥HP , we obtain

u(t) − Ψ(t) = εGe−itK/ε Ψ0 − ε e−itH/εGΨ0

−
∫ t

0

e−i(t−s)H/ε GP⊥HP e−isK/εΨ0 ds+ O(ε) .

The result now follows with the estimates of Lemmas 2.2 and 2.3. ⊓⊔

It remains to state and prove the two lemmas to which we referred in the above
proof. They use scaled Sobolev norms of functions onR3N or R3N × R3L. The
squares of these norms are defined by

‖ϕ‖2
1,ε = ‖ε∇xϕ‖2 + ‖ϕ‖2 ,

‖ϕ‖2
2,ε = ‖ε2∆xϕ‖2 + ‖ϕ‖2 ,

where the norm on the right-hand side is theL2 norm (theL2
x or L2

x,y norm, as
appropriate).

Lemma 2.2. The projected HamiltonianP⊥HP can be written as

P⊥HP = ε[H,G] + ε2R (2.18)

where the operatorsG andR are bounded by

‖GΨ‖ ≤ C1 ‖Ψ‖1,ε , ‖RΨ‖ ≤ C2 ‖Ψ‖2,ε (2.19)

for all Ψ ∈ C∞
0 (R3N × R3L). Moreover,P⊥HP is bounded by

‖P⊥HPΨ‖1,ε ≤ Cε ‖Ψ‖2,ε . (2.20)

Proof. In the following we write∇ = ∇x and∆ = ∆x for the gradient and Lapla-
cian with respect to the nuclear coordinatesx.

(a) We begin by computingP⊥HP for H = − ε2

2 ∆ + He. The orthogonal
projectionP ontoM is fibered as

(PΨ)(x) = P (x)Ψ(x, ·) ,

whereP (x) is theL2
y-orthogonal projection onto the span of the eigenfunction

Φ(x, ·) of the electronic HamiltonianHe(x). We have, forη ∈ L2
y,
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P (x)η = 〈Φ(x, ·) | η〉Φ(x, ·) ,

with the inner product ofL2
y. SinceΦ(x, ·) spans an invariant subspace ofHe(x),

we haveP⊥(x)He(x)P (x) = 0, and hence, forΨ ∈ L2
x,y,

P⊥HPΨ = −ε2

2
P⊥∆(PΨ) = −ε2P⊥(∇P ) · ∇Ψ − ε2

2
P⊥(∆P )Ψ .

For the first term on the right-hand side we note, using(∇P )P⊥Ψ = 〈∇Φ |P⊥Ψ〉Φ
andP⊥Φ = 0,

Q := −P⊥(∇P ) = −P⊥(∇P )P .

We thus obtain
P⊥HP = εQ · ε∇ + ε2R0 , (2.21)

whereR0(x) = − 1
2P (x)⊥(∆P )(x) is bounded onL2

y uniformly in x ∈ R3N ,
provided that the eigenfunctionΦ has bounded derivatives with respect tox. We
also note that (2.21) implies the bound (2.20).

(b) We constructF (x) such that

[He(x), F (x)] = Q(x) . (2.22)

Writing He as an operator matrix with blocks corresponding toM andM⊥,

He =

(
E 0
0 H⊥

e

)
with H⊥

e = P⊥HeP
⊥ ,

we can rewrite (2.22) as
[(

E 0
0 H⊥

e

)
,

(
F11 F12

F21 F22

)]
=

(
0 0
Q 0

)

which is solved by settingF11 = 0, F12 = 0, F22 = 0 and determiningF21 =
P⊥FP from

H⊥
e F21 − F21E = Q .

By the spectral gap condition (2.11), this equation has a unique solution, and we
thus obtain the solution to (2.22) as

F (x) =
(
H⊥

e (x) − E(x)
)−1

Q(x) .

This is bounded inL2
y uniformly forx ∈ R3N by the uniform gap condition, and so

are∇F (x) and∆F (x).
(c) We next show that the commutator ofH = − ε2

2 ∆ + He with F is a small
perturbation to[He, F ] = Q. For this we note that

[
−ε2

2
∆,F

]
= −ε∇F · ε∇− ε2

2
∆F (x) ,

so that
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[H,F ] = Q− εR1 , (2.23)

whereR1 is bounded by‖R1Ψ‖ ≤ c1‖Ψ‖1,ε for all Ψ .
(d) We set

G = F · ε∇ (2.24)

and show that the commutator withH equalsQ · ε∇ up to a small perturbation. By
(2.23) we have, using the Leibniz rule of the commutator,

[H,G] = [H,F ] · ε∇ + F · [H, ε∇]

= Q · ε∇− εR1 · ε∇− εF · ∇V .

For the term with the potentialV we recall assumption (2.15), which bounds∇V .
The termQ · ε∇ is the same as in (2.21), and hence we obtain the desired result
(2.18) withR = R0 + R1 · ε∇ + F · ∇V . The bounds (2.19) are immediate from
the construction of the operatorsG andR. ⊓⊔

We also need the following regularity result.

Lemma 2.3. In the situation of Theorem 2.1, we have

‖u(t)‖2,ε ≤ C
(
‖Hε

Nψ0‖ + 1
)

for t ≥ 0 .

Proof. We use the bounds, forψΦ ∈ M,

‖ψΦ‖2,ε ≤ c ‖ψ‖2,ε ≤ C
(
‖Hε

Nψ‖ + ‖ψ‖
)
,

for which we omit the straightforward derivation. We haveu(t) =
(
e−itHε

N /εψ0

)
Φ,

and the above inequality thus yields

‖u(t)‖ ≤ C
(
‖Hε

Ne
−itHε

N /εψ0‖ + ‖ψ0‖
)

= C
(
‖Hε

Nψ0‖ + 1
)
,

which is the stated bound. ⊓⊔

II.3 Separating the Particles: Self-Consistent Field
Methods

The remaining high dimensionality requires further model reductions. The many-
body wave function is approximated by appropriate linear combinations of tensor
products of single-particle wave functions. The simplest case arises in approximat-
ing the dynamics of the nuclei by a single tensor product, which yields thetime-
dependent Hartree method. This model describes the motion of each particle driven
by the mean field of the other particles.

Its antisymmetrized version, suitable for electron dynamics, is known as the
time-dependent Hartree–Fock method. The equations of motion for the orbitals were
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derived by Dirac (1930) in what is the historically first application of the time-
dependent variational principle. This method is the time-dependent counterpart of
the stationary Hartree–Fock method, which uses antisymmetrized products of or-
bitals to approximate eigenfunctions of the Schrödinger operator and is the basic
approach to electronic structure computations; see, e.g.,Szabo & Ostlund (1996).

Taking linear combinations of tensor products or their antisymmetrizations
yields themulti-configurationtime-dependent Hartree and Hartree–Fock methods,
put forward by Meyer, Manthe & Cederbaum (1990). In this section we describe
these various methods, derive the nonlinear equations of motion and discuss some
of their properties.

The model reductions of this section can be viewed aslow-rank approximations
to the high-dimensional multi-particle wave function. Mostly independently of the
developments in quantum mechanics, low-rank approximations to huge matrices
and tensors have been widely used as computationally viableapproximations in
many other fields including, for example, information retrieval and option pricing.
It seems, however, that using the time-dependent variational principle for low-rank
approximations in areas outside quantum mechanics has beenconsidered only re-
cently (Koch & Lubich 2007b, Nonnenmacher & Lubich 2007, Jahnke & Huisinga
2007).

II.3.1 Time-Dependent Hartree Method (TDH)

We consider the Schrödinger equation for the nuclei obtained from the Born–
Oppenheiner approximation,

i~
∂ψ

∂t
= Hψ , H = T + V (3.1)

with kinetic energyT = −∑N
n=1

~
2

2MN

∆xn
and a potentialV (x1, . . . , xN ). We

assume that the domainD(V ) containsD(T ) = H2(R3N ).

Hartree Products.We look for an approximation to the wave function of the tensor
product form

ψ(x1, . . . , xN , t) ≈ a(t)ϕ1(x1, t) . . . ϕN (xN , t)

with a scalar phase factora(t) and with single-particle functions(or molecular
orbitals) ϕn(xn, t). We thus consider the variational approximation (1.2) on the
infinite-dimensional manifold

M = {u ∈ L2(R3N ) : u 6= 0, u = aϕ1 ⊗ · · · ⊗ ϕN , a ∈ C, ϕn ∈ L2(R3)}
(3.2)

(or instead we might consider tensor products of3N functions inL2(R)). The rep-
resentation ofu ∈ M asu = aϕ1 ⊗ · · · ⊗ ϕN is not unique: for any choice of
complex numberscn 6= 0, u remains unaltered under the transformation
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ϕn → cnϕn , a→ a

c1 . . . cN
. (3.3)

Tangent Functions.Although we do not have a unique representation of functions
in the Hartree manifoldM, we can obtain a unique representation of tangent func-
tions. This is what matters in derivng the equations of motion for the single-particle
functions. Consideru = aϕ1 ⊗ · · · ⊗ ϕN with a of unit modulus and allϕn of unit
L2 norm. Every tangent functioṅu ∈ TuM (for the moment,̇u is just a symbol for
any tangent function) is of the form

u̇ = ȧ ϕ1⊗· · ·⊗ϕN +a ϕ̇1⊗ϕ2⊗· · ·⊗ϕN + · · ·+aϕ1⊗· · ·⊗ϕN−1⊗ ϕ̇N (3.4)

whereȧ ∈ C andϕ̇n ∈ L2. These turn out to be uniquely determined byu̇ and the
fixeda, ϕ1, . . . , ϕN if we impose thegauge condition

〈ϕn | ϕ̇n〉 = 0 . (3.5)

Indeed, taking the inner product of both sides of (3.4) withu = aϕ1 ⊗ · · · ⊗ ϕN

and using (3.5) and‖ϕn‖ = 1 anda = 1/a, determineṡa as

ȧ = 〈u | u̇〉 a . (3.6)

Taking the inner product with the function in which thenth factorϕn in u is replaced
by someL2 functionϑn, viz., withaϕ1⊗· · ·⊗ϑn⊗· · ·⊗ϕN ∈ TuM, determines
ϕ̇n uniquely by the equation

〈ϑn | ϕ̇n〉+aȧ〈ϑn |ϕn〉 = 〈aϕ1⊗· · ·⊗ϑn ⊗· · ·⊗ϕN | u̇〉 ∀ϑn ∈ L2 . (3.7)

Equations of Motion for the Single-Particle Functions.We now consider the vari-
ational approximation (1.2) on the Hartree manifoldM, viz.,

〈
v

∣∣∣
du

dt
− 1

i~
Hu

〉
= 0 ∀ v ∈ TuM . (3.8)

Applying the above argument witḣu = du/dt ∈ TuM and using (3.8) to replace
u̇ by 1

i~Hu in (3.6) and (3.7), we obtain evolution equations for the factors inu =
aϕ1 ⊗ · · · ⊗ ϕN :

da

dt
=

〈
u

∣∣∣
1

i~
Hu

〉
a

〈
ϑn

∣∣∣
∂ϕn

∂t

〉
=

〈
aϕ1 ⊗ · · · ⊗ ϑn ⊗ · · · ⊗ ϕN

∣∣∣
1

i~
Hu

〉
(3.9)

−
〈
u

∣∣∣
1

i~
Hu

〉
〈ϑn |ϕn〉 ∀ϑn ∈ L2 .

With the total energyE = 〈u |H |u〉, which by Theorem 1.1 is constant in time,
and with themean-field Hamiltonianfor thenth particle,
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〈H〉n = 〈ψn |H |ψn〉 with ψn =
⊗

j 6=n

ϕj (3.10)

(the inner product on the right-hand side is over all variables exceptxn), the equa-
tions of motion become the trivial linear constant-coefficient differential equation
i~ da/dt = Ea and

i~
∂ϕn

∂t
= 〈H〉nϕn − Eϕn . (3.11)

Multiplying with 1
i~ϕn and noting

d

dt
‖ϕn‖2 = 2 Re

〈
ϕn

∣∣ ∂ϕn

∂t

〉
= 0 ,

we see thatϕn indeed remains of unit norm, as was assumed in the derivation.
The last termEϕn in (3.11) can be dropped if we rescaleϕj → e−iEt/~ϕj .

For a HamiltonianH = T + V as in (3.1), we obtain for allϑn ∈ L2(R3) that are
orthogonal toϕn,

〈
ϕ1 ⊗ · · · ⊗ ϑn ⊗ · · · ⊗ ϕN

∣∣∣Tu
〉

=
〈
ϑn

∣∣∣ − h2

2Mn

∆xn
ϕn

〉
,

and hence for suchϑn we have by (3.9)

〈
ϑn

∣∣∣ i~
∂ϕn

∂t
+

~
2

2Mn
∆xn

ϕn − 〈V 〉nϕn

〉
= 0 ,

where the mean-field potential〈V 〉n is defined in the same way as in (3.10) with
V instead ofH . It follows that the right-hand expression in the inner product is a
multiple ofϕn. Since this term adds tȯu = du/dt in (3.4) only a scalar multiple of
u and hence yields only a modified phase factora in u, this term is ignored. Let us
summarize the result obtained.

Theorem 3.1 (Time-Dependent Hartree Method).For a Hamiltonian (3.1), the
variational approximation (1.2) on the Hartree manifold (3.2), for initial data
u(x1, . . . , xN , 0) = ϕ1(x1, 0) . . . ϕN (xN , 0) withϕn(·, 0) of unitL2 norm, is given
as

u(x1, . . . , xN , t) = a(t)ϕ1(x1, t) . . . ϕN (xN , t) ,

where |a(t)| = 1 andϕn(xn, t) are solutions to the system of nonlinear partial
differential equations

i~
∂ϕn

∂t
= − ~2

2Mn
∆xn

ϕn + 〈V 〉nϕn . (3.12)

This holds on time intervals0 ≤ t ≤ t on which a strong solution to this system
exists, that is, forϕn ∈ C1([0, t], L2(R3)) ∩C([0, t], H2(R3)). ⊓⊔
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Equations (3.12) look like usual Schrödinger equations, but since the mean-field
potential〈V 〉n depends on the single-particle functions of the other particles, we
obtain a coupled system of low-dimensionalnonlinearpartial differential equations.

A strong solution to (3.12) exists globally for all timest ≥ 0 for example in
the case of a smooth bounded potential with bounded derivatives. This is shown by
Picard iteration in the Sobolev spaceH2(R3)N on the integrated equation

ϕn(t) = e−itTn/~ϕn(0) +

∫ t

0

e−i(t−s)Tn/~ 〈V 〉n(s)ϕn(s) ds ,

whereTn = − ~
2

2Mn
∆xn

. By the same argument, the solution then hasHk regularity

for arbitraryk whenever the initial data is inHk.

Remark 3.2 (Principal Bundle Structure). On the Hartree manifoldM of (3.2),
y = (a, ϕ1, . . . , ϕN ) are not coordinates, but the underlying mathematical structure
here and in the following subsections is that of aprincipal bundle, which is a familar
concept in differential geometry that we now describe. There is a mapχ : N → M
from a manifoldN ontoM, so that everyu ∈ M can be represented, though not
uniquely, as

u = χ(y) for somey ∈ N .

(We haveχ(y) = aϕ1 ⊗ · · · ⊗ϕn on the Hartree manifold.) The mapχ is invariant
under the action of a Lie groupG onN , which we denote by· : G×N → N :

χ(g · y) = χ(y) ∀ g ∈ G , y ∈ N .

In the Hartree method, the group is the componentwise multiplicative groupG =
(C∗)N (with C∗ = C \ {0}), and the action is given by (3.3).

Moreover, there is agauge mapγ, which at everyy ∈ N associates to a tangent
vectorẏ ∈ TyN an elementγ(y)ẏ in the Lie algebrag of G (g is the tangent space
at the unit element ofG). The linear mapγ(y) : TyN → g is such that the extended
derivative map, withu = χ(y),

TyN → TuM× g : ẏ 7→
(
dχ(y)ẏ, γ(y)ẏ

)
is an isomorphism.

Hence, under the gauge conditionγ(y)ẏ = 0 (or with any fixed element ofg instead
of 0), ẏ ∈ TyN is determined uniquely byy andu̇ ∈ TuM. In the Hartree method,

a gauge map is given byγ(y)ẏ =
(
〈ϕn | ϕ̇n〉

)N

n=1
∈ CN .

II.3.2 Time-Dependent Hartree–Fock Method (TDHF)

Slater Determinants.For a system ofN identical fermions the wave function is
antisymmetric (see Sect. I.5.2) and we wish to retain this property in the approxi-
mation. We therefore look for an approximate wave function in an antisymmetrized
tensor product form, that is, as aSlater determinant
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ψ(x1, . . . , xN , t) ≈ a(t)
1√
N !

det
(
ϕn(xj , t)

)N

n,j=1

with a scalar phase factora(t) and with orbitalsϕn(x, t) that are time-dependent
functions ofx ∈ R3. In the following we write the scaled determinant as the wedge
product

ϕ1 ∧ · · · ∧ ϕn =
1√
N !

∑

σ∈SN

sign(σ)ϕσ(1) ⊗ · · · ⊗ ϕσ(N) ,

where the sum is over all permutations of{1, . . . , N}. We consider the variational
approximation (1.2) on the manifold

M = {u ∈ L2(R3N ) : u 6= 0, u = aϕ1 ∧ · · · ∧ ϕN , a ∈ C, ϕn ∈ L2(R3)} .
(3.13)

The representation ofu ∈ M asu = aϕ1∧· · ·∧ϕN again is not unique:u remains
unaltered under the transformation by any invertibleN × N matrix,A ∈ GL(N),
by 


ϕ1

...
ϕN



 → A




ϕ1

...
ϕN



 , a→ a

det(A)
.

We may therefore choose to work with orthonormal orbitals:

〈ϕn |ϕj〉 = δnj for all n, j . (3.14)

Tangent Functions.Consideru = aϕ1∧· · ·∧ϕN with a of unit modulus and with
orthonormal orbitalsϕn. Every tangent functioṅu ∈ TuM is of the form

u̇ = ȧ ϕ1∧· · ·∧ϕN +a ϕ̇1∧ϕ2∧· · ·∧ϕN + · · ·+aϕ1∧· · ·∧ϕN−1∧ ϕ̇N (3.15)

whereȧ ∈ C andϕ̇n ∈ L2. These turn out to be uniquely determined byu̇ and the
fixeda, ϕ1, . . . , ϕn if we impose the gauge condition

〈ϕn | ϕ̇j〉 = 0 for all n, j . (3.16)

Indeed, taking the inner product of both sides of (3.4) withu = aϕ1∧· · ·∧ϕN and
using (3.14) and (3.16) anda = 1/a, determineṡa again as

ȧ = 〈u | u̇〉 a . (3.17)

Taking the inner product with the function in whichϕn is replaced by someL2

functionϑn, determinesϕ̇n uniquely by the analogue of (3.7), where now simply
the wedge product replaces the tensor product:

〈ϑn | ϕ̇n〉+ aȧ 〈ϑn |ϕn〉 = 〈aϕ1 ∧ · · · ∧ ϑn ∧ · · · ∧ϕN | u̇〉 ∀ϑn ∈ L2 . (3.18)
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Equations of Motion for the Orbitals. The equations of motion for the orbitals in
the variational approximation (1.2) on the Hartree–Fock manifold M in the weak
form therefore still are of the same type as in (3.9), where just∧ formally replaces⊗.
With the constant total energyE = 〈u |H |u〉, we have

i~
〈
ϑn

∣∣∣
∂ϕn

∂t

〉
=

〈
aϕ1 ∧ · · · ∧ ϑn ∧ · · · ∧ ϕN

∣∣Hu
〉
−E

〈
ϑn

∣∣ϕn

〉
∀ϑn ∈ L2 .

(3.19)
To proceed further, we now consider a Hamiltonian composed of identical one- and
two-body Hamiltonians:

H =

N∑

j=1

(
− ~

2

2m
∆xj

+ Uj

)
+

∑

k<ℓ

Wkℓ ≡
N∑

j=1

Sj +
∑

k<ℓ

Wkℓ (3.20)

with identical one-body potentialsUj(x1, . . . , xN ) = U(xj) and identical symmet-
ric two-body potentials

Wkℓ(x1, . . . , xN ) = W (xk, xℓ) = W (xℓ, xk) .

The situation of primary interest is that of the electronic Schrödinger equation (2.4),
where

W (x, y) =
e2

|x− y|
is the electron-electron Coulomb potential, andU(x) describes the Coulomb inter-
action between an electron atx ∈ R3 and all nuclei at fixed positions.

We abbreviate the single-particle operator asS = − ~
2

2m ∆x + U , and write
Sj when it is considered as an operator acting on the variablexj of functions of
(x1, . . . , xN ).

We return to (3.19) and consider functionsϑn ∈ L2(R3) that satisfy the orthog-
onality condition

〈ϑn |ϕj〉 = 0 for all n, j . (3.21)

Using the definition of the wedge product and the orthogonality relations (3.14) and
(3.21) we calculate

〈ϕ1 ∧ · · · ∧ ϑn ∧ · · · ∧ ϕN |S1 |ϕ1 ∧ · · · ∧ ϕN 〉 =
1

N
〈ϑn |Sϕn〉 ,

Since the same result is obtained forS2, . . . , SN , we obtain

〈
ϕ1 ∧ · · · ∧ ϑn ∧ · · · ∧ ϕN

∣∣∣
N∑

j=1

Sj

∣∣∣ϕ1 ∧ · · · ∧ ϕN

〉
=

〈
ϑn

∣∣Sϕn

〉
. (3.22)

For the two-body interaction we obtain similarly, using in addition the symmetry
of W ,
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〈
ϕ1 ∧ · · · ∧ ϑn ∧ · · · ∧ ϕN

∣∣W12

∣∣ϕ1 ∧ · · · ∧ ϕN

〉

=
2

N(N − 1)

∑

j 6=n

(
〈ϑn ⊗ ϕj |W |ϕn ⊗ ϕj〉 − 〈ϑn ⊗ ϕj |W |ϕj ⊗ ϕn〉

)
,

and the same result for the otherWkℓ. Hence we have

〈
ϕ1 ∧ · · · ∧ ϑn ∧ · · · ∧ ϕN

∣∣
∑

k<ℓ

Wkℓ

∣∣ϕ1 ∧ · · · ∧ ϕN

〉

=
〈
ϑn

∣∣Knϕn −
∑

j 6=n

Xnjϕj

〉
(3.23)

with the Hartree potentialKn and the exchange potentialsXnj given as

Kn(x) =
∑

j 6=n

∫

R3

W (x, y) |ϕj(y)|2 dy (3.24)

Xnj(x) =

∫

R3

W (x, y)ϕ∗
j (y)ϕn(y) dy . (3.25)

Substituting (3.22) and (3.23) into (3.19), we thus obtain,for all ϑn ∈ L2(R3)
satisfying the orthogonality relations (3.21),

〈
ϑn

∣∣∣ i~
∂ϕn

∂t
− Sϕn −Knϕn +

∑

j 6=n

Xnjϕj

〉
= 0 .

It follows that the right-hand expression in the inner product is in the linear span
of ϕ1, . . . , ϕN . Since adding such a term to∂ϕn/∂t adds tou̇ = du/dt of (3.15)
only a scalar multiple ofu and hence changes only the scalar phase factor, this term
is ignored and we set the right-hand expression in the inner product to zero. On
multiplying withϕj and interchangingn andj, we then further obtain

d

dt

〈
ϕn

∣∣ϕj

〉
=

〈
ϕn

∣∣∣ ∂ϕj

∂t

〉
+

〈
ϕj

∣∣∣ ∂ϕn

∂t

〉
= 0 ,

so that the orthonormality relations (3.14) are preserved for all times. We summarize
the result as follows.

Theorem 3.3 (Time-Dependent Hartree–Fock Method, Dirac 1930).For a Hamil-
tonian (3.20), the variational approximation (1.2) on the Hartree–Fock manifold

(3.13), for initial datau(x1, . . . , xN , 0) = 1√
N !

det
(
ϕn(xj , 0)

)N

n,j=1
with ϕn(·, 0)

satisfying the orthonormality relations (3.14), is given as

u(x1, . . . , xN , t) = a(t)
1√
N !

det
(
ϕn(xj , t)

)N

n,j=1
,

where |a(t)| = 1 andϕn(x, t) are solutions to the system of partial differential
equations
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i~
∂ϕn

∂t
= − ~2

2m
∆ϕn + Uϕn +Knϕn −

∑

j 6=n

Xnjϕj , (3.26)

which is nonlinear through the Hartree and exchange potentials given by (3.24)
and (3.25). This holds on time intervals0 ≤ t ≤ t on which a strong solution to
this system exists, that is, forϕn ∈ C1([0, t], L2(R3)) ∩ C([0, t], H2(R3)). The
orthonormality (3.14) of the orbitals is preserved on the whole time interval. ⊓⊔
Comparing (3.26) with the Hartree equations (3.12), we notethat the only, but es-
sential difference is in the presence of the fermionic exchange termsXnjϕj .

Global existenceof strong solutions to the equations of motion (3.26) in the
case of Coulomb potentials is shown by Chadam & Glassey (1974). The line of
their argument runs as follows: first it is shown by Picard iteration that solutions in
H2 existlocally in time, where the growth in theH2 norm is exponential in terms of
a bound of theH1 norm of the solution. Since theH1 norm of a strong solution can
be bounded by the constant total energy〈H〉, it follows that theH1 norm remains
in fact bounded for all times and theH2 norm grows at worst exponentially.

Spin Orbitals. Electrons are distinguished by their spin which can take thetwo
values up (↑) and down (↓). In a system withK electrons of spin up andN − K
electrons of spin down, the separable approximation with the correct antisymmetry
properties is

u = a (ϕ1 ∧ · · · ∧ ϕK) ⊗ (ϕK+1 ∧ · · · ∧ ϕN ) (3.27)

with a ∈ C, ϕn ∈ L2(R3). The equations of motion for variational approximations
of this type can be derived in the same way as above and turn outto be identical
to (3.26) if the interpretation of inner products is modifiedas follows: we extend
each orbitalϕn to a spin orbital ϕ̂n = (ϕn, sn) with spin sn ∈ {↑, ↓}. For any
observableA of orbitals we define

〈ϕ̂n |A | ϕ̂j〉 =

{
〈ϕn |A |ϕj〉 if sn = sj ,

0 else.

With this interpretation of all arising inner products, theequations of motion (3.26)
remain valid for the spin orbitalŝϕn, with non-vanishing exchange terms remaining
only between spin orbitals of the same spin.

As opposed to theunrestrictedHartree-Fock approximation just described, the
restrictedHartree-Fock method in the case of an even numberN of electrons as-
sumes an equal numberN/2 of electrons with spin up and spin down with the spin
orbitals(ϕn, ↑) and(ϕn, ↓) for n = 1, . . . , N/2, that is, with thesamespatial or-
bitalϕn for both spin up and spin down. The approximation to the wave function is
thus chosen of the form

u = a (ϕ1 ∧ · · · ∧ ϕN/2) ⊗ (ϕ1 ∧ · · · ∧ ϕN/2) (3.28)

in the restricted Hartree-Fock method. For an initial stateof this type, it is seen that
this restricted form is preserved for all times in the equations of motion (3.26) of the
unrestricted Hartree-Fock method withN/2 electrons of spin up and down each.
Therefore half of the equations can be dropped in this case.
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II.3.3 Multi-Configuration Methods (MCTDH, MCTDHF)

Multi-Configurations. We consider again the Schrödinger equation (3.1) for the
nuclei that are supposed to be distinguishable by their different types or by their
well-separated positions. It is to be expected, and has found ample confirmation in
computations, that a better approximation to the wave function can be obtained by
using a linear combination of tensor products instead of just a single tensor product,
as is done in the time-dependent Hartree method of Section II.3.1. We therefore
consider approximations

ψ(x1, . . . , xN , t) ≈
∑

(j1,...,jN )

aj1,...,jN
(t)ϕ

(1)
j1

(x1, t) · · ·ϕ(d)
jN

(xN , t)

≡
∑

J

aJ (t)ΦJ (x, t) . (3.29)

Here, the multi-indicesJ = (j1, . . . , jN ) vary for jn = 1, . . . , dn, n = 1, . . . , N ,
theaJ (t) are complex coefficients depending only ont, and the single-particle func-

tionsϕ(n)
jn

(xn, t) depend on the coordinatesxn ∈ R3 of particlen and on timet. Al-
ternatively, we might take Hartree products of3N functions depending onxn ∈ R.

This is a model reduction analogous to low-rank approximation of matrices,
where a large system matrix is replaced by a linear combination of rank-1 matrices
v ⊗ w, or to low-rank approximation of tensors by linear combinations of rank-1
tensorsv1 ⊗ · · · ⊗ vN .

In themulti-configuration time-dependent Hartree(MCTDH) method proposed
by Meyer, Manthe & Cederbaum (1990) and developed further asdescribed by
Beck, Jäckle, Worth & Meyer (2000), the Dirac–Frenkel time-dependent variational
principle (1.2) is used to derive differential equations for the coefficientsaJ and the
single-particle functionsϕ(n)

jn
. The MCTDH method determines approximations to

the wave function that, for every timet, lie in the set

M =
{
u ∈ L2(R3N ) : u =

∑

J

aJ ϕ
(1)
j1

⊗· · ·⊗ϕ(d)
jd

with aJ ∈ C, ϕ
(n)
jn

∈ L2(R3)
}

with multi-indicesJ = (j1, . . . , jN ) ranging overjn = 1, . . . , dn. This setM is not
a manifold, but it contains a dense subsetM that is a manifold and is characterized
by a full-rank condition to be given below.

The representation ofu ∈ M by a coefficient tensorA = (aJ ) and single-

particle functionsΦ =
(
ϕ

(n)
jn

)
clearly is not unique: the transformation

ϕ
(n)
jn

→ ϕ̂
(n)
jn

=

dn∑

kn=1

S
(n)
jn,kn

ϕ
(n)
kn
,

aJ → âJ =

d1∑

i1=1

· · ·
dN∑

iN =1

aI(S
(1))−1

i1,j1
· · · (S(N))−1

iN ,jN
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yields the same functionu for any choice of nonsingular matricesS(1), . . . , S(N).
We may assume that the orbitalsϕ(n)

jn
corresponding to the same particlen are

orthonormal:

〈ϕ(n)
jn

∣∣ϕ(n)
kn

〉 = δjn,kn
, jn, kn = 1, . . . , dn, n = 1, . . . , N . (3.30)

Tangent Functions.Consider a differentiable path(A(t), Φ(t)) of coefficients and
single-particle functions representing a pathu(t) onM. Then, the derivativėu is of
the form

u̇ =
∑

J

ȧJ ΦJ +

d∑

k=1

dk∑

jk=1

ϕ̇
(k)
jk
ψ

(k)
jk

(3.31)

with the Hartree productsΦJ =
⊗N

n=1 ϕ
(n)
jn

and with thesingle-hole functions

ψ
(n)
jn

= 〈ϕ(n)
jn

|u〉(n) (3.32)

=

d1∑

j1=1

· · ·
dn−1∑

jn−1=1

dn+1∑

jn+1=1

· · ·
dN∑

jN =1

aj1,...,jd

⊗

k 6=n

ϕ
(k)
jk

where the superscript(n) on the inner product indicates that theL2 inner product is
taken only with respect to the variablexn, leaving a function depending on all the
other variablesxk with k 6= n.

Conversely, thėaJ are uniquely determined bẏu and(A,Φ) if we impose the
orthogonality condition

〈ϕ(n)
jn

| ϕ̇(n)
kn

〉 = 0 , jk, kn = 1, . . . , dn, n = 1, . . . , N , (3.33)

which together with (3.30) implies

ȧJ = 〈ΦJ | u̇〉 . (3.34)

Taking the inner product of (3.31) withψ(n)
in

then gives

dn∑

jn=1

ρ
(n)
in,jn

ϕ̇
(n)
jn

=
〈
ψ

(n)
in

∣∣∣ u̇−
∑

J

ȧJ ΦJ

〉(¬n)

(3.35)

with the hermitian, positive semi-definitedensity matrices

ρ(n) =
(
ρ
(n)
in,jn

)dn

in,jn=1
given by ρ

(n)
in,jn

:= 〈ψ(n)
in

|ψ(n)
jn

〉. (3.36)

The superscript(¬n) indicates that theL2 inner product is taken over all variables
exceptxn, leaving a function depending onxn. The orthonormality relations (3.30)
allow us to express the entries of the density matrices in terms of the coefficientsaJ :
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ρ
(n)
in,jn

=

d1∑

j1=1

· · ·
dn−1∑

jn−1=1

dn+1∑

jn+1=1

· · ·
dN∑

jN =1

āj1,...,jn−1,in,jn+1,...,jN
aj1,...,jN

. (3.37)

The ϕ̇(n)
jn

are thus uniquely determined from (3.35) under thefull-rank condition
that

ρ(n) is an invertible matrix for eachn = 1, . . . , N . (3.38)

(In view of (3.37), a necessary condition for this property isdn ≤ ∏
k 6=n dk.)

The MCTDH manifold. With the above construction of thėaJ andϕ̇(n)
jn

, one can
construct local charts on

M =
{
u ∈ L2(R3N ) : u =

∑

J

aJ ϕ
(1)
j1

⊗ · · · ⊗ ϕ
(d)
jd

with aJ ∈ C and

ϕ
(n)
jn

∈ L2(R3) satisfying the orthonormality condition (3.30)

and the full-rank condition (3.38)
}
, (3.39)

making this set an infinite-dimensional manifold, for whichthe tangent space at
u ∈ M consists of the elementsu̇ of the form (3.31).

Equations of Motion for the Multi-Configuration Time-Depen dent Hartree
Method. The MCTDH method uses the time-dependent variational principle (1.2)
on this approximation manifoldM. The equations of motion are thus obtained by
substituting 1

i~Hu for u̇ in (3.34) and (3.35), and so we have the following result.

Theorem 3.4 (MCTDH Method; Meyer, Manthe & Cederbaum 1990). The
variational approximation on the MCTDH manifold (3.39) is given by (3.29), where
the coefficients and single-particle functions are solutions to the system of coupled
ordinary and partial differential equations

i~
daJ

dt
=

∑

K

〈ΦJ |H |ΦK〉 aK , ∀ J = (j1, . . . , jN ) , (3.40)

i~
∂ϕ

(n)
jn

∂t
= (I − P (n))

dn∑

kn=1

dn∑

ln=1

(ρ(n))−1
jn,kn

〈ψ(n)
kn

|H |ψ(n)
ln

〉(¬n) ϕ
(n)
ln
, (3.41)

jn = 1, . . . , dn, n = 1, . . . , N .

This holds on every time interval on which a strong solution to these equations
exists. Here, the Hartree productsΦJ , the single-hole functionsψ(n)

jn
, and the density

matricesρ(n) are defined in (3.29), (3.32), and (3.37), respectively. Thesuperscript
(¬n) indicates that the inner product is over all variables exceptxn, andP (n) is the
orthogonal projector onto the linear span ofϕ(n)

1 , . . . , ϕ
(n)
dn

. ⊓⊔
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We note that the projectorP (n) is given asP (n)ϑ =
∑dn

jn=1 ϕ
(n)
jn

〈ϕ(n)
jn

|ϑ〉,
with the inner product over the variablexn.

For a smooth bounded potential with bounded derivatives, itis shown by Koch &
Lubich (2007a) that a strong solutionϕn

jn
∈ C1([0, t), L2(R3))∩C([0, t), H2(R3))

to the MCTDH equations exists either globally for all times or up to a timet where
a density matrixρ(n) becomes singular.

At a singularity of a density matrixρ(n), the equations of motion break down. To
avoid such problems in computations, the density matrices are usually regularized
to ρ(n) +µI with a small parameterµ. Although such regularized solutions exist for
all times, a near-singularity can still cause numerical problems, for example in the
step size selection of a time integration method.

The MCTDH method has been used successfully for accurately computing the
quantum dynamics of small molecules in a variety of chemicalsituations such as
photodissociation and reactive scattering, for problems involving 6 to 24 nuclear de-
grees of freedom and one or several electronic states; see, e.g., Raab, Worth, Meyer
& Cederbaum (1999).

The complexity of the method grows exponentially with the number of particles:
there aredN coefficientsaJ if dn = d orbitals are taken for each particle. Several
variants and extensions of the MCTDH method have been designed for the computa-
tional treatment of larger systems, such as the coupling with Gaussian wavepackets
for secondary modes (Burghardt, Meyer & Cederbaum 1999) andthehierarchical,
cascadicor multilayer versions of MCTDH (Beck, Jäckle, Worth & Meyer 2000,
Wang & Thoss 2003) with which particular systems with up to 500 degrees of free-
dom have been treated.

Hierarchical MCTDH Method. Considering for simplicity a system withN = 2L

particles, the binary cascadic MCTDH method determines an approximation to the
wave function in the form

u =

d∑

j,k=1

ajk ϕ
(0)
j ⊗ ϕ

(1)
k

where, for a binary numberB = (b1, . . . , bℓ) with bm ∈ {0, 1} andℓ < L, we set
recursively

ϕB
i =

d∑

j,k=1

aB
i,jk ϕ

(B,0)
j ⊗ ϕ

(B,1)
k ,

and forℓ = L we have the single-particle functions. The variational approximation
u is thus built up from a binary tree, with the single-particlefunctions sitting at the
end of the branches. This approach uses onlyd3N instead ofdN coefficients.

The orthogonality relations (3.30) and (3.33) can now be imposed on each level:
at the final level for the single-particle functions and at the other levels by
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〈ϕB
ℓ |ϕB

i 〉 =

d∑

j,k=1

aB
ℓ,jk a

B
i,jk = δiℓ

〈ϕB
ℓ | ϕ̇B

i 〉 =

d∑

j,k=1

aB
ℓ,jk ȧ

B
i,jk = 0 .

The derivation of the equations of motion is then analogous to that of the MCTDH
method given above, with recurrences climbing up and down the tree for the com-
putation of the required inner products.

Multi-Configuration Time-Dependent Hartree-Fock Method (MCTDHF). For
electron dynamics, a multi-configuration extension of the TDHF method is obtained
by using the time-dependent variational principle for approximations of the form

u =
∑

1≤j1<···<jN≤K

cj1...jN
ϕj1 ∧ · · · ∧ ϕjN

(3.42)

with K > N . The sum is over all

(
K
N

)
subsets withN elements of{1, . . . ,K}.

The equations of motion of the MCTDHF method for a Hamiltonian (3.20) are those
of the MCTDH method withϕ(n)

j = ϕj independent ofn and with an antisymmetric
tensor: for every multi-indexJ = (j1, . . . , jN ) and permutationσ ∈ SN and with
σ(J) = (jσ(1), . . . , jσ(N)),

aσ(J) = sign(σ) aJ .

We refer to Zanghellini, Kitzler, Fabian, Brabec & Scrinzi (2003) and Koch, Kreuzer
& Scrinzi (2006) for uses and properties of the MCTDHF approach.

No Theoretical Approximation Estimates.While the neighbouring sections close
with theoretical results on the approximation error, apparently no such results are
available for the methods considered in this section. One might hope that the multi-
configuration methods converge to the exact wave function asthe number of con-
figurations is increased to infinity, but to date no such result exists. One obstacle
to such a convergence result is the fact that the density matricesρ(n) become more
and more ill-conditioned as more nearly irrelevant configurations are included. An-
other difficulty lies in the time-dependent orbitals whose approximation properties
are not under control. In Sect. II.6 we show, however, that for afixednumber of con-
figurations, the variational approximation is quasi-optimal in the sense that its error
– on sufficiently short time intervals – is bounded in terms ofthe error of the best
approximation to the wave function by the given number of configurations.

Notwithstanding the deficiencies in theory, the methods considered in this sec-
tion have proven their value in computations on realistic chemical and physical sys-
tems — the tool apparently works.
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II.4 Parametrized Wave Functions: Gaussian Wave
Packets

A further modelling or approximation step consists in replacing the wave function
by a function that depends only on a finite number of real or complex parameters.
The time-dependent variational principle then yields evolution equations for these
parameters that retain a Hamiltonian character, albeit with a non-canonical Pois-
son bracket. Gaussian wave packets parametrized by position, momentum, complex
width and phase are a prominent example. In the classical limit, their variational
equations of motion for position and momentum yield the Newtonian equations of
classical molecular dynamics.

II.4.1 Variational Gaussian Wave-Packet Dynamics

We consider a Schrödinger equation in semiclassical scaling, forx ∈ Rd,

iε
∂ψ

∂t
= Hψ , H = Hε = − ε2

2M
∆+ V , (4.1)

with a small positive parameterε ≪ 1 (formally in place of~, see Sect. II.2.3), a
fixed mass parameterM ∼ 1, and a potentialV . The typical situation of (4.1) is the
time-dependent Born-Oppenheimer approximation for the motion of nuclei.

As proposed by Heller (1976), the variational approximation of (4.1) can be
done by complex Gaussians of the type

ψ(x, t) ≈ u(x, t) = exp

(
i

ε

(
(x−q(t))TC(t)(x−q(t))+p(t)·(x−q(t))+ζ(t)

))
,

(4.2)
whereq(t) ∈ Rd is the position average andp(t) ∈ Rd is the momentum average
of the wave packet. The matrixC(t) ∈ Cd×d is a complex symmetric width matrix
with positive definite imaginary part, possibly further restricted to a diagonal matrix
or just a multiple of the identity,c(t)Id with complexc(t). Finally, ζ(t) ∈ C is a
phase and normalization parameter.

The choice of Gaussians appears attractive because the exact wave function re-
tains the form of a multidimensional Gaussian for all times in the case of a quadratic
potential, even for a time-dependent quadratic potential.This useful fact follows
from the observation thatHu then is in the tangent space atu, and therefore the
variational approximation and the exact wave function coincide. For a narrow wave
packet, of width∼ ε1/2 in (4.2), a smooth potential appears locally approximately
quadratic, and we may then expect good approximation by Gaussians, as will be
made more precise in Sect. II.4.4 in an argument based on the error bound (1.11).

The equations of motion for the parameters read as follows (Heller 1976, Coal-
son & Karplus 1990): with〈A〉 = 〈u |A |u〉 denoting the average of an observable
A in the Gaussian stateu of unit L2 norm, we have classically-looking equations
for position and momentum, with the average of the gradient∇V of the potential,
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q̇ =
p

M

ṗ = −〈∇V 〉 .
(4.3)

For the width matrixC and the complex phaseζ we have, with the Hessian∇2V
and with tr denoting the trace of a matrix,

Ċ = − 2

M
C2 − 1

2
〈∇2V 〉 (4.4)

ζ̇ =
|p|2
2M

− 〈V 〉 +
iε

M
trC +

ε

8

〈
tr

(
(ImC)−1∇2V

)〉
. (4.5)

WhenC is restricted to diagonal matrices, then the diagonal part is to be taken on
the right-hand side of the differential equation forC. WhenC = cI is restricted to
a multiple of the identity (spherical Gaussians), then the differential equation forc
is obtained by taking the trace on both sides of the differential equation forC. If the
width matrix is taken constant (frozen Gaussians, Heller 1981), then the equation
for C is disregarded, and only the equations for position and momentum and phase
remain.

As ε → 0, the Gaussians (4.2) become narrower and increasingly concentrated
at q, and we have〈∇V 〉 → ∇V (q) for a Gaussian of unitL2 norm. Hence the
equations for positionq and momentump become the

classical equations of motion in the limitε→ 0.

The differential equations (4.3)–(4.5) are a regular perturbation to the equations for
ε = 0: letting ε → 0 gives a well-defined limit on the right-hand side. They are no
longer a singularly perturbed system as (4.1) is. In contrast to the Gaussian wave
packet, the time-dependent parameters are not highly oscillatory functions.

We shall give a derivation of the equations of motion (4.3)–(4.5) that highlights
their mathematical structure as a non-canonical Hamiltonian system (or a Poisson
system in another terminology). We first study the structureof the variational equa-
tions of motion in coordinates on an approximation manifoldin a general setting
and then return to the particular case of Gaussian wave packets. The presentation in
this section essentially follows Faou & Lubich (2006).

II.4.2 Non-Canonical Hamilton Equations in Coordinates

Canonical Poisson structure of the Schr̈odinger equation.We splitψ ∈ L2(Rd,C)
into the real and imaginary partsψ = v + iw. The functionsv andw are thus func-
tions in thereal Hilbert spaceL2(Rd,R). We denote the complex inner product by
〈· | ·〉 and the real inner product by(· | ·).

As the HamiltonianH is a real operator, the Schrödinger equation (4.1) can be
written

εv̇ = Hw,
εẇ = −Hv . (4.6)
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With the canonical structure matrix

J =

(
0 −1
1 0

)

and the Hamiltonian function

H(v, w) = 〈ψ |H |ψ〉 = (v |Hv) + (w |Hw)

for ψ = v + iw (we use the same symbolH as for the operator), this becomes the
canonical Hamiltonian system

(
v̇
ẇ

)
=

1

2ε
J−1∇H(v, w) .

We note that the real multiplication withJ corresponds to the complex multiplica-
tion with the imaginary uniti.

As in Theorem 1.2, the flow of this system preserves the canonical symplectic
two-form

ω(ξ, η) = (ξ | Jη), ξ, η ∈ L2(Rd,R)2. (4.7)

The associated Poisson bracket is

{F,G}can = (∇F | J−1∇G) (4.8)

for functionsF,G : H1(Rd,R)2 → R.

Poisson structure of variational approximations.We consider a finite-dimensional
submanifoldM of the complex Hilbert spaceL2(Rd,C) with the property (1.3),
i.e., withv ∈ TuM alsoiv ∈ TuM at everyu ∈ M.

Taking the imaginary part in the Dirac–Frenkel time-dependent variational prin-
ciple (1.2) onM yields, upon identifyingu = v+iw with the real pairu = (v, w)T ,

(
µ | 2εJu̇−∇uH(u)

)
= 0 for all µ ∈ TuM . (4.9)

We choose (local) coordinates onM so that we have a parametrization

u = χ(y)

of M, for y in an open subset ofRm. We denote the derivativeXC(y) = dχ(y) =

V (y) + iW (y) or in the real setting asX =

(
V
W

)
, which is of full rank for

a coordinate mapχ. We denote byXT the adjoint ofX with respect to the real
inner product(· | ·). Sinceu̇ = X(y)ẏ and the tangent vectors inTuM are given as
µ = X(y)η with arbitraryη ∈ Rm, we obtain from (4.9) the differential equation
in Rm,

2εX(y)TJX(y) ẏ = X(y)T∇uH(χ(y)) . (4.10)

WithX∗
C

denoting the adjoint ofXC with respect to the complex inner product〈· | ·〉,
we noteX∗

C
XC = (V TV +WTW ) + i(V TW −WTV ) = XTX − iXTJX and

hence
XTJX = −ImX∗

CXC. (4.11)

This skew-symmetric matrix is invertible, as the followinglemma shows.
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Lemma 4.1. If TuM is a complex linear space for everyu ∈ M, then

X(y)TJX(y) is invertible for ally.

Proof. We fix u = χ(y) ∈ M and omit the argumenty in the following. Since
TuM = Range(XC) is complex linear by assumption, there exists a real linear
mappingL : Rm → Rm such thatiXCη = XCLη for all η ∈ Rm. This implies

JX = XL and L2 = −Id

and henceXTJX = XTXL, which is invertible, sinceX is of full rank. ⊓⊔

We denote the inverse, which is again skew-symmetric, by

B(y) =
1

2ε

(
X(y)TJX(y)

)−1
. (4.12)

Introducing the Hamiltonian function on the manifoldM in the coordinatesy as

K(y) = H(χ(y)), (4.13)

we noteX(y)T∇uH(χ(y)) = ∇yK(y) in (4.10). We then have the following re-
sult.

Theorem 4.2 (Variational Equations of Motion in Coordinates).The differential
equations of the variational approximation in coordinatesread

ẏ = B(y)∇yK(y) . (4.14)

This is a non-degenerate Poisson system, i.e., the structure matrixB(y) is invertible
and generates a bracket

{F,G}(y) = ∇F (y)TB(y)∇G(y) (4.15)

on smooth real-valued functionsF,G, which is antisymmetric({G,F} = −{F,G})
and satisfies the Jacobi identity({E, {F,G}} + {F, {G,E}} + {G, {E,F}} = 0)
and the Leibniz rule({E · F,G} = E · {F,G} + F · {E,G}).

Proof. By (4.10) and the definitions ofB(y) andK(y), we have (4.14). It remains
to prove the properties of the bracket. Sinceε plays no role here, we letB(y) =(
X(y)TJX(y)

)−1
(without the factor 1

2ε ) in this proof. For pointsu ∈ M we
introduce the symplectic projectorΠ(u) from the Hilbert spaceH = L2(RD,R)2

onto the tangent spaceTuM as

Π(u) = X(y)B(y)X(y)TJ, u = χ(y) ∈ M ,

From the induced decompositionH = Π(u)H ⊕
(
I − Π(u)

)
H we obtain, by

the implicit function theorem, a corresponding splitting in a neighbourhood of the
manifoldM in H,
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ψ = u+ v with u ∈ M, Π(u)v = 0 .

This permits us to extend functionsF to a neighbourhood ofM by setting

F̂ (ψ) = F (y) for ψ = u+ v with u = χ(y), Π(u)v = 0 .

We then have for the derivativedF̂ (u) = dF̂ (u)Π(u) and hence for its adjoint,
the gradient,∇F̂ (u) = Π(u)T∇F̂ (u). Moreover,∇F (y) = X(y)T∇F̂ (u) for
u = χ(y). For the canonical bracket this gives, atu = χ(y),

{F̂ , Ĝ}can(u) = ∇F̂ (u)TΠ(u)J−1Π(u)T∇Ĝ(u)

= ∇F (y)TB(y)∇G(y) = {F,G}(y) .

Therefore the stated properties follow from the corresponding properties of the
canonical bracket. ⊓⊔

More on Poisson systems can be found in Hairer, Lubich & Wanner (2006),
Chap. VII.2, and Marsden & Ratiu (1999), Chap. 8.5. In particular, the flow map
φt : y(0) 7→ y(t) is aPoisson map, that is, it preserves the Poisson bracket as

{F ◦ φt, G ◦ φt} = {F,G} ◦ φt ∀F,G .

The property of being a Poisson map in the coordinates can be translated to be an
equivalent formulation of the symplecticity of the flow on the manifoldM as stated
by Theorem 1.2.

II.4.3 Poisson Structure of Gaussian Wave-Packet Dynamics

The variational Gaussian wavepacket dynamics (4.3)–(4.5)is obtained by choosing
the manifoldM as consisting of complex Gaussians (4.2). For ease of presentation
we give the derivation for spherical Gaussians, whereC = cId with a complex
c = α+ iβ with β > 0, andId is thed-dimensional identity. We write the complex
phase asζ = γ + iδ. We then have the approximation manifold

M = {u = χ(y) ∈ L2(Rd) : y = (p, q, α, β, γ, δ) ∈ R
2d+4 with β > 0} (4.16)

with

(
χ(y)

)
(x) = exp

( i
ε

(
(α + iβ) |x− q|2 + p · (x− q) + γ + iδ

))
. (4.17)

The tangent spaceTuM ⊂ L2(Rd) at a given pointu = χ(y) ∈ M is (2d + 4)-
dimensional and is made of the elements ofL2(Rd) written as

i

ε

(
(A+ iB) |x− q|2 + (P − 2(α+ iβ)Q) · (x− q)− p ·Q+C + iD

)
u (4.18)
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with arbitrary (P,Q,A,B,C,D)T ∈ R2d+4. The tangent spaceTuM is indeed
complex linear (noteβ > 0). Moreover, we haveu ∈ TuM, and hence Theorem 1.4
shows the preservation of the squaredL2 norm ofu = χ(y), which is given by

N(y) = ‖χ(y)‖2 = exp

(
−2δ

ε

) (
πε

2β

)d/2

. (4.19)

We then we have the following result.

Theorem 4.3 (Gaussian Wave-Packet Dynamics as a Poisson System).The vari-
ational approximation on the Gaussian wave-packet manifold M of (4.16)–(4.17)
yields the Poisson system

ẏ = B(y)∇yK(y) (4.20)

where, fory = (p, q, α, β, γ, δ) ∈ R2d+4 with β > 0,

B(y) =
1

N(y)





0 −Id 0 0 −p 0

Id 0 0 0 0 0

0 0 0 4β2

εd 0 −β
0 0 − 4β2

εd 0 β 0

pT 0 0 −β 0 d+2
4 ε

0 0 β 0 − d+2
4 ε 0





(4.21)

defines a Poisson structure, and foru = χ(y),

K(y) = 〈u |H |u〉 = KT (y) +KV (y) (4.22)

is the total energy, with kinetic and potential parts

KT (y) = N(y)

( |p|2
2M

+
εd

2M

α2 + β2

β

)
=

〈
u

∣∣∣ − ε2

2M
∆

∣∣∣ u
〉

and

KV (y) =

∫

Rd

V (x) exp
(
− 2

ε

(
β|x− q|2 + δ

))
dx = 〈u |V |u〉.

BothK(y) andN(y) are conserved quantities of the system.

Proof. By (4.17), the derivativeXC(y) = dχ(y) =
(

∂u
∂p ,

∂u
∂q ,

∂u
∂α ,

∂u
∂β ,

∂u
∂γ ,

∂u
∂δ

)
for

u = χ(y) is written

XC(y) =
i

ε

(
x− q , −2(α+ iβ)(x − q) − p , |x− q|2 , i|x− q|2 , 1 , i

)
u .

Calculating the Gaussian integrals, we obtain from (4.11) that
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2εXT (y)JX(y) = N(y)





0 Id 0 0 0 0

−Id 0 0 dp
2β 0 2p

ε

0 0 0 − εd(d+2)
8β2 0 − d

2β

0 − dpT

2β
εd(d+2)

8β2 0 d
2β 0

0 0 0 − d
2β 0 − 2

ε

0 − 2pT

ε
d
2β 0 2

ε 0





.

The inverse of this matrix can be computed explicitly to givethe above matrixB(y).
Theorem 4.2 then yields the Poisson system, and Theorems 1.1and 1.4 give the
conservation of energy and norm. ⊓⊔

II.4.4 Approximation Error

From the error bound (1.11) we derive the following result, which is closely related
to a result by Hagedorn (1980) on non-variational Gaussian wave packets.

Theorem 4.4 (Error Bound for Variational Gaussian Wave Packets).Consider
the variational multidimensional Gaussian wave packet approximation (4.3)–(4.5).
Assume that the smallest eigenvalue of the width matrixImC(t) is bounded from
below by a constantρ > 0. Assume that the potentialV is three-times continuously
differentiable with a bounded third derivative. Then, the error between the Gaus-
sian wave packetu(t) and the exact wave functionψ(t) with Gaussian initial data
ψ(0) = u(0) is bounded in theL2 norm by

‖u(t) − ψ(t)‖ ≤ c t ε1/2 ,

wherec depends only onρ and the bound of∂3V .

Proof. In view of the error bound of Theorem 1.5, we estimate the distance of
1
iεHu(t) to the tangent spaceTu(t)M. We split the potential into the quadratic Tay-
lor polynomial at the current positionq(t) and the non-quadratic remainder,

V = Qq(t) +Rq(t) ,

where we note|Rq(x)| ≤ 1
3! B3 |x − q|3 with a boundB3 of ∂3V . Since both∆u

andQqu are in the tangent spaceTuM given by (4.18), we have

dist
(

1

iε
Hu, TuM

)
= dist

(
1

iε
Rqu, TuM

)
≤

∥∥∥1

ε
Rqu

∥∥∥ .

With the above bound forRq and the condition on the width matrix we obtain, for a
Gaussian stateu of unitL2 norm,

‖Rqu‖ ≤ c1

(
ε−d/2

∫

Rd

e−2ρ|x−q|2/ε |x− q|6 dx
)1/2

≤ c ε3/2 ,

and hence the result follows with Theorem 1.5. ⊓⊔
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As is clear from the proof, the global boundedness of∂3V can be weakened to a
bound in a neighbourhood of the positionsq(t) and exponential growth outside this
region.

We remark that an analogous result does not hold for Gaussianwave packets
where the width matrix is restricted to a diagonal matrix.

Though the above result is asymptotically comforting, it must be noted that for
realistic values ofε ≈ 10−2, a result with a predicted error ofε1/2 cannot neces-
sarily be considered accurate. We will turn to more accuratesemiclassical methods
briefly in the next section and in more detail in Chapter V.

II.5 Mixed Models, Quantum-Classical Models

There are numerous possibilities for extensions and combinations of the models de-
scribed in the foregoing sections. The reader may invent hisown favourite extension
and combination and check out if it has not yet been tried out in the literature. For
example, within an MCTDH framework, for some parts of the system the single-
particle functions might be chosen as Gaussians, while theyare left of a general
form for other particles (Burghardt, Meyer & Cederbaum, 1999). Considering the
Gaussians of frozen width in such a model and passing to the classical limitε → 0
in the equations of motions for positions and momenta then yields equations of mo-
tion where most particles are described classically while some are treated quantum-
mechanically. For example, this is desired for studying proton transfer in a critical
region of a molecule, or more generally for describing a quantum subsystem in a
classical bath.

II.5.1 Mean-Field Quantum-Classical Model

Among the various possible mixed quantum-classical models, we now describe the
conceptually simplest one which has found widespread use incomputations, in spite
of its known flaws. Consider a system of light and heavy particles (e.g., protons and
the other, heavier nuclei in a molecule), where one would like to describe the light
particles quantum-mechanically and the heavy particles classically. Letx andy de-
note the position coordinates of heavy and light particles,respectively. We consider
the Schrödinger equation with the HamiltonianH = − ε2

2 ∆x − 1
2∆y + V (x, y),

whereε2 is the mass ratio as in Section II.2.3. We start from a time-dependent
Hartree approximation to the full wave functionΨ(x, y, t)

Ψ(x, y, t) ≈ γ(x, t)ψ(y, t) ,

where we restrictγ(x, t) further to take the form of a frozen Gaussian at variable
positionq(t) and with variable momentump(t). When we write down the equations
of motion for the corresponding variational approximationand let the width of the
Gaussians tend to zero, so that averages overx are replaced by evaluations at the
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positionq(t), then we obtain the following coupled system of classical and quan-
tum equations where the classical particles are driven by the mean-field potential of
the quantum particles, the wave function of which is determined by a Schrödinger
equation with a potential evaluated at the current classical position:

q̇ = p

ṗ = −∇q〈ψ |V (q, ·) |ψ〉 (5.1)

iε
∂ψ

∂t
= −1

2
∆ψ + V (q, ·)ψ .

While this appears as an attractive model at first sight, its mean-field character is
flawed. The problem becomes clear by the following argument:Suppose we start
with an initial wave function

Ψ(x, y, 0) = α1γ
0
1(x)Φ1(x, y) + α2γ

0
2(x)Φ2(x, y) ,

whereΦj(x, ·) are eigenfunctions ofHe(x) = − 1
2∆ + V (x, ·) to well-separated

eigenvaluesEj(x), of unitL2
y norm, andγ0

j are complex Gaussians of width∼ ε1/2

and unitL2
x norm. The coefficients should satisfy|α1|2 + |α2|2 = 1 so thatΨ is of

unit L2
x,y norm. We then know from Theorems 2.1 and 4.4 that for timest ∼ 1 the

exact wave functionΨ(x, y, t) is approximately, up to an error of orderε1/2,

Ψ(x, y, t) ≈ α1γ1(x, t)Φ1(x, y) + α2γ2(x, t)Φ2(x, y) ,

whereγj(x, t) is a Gaussian located at a positionqj(t) that follows classical equa-
tions of motion

q̇j = pj , ṗj = −∇qEj(qj) . (5.2)

On the other hand, in (5.1) we have by the time-adiabatic theorem mentioned after
Theorem 2.1 that for timest ∼ 1,

ψ(y, t) ≈ eiφ1(t)/εα1Φ1(q(t), y) + eiφ2(t)/εα2Φ2(q(t), y) ,

so that
〈ψ |He(q) |ψ〉 ≈ |α1|2E1(q) + |α2|2E2(q)

and hence the classical motion in (5.1) is approximately determined by

q̇ = p , ṗ = −∇q

(
|α1|2E1(q) + |α2|2E2(q)

)
, (5.3)

with a potential that is a convex linear combination of the potentials in (5.2). Unless
the potentialsEj happen to be quadratic, not even the average positionα1q1 +α2q2
is described correctly by the equations forq. The equations (5.1) are asymptotically
correct, however, if we start from a pure eigenstate (whereα1 = 1, α2 = 0).

This example illustrates that even very plausible-lookingmodels must be con-
sidered with care and assessed critically by analysis and (numerical and physical)
experiment.
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For an asymptotic analysis of the above mixed quantum-classical model we refer
to Bornemann & Schütte (1999). The quantum-mechanical part can be further re-
stricted, assuming for exampleψ(y, t) in the form of a Slater determinant, thus com-
bining classical motion and the time-dependent Hartree-Fock method. Global exis-
tence of solutions for such a model has been studied by Cancès & Le Bris (1999).

II.5.2 Quantum Dressed Classical Mechanics

Even if the approximation by a Gaussian wave packet is too rough, it can nev-
ertheless be reused in a correction scheme, which is once more based on the
time-dependent variational principle. We briefly describesuch an approach due to
Billing (2003). Letq(t), p(t) be defined by Gaussian wave packet dynamics with
a diagonal width matrix with entriescn(t), possibly further simplified by using the
classical equations of motion forq andp and a similar simplification in the differ-
ential equations for the widths, replacing averages by point evaluations. We search
for an approximation to the wave function of the form

ψ(x1, . . . , xN , t) ≈
∑

J

aJ(t) γ
(1)
j1

(x1, t) · . . . · γ(N)
jN

(xN , t) ,

where the sum is over a set of multi-indicesJ = (j1, . . . , jN ) and the functions

γ
(n)
j are shifted and scaled Gauss-Hermite basis functions defined by (we assume

all xn one-dimensional for simplicity)

γ
(n)
j (xn, t) = exp

(
i

ε

(
cn(t) (xn − qn(t))2 + pn(t) (xn − qn(t))

))
·

Hj

(√
2 Im cn(t)

ε
(xn − qn(t))

)

with Hermite polynomialsHj and the known Gaussian parametersqn(t), pn(t), and
cn(t). The unknown coefficientsaJ (t) are determined by differential equations ob-
tained from the variational principle on thetime-dependentapproximation manifold
(here actually a linear space)

Mt =
{
u : u(x1, . . . , xN ) =

∑

J

aJ γ
(1)
j1

(x1, t) · . . . · γ(N)
jN

(xN , t), aJ ∈ C
}
,

at every instantt as previously in (1.2), except that nowdu/dt is not sought for in
the tangent space ofMt, but as the derivative of a pathu(t) ∈ Mt.

This approach leads to a method which adapts the location andwidth of the
Hermite basis functions to Gaussian wave packets that follow classical trajectories.
We will consider in more detail a somewhat related, but computationally favourable
approach in Chap. V.
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II.5.3 Swarms of Gaussians

In a conceptually similar approach, frozen Gaussiansγk(x, t) first evolve indepen-
dently according to the classical equations of motion for position and momentum
and with the phase given by the action integral

∫ t

0

(
1
2 |pk|2 − 〈V 〉γk

)
ds, as proposed

by Heller (1981). This approximation is then improved upon by taking a linear com-
bination

ψ(x, t) ≈
∑

k

ak(t) γk(x, t) ,

where the coefficientsak(t) are determined by the time-dependent variational prin-
ciple:

〈∑

j

bjγj

∣∣∣
∑

k

(ȧkγk + akγ̇k) − 1

iε
H

∑

k

akγk

〉
= 0 ∀ b = (bj) .

This yields a linear system of differential equations fora = (ak),

Mȧ =
1

iε
Ka− La

with the matricesM =
(
〈γj | γk〉

)
, L =

(
〈γj | γ̇k〉

)
, K =

(
〈γj |H | γk〉

)
. While

theL2 norm of the approximation is conserved, the total energy andsymplecticity
are not conserved by applying the variational principle on a time-dependent ap-
proximation space as is done here, in contrast to the case of atime-independent
approximation manifold as studied in Sect. II.1.3.

The above approach was mentioned by Heller (1981) and has been carried fur-
ther by Ben-Nun & Martinez (1998, 2000) together with criteria when to create,
or “spawn” new basis functions. It is related in spirit to particle methods in fluid
dynamics; see, e.g., Monaghan (1992) and Yserentant (1997).

II.6 Quasi-Optimality of Variational Approximations

In this theoretical section we consider variational approximation on a manifoldM
and study the following question: In case the true wave function remains close to
the manifold, does the time-dependent variational principle then provide a good
approximation? Stated differently: Can the error of the variational approximation
be bounded in terms of the error of the best approximation to the wave function
onM?

This is a familiar question in other areas of numerical analysis; cf. Céa’s lemma
on the optimality of Galerkin approximations of elliptic boundary value problems as
stated, e.g., in Ciarlet (1991), p. 113. A positive answer tothis question separates the
problems of approximability of the wave function on the chosen manifold, which
often is a modeling hypothesis, and the quality of the time-dependent variational
principle for obtaining approximate wave functions.
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Following Lubich (2005), we give a conditionally positive answer under as-
sumptions that include, for example, the time-dependent Hartree method and its
multi-configuration versions.

Assumptions.We consider the Schrödinger equation (1.1) on a Hilbert spaceH,
with ~ = 1 in the following, and the variational approximation given by the Dirac-
Frenkel principle (1.2) on the manifoldM. The HamiltonianH is split as

H = A+B (6.1)

with self-adjoint linear operatorsA andB whereA corresponds to the separable
part:u ∈ M impliese−itAu ∈ M for all t. This is satisfied if and only if

Au ∈ TuM for all u ∈ M∩D(A). (6.2)

We assume that the non-separable remainderB is bounded:

‖Bϕ‖ ≤ β ‖ϕ‖ (6.3)

for all ϕ ∈ H. About the approximation manifoldM we assume the condition
(1.3) of complex linear tangent spacesTuM, and a condition that is satisfied ifM
contains rays (cf. Theorem 1.4):

u ∈ TuM for all u ∈ M , (6.4)

A bound of the curvature ofM is formulated in terms of the orthogonal projectors
P (u) : H → TuM andP⊥(u) = I − P (u):

‖ (P (u) − P (v))ϕ ‖ ≤ κ ‖u− v‖ · ‖ϕ‖ (6.5)

‖P⊥(v)(u − v) ‖ ≤ κ ‖u− v‖2 (6.6)

for all u, v ∈ M andϕ ∈ H. We assume thatP (u(t))ϕ is a continuously differen-
tiable function oft in H for every continuously differentiable pathu(t) onM and
ϕ ∈ H.

The initial dataψ(0) is assumed to be onM and of unit norm. We consider a
time interval on which the solutionψ(t) to (1.1) remains nearM, in the sense that

dist(ψ(t),M) ≤ 1

2κ
for 0 ≤ t ≤ t . (6.7)

Both the exact wave functionψ(t) and the variational approximationu(t) of (1.2)
are required to be in the domain ofH for 0 ≤ t ≤ t, with a bound

‖Hψ(t)‖ ≤ µ , ‖Hu(t)‖ ≤ µ and ‖Au(t)‖ ≤ µ . (6.8)

Further we consider the distance boundδ ≤ µ given by

dist (Hψ(t), Tv(t)M) ≤ δ , dist (Hu(t), Tu(t)M) ≤ δ , (6.9)
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wherev(t) ∈ M is the nearest point toψ(t) onM:

‖v(t) − ψ(t)‖ = dist (ψ(t),M) .

Discussion of the assumptions.In all the examples of this chapter,A might be
chosen as the kinetic energy operatorT , though this might not always be the opti-
mal choice. A critical assumption is the boundedness of the non-separable remain-
derB. It is a reasonable assumption in the Schrödinger equationof the nuclei and
its Hartree and Gaussian wave packet approximations (and their multiconfiguration
versions). The condition is not satisfied, however, in the time-dependent Hartree-
Fock method for the electronic Schrödinger equation wherethe Coulomb potentials
are non-separable and unbounded. We refer to Lubich (2005) for a corresponding
result in the Coulomb case.

We have assumed the splitting (6.1) independent of time for ease of presentation,
though the result would directly extend to the situation of atime-dependent splitting
H = A(t) + B(t). For example, in the (multi-configuration) Hartree method we
might chooseA(t) = T + V1 + · · · + VN with the mean-field potentialsVn, so
thatB(t) becomes the difference between the given potential and the sum of the
mean-field potentials. This can be expected to give more favourable error bounds
than a time-independent splitting into kinetic energy and potential. Similarly, in
Gaussian wave packets we might split intoA(t) = T+Q(t) with the local quadratic
approximationQ(t) to the potential, and the non-quadratic remainderB(t).

Condition (6.4) is satisfied for all the examples in this chapter. Conditions (6.5)
and (6.6) encode curvature information ofM in a form that is suitable for our anal-
ysis. Condition (6.7) ensures thatψ(t) has a unique nearest point onM. The reg-
ularity assumption (6.8) forψ(t) is satisfied if the initial value has such regularity.
The regularity (6.8) of the approximate solutionu(t) needs to be ascertained, but
is known to hold, e.g., for the (multiconfiguration) time-dependent Hartree method
when the Schrödinger equation for the nuclei has a smooth bounded potential.

The following result bounds the error of the variational approximation in terms of
the best-approximation error.

Theorem 6.1 (Quasi-Optimality of Variational Approximati ons).Under condi-
tions (6.1)–(6.9), the error of the variational approximation is bounded by

‖u(t) − ψ(t)‖ ≤ d(t) + CeKt

∫ t

0

d(s) ds with d(t) = dist(ψ(t),M) (6.10)

and withK = 2κδ andC = β + 3κµ, for 0 ≤ t ≤ t .

Though the bound (6.10) can be pessimistic in a concrete situation, it does iden-
tify sources that can make the variational approximation deviate far from optimality
even if the best-approximation errord(t) is small: large curvature of the approxi-
mation manifold (κ), a large effective non-separable potential in the Hamiltonian
(β, δ), lack of regularity in the exact or approximate solution (µ, δ), and long time
intervals (t).
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Proof. The proof compares the differential equation foru(t) with the equation sat-
isfied by the best approximationv(t) ∈ M with ‖v(t) − ψ(t)‖ = d(t).

(a) The functionv(t) is implicitly characterized by the condition (omitting the
obvious argumentt in the sequel)

P (v) (v − ψ) = 0 . (6.11)

Under condition (6.7), the implicit function theorem can beused to show that this
equation has a unique solution in the ball of radius1/(2κ) aroundψ, which de-
pends continuously differentiable ont. We derive a differential equation forv(t) by
differentiating (6.11) with respect tot ( ˙= d/dt):

0 = P (v)(v̇ − ψ̇) +
(
P ′(v) · (v − ψ)

)
v̇ (6.12)

with (P ′(v)·ϕ)v̇ = (d/dt)P (v(t))ϕ forϕ ∈ H. Sincev̇ ∈ TvM, we haveP (v)v̇ =
v̇, and the equation becomes

(
I + P ′(v) · (v − ψ)

)
v̇ = P (v)ψ̇ . (6.13)

By (6.5) and (6.7) we have

‖P ′(v) · (v − ψ)‖ ≤ κ ‖v − ψ‖ ≤ 1

2
,

so that the operator in (6.13) is invertible and

v̇ = P (v)ψ̇ + r(v, ψ) with ‖r(v, ψ)‖ ≤ 2κµ ‖v − ψ‖ . (6.14)

Here we have used the bound (6.8),‖ψ̇‖ = ‖Hψ‖ ≤ µ. Inserting (1.1) in (6.14),
the equation can be written as

v̇ = P (v)
1

i
Hv − P (v)

1

i
H(v − ψ) + r(v, ψ) . (6.15)

We will compare this differential equation with Equation (1.5) foru(t), viz.,

u̇ = P (u)
1

i
Hu . (6.16)

In the following we tacitly assumev(t) ∈ D(H) = D(A). If v does not have this
regularity, then the proof would proceed by replacingv by a regularized family(vε)
with vε(t) ∈ D(H) andvε → v in C1([0, t],H) asε→ 0. Applying the arguments
below tovε and lettingε→ 0 in the final estimate then gives the result.

(b) We form the difference of (6.16) and (6.15), take the inner product withu−v
and consider the real part. We then have

‖u− v‖ · d
dt

‖u− v‖ =
1

2

d

dt
‖u− v‖2 = Re〈u − v | u̇− v̇〉 = I + II + III

with
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I = −Re〈u − v |P (u)iHu− P (v)iHv〉
II = −Re〈u − v |P (v)iH(v − ψ)〉
III = −Re〈u − v | r(v, ψ)〉 .

(c) Using the self-adjointness ofH = A+B and condition (6.2), which implies
P⊥(v)iAv = 0, we write

I = Re〈u− v |P⊥(u)iHu− P⊥(v)iHv〉
= Re〈u− v |P⊥(u)iHu〉 − Re〈u− v |P⊥(v)iBv〉 .

To treat the expressionII, we split

II = −Re〈u− v |P (v)iA(v − ψ)〉 − Re〈u− v |P (v)iB(v − ψ)〉 .

It is in the first term that condition (6.4) is used. This condition impliesP (v)v = v
and hence, by (6.11),

v = P (v)ψ, v − ψ = P⊥(v)(v − ψ) = −P⊥(v)ψ .

It follows that

〈v |P (v)iA(v − ψ)〉 = −〈v |P (v)iAP⊥(v)ψ〉 = 〈P⊥(v)iAv |ψ〉 = 0 ,

sinceP⊥(v)iAv = 0 by (6.2). Similarly, (6.2) implies

〈u | iAP⊥(u)(v − ψ)〉 = 0 .

These equations yield

〈u− v |P (v)iA(v − ψ)〉
= 〈u | iA(v − ψ)〉 − 〈u− v |P⊥(v)iA(v − ψ)〉
= −〈u | iA(P⊥(u) − P⊥(v))(v − ψ)〉 + 〈u− v |P⊥(v)iAψ〉
= −〈iAu | (P (u) − P (v))(v − ψ)〉 + 〈P⊥(v)(u − v) |P⊥(v)iHψ〉

−〈u− v |P⊥(v)iBψ〉 .

We then arrive at the basic equation of the proof,

I + II = Re〈P⊥(u)(u− v) |P⊥(u)iHu〉
− Re〈u− v | iB(v − ψ)〉
+ Re〈iAu | (P (u) − P (v))(v − ψ)〉
− Re〈P⊥(v)(u − v) |P⊥(v)iHψ〉 .

With (6.3)–(6.9) we thus obtain

|I + II| ≤ κ ‖u− v‖2 · δ + ‖u− v‖ · β ‖v − ψ‖
+ µ · κ ‖u− v‖ · ‖v − ψ‖ + κ ‖u− v‖2 · δ

= 2κδ ‖u− v‖2 + (β + κµ) ‖u− v‖ · ‖v − ψ‖ .
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(d) Together with (6.14) for boundingIII, this estimate gives

d

dt
‖u− v‖ ≤ K‖u− v‖ + C‖v − ψ‖

with K = 2κδ andC = β + 3κµ. The Gronwall inequality then implies

‖u(t) − v(t)‖ ≤ CeKt

∫ t

0

‖v(s) − ψ(s)‖ ds , (6.17)

and the triangle inequality foru−ψ = (u−v)+(v−ψ) together withd = ‖v−ψ‖
yield the result. ⊓⊔
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M.H. Beck, A. Jäckle, G.A. Worth & H.-D. Meyer,The multiconfiguration time-dependent
Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets,
Phys. Reports 324 (2000), 1–105.[II.3]

M. Ben-Nun & T.J. Martinez,Nonadiabatic molecular dynamics: validation of the multiple
spawning method for a multidimensional problem, J. Chem. Phys. 108 (1998), 7244–
7257. [II.5]

M. Ben-Nun & T.J. Martinez,A multiple spawning approach to tunneling dynamics, J. Chem.
Phys. 112 (2000), 6113–6121.[II.5]

M.V. Berry, Quantal phase factors accompanying adiabatic changes, Proc, Royal Soc. Lon-
don. Series A, Math. Phys. Sci. 392 (1984), 45–57.[II.2]

G.D. Billing, The Quantum Classical Theory, Oxford Univ. Press, 2003.[II.5]
S. Brandt & H.D. Dahmen,The Picture Book of Quantum Mechanics, 3rd ed., Springer, New

York, 2001. [I.0]
M. Born,Quantenmechanik der Stoßvorgänge, Z. Phys. 38 (1926), 803–827.[I.1]
M. Born & V. Fock,Beweis des Adiabatensatzes, Z. Phys. 51 (1928), 165–180.[II.2]
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halb der Quantenmechanik, Z. Phys. 45 (1927), 455–457.[I.4]
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