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Chapter II.
Reduced Models via Variational
Approximation

There is a wide variety of models, or approximations, that iatermediate be-
tween the full time-dependent many-body quantum mechanidsclassical me-
chanics. Most of them are based on a time-dependent vargpoinciple, first used

by Dirac (1930), which plays a similarly fundamental role foe time-dependent
Schrodinger equation as the Rayleigh-Ritz variationalqgiple for the Schrodinger
eigenvalue problem. Indeed, several of the methods fortttesary problem, as
for example the Hartree—Fock method, have a time-depegatbgue that comes
about by the same choice of approximation manifold to whinehvariational prin-

ciple is restricted. There are, however, different aspéaiscome into play in the
time-dependent situation, both in the modeling/approxiomeaspects and in the
numerical treatment of the reduced models.

We first give an abstract formulation and various interprets of the time-
dependent variational principle, and then turn to somecbasaimples that take us
from the full molecular Schrodinger equation to classioalecular dynamics: the
adiabatic or time-dependent Born—Oppenheimer approiométat eliminates the
electronic degrees of freedom, the time-dependent selistent field approxima-
tion that separates the nuclei, and Gaussian wavepackatdgsthat parametrizes
the single-particle wave functions. At the end of the chapkaddress the theoret-
ical question of approximation properties of variationgpeoximations.

[I.1 The Dirac—Frenkel Time-Dependent Variational
Principle

In this section we give the abstract formulation of the tidemendent variational
principle and discuss its structural properties.

11.1.1 Abstract Formulation

We consider an abstract Schrodinger equation on a complbgrtspaceH with
inner product-|-), with a HamiltonianH that is a self-adjoint linear operator &t

dy

1
= = H. (1.1)
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Let M be a submanifold of{, and foru € M denote byT;, M the tangent space
at u, which consists of the derivatives of all differentiablethgaon M passing
throughu. We think of M as an approximation manifold on which an approximate
solutionu(t) to the solutiomy)(t) of (1.1) with initial datau(0) = %(0) € M is
sought. The functiot — u(t) € M is determined from the condition that at every
timet, its derivativedu/dt (t), which lies in the tangent spa§ ;) M, be such that
the residual in the Schrodinger equation is orthogondiéd@ngent space:

du du 1
—-€T,M suchthat <v - EHU> =0 YoeT,M. (1.2
The tangent spacE, M is known to be a real-linear closed subspacg{otVe will

always assume that in fact
T, M is a complex linear space, (2.3)

thatis, withv € T;, M, alsoiv € T, M. In this situation we get the same condition
if we consider only the real part or the imaginary part of thvegr product of (1.2).
We will see, however, that these two cases lead to very diffénterpretations: as an
orthogonal projection onto the tangent space in case ottgart, as a symplectic
projection and as the Euler—Lagrange equations of an afttimetional in case of
the imaginary part.

We remark that from a numerical analysis point of view, ctindi(1.2) can be
seen as a Galerkin condition on the state-dependent appatign spacd’, M.

Historical Note. Dirac (1930) used condition (1.2) without further commentée-
rive the equations of motion of what is now known as the tirepahdent Hartree—
Fock method. Frenkel (1934), p. 253, gives the interpateds an orthogonal pro-
jection and refers to the appendix of the Russian translatidirac’s book as the
origin of the argument. Some thirty years later, the Diraenkel reasoning was
taken up again by McLachlan (1964) and enriched by furthamgies. Condition
(1.2) is therefore often called the Dirac—Frenkel-McLactime-dependent varia-
tional principle in the chemical physics literature, sedlé¢i€1976) and, e.g., Baer
& Billing (2002). In theoretical and nuclear physics, theridation from Dirac’s
quantum-mechanical action functional and with it the syeupt viewpoint has
rather been emphasized; see Kerman & Koonin (1976), RowmaRy& Rosen-
steel (1980), Kramer & Saraceno (1981) and, e.g., Feldmde&rhnack (2000).

[1.1.2 Interpretation as an Orthogonal Projection

Taking the real part in (1.2), we arrive at the minimum coioditfor the following
linear approximation problem:

du . . 1 o
d_ltL is chosen as that € 7, M for which H w— '_hHu H is minimal.  (1.4)
(3

(Note thatl|w + v — = Hul]* = |lw — - Hul]> + 2Re(v, w — - Hu) + |Jv[|%.)
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In other wordsdu/dt is theorthogonal projectiorof %Hu onto the tangent space

T M. With the orthogonal projection operator offfpM denoted by (u), we can
thus rewrite (1.2) as a differential equation on the madifed,

du 1
- P =
Ok

— = H 15
- u, (L5)

which isnonlinearunlessM is a linear subspace @f. The (global or local in time)
existence of a solution(t) € D(H) N M can be ascertained only with further
specifications about the operatdrand the manifold\1. In the following we make
formal calculations which implicitly assume that a suffitig regular solution:(t)
exists.

[1.1.3 Interpretation as a Symplectic Projection

The real-bilinear form

w(&mn) =—-2rIm{|n), &EneH,

is antisymmetric, and is called the canonicaymplectic two-fornon . Since
T, M is a complex linear space, for evepyc H there exists a unique

w= P(u)p € T,M suchthat w(v,w)=w(v,p) VveT,M.

This non-degeneracy of the two-formmakesM a symplectic submanifoldf 7,
and P(u) is the symplectic projectioroperator ontdl’, M. (Here P(u) actually
coincides with the orthogonal projection considered in pinevious subsection.)
Taking the imaginary part in condition (1.2) and multiplgiwith —2# yields

du
W(U’E) :2Re<v|Hu> VveTu,M. (1.6)
With the average of the Hamiltonian
H(u) = (u|H|[u),

the right-hand side in (1.6) is recognized as the derivait/éw)v in the direction
of v. Now, (1.6) rewritten as

du
w(v, E) = dH (u)v YveT,M, (1.7)
is a Hamiltonian systenon the symplectic manifold with the Hamilton func-
tion H(u); see Marsden & Ratiu (1999), Chap.5.4. Let us state andyvkasic
properties of this system.

Theorem 1.1. The total energy H) is conserved along solutions of the Hamilto-
nian system (1.7) oM .
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Proof. We have (with = d/dt)

%<U|H|u> =2Re(u|Hu) = w(t,i) =0
on using (1.6) withv = @ € T, M in the second equation. a

There is also the following important conservation propevhich we first state
briefly and then explain in detail.

Theorem 1.2. The flow of the Hamiltonian system (1.7) is symplectic.

This means that the symplectic two-fouris preserved in the following sense: Let
up € M, and letyy € T, M be a tangent vector af. Then there is a path(r)
on M with v(0) = up andd~y/dr (0) = vg. Letu(t) = u(t, uo) be the solution of
(1.7) with initial dataug, and denote by

_d
_dT 7=0

’U(t) U(t, 7(7-)) € Tu(t)M

the tangent vector propagated along the soluti@inug) (note thaw(t) is the solu-
tion with initial datav, to the differential equation linearized aft, u¢)). Letw(t)
be another tangent vector propagated along the same splaticesponding to an

initial tangent vectotvy atug. Then, the statement of Theorem 1.2 is that

d
Ew(v(t),w(t)) =0. (1.8)

Proof. By the bilinearity and antisymmetry aof we have
pr wv,w) = —w(w,v) + w(v,w) .
Differentiating (1.6) with respect to the inital value, wiatain that this equals
Ew(v,w) =-2 Re<w’HU>+2 Re<v’Hw>= 0. O

We will further discuss symplectic and Hamiltonian aspéctSection 11.4.2
where we consider the non-canonical Hamiltonian struatéitee equations of mo-
tion for parametrized wave functions.

[1.1.4 Interpretation as an Action Principle

Taking the imaginary partin (1.2) also yields that everysoh of (1.2) makes the

action functional
t1 du
S(u) = / <u(t)
to

ih (1) Hu(t)> dt (1.9)
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stationary with respect to variations of paths on the maahifot with fixed end-
points, because by partial integration and the symmet#y ,of

3S(u) = /ttl (<§u(t) ‘z’h%(t) - Hu(t)> + <u(t) ‘m%(t) - H&u(t)>) dt
- _2ﬁ/: Im <5u(t) %(t) - %Hu(t)>dt.

The conditiory.S = 0 is the quantum-mechanical analogue of Hamilton’s prirecipl
in classical mechanics. Also note th#tu) is real if |u(t)||?> = Const, as is seen by
partial integration in (1.9).

[1.1.5 Conservation Properties

We know from the Heisenberg equation (4.4) that the avefdyes conserved along
solutions of the Schrodinger equationdfcommutes with the Hamiltoniaff. For
variational approximations (1.2) there is the followingerion.

Theorem 1.3. Let the self-adjoint operatod commute with the Hamiltonia#/,
[A,H]=0.If
Au € TyM Yue MND(A), (1.10)

then the average ofl along variational approximations(t) € M N D(A) is
conserved{u(t) | A|u(t)) = Const.

Proof. We have

d o 1 _ 1 _
E<U|A|u>—2Re<Au|u>—2Re<Au|FLHu>—<u|m[A,H]|u>—O

on using (1.2) and (1.10) in the second equality. a0

ChoosingA as the identity operator, we obtain the following usefulodiary.

Theorem 1.4. The norm is conserved along variational approximation&ifcon-
tains rays, that is, withw € M alsoau € M for everya > 0.

Proof. The stated condition implies € T, M for v € M, and hence the result
follows from Theorem 1.3. |

11.1.6 An A Posteriori Error Bound

A simple but sometimes useful general error bound for vianal approximations
is obtained in terms of th&? distance dis{-;: Hu, T\,M) of -~ Hu along the vari-

%

ational approximatiom(t) to the corresponding tangent space.
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Theorem 1.5. If u(0) = 1(0) € M, then the error of the variational approxima-
tion is bounded by

t
() — ()] < /O dist (%HU(S), Tu(s)/\/l) ds. (1.11)
Proof. We subtract (1.1) from (1.5), so that
%(u _ ) = %H(u —g)— PL(U)%HU with  PL(u) = I — P(u).

Multiplying with « — ¢ and taking the real part gives

1d

d
5 = yl? = Re(u— | 2 (u—))

d
lu = Il - - llu— ]| =
1 1
=Re(u—v| = PH{u)mHu) < |lu— || - [|P* (w) = Hul

Dividing by ||« — 1|, integrating fron0 to ¢ and noting

et oL,y L qldu 1
dist (1. TuM) = [P | = | T = 1]
then yields the error bound (1.11). a

For the error in the average of an observallalong the variational approximation
we note the bound

[(u] Alu)= (| Al ¥)| = [(u—t | Au)+(AY [u=9)| < lu—v||- (|| Aul|+] Ap])).

[1.2 Adiabatic / Born—Oppenheimer Approximation

In the following three sections we turn to basic examplesasfational approxi-
mation, which take us in steps from the full molecular Sdimger equation down
to classical molecular dynamics. We begin with the adiabapiproximation that
separates the motion of heavy nuclei and light electrons.

[1.2.1 Electronic Schrodinger Equation
We return to the molecular Hamiltonian (1.5.6), viz.,

Huyo =Ty +T. + V. (2.1)

In a first step we ignore the contribution from the kinetic rigyeof the nuclei, I’y
(vaguely motivated by the fact thaf,, > m), and work with the electronic Hamil-
tonian
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Ho(z)=T.+V(z,), (2.2)

which acts on functions of the electronic coordinageand depends parametri-
cally on the nuclear coordinates We consider the electronic structure problem,
the Schradinger eigenvalue problem

He(z)®(x,-) = E(CC)(P(&E, oF (2.3)

typically for the smallest eigenvalue, the ground stategneictually computing
eigenvalues and eigenfunctions of the electronic Schg@&tiequation is the primary
concern of computatonal quantum chemistry; see, e.g. S &stlund (1996), and
Le Bris (2003) from a more mathematical viewpoint. Here wst guppose that this
problem is solved in some satisfactory way.
We fix an eigenfunctior(z, -) of H.(z) corresponding to the eigenvalégx),

and assume thdt(x, y) is of unit L? norm as a function of and depends smoothly
onz. For fixed nuclear coordinates the solution of theime-dependent electronic

Schibdinger equation

L0V,
ih 5 = H ()P, (2.4)

with initial datay (z)®(x, -) is given by

We(z,y, 1) = e FO () - B, y) .

[1.2.2 Schrodinger Equation for the Nuclei on an Electronic
Energy Surface

This motivates thadiabatic approximatioo the molecular Schrédinger equation,
which is the variational approximation on

M={ue Li,y cu(x,y) = Y(x) Bz, y), ¥ € L2} . (2.5)

Here L2 = L*(R3Y) denotes the Lebesgue space of square integrable functions
depending only on the nuclear coordinateandL? , = L*(R3*N x R3L) is the L?
space of functions depending on both nuclear and electomuidinates. Note that
hereM is a linear space so that, M = M for all u € M. As we show below, the
Dirac-Frenkel variational principle (1.2) then leads t&ehibdinger equation for

the nucleion the electronic energy surfaée

0 )
ih£:HN¢ with HN:TN+E+Bl+BQ, (26)
N oh N p2 )
B, = nz::l A IM(Ve,@|P)r2 - pn, Ba= 2311, Ve, @22
with p,, = —ihV,, . The HamiltonianH y acts on functions of only the nuclear

coordinatese, with the electronic eigenvalug as a potential. The last two terms
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B, and By contain derivatives of the electronic wave functi@rwith respect to

the nuclear coordinates They are usually neglected in computations, first because
they are expensive to compute or simply not available andrekby the formal
argument — to be taken with caution — that they carry the largeses\/,, in the
denominator and are of lower differentiation order thankinetic energy term. The
resulting simplified approximation with the Hamiltonian

Hpo =Ty +FE

is known as théime-dependent Born—Oppenheimer approximatibtescribes the
motion of the nuclei as driven by the potential energy swfof the electrons. It
underlies the vast majority of computations in molecularaiyics.

The term B; can indeed be safely neglected since it can be shown that this
omission introduces an error that is of the same magnitudbeaapproximation
error in the adiabatic approximation.

The termB;, known as théerry connectionvanishes for real eigenfunctiotts
and, more generally, it can be made to vanish by a gauge tranafiond(z,y) —
@@ (x,y) with 0 satisfyingV,., 0(x) = —Im (V& | @) 2. This transformation
of & changes)(x,t) — e~y (z,t). Note thatd is uniquely determined up to
a constant it is indeed a smooth function af on all of R3V, but is only locally
uniquely determined it is a differentiable function o only on a domain that
is not simply connected. In the latter cag®, can cause physical effects that are
not retained in the model otherwise; see the extensivetiteg on Berry's phase,
starting with Berry (1984) and Simon (1983).

Derivation of (2.6):We note that fow(x, y) = ¢ (x)®(x, y) we have
N

h2

n=1

and recall thaf|®(z, -)||2, = 1 for all z. We then obtain from (1.2) with(z, y) =
o(z)®(x,y) for arbitraryp € L2 that

b NoR2
<90 ZHE —bEy + ; 20, (Azﬂ/) +2(V,, P ¢>L§ Ve, ¥
~ V2, ®| Vo, D) 2 ¢)>L2 —0.
On noting thad = V,,,,|9[|7. = 2Re(V,, 2| ®) 2, we obtain (2.6). o

[1.2.3 Semiclassical Scaling

One property to the success of the adiabatic approximaditimel smallness of the
mass ratio of electrons and nuclei,
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m
2 =—

= 1 2.7
T (2.7)

with M = min,, M,,. For ease of presentation we assume in the following that the
masses of the nuclei are all equa¥,, = M for all n. In atomic units § = 1,

m = 1,r = 1, e = 1) and with the small parameterof (2.7), the molecular
Hamiltonian then takes the form

2
fo = 5 A+ Ho(w)  with  He(x) = —%Ay V(z,). (28

mol —

We are interested in solutions to the Schrodinger equatiddounded energy, and
in particular of bounded kinetic energy

2
1
@]~ A, |0) = L eVar|? = o).

For a wavepacket? %q(x) this condition corresponds to a momentum ! and
hence to a velocity = p/M ~ . Motion of the nuclei over a distance 1 can
thus be expected on a time scafe'. We therefore rescale time

t—t/e,

so that with respect to the new time nuclear motion over deta~ 1 can be
expected to occur at time 1. The molecular Schrodinger equation in the rescaled
time then takes the form

. ov .
egy = H: W. (2.9)
The Schrodinger equation (2.6) for the nuclei becomes
. 8’(/1 € ; € e? 2
Z&'E:HNw W|th HN:_5A1+E+€Bl +e BQ, (210)

1
Bi =1Im <Vz¢|¢>L§ ‘p, Ba2= 3 ”qu)H%g )

with p = —ieV,. We are interested in solutions over tintes O(1).

[1.2.4 Spectral Gap Condition

A small error of the adiabatic approximation will be seenéachused by two prop-
erties: in addition to the smallness of the mass ratio= m/M, we require a
separation of the eigenvaldg x) from the remainder of the spectruniH.(z)) of
the electronic Hamiltoniai/, (z),

dist(E(z), o(He(z)) \ {E(z)}) =6 >0, (2.11)

uniformly for all z in a region where the wavefunction remains approximatelglio
ized. We will give a result on the approximation error in tiiteaion of a globally
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well-separated single eigenval@igx), where (2.11) is assumed to hold uniformly
forall z € R3V.

Remark.lt is known that the adiabatic approximation generally ksedown near
crossings of eigenvalues. A remedy then is to enlarge theoappation space by
including several energy bands that are well separated fh@memaining ones in
the region of physical interest, e.g., using

M = {u € Liy : ’U/(ZC,y) = wl(x)dsl(%y) + ¢2($)¢2($7y)a 1,10 € Li} )

(2.12)
where® (x, ), $2(z,-) span an invariant subspace of the electronic Hamiltonian
H.(x). The variational approximation oM then leads to a system of coupled
Schrodinger equations:

m%ﬂ =TnY + Biy + By + Vi for ¢ = (wl) (2.13)
t o

with the matrix-valued potential

Viin. W .
v_(V; V;z) With V() = (@:(, )| Ho(x) | 2500, ))pe (2.14)

and with the diagonal operatoB = (

(2.6) with @, instead ofp.

The non-adiabatic solution behaviour near eigenvaluesiorgs has attracted
much attention in recent years; see, e.g., Baer & Billindd@0Domcke, Yarkony
& Kodppel (2004), and Lasser & Teufel (2005).

By 0 h K defined [
0 B , WhereB; are defined a®3; in

[1.2.5 Approximation Error

We derive an error bound of the adiabatic approximationwtaks for a modified
Hamiltonian where the Coulomb interactions of the nucleimollified to smooth
bounded potentials. We assume

V.V (z,9)| <Cy for zeR3¥N, yeR¥, (2.15)
and consider initial data on the approximation spadef (2.5),
Yo(z,y) = vo(x)@(x,y)  with [|[Hxvoll < Co, [[¢ol =1. (2.16)

We consider the adiabatic approximatieft) = (-, -,t), with initial data¥,, de-
termined by the time-dependent variational principle:

ou ou 1 ¢ .
SLeM  suchthat <v o EHmolu> =0 YveM. (217

We know already that
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U(l’,y, t) = w(xa t)d)(xvy) )

where(z, t) is the solution of the nuclear Schrodinger equation (2ulif) ini-
tial datawyo(x). This is compared with the exact solutigr(t) = ¥(,-,t) of the
molecular Schrodinger equation (2.9) with initial d#dx, y) = ¥o(2)P(z, y).

Theorem 2.1 (Space-Adiabatic Theorem, Teufel 2003)Under the above condi-
tions, the error of the adiabatic approximation is boundgd b

lu(t) — @) < C(1+t)e for t>0,

whereC' is independent of andt but depends on the gaypof (2.11) (uniform for
x € R3N), on bounds of partial derivatives with respecttap to third order of the
eigenfunction®, and on the boundSy of (2.15) andCy of (2.16).

Teufel (2003) gives a more general result, including the addigher-dimensional
invariant subspaces as in (2.12), and a wealth of relateatyth&he result is also
related to the time-adiabatic theorem of Born & Fock (1928) ato (1950), which

states that in a quantum system with a slowly time-varyingnitanian a wave

function that is an eigenfunction initially, approximateémains an eigenfunction
of the Hamiltonian at any instant for long times.

Proof. We letH = HE

mol

reformulate (2.17) as

for brevity. With the orthogonal projectioR onto M, we

ie% — Ku with K= PHP.

We then have
u(t) = e K/ wy = Pem /ey e M, w(t) = e/,
and by the variation-of-constants formula,

u(t) _ J/(t) — e_itK/EEPO _ e—itH/au'/O
t
= —,i e Mt H/e (1 — KYPe " K/5w, ds .

€ Jo
We note that H — K)P = P+ HP (with P+ = I — P the complementary orthog-
onal projection). The key idea is now to wrife- H P essentially as a commutator
with H, which becomes possible by the gap condition (2.11). Lemr@ab2low
tells us thatPt HP = ¢[H, G] + 2R with operatorsG and R that are bounded
independently of in appropriate norms as stated there. The remainder 4&fn
immediately gives ai¥(¢) bound on time intervals of lengif?(1) as desired. We
then have

t
u(t) _ W(t) _ ,L-efitH/s/ eisH/s [H, G] efisH/s . eisH/s efisK/s Wy ds + O(E) ’
0
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where we note that
eisH/s [H7 G]efisH/s = —je di (eisH/s GefisH/s) )
S

We now use partial integration and observe

di(eisH/a e—z‘sK/s%) _ feisH/s (H - K)Pe—isK/s%'
s €

Expressing once aga{ff — K)P = P+ H P, we obtain
u(t) —(t) = e Ge K2y — e e H/equ,

t
_ / eit=)H/e qpL g pe—isk/eg 4s 1+ O(c).
0

The result now follows with the estimates of Lemmas 2.2 aBd 2. O

It remains to state and prove the two lemmas to which we medarr the above
proof. They use scaled Sobolev norms of functiondRSf or RN x R3%, The
squares of these norms are defined by

el - = leVaell® + llell?,
loll3.. = lle* Azl + |10l

where the norm on the right-hand side is the norm (theL? or L2 , norm, as
appropriate).

Lemma 2.2. The projected Hamiltonia® H P can be written as
PLHP =¢[H,G] +°R (2.18)
where the operator& and R are bounded by
G| < CL[]1e,  |RY) < Co @] (2.19)
forall ¥ € C$°(R3N x R3%). Moreover,P+ H P is bounded by
|PLHP||,,. < Ce | 7], . (2.20)

Proof. In the following we writeV = V, andA = A, for the gradient and Lapla-
cian with respect to the nuclear coordinates

(a) We begin by computing® HP for H = —%A + H.. The orthogonal
projectionP onto M is fibered as

(P¥)(z) = P(z)¥(x,-),

where P(z) is the ij—orthogonal projection onto the span of the eigenfunction
&(x, -) of the electronic Hamiltoniatl. (). We have, fom € L2,
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P(x)n = (®(x, ) |n) 2(x, ),
with the inner product of.2. Sinced(z,-) spans an invariant subspacef(z),

we haveP*(z)H,(z)P(z) = 0, and hence, fo¥ € L2,

2 2
PHPY = —% PrA(PW) = —e2PH(VP) - VW — % PH(AP)W .

For the first term on the right-hand side we note, u$¥i¢?) P+ v = (V@ | PLw)d
andP1¢ =0,
Q:= —P*(VP)=-P+(VP)P.

We thus obtain
PYHP=cQ eV +¢&%Ry, (2.21)

where Ro(z) = —3P(z)>(AP)(z) is bounded onL2 uniformly in 2 € R3V,
provided that the eigenfunctioh has bounded derivatives with respectztoWe
also note that (2.21) implies the bound (2.20).
(b) We construcf'(z) such that
[He(z), F(z)] = Q(x). (2.22)
Writing H, as an operator matrix with blocks correspondingutoand M+,
— E 0 H 1l _ pl 1
He_<0 Hel) with H; = P~H.P—,

we can rewrite (2.22) as

E 0 F11 F12 . 0 0
0 HeJ‘ ’ F21 F22 B Q 0
which is solved by settingy; = 0, F1o = 0, Fyo = 0 and determiningry; =

PLFP from
HIFy — FnE=Q.

By the spectral gap condition (2.11), this equation has gumsolution, and we
thus obtain the solution to (2.22) as

F(z) = (H (z) - E(x)) "' Q(a).

This is bounded ir? uniformly for z € R3" by the uniform gap condition, and so
areVF(z) andAF (z).

(c) We next show that the commutator &f = —%A + H. with F'is a small
perturbation tdH., F] = Q. For this we note that

62 62
[-5 A F] = —eVF eV - - AF(x),

so that
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[H,F]=Q—¢Ry, (2.23)
whereR; is bounded by| R ¥|| < ¢1||¥||1,- for all @.
(d) We set
G=F eV (2.24)

and show that the commutator with equals - €V up to a small perturbation. By
(2.23) we have, using the Leibniz rule of the commutator,
[H,G] = [H,F]|-eV+F-[H,eV]
= Q- -eV—¢eR)-eV—-¢cF-VV.
For the term with the potentidl we recall assumption (2.15), which bourid¥’.
The term@ - ¢V is the same as in (2.21), and hence we obtain the desired resul

(2.18) withR = Rg + Ry - eV + F - VV. The bounds (2.19) are immediate from
the construction of the operataBsand R. a

We also need the following regularity result.
Lemma 2.3. In the situation of Theorem 2.1, we have
[u()]l2,c <C (|Hxtol +1) for ¢>0.
Proof. We use the bounds, fard € M,
[9@l2.e < cl[¥ll2.e < C (IHZYI+ [¥1)

for which we omit the straightforward derivation. We hau@) = (e =55 /5y) @,
and the above inequality thus yields

lu(®)]| < C(I[Hxe "> =yoll + [[voll) = C (I Hyvoll + 1),

which is the stated bound. O

11.3 Separating the Particles: Self-Consistent Field
Methods

The remaining high dimensionality requires further modeluctions. The many-
body wave function is approximated by appropriate lineanisimations of tensor
products of single-particle wave functions. The simplestecarises in approximat-
ing the dynamics of the nuclei by a single tensor productcivlyields thetime-
dependent Hartree methotihis model describes the motion of each particle driven
by the mean field of the other particles.

Its antisymmetrized version, suitable for electron dyr@mis known as the
time-dependent Hartree—Fock methdtie equations of motion for the orbitals were
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derived by Dirac (1930) in what is the historically first ajpption of the time-
dependent variational principle. This method is the tirepehdent counterpart of
the stationary Hartree—Fock method, which uses antisyneedtproducts of or-
bitals to approximate eigenfunctions of the Schrodingegrator and is the basic
approach to electronic structure computations; see,®zgho & Ostlund (1996).

Taking linear combinations of tensor products or their @mimetrizations
yields themulti-configurationtime-dependent Hartree and Hartree—Fock methods,
put forward by Meyer, Manthe & Cederbaum (1990). In this isectve describe
these various methods, derive the nonlinear equations tibmand discuss some
of their properties.

The model reductions of this section can be viewelbasrank approximations
to the high-dimensional multi-particle wave function. NMgsndependently of the
developments in quantum mechanics, low-rank approximatto huge matrices
and tensors have been widely used as computationally vegipeoximations in
many other fields including, for example, information redal and option pricing.
It seems, however, that using the time-dependent vargtnmciple for low-rank
approximations in areas outside quantum mechanics hasdoesidered only re-
cently (Koch & Lubich 2007b, Nonnenmacher & Lubich 2007, k& Huisinga
2007).

[1.3.1 Time-Dependent Hartree Method (TDH)

We consider the Schrodinger equation for the nuclei obthifrom the Born—
Oppenheiner approximation,

ih%—f:Hm H=T+V (3.1)
2
with kinetic energyl’ = — 27]:[:1 % A, and a potentiaV (z1, ..., zy). We
N

assume that the domain(V') containsD(T') = H?(R3Y).

Hartree Products. We look for an approximation to the wave function of the tenso
product form

V(x1, ..., 2N, t) = a(t) p1(x1,t) ... on (TN, T)

with a scalar phase factar(t) and with single-particle functiongor molecular
orbitals) ¢, (x,,t). We thus consider the variational approximation (1.2) om th
infinite-dimensional manifold

M={uel’R*™) :u#0,u=ap; ®---Q¢n, a€C, p, € L*(R?)}
(3.2)
(or instead we might consider tensor product8 &ffunctions inL?(R)). The rep-
resentation oi: € M asu = a1 ® --- ® @n IS not unique: for any choice of
complex numbers,, # 0, u remains unaltered under the transformation
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a
On — CnPn , a— —. (3.3)
Cl1...CN

Tangent Functions.Although we do not have a unique representation of functions
in the Hartree manifold\1, we can obtain a unique representation of tangent func-
tions. This is what matters in derivng the equations of motay the single-particle
functions. Considet. = a 1 ® - - - ® @ With a of unit modulus and alp,, of unit

L? norm. Every tangent functioia € T,, M (for the momenty: is just a symbol for
any tangent function) is of the form

U=ap1® QPN +aP1RP2@ RPN+ +ap1 @ RpN_1RpN (3.4)

wherea € C andg,, € L2 These turn out to be uniquely determinedibgind the
fixeda, ¢1, ..., pn if we impose thegauge condition

Indeed, taking the inner product of both sides of (3.4) with- a p; ® -+ ® pN
and using (3.5) anfly,, || = 1 anda = 1/a, determines as

a=(u|uya. (3.6)

Taking the inner product with the function in which thih factory,, in « is replaced
by someL? function?,,, viz., witha o1 ® - - - ® 9, ®- - -® on € Ty M, determines
¥, uniquely by the equation

(On | &n) +aa(0n | on) = (a1 @ @V, @ RN | ) Vi, €L, (3.7)

Equations of Motion for the Single-Particle Functions.We now consider the vari-
ational approximation (1.2) on the Hartree manifdig, viz.,

du 1
< E—%MQ 0  VYveTuM. (3.8)

Applying the above argument with = du/dt € T,,M and using (3.8) to replace
U by = Hu in (3.6) and (3.7), we obtain evolution equations for thedezinu =
a1 ® QN

I !% ue
20y~ apr©- 09,0 @ px |+ Hu) (3.9)

ot
—<u’;LHu> (O | on) V4o, € L?.

o

With the total energy = (u| H | u), which by Theorem 1.1 is constant in time,
and with themean-field Hamiltoniafor the nth particle,
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(Hyn = (o | H|¢0)  with ¢, = Q)@ (3.10)
J#n

(the inner product on the right-hand side is over all vagatdxcept:,,), the equa-
tions of motion become the trivial linear constant-coeffitidifferential equation
ihda/dt = Ea and

Opn,

ih 2 — (H), 0 — Eo,, . 3.11
ih—, (H)nep ® (3.11)

Multiplying with -, and noting

d 2 _ Opny _
7 leal® =2Re(pn | Z22) =0,
we see thap,, indeed remains of unit norm, as was assumed in the derivation
The last termE,, in (3.11) can be dropped if we rescate — e*Et/hy;.
For a Hamiltoniand = T + V as in (3.1), we obtain for ait,, € L?(R?) that are
orthogonal top,,,

h2

and hence for suct,, we have by (3.9)

(o

where the mean-field potentigV'),, is defined in the same way as in (3.10) with
V instead ofH. It follows that the right-hand expression in the inner prods a
multiple of ¢,,. Since this term adds t = du/dt in (3.4) only a scalar multiple of
u and hence yields only a modified phase faetdm «, this term is ignored. Let us
summarize the result obtained.

_ Op, R
et oL

Az, Pn — <V>n90n> =0,

Theorem 3.1 (Time-Dependent Hartree Method)For a Hamiltonian (3.1), the
variational approximation (1.2) on the Hartree manifold.Z3 for initial data
uw(x1,...,2N,0) = p1(21,0) ... pn (2N, 0) With @, (-,0) of unit L2 norm, is given
as

u(xy, ..., xn,t) = a(t) p1(z1,t) ... on (TN, 1),

where|a(t)| = 1 and ¢, (x,,t) are solutions to the system of nonlinear partial
differential equations

Opn _ I

o = T

Avon+ (Vinen- (3.12)

This holds on time intervalg < ¢ < t on which a strong solution to this system
exists, that s, forp,, € C*([0,7], L*(R?)) N C([0, 7], H*(R?)). O
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Equations (3.12) look like usual Schrodinger equationssince the mean-field
potential (V'),, depends on the single-particle functions of the other gadj we
obtain a coupled system of low-dimensionahlinearpartial differential equations.

A strong solution to (3.12) exists globally for all times> 0 for example in
the case of a smooth bounded potential with bounded demsti his is shown by
Picard iteration in the Sobolev spa&# (R?)" on the integrated equation

t
on(t) = e T/, (0) + / e I/ (V). (5) pn(s) ds
0

whereT,, = — % A, . By the same argument, the solution then Hdsregularity

for arbitraryk whenever the initial data is ifF7*.

Remark 3.2 (Principal Bundle Structure). On the Hartree manifold1 of (3.2),
y = (a, 1, ...,enN) are not coordinates, but the underlying mathematical strac
here and in the following subsections is that giracipal bundle which is a familar
concept in differential geometry that we now describe. €hga mapy : N' — M
from a manifold\ onto M, so that every, € M can be represented, though not
uniquely, as

u=x(y) forsomeyc N.

(We havex(y) = a1 ® - - - ® ¢, on the Hartree manifold.) The mapis invariant
under the action of a Lie groug on /, which we denote by : G x N — N :

x(g-y)=x(y) VgeG, yeN.

In the Hartree method, the group is the componentwise nlichifive groupG =
(C*)N (with C* = C \ {0}), and the action is given by (3.3).

Moreover, there is gauge mapy, which at every, € A/ associates to a tangent
vectory € T, an element/(y)y in the Lie algebray of G (g is the tangent space
atthe unitelement af). The linear mapy(y) : T,N' — g is such that the extended
derivative map, with, = x(y),

TN = T.Mx g : g (dx(y)y, v(y)y) isanisomorphism.

Hence, under the gauge conditipfy)y = 0 (or with any fixed element gf instead
of 0), y € T, is determined uniquely by andu € T,, M. In the Hartree method,

a gauge map is given by(y)y = ((¢n | c,bn>)f:[:1 e CV,
[1.3.2 Time-Dependent Hartree—Fock Method (TDHF)

Slater Determinants. For a system ofV identical fermions the wave function is
antisymmetric (see Sect. 1.5.2) and we wish to retain thigoerty in the approxi-

mation. We therefore look for an approximate wave functioan antisymmetrized
tensor product form, that is, assater determinant
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1
Y(x1,...,zN, ) ~ a(t)ﬁ det (n (25, t))i:[,j:l

with a scalar phase factai(t) and with orbitalsy,, (z, t) that are time-dependent
functions ofz € R3. In the following we write the scaled determinant as the veedg
product

1 .
%A...A%:W D SigN(0) Po(1) @+ @ Po(n)

where the sum is over all permutations{df . .., N}. We consider the variational
approximation (1.2) on the manifold

M={uecL*R¥N): u#0,u=ap1 A---ANon, a €C, o, € L*(R3)}.
(3.13)
The representation af € M asu = a p1 A--- Ay againis not uniqueu remains
unaltered under the transformation by any invertivle< N matrix, A € GL(N),
by
$1 $1
— A

PN PN

a

- det(A)

a

We may therefore choose to work with orthonormal orbitals:

(on | ;) =0n; foralln,j. (3.14)

Tangent Functions.Consider, = a 1 A - - - Ay With a of unit modulus and with
orthonormal orbitals,,. Every tangent function € 7, M is of the form

U=ap1 N ANpN+apiApa A -Npn+---+ap1A---Apny_1Apn (3.15)

wherea € C andy,, € L2. These turn out to be uniquely determinedibgind the
fixeda, ¢1, .. ., v, if we impose the gauge condition

(on @) =0 forall n,j. (3.16)

Indeed, taking the inner product of both sides of (3.4) with a o1 A--- Ay and
using (3.14) and (3.16) and= 1/a, determines again as

a=(uld)a. (3.17)

Taking the inner product with the function in whigh, is replaced by somé&?
functiond,,, determinesp,, uniquely by the analogue of (3.7), where now simply
the wedge product replaces the tensor product:

On | on)+aa (0 pn) ={ar A A A NN | 1) V9, € L?. (3.18)
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Equations of Motion for the Orbitals. The equations of motion for the orbitals in
the variational approximation (1.2) on the Hartree—Fockifedd M in the weak
form therefore still are of the same type as in (3.9), whese/jformally replaces?.
With the constant total enerdy = (u | H | u), we have

%> = <a<p1/\---/\19n/\~-~/\<pN|Hu>—E<19n‘<pn> Vi, € L?.

(3.19)
To proceed further, we now consider a Hamiltonian compo$éteatical one- and
two-body Hamiltonians:

N 52 N
H:;<—%ij+(]j) +2Wkgz;sj+2vvu (3.20)

k<t k<t

in <19n

with identical one-body potentials; (x1, ..., zn) = U(x;) and identical symmet-
ric two-body potentials

Wkg(l'l, e ,.’L‘N) = W(xk,xg) = W(xg,l‘k) .

The situation of primary interest is that of the electrormib®dinger equation (2.4),
where

e2

|z -y

is the electron-electron Coulomb potential, dn(k) describes the Coulomb inter-
action between an electronatc R? and all nuclei at fixed positions.
We abbreviate the single-particle operatorsas= _2 A, + U, and write

2m
S; when it is considered as an operator acting on the variaplef functions of
(Z1,...,ZN).
We return to (3.19) and consider functiahs € L?(R?) that satisfy the orthog-
onality condition

W(xay) =

(Un]pj) =0 forall n,j. (3.22)

Using the definition of the wedge product and the orthogtnediations (3.14) and
(3.21) we calculate

1
<901/\"'/\ﬁn/\"'A@NWl|901/\"'A<PN>:N@HS%%

Since the same result is obtained for, . . ., S, we obtain

N
<901/\"'/\19RA"'/\‘:0N‘ZSJ'
J=1

pLA Aoy ) = (0] Spn).  (3.22)

For the two-body interaction we obtain similarly, using idd@&ion the symmetry
of W,
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(1 A= N A= Ny [Waa |1 A+ A on)

2

T NN -1 ;(w"@“’-”m%@s%)—<0n®wj|W|¢.j®wn>),

and the same result for the otHéf.,. Hence we have
<<P1A---/\19n/\"'A<PN\ ZWI@Z‘SDI/\"'/\SON>

k<t
= <19n |Kn‘pn - Z an¢j> (323)
J#n

with the Hartree potentidk’,, and the exchange potentials,; given as

X = X ; 2 .
K, () ;/}Rg W (z,y) le;(y)|* dy (3.24)
Xpj(z) = g Wz, y) ;) n(y) dy. (3.25)

Substituting (3.22) and (3.23) into (3.19), we thus obt&m,all ¥,, € L?(R?)
satisfying the orthogonality relations (3.21),

o

It follows that the right-hand expression in the inner prods in the linear span

of ¢1,...,¢n. Since adding such a term &p,, /0t adds tow = du/dt of (3.15)

only a scalar multiple of. and hence changes only the scalar phase factor, this term
is ignored and we set the right-hand expression in the inmedyzt to zero. On
multiplying with ; and interchanging andj, we then further obtain

T+ e | ) =
ot ¥ ot =0,

so that the orthonormality relations (3.14) are presergedif times. We summarize
the result as follows.

O
JjF#n

d
Z{on|es) = (on

Theorem 3.3 (Time-Dependent Hartree—Fock Method, Dirac 130).For a Hamil-
tonian (3.20), the variational approximation (1.2) on tharttee—Fock manifold
(3.13), for initial datau(z1, ..., 2x,0) = —k= det (9n(27,0)) ) _ With pn (-, 0)
satisfying the orthonormality relations (3.14), is given a

1 N
w(z1, ..., 2N, t) = a(t) — det ((pn(:zrj, t))n,jzl ,

VN

where|a(t)| = 1 and ¢, (z,t) are solutions to the system of partial differential
equations
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. Opn h?
ih == = 5 App +Upn + Knen — Zangoj , (3.26)

ot —_
which is nonlinear through the Hartree and exchange potdatjiven by (3.24)
and (3.25). This holds on time intervdls< ¢ < t on which a strong solution to
this system exists, that is, for, € C'([0,%], L3(R?)) N C([0,?], H*(R?)). The
orthonormality (3.14) of the orbitals is preserved on theolgttime interval. O

Comparing (3.26) with the Hartree equations (3.12), we tiodé the only, but es-
sential difference is in the presence of the fermionic erglestermsX,, ; ¢;.

Global existencef strong solutions to the equations of motion (3.26) in the
case of Coulomb potentials is shown by Chadam & Glassey {19 line of
their argument runs as follows: first it is shown by Picardati®n that solutions in
H? existlocallyin time, where the growth in thB? norm is exponential in terms of
a bound of thegZ! norm of the solution. Since thE' norm of a strong solution can
be bounded by the constant total enetgg), it follows that theH! norm remains
in fact bounded for all times and tlf&? norm grows at worst exponentially.

Spin Orbitals. Electrons are distinguished by their spin which can taketite
values up {) and down (). In a system withK electrons of spin up and/ — K
electrons of spin down, the separable approximation wigictirrect antisymmetry
properties is

u=a(pi N ANpg) @ (Pr+1 A  ApN) (3.27)
with a € C, ¢,, € L?(R?). The equations of motion for variational approximations
of this type can be derived in the same way as above and turtodag identical
to (3.26) if the interpretation of inner products is modifasl follows: we extend
each orbitalp,, to aspin orbital ,, = (pn, s,) with spins,, € {1,]}. For any
observabled of orbitals we define

_ ~ (on | Alwj) if sp=s;,
<90n|A|‘pj>—{ ’ !

0 else

With this interpretation of all arising inner products, #mguations of motion (3.26)
remain valid for the spin orbitals,,, with non-vanishing exchange terms remaining
only between spin orbitals of the same spin.

As opposed to thenrestrictedHartree-Fock approximation just described, the
restrictedHartree-Fock method in the case of an even nuniexf electrons as-
sumes an equal numbat/2 of electrons with spin up and spin down with the spin
orbitals (¢,,, 1) and(p,, |) forn = 1,..., N/2, that is, with thesamespatial or-
bital ,, for both spin up and spin down. The approximation to the wawnetion is
thus chosen of the form

u=a(pr A Nonp) @ (LA Apnya) (3.28)

in the restricted Hartree-Fock method. For an initial stdtéhis type, it is seen that
this restricted form is preserved for all times in the equagiof motion (3.26) of the
unrestricted Hartree-Fock method wil¥y/2 electrons of spin up and down each.
Therefore half of the equations can be dropped in this case.
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[1.3.3 Multi-Configuration Methods (MCTDH, MCTDHF)

Multi-Configurations. We consider again the Schrodinger equation (3.1) for the
nuclei that are supposed to be distinguishable by theieuwifft types or by their
well-separated positions. It is to be expected, and hasdfanmple confirmation in
computations, that a better approximation to the wave fanatan be obtained by
using a linear combination of tensor products instead afgungle tensor product,
as is done in the time-dependent Hartree method of Secti8rilIWe therefore
consider approximations

1 d
Ylan,.ant) 2> @) e (@) o\ (e, 1)
(J1s--2dN)

= a;(t)Ps(x,1). (3.29)

J

Here, the multi-indiced = (j1,...,jn) varyforj, =1,...,d,, n =1,...,N,
thea ;(t) are complex coefficients depending onlyiand the single-particle func-

tions@?(wm t) depend on the coordinates € R? of particlen and on time. Al-
ternatively, we might take Hartree products3é¥ functions depending on,, € R.

This is a model reduction analogous to low-rank approxiomatf matrices,
where a large system matrix is replaced by a linear comlinati rank-1 matrices
v ® w, or to low-rank approximation of tensors by linear combim@s of rank-1
tensory; ® -+ - @ vy.

In the multi-configuration time-dependent Hartrdd CTDH) method proposed
by Meyer, Manthe & Cederbaum (1990) and developed furthedessribed by
Beck, Jackle, Worth & Meyer (2000), the Dirac—Frenkel tidependent variational
principle (1.2) is used to derive differential equationstfee coefficients ; and the
single-particle functiong;:.g.z). The MCTDH method determines approximations to
the wave function that, for every tinmelie in the set

o — 2R3Ny . ., (1) (d) i (n) 23
M={ue*® ).U—Z]aJﬁpjl ®--wply with as € C, o € I2(R)}

with multi-indicesJ = (j1, ..., jn) ranging overj,, = 1,...,d,. This setM is not
a manifold, but it contains a dense suh&étthat is a manifold and is characterized
by a full-rank condition to be given below.

The representation of € M by a coefficient tensodl = (as) and single-

particle functiong = (cpgn)) clearly is not unique: the transformation

d’!l
(n) ~(n) _ (n) (n)
Pin 7 Ph, T Z S kin Pl
kn=1

dl dN
ag —>aJ = Z tee Z aI(S(l))i:?jl T (S(N));Nljzv

i1=1 in=1
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yields the same function for any choice of nonsingular matric&s?), ..., S(V),
We may assume that the orbitaﬁéz) corresponding to the same particleare

orthonormal:

{ (n)

S oy =85 ks dnkn =1, dn, n=1,...,N. (3.30)

Tangent Functions.Consider a differentiable patti(¢), #(t)) of coefficients and
single-particle functions representing a path) on M. Then, the derivative is of

the form
= g 1 Pr+ g g 5(K) (k) 3.31
U= aj Py 5 Vi, (3.31)

kl]k 1

with the Hartree productg; = ® 4 <p§" and with thesingle-hole functions

P = <e07n)|u> ") (3.32)
77,+1
= Z Z Z Z Qjq,....54 ®§07
Ji=1 Jn—1=1jnt1=1 Jn=1 k#n

where the superscrigh) on the inner product indicates that thé inner product is
taken only with respect to the variablg, leaving a function depending on all the
other variables:; with k # n.

Conversely, the; are uniquely determined by and (A, @) if we impose the
orthogonality condition

WM ey =0,  kkn=1,...,dy, n=1,..,N, (3.33)
which together with (3.30) implies
ay = (Py|u). (3.34)
Taking the inner product of (3.31) wiﬁhf:) then gives

Z pln,m (pm - <wz(:)

Jn=1

(-m)

-3 ay qs(,> (3.35)
J

with the hermitian, positive semi-definitiensity matrices

n n dn . n
P = (o), ) 4.1 givenby P = My, (3.36)
The superscript-n) indicates that thé.? inner product is taken over all variables
exceptz,, leaving a function depending an,. The orthonormality relations (3.30)
allow us to express the entries of the density matrices mgaf the coefficients ;:
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n+1

pzn,jn E E , E , E Qs oesintsimsinttrein @i - (3:37)

Jji=1 Jn—1=1jn41=1 jn=1

The <p§:) are thus uniquely determined from (3.35) under fiiérank condition
that

o™ is an invertible matrix for eaclh = 1,..., N . (3.38)

(In view of (3.37), a necessary condition for this propesty,j < ]'[,#n dy.)

The MCTDH manifold. With the above construction of the; and<p§:), one can
construct local charts on

M = {u€L2R3N :u—ZanoJ1 gog-‘di) with a; € C and

<p§") € L*(R?) satisfying the orthonormality condition (3.30)

and the full-rank condition (3.3%), (3.39)

making this set an infinite-dimensional manifold, for whitte tangent space at
u € M consists of the elemenisof the form (3.31).

Equations of Motion for the Multi-Configuration Time-Dependent Hartree
Method. The MCTDH method uses the time-dependent variational jpi@¢l.2)

on this approximation manifold4. The equations of motion are thus obtained by
substituting%Hu for @ in (3.34) and (3.35), and so we have the following result.

Theorem 3.4 (MCTDH Method; Meyer, Manthe & Cederbaum 1990). The
variational approximation on the MCTDH manifold (3.39) isen by (3.29), where
the coefficients and single-particle functions are sohsito the system of coupled
ordinary and partial differential equations

. da ' ’
Zhd—t‘] = XK:@JIHI@KMK, VJ =1, in), (3.40)
Ho™ dn  dn

1%: :1

in=1...,dy, n=1,...,N.

*

This holds on every time interval on which a strong solutiorthtese equations
exists. Here, the Hartree producby, the single-hole functionﬁﬁs), and the density

matricesp(™ are defined in (3.29), (3.32), and (3.37), respectively. Superscript
(-n) indicates that the inner product is over all variables epce,, and P(™) is the

orthogonal projector onto the linear span gz)f"), cee %(1”) a
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We note that the projectaP(™ is given asP(™y = Z‘f;‘zl (pg <<pjn) |9),
with the inner product over the variahilsg. '

For a smooth bounded potential with bounded derivativésstiown by Koch &
Lubich (2007a) that a strong solutigrf, € C'([0,17), L*(R?))NC([0,7), H*(R?))
to the MCTDH equations exists either globally for all timesup to a timef where
a density matrix(™) becomes singular.

At a singularity of a density matrix(™, the equations of motion break down. To
avoid such problems in computations, the density matricesisually regularized
to p(™ 4 I with a small parametgr. Although such regularized solutions exist for
all times, a near-singularity can still cause numericabpgms, for example in the
step size selection of a time integration method.

The MCTDH method has been used successfully for accurabehpating the
quantum dynamics of small molecules in a variety of chenmsdaktions such as
photodissociation and reactive scattering, for problemwslving 6 to 24 nuclear de-
grees of freedom and one or several electronic states;.geeRaab, Worth, Meyer
& Cederbaum (1999).

The complexity of the method grows exponentially with thentoer of particles:
there arel”V coefficientsa; if d,, = d orbitals are taken for each particle. Several
variants and extensions of the MCTDH method have been dedignthe computa-
tional treatment of larger systems, such as the coupling Géussian wavepackets
for secondary modes (Burghardt, Meyer & Cederbaum 1999} taldierarchical,
cascadicor multilayer versions of MCTDH (Beck, Jackle, Worth & Meyer 2000,
Wang & Thoss 2003) with which particular systems with up t0 8@grees of free-
dom have been treated.

Hierarchical MCTDH Method. Considering for simplicity a system witN' = 2%
particles, the binary cascadic MCTDH method determinegpg@ncximation to the
wave function in the form

d
D ITLLE
j,k=1

where, for a binary numbeB = (b1, ..., b¢) with b,,, € {0,1} and¢ < L, we set
recursively

(B,0 B,1
Zal]kw_] )®90( )
7,k=1

and for¢ = L we have the single-particle functions. The variationalragnation
u is thus built up from a binary tree, with the single-partitlactions sitting at the
end of the branches. This approach uses ahly instead ofd”¥ coefficients.

The orthogonality relations (3.30) and (3.33) can now beasag on each level:
at the final level for the single-particle functions and & dither levels by
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d
<<F7€B | ‘PzB> = Z afjk af_jk = di
jk=1
d
(f o) = Z aEB,jkafjk =0.
J.k=1

The derivation of the equations of motion is then analogoubat of the MCTDH
method given above, with recurrences climbing up and dowrirée for the com-
putation of the required inner products.

Multi-Configuration Time-Dependent Hartree-Fock Method (MCTDHF). For
electron dynamics, a multi-configuration extension of tb#HF method is obtained
by using the time-dependent variational principle for asmations of the form

U= Z Crojn Pjn N NPy (342)
1<j1<---<jNn<K
with K > N. The sum is over al g subsets withV elements of 1, ..., K}.

The equations of motion of the MCTDHF method for a Hamilton(a.20) are those
of the MCTDH method Witho§") = ¢, independent of and with an antisymmetric
tensor: for every multi-inde¥ = (ji,...,j~) and permutatiomr € Sy and with

U(J) = (ja’(l)7 s 7ja(N))a
ag(yy = Sign(a) ay .

We refer to Zanghellini, Kitzler, Fabian, Brabec & Scrin2003) and Koch, Kreuzer
& Scrinzi (2006) for uses and properties of the MCTDHF apploa

No Theoretical Approximation Estimates.While the neighbouring sections close
with theoretical results on the approximation error, apply no such results are
available for the methods considered in this section. Omggnbfiope that the multi-
configuration methods converge to the exact wave functich@sumber of con-
figurations is increased to infinity, but to date no such tesxilsts. One obstacle
to such a convergence result is the fact that the densityiceap™) become more
and more ill-conditioned as more nearly irrelevant configions are included. An-
other difficulty lies in the time-dependent orbitals whogpm@ximation properties
are not under control. In Sect. 11.6 we show, however, theafoxednumber of con-
figurations, the variational approximation is quasi-og@tiin the sense that its error
— on sufficiently short time intervals — is bounded in termshef error of the best
approximation to the wave function by the given number offinmations.

Notwithstanding the deficiencies in theory, the methodsittered in this sec-
tion have proven their value in computations on realistieraltal and physical sys-
tems — the tool apparently works.
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1.4 Parametrized Wave Functions: Gaussian Wave
Packets

A further modelling or approximation step consists in repig the wave function
by a function that depends only on a finite number of real orplemparameters.
The time-dependent variational principle then yields etioh equations for these
parameters that retain a Hamiltonian character, albeh @wihon-canonical Pois-
son bracket. Gaussian wave packets parametrized by pgsitmmentum, complex
width and phase are a prominent example. In the classicél lineir variational
equations of motion for position and momentum yield the Newdn equations of
classical molecular dynamics.

[1.4.1 Variational Gaussian Wave-Packet Dynamics
We consider a Schrodinger equation in semiclassicalrsgaior - € R,

. 0y A g2
ie - = Hy, H = H*® = 2MA+V, (4.1)
with a small positive parameter < 1 (formally in place of, see Sect.1.2.3), a
fixed mass parametéd ~ 1, and a potential’. The typical situation of (4.1) is the
time-dependent Born-Oppenheimer approximation for théan®f nuclei.
As proposed by Heller (1976), the variational approximatid (4.1) can be
done by complex Gaussians of the type

(o) % uont) = exp( £ (2= a0)TCO—a(0) +0(0)-(o-a(0) +6(1) ),

(4.2)
wheregq(t) € R? is the position average andt) € R? is the momentum average
of the wave packet. The matriX(t) € C?*< is a complex symmetric width matrix
with positive definite imaginary part, possibly furthertreged to a diagonal matrix
or just a multiple of the identity;(¢)I; with complexc(t). Finally, {(¢t) € Cis a
phase and normalization parameter.

The choice of Gaussians appears attractive because thenexaefunction re-
tains the form of a multidimensional Gaussian for all tinrethie case of a quadratic
potential, even for a time-dependent quadratic potenftiais useful fact follows
from the observation thalfu then is in the tangent space@atand therefore the
variational approximation and the exact wave function cioie. For a narrow wave
packet, of width~ £!/2 in (4.2), a smooth potential appears locally approximately
quadratic, and we may then expect good approximation by €kmss as will be
made more precise in Sect. I1.4.4 in an argument based onritreb®und (1.11).

The equations of motion for the parameters read as followe#i€H1976, Coal-
son & Karplus 1990): with A) = (u | A | u) denoting the average of an observable
A in the Gaussian state of unit L2 norm, we have classically-looking equations
for position and momentum, with the average of the gradiéritof the potential,
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g = 2
M (4.3)
p = —(VV).

For the width matrixC' and the complex phaggwe have, with the HessiaW?V’
and with tr denoting the trace of a matrix,

. 2 1
o |p|2 1€ € _

When( is restricted to diagonal matrices, then the diagonal gaid be taken on
the right-hand side of the differential equation r WhenC' = cI is restricted to
a multiple of the identity (spherical Gaussians), then ftifferntial equation for:
is obtained by taking the trace on both sides of the difféataguation forC'. If the
width matrix is taken constant (frozen Gaussians, Hell&31)9then the equation
for C' is disregarded, and only the equations for position and nméune and phase
remain.

As ¢ — 0, the Gaussians (4.2) become narrower and increasinglyeotrated
at ¢, and we havdVV) — VV/(q) for a Gaussian of uniL? norm. Hence the
equations for positionp and momentunp become the

classical equations of motion in the limit— 0.

The differential equations (4.3)—(4.5) are a regular pbgtion to the equations for

e = 0: lettinge — 0 gives a well-defined limit on the right-hand side. They are no
longer a singularly perturbed system as (4.1) is. In cohtmathe Gaussian wave
packet, the time-dependent parameters are not highlyasci functions.

We shall give a derivation of the equations of motion (4.8)5) that highlights
their mathematical structure as a non-canonical Hamatosystem (or a Poisson
system in another terminology). We first study the structdithe variational equa-
tions of motion in coordinates on an approximation manifioléh general setting
and then return to the particular case of Gaussian wave {sadkee presentation in
this section essentially follows Faou & Lubich (2006).

[1.4.2 Non-Canonical Hamilton Equations in Coordinates

Canonical Poisson structure of the Schisdinger equation.We splityy € L2(R?, C)
into the real and imaginary parfs= v + iw. The functiona andw are thus func-
tions in thereal Hilbert spacel.?(R?, R). We denote the complex inner product by
(-]-) and the real inner product y| -).
As the HamiltonianX is a real operator, the Schrodinger equation (4.1) can be

written . o

Ev = w,

ew = —Hv. (4.6)
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With the canonical structure matrix

0 -1
=)
and the Hamiltonian function
H(v,w) = (| H|¢) = (v|Hv) + (w| Hw)

for ¢ = v 4 iw (we use the same symb#l as for the operator), this becomes the
canonical Hamiltonian system

v\ 1
<w> = %J VH(v,w).
We note that the real multiplication with corresponds to the complex multiplica-
tion with the imaginary unit.

As in Theorem 1.2, the flow of this system preserves the caabaymplectic
two-form

w(&n) = (lJIn),  &ne L*(RYLR)2 (4.7)
The associated Poisson bracket is
{F,G}ean = (VF[J7'VG) (4.8)

for functionsF, G : H'(R?,R)? — R.

Poisson structure of variational approximations.We consider a finite-dimensional
submanifoldM of the complex Hilbert spac&?(R?, C) with the property (1.3),
i.e., withv € T, M alsoiv € T, M at everyu € M.

Taking the imaginary part in the Dirac—Frenkel time-deparidariational prin-
ciple (1.2) onM yields, upon identifying: = v+ iw with the real pain = (v, w)7,

(pl2eJi—VyH(u)) =0 forall peT, M. (4.9)

We choose (local) coordinates @l so that we have a parametrization

u=x(y)

of M, for y in an open subset &™. We denote the derivativE(y) = dx(y) =
w ) which is of full rank for
a coordinate magy. We denote byX” the adjoint of X with respect to the real
inner producy- | -). Sinceid = X (y)y and the tangent vectors i, M are given as
w = X(y)n with arbitraryn € R™, we obtain from (4.9) the differential equation
in R™,

V(y) + iW (y) or in the real setting a¥ = ( v

2eX ()" TX(y) 5 = X ()" VuH(x(y)) - (4.10)
With X denoting the adjoint aK¢ with respect to the complex inner prodyct-),
we noteX  Xc = VIV + WIW) +i(VIW - wTv) = XTX —iXTJX and
hence
XTJX = —Im X{ Xc. (4.11)
This skew-symmetric matrix is invertible, as the followilegnma shows.



1.4 Parametrized Wave Functions: Gaussian Wave Packets 49

Lemma 4.1. If T,, M is a complex linear space for evetyc M, then
X(y)TJX (y) is invertible for ally.

Proof. We fix u = x(y) € M and omit the argument in the following. Since
T,.M = RangéXc) is complex linear by assumption, there exists a real linear
mappingL : R™ — R™ such that X¢n = X¢Ln for all n € R™. This implies

JX =XL and L?>=-1d
and henceX”JX = X7 X L, which is invertible, sinceX is of full rank. O

We denote the inverse, which is again skew-symmetric, by

1 —1
Bly) = 52 (X()"TX(y)) (4.12)
Introducing the Hamiltonian function on the manifold in the coordinateg as
K(y) = H(x(y)), (4.13)

we noteX (y)TV,H(x(y)) = V,K(y) in (4.10). We then have the following re-
sult.

Theorem 4.2 (Variational Equations of Motion in Coordinates). The differential
equations of the variational approximation in coordinatead

y=By)VyK(y). (4.14)

This is a non-degenerate Poisson system, i.e., the steugtatrixB(y) is invertible
and generates a bracket

{F.G}y) = VF(y)" B(y)VG(y) (4.15)

on smooth real-valued functiods G, which is antisymmetri¢{G, F'} = —{F, G})
and satisfies the Jacobi identityE, { F, G}} + {F, {G,E}} + {G,{E,F}} = 0)
and the Leibnizrulé{F - F,G} = E - {F,G} + F - {E,G}).

Proof. By (4.10) and the definitions dB(y) and K (y), we have (4.14). It remains
to prove the properties of the bracket. Sincplays no role here, we leB(y) =
(X(y)TJX(y))_l (without the factory-) in this proof. For points: € M we
introduce the symplectic projectdf (u) from the Hilbert spacé{ = L?(R”,R)?
onto the tangent spadé, M as

I(u) =X@y)Bw)X(y)"J, u=x(y)eM,

From the induced decompositid = II(u)H & (I — II(u))H we obtain, by
the implicit function theorem, a corresponding splittimga neighbourhood of the
manifold M in H,
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Yp=u+v WwithueM, II(u)v=0.
This permits us to extend functiosto a neighbourhood of1 by setting
F(y)=F(y) for ¢ =u+v withu = x(y), II(u)v=0.

We then have for the derivativﬁﬁ(u) = dﬁ(u)ﬂ(u) and hence for its adjoint,
the gradientVF (u) = II(u)TVF(u). Moreover,VF(y) = X(y)TVF(u) for
u = x(y). For the canonical bracket this givesuat x(y),

{F,G}ean(u) = VF(u) I (u) ] I (w)TVE(u)
= VF(y)"B(y)VG(y) = {F,G}(y) .

Therefore the stated properties follow from the correspumgroperties of the
canonical bracket. O

More on Poisson systems can be found in Hairer, Lubich & Wei(»@06),
Chap. VIl.2, and Marsden & Ratiu (1999), Chap. 8.5. In paitic the flow map
¢+ : y(0) — y(t) is aPoisson mapthat is, it preserves the Poisson bracket as

{F0¢t,GO¢t}:{F,G}O¢t VF,G

The property of being a Poisson map in the coordinates carahslated to be an
equivalent formulation of the symplecticity of the flow oretimanifold M as stated
by Theorem 1.2.

11.4.3 Poisson Structure of Gaussian Wave-Packet Dynamics

The variational Gaussian wavepacket dynamics (4.3)—{@d)tained by choosing
the manifoldM as consisting of complex Gaussians (4.2). For ease of pegien
we give the derivation for spherical Gaussians, whére= cl; with a complex
¢ = a+if with § > 0, andl; is thed-dimensional identity. We write the complex
phase ag = v + 9. We then have the approximation manifold

M= {u=x(y) € L*R?) : y = (p,¢,, B,7,0) € R**** with 3 > 0} (4.16)

with

(x) @ =exp(2((@+i8) o =g +p- (@ —a) +7+id)).  @17)

The tangent spacE, M C L?(R9) at a given pointu = x(y) € M is (2d + 4)-
dimensional and is made of the elementd.6fR?) written as

L((A+iB) o=+ (P =2 +iB)Q)- (¢~ )~ p- Q+C +iD)u (4.18)
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with arbitrary (P,Q, A, B,C, D)7 € R2?I*4, The tangent spacg&, M is indeed
complex linear (not@ > 0). Moreover, we have € T, M, and hence Theorem 1.4
shows the preservation of the squaigdnorm ofu = x(y), which is given by

N = IR = exo (-2) (;T—ﬁ)/ (4.19)

We then we have the following result.

Theorem 4.3 (Gaussian Wave-Packet Dynamics as a Poisson teys). The vari-
ational approximation on the Gaussian wave-packet mashifed of (4.16)—(4.17)
yields the Poisson system

¥ = B(y)VyK(y) (4.20)

where, fory = (p, ¢, a, 8,7, ) € R4 with 8 > 0,

0 —-I; 0 0 —p 0
I; O 0 0 0 0
1 o o o 2 o -
B(y) = ~— = (4.21)
Ny o o -4 o 5 0
T 0 0o -p 0 dt2c
0 0 g0 -2 0
defines a Poisson structure, and foe= x(y),
K(y) = (u|H[u) = Kr(y) + Kv(y) (4.22)

is the total energy, with kinetic and potential parts

Kr(y) = N(y) (%-ﬁ-%az;ﬁz) =<u‘ —E—QA‘u>

and
2
13

Kl = [ Viresn (= 2(6le = af +)) do = (u]V |0

Both K'(y) and N (y) are conserved quantities of the system.

Proof. By (4.17), the derivativeXc(y) = dx(y) = (g5 Ge- a+ 95+ 9+ g5 ) for
u = x(y) is written

X(c(y)ZE(:zc—q7 —2(a+ifB)(x —q) —p, |x—q|2,z|x—q|2,1,z)u.

Calculating the Gaussian integrals, we obtain from (4.44) t
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0 I 0 0 0 0
d 2
—I; 0 0 jﬁ; | 0o 2
0 0 0 —eddd2) g 4
832 23
2¢e X" (y)JX (y) = N(y) 0 _dot  edd+2) 0 4
203 832 203
0 0 0 -5 0 2
2p” d
0 -= 5 20

The inverse of this matrix can be computed explicitly to ghveabove matrixB(y).
Theorem 4.2 then yields the Poisson system, and Theorementl.1.4 give the
conservation of energy and norm. a

[1.4.4 Approximation Error

From the error bound (1.11) we derive the following resuhijah is closely related
to a result by Hagedorn (1980) on non-variational Gaussarevpackets.

Theorem 4.4 (Error Bound for Variational Gaussian Wave Paclets).Consider
the variational multidimensional Gaussian wave packetragimation (4.3)—(4.5).
Assume that the smallest eigenvalue of the width méatri€'(¢) is bounded from
below by a constani > 0. Assume that the potentitll is three-times continuously
differentiable with a bounded third derivative. Then, tmoebetween the Gaus-
sian wave packet(t) and the exact wave functiaf(¢) with Gaussian initial data
¥(0) = u(0) is bounded in the.? norm by

lu(t) = ()] < cte'/?,
wherec depends only op and the bound of?V'.

Proof. In view of the error bound of Theorem 1.5, we estimate theadist of
%Hu(t) to the tangent spacg, ;) M. We split the potential into the quadratic Tay-
lor polynomial at the current positiay(¢) and the non-quadratic remainder,

V = Qqu) + Ryqr) »

where we notéR,(z)| < 3; Bs |z — ¢|* with a boundBs of 9*V. Since bothAw
andQ,u are in the tangent spad@g M given by (4.18), we have

dist (2 Hu, TuM) = dist (= Ryu, TuM) < | 2Ryl
(23 (23 g

With the above bound faR, and the condition on the width matrix we obtain, for a
Gaussian state of unit L? norm,

1/2
IRull < c1 <s_d/2/ e 2rle—al*/z |z — q|° d:v) <ced?,
R4

and hence the result follows with Theorem 1.5. O
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As is clear from the proof, the global boundednes83f can be weakened to a
bound in a neighbourhood of the positiof{$) and exponential growth outside this
region.

We remark that an analogous result does not hold for Gaussaa packets
where the width matrix is restricted to a diagonal matrix.

Though the above result is asymptotically comforting, itstiioe noted that for
realistic values of ~ 10~2, a result with a predicted error ef/? cannot neces-
sarily be considered accurate. We will turn to more accwsataiclassical methods
briefly in the next section and in more detail in Chapter V.

[1.5 Mixed Models, Quantum-Classical Models

There are numerous possibilities for extensions and caatibims of the models de-
scribed in the foregoing sections. The reader may inveraisfavourite extension
and combination and check out if it has not yet been tried mtie literature. For
example, within an MCTDH framework, for some parts of thetegsthe single-
particle functions might be chosen as Gaussians, while @heyeft of a general
form for other particles (Burghardt, Meyer & Cederbaum, 99 onsidering the
Gaussians of frozen width in such a model and passing to #éssichl limite — 0
in the equations of motions for positions and momenta theldgiequations of mo-
tion where most particles are described classically whitaesare treated quantum-
mechanically. For example, this is desired for studyinggmdransfer in a critical
region of a molecule, or more generally for describing a quansubsystem in a
classical bath.

[1.5.1 Mean-Field Quantum-Classical Model

Among the various possible mixed quantum-classical modeisnow describe the
conceptually simplest one which has found widespread usemputations, in spite
of its known flaws. Consider a system of light and heavy plagi¢e.g., protons and
the other, heavier nuclei in a molecule), where one woulel fikdescribe the light
particles quantum-mechanically and the heavy particlessitally. Letr andy de-
note the position coordinates of heavy and light partiaglespectively. We consider
the Schrodinger equation with the Hamiltoniah = —%Az — 34, + V(z,y),
wheree? is the mass ratio as in Section 11.2.3. We start from a timgedéent
Hartree approximation to the full wave functigtiz, y, t)

V(x,y,t) =y, t)Y(y,t),

where we restricty(x, t) further to take the form of a frozen Gaussian at variable
positiong(¢) and with variable momentum(¢). When we write down the equations
of motion for the corresponding variational approximationd let the width of the
Gaussians tend to zero, so that averages owae replaced by evaluations at the
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positiong(t), then we obtain the following coupled system of classical gnan-
tum equations where the classical particles are drivenéynban-field potential of
the quantum particles, the wave function of which is detaadiby a Schrodinger
equation with a potential evaluated at the current clabpisition:

g =p
p = =V |V(g)[¥) (5.1)
oY

(23 E
While this appears as an attractive model at first sight, g@amdfield character is
flawed. The problem becomes clear by the following argum@uapipose we start

with an initial wave function

S AU+ V(g )

U(w,y,0) = 0177 (2)P1 (2, y) + 0273 (2)P2(2, ),

where®;(z, -) are eigenfunctions ofl.(z) = —1A + V/(z,) to well-separated
eigenvalues?; (), of unit L2 norm, and? are complex Gaussians of widthe'/?
and unitZ2 norm. The coefficients should satigfy; |? + |az|? = 1 so that¥ is of
unit L2 , norm. We then know from Theorems 2.1 and 4.4 that for timesl the
exact wave functiow (z, y, t) is approximately, up to an error of order'2,

!p(l'7 Y, t) ~om (:Ea t)d)l ((E, y) + O‘?’YQ(xa t)d)? (:Ea y) )

wherev;(z,t) is a Gaussian located at a positigiit) that follows classical equa-
tions of motion

qj =pj, Dj=—VeE;q). (5.2)

On the other hand, in (5.1) we have by the time-adiabaticrdraanentioned after
Theorem 2.1 that for timess~ 1,

U(y,t) = e O/ 1B, (q(t), y) + 2D/ 5By (q(t),y),

so that
(W[ He(q) |¢) = |aa|*Er(q) + 2| B2 (q)
and hence the classical motion in (5.1) is approximatelgmieined by

i=p, p=-Ve(la]*Ei(q) + |a2*E2(q)), (5.3)

with a potential that is a convex linear combination of théepdials in (5.2). Unless
the potentialg’; happen to be quadratic, not even the average position—+ caq»
is described correctly by the equations §oir he equations (5.1) are asymptotically
correct, however, if we start from a pure eigenstate (whgre- 1, as = 0).

This example illustrates that even very plausible-lookimgdels must be con-
sidered with care and assessed critically by analysis amahénical and physical)
experiment.
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For an asymptotic analysis of the above mixed quantum-ickdsaodel we refer
to Bornemann & Schitte (1999). The quantum-mechanicalqaar be further re-
stricted, assuming for exampléy, t) in the form of a Slater determinant, thus com-
bining classical motion and the time-dependent HartregkRoethod. Global exis-
tence of solutions for such a model has been studied by Gaate Bris (1999).

[1.5.2 Quantum Dressed Classical Mechanics

Even if the approximation by a Gaussian wave packet is toghpit can nev-
ertheless be reused in a correction scheme, which is once based on the
time-dependent variational principle. We briefly desciibeh an approach due to
Billing (2003). Letq(t), p(t) be defined by Gaussian wave packet dynamics with
a diagonal width matrix with entries, (¢), possibly further simplified by using the
classical equations of motion fgrandp and a similar simplification in the differ-
ential equations for the widths, replacing averages bytmialuations. We search
for an approximation to the wave function of the form

1 N
(T, ..., xN,T) = ZaJ(t)WJ(-l)(xl,t) o -WJ(-N)(xN,t),
J
where the sum is over a set of multi-indicés= (j1, ..., n) and the functions

WJ(.”) are shifted and scaled Gauss-Hermite basis functions defipéwe assume
all z,, one-dimensional for simplicity)

{7 ent) = exp( L (enl0) (0 = ) (0 00— 0a(0)) )
(2 o, )

with Hermite polynomiald?; and the known Gaussian parametgt&), p,(t), and

¢ (t). The unknown coefficienis; (t) are determined by differential equations ob-
tained from the variational principle on tliene-dependeratpproximation manifold
(here actually a linear space)

M = {u:u(xl,...,xN):ZaJWJ(-ll)(xl,t)-...-W;g)(x]v,t), ay E(C},
J

at every instant as previously in (1.2), except that nalu/dt is not sought for in
the tangent space d#1,, but as the derivative of a pat{t) € M;.

This approach leads to a method which adapts the locationnidtti of the
Hermite basis functions to Gaussian wave packets that¥allassical trajectories.
We will consider in more detail a somewhat related, but catatanally favourable
approach in Chap. V.
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11.5.3 Swarms of Gaussians

In a conceptually similar approach, frozen Gausstans, t) first evolve indepen-
dently according to the classical equations of motion fasifien and momentum
and with the phase given by the action integ[";fad%|pk|2 — (V)4 )ds, as proposed
by Heller (1981). This approximation is then improved upgrdking a linear com-

bination
Y t) = Y ar(t) w(,t),
k

where the coefficientsy. (¢) are determined by the time-dependent variational prin-
ciple:

(3 b | G + anin) - %HZam> 0 Yb=(b).
J k k

This yields a linear system of differential equationsdct (ay),

Ma = l Ka— La
(23
with the matricesM = ((v;|v)), L = ((vj | %)), K = ({(v; | H |7x)). While
the L2 norm of the approximation is conserved, the total energysymaplecticity
are not conserved by applying the variational principle on a tinepehdent ap-
proximation space as is done here, in contrast to the casdinfeaindependent
approximation manifold as studied in Sect. 11.1.3.

The above approach was mentioned by Heller (1981) and hawsdaeged fur-
ther by Ben-Nun & Martinez (1998, 2000) together with cigewhen to create,
or “spawn” new basis functions. It is related in spirit to fide methods in fluid
dynamics; see, e.g., Monaghan (1992) and Yserentant (1997)

11.6 Quasi-Optimality of Variational Approximations

In this theoretical section we consider variational appr@tion on a manifoldg\t
and study the following question: In case the true wave fonatemains close to
the manifold, does the time-dependent variational priectpen provide a good
approximation? Stated differently: Can the error of theatanal approximation
be bounded in terms of the error of the best approximatioméovtave function
onM?

This is a familiar question in other areas of numerical asialycf. Céa’s lemma
on the optimality of Galerkin approximations of ellipticinedary value problems as
stated, e.g., in Ciarlet (1991), p. 113. A positive answéhi®question separates the
problems of approximability of the wave function on the alsnanifold, which
often is a modeling hypothesis, and the quality of the timpeahdent variational
principle for obtaining approximate wave functions.
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Following Lubich (2005), we give a conditionally positivésaver under as-
sumptions that include, for example, the time-dependemtréta method and its
multi-configuration versions.

Assumptions. We consider the Schrodinger equation (1.1) on a Hilbertsfs
with & = 1 in the following, and the variational approximation giventhe Dirac-
Frenkel principle (1.2) on the manifolti. The HamiltonianH is split as

H=A+B (6.1)

with self-adjoint linear operatord and B where A corresponds to the separable
part:u € M impliese~*44 € M for all . This is satisfied if and only if

Au € TyM forall «e MnD(A). (6.2)
We assume that the non-separable remaifitlisrbounded:

[Bell < Blell (6.3)

for all ¢ € H. About the approximation manifold1 we assume the condition
(2.3) of complex linear tangent spacEgM, and a condition that is satisfied M
contains rays (cf. Theorem 1.4):

u e TyM forall weM, (6.4)

A bound of the curvature oM is formulated in terms of the orthogonal projectors
P(u) : H — T,M andP*(u) = I — P(u):

I (P(u) = P(v)e|
IP+(v)(u =) |

< Rllu—of - el (6.5)
< hflu—of? (6.6)
forall u,v € M andy € H. We assume tha®(u(t))¢ is a continuously differen-
tiable function oft in 7 for every continuously differentiable patt{t) on M and
p eH.

The initial datay(0) is assumed to be aM and of unit norm. We consider a
time interval on which the solution(¢) to (1.1) remains neak, in the sense that

dist((t), M) < i for 0<t<%. (6.7)

Both the exact wave function(t) and the variational approximatiar(t) of (1.2)
are required to be in the domain Hffor 0 < ¢ < ¢, with a bound

[Hy@) < p,  [Hu@)| <p and [[Au(t)]] < p. (6.8)
Further we consider the distance bound 1 given by

dist (H(t), Tv(t)./\/l) <4, dist (Hu(t),Tu(t)M) <é, (6.9)
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whereuv(t) € M is the nearest point tg(¢) on M:
[o(t) = @) = dist ((2), M).

Discussion of the assumptionsln all the examples of this chapted, might be
chosen as the kinetic energy operdigrthough this might not always be the opti-
mal choice. A critical assumption is the boundedness of treseparable remain-
der B. It is a reasonable assumption in the Schrodinger equafitime nuclei and
its Hartree and Gaussian wave packet approximations (amndnttulticonfiguration
versions). The condition is not satisfied, however, in theetdependent Hartree-
Fock method for the electronic Schrodinger equation whegeCoulomb potentials
are non-separable and unbounded. We refer to Lubich (2@0% €orresponding
result in the Coulomb case.

We have assumed the splitting (6.1) independent of timeeee ef presentation,
though the result would directly extend to the situation tifree-dependent splitting
H = A(t) + B(t). For example, in the (multi-configuration) Hartree methagl w
might chooseA(t) = T + V1 + --- + Vy with the mean-field potentialg,,, so
that B(t) becomes the difference between the given potential andutimeos the
mean-field potentials. This can be expected to give moreufalale error bounds
than a time-independent splitting into kinetic energy awoteptial. Similarly, in
Gaussian wave packets we might splitiat@) = 7'+ Q(t) with the local quadratic
approximation)(t¢) to the potential, and the non-quadratic remaingér).

Condition (6.4) is satisfied for all the examples in this deapConditions (6.5)
and (6.6) encode curvature information/of in a form that is suitable for our anal-
ysis. Condition (6.7) ensures thatt) has a unique nearest point 8. The reg-
ularity assumption (6.8) fop (¢) is satisfied if the initial value has such regularity.
The regularity (6.8) of the approximate solutiaf¥) needs to be ascertained, but
is known to hold, e.g., for the (multiconfiguration) timepgmdent Hartree method
when the Schrodinger equation for the nuclei has a smoathded potential.

The following result bounds the error of the variational apgmation in terms of
the best-approximation error.

Theorem 6.1 (Quasi-Optimality of Variational Approximati ons).Under condi-
tions (6.1)—(6.9), the error of the variational approxir@at is bounded by

llu(t) — ()| < d(t) + Cek? /lt d(s)ds with d(t) = dist(y(t), M) (6.10)
0
and withK = 2x6 andC' = 8 + 3kpu, for0 <t <%.

Though the bound (6.10) can be pessimistic in a concretatgity it does iden-
tify sources that can make the variational approximationade far from optimality
even if the best-approximation errd(t) is small: large curvature of the approxi-
mation manifold £), a large effective non-separable potential in the Hamidto
(8, 9), lack of regularity in the exact or approximate solutign ), and long time
intervals ().
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Proof. The proof compares the differential equationddt) with the equation sat-
isfied by the best approximatiarit) € M with ||v(t) — ¢ (¢)|| = d(t).

(a) The functiorw(t) is implicitly characterized by the condition (omitting the
obvious argumentin the sequel)

Pw)(v—1)=0. (6.11)

Under condition (6.7), the implicit function theorem canused to show that this
equation has a unique solution in the ball of radiy$2x) aroundy, which de-
pends continuously differentiable onwWe derive a differential equation foft) by
differentiating (6.11) with respect to( = d/dt):

0=P)(0—4)+ (P'(v)- (v—1))0 (6.12)

with (P’(v)-)0 = (d/dt)P(v(t))e for ¢ € H. Sincev € T,,M, we haveP(v)0 =
0, and the equation becomes

(I +P'(v) - (v— 1/1))1'1 = P)y. (6.13)

By (6.5) and (6.7) we have

1
IP'(0)- (v =)l <k llo— o] < 5,
so that the operator in (6.13) is invertible and
o= P(v)Y 4 (v, 1) with  [|r(v, )| < 2ku |lv — || (6.14)

Here we have used the bound (6.8)| = ||[Hv| < p. Inserting (1.1) in (6.14),
the equation can be written as

b= P(v)%HU - P(v)%H(v — ) + (v, ). (6.15)

We will compare this differential equation with Equationg)iLfor u(t), viz.,

4= P(u)-Hu. (6.16)
(3
In the following we tacitly assume(t) € D(H) = D(A). If v does not have this
regularity, then the proof would proceed by replaciray a regularized familyv, )
with v (t) € D(H) andv. — v in C1([0,7], H) ase — 0. Applying the arguments
below tov. and lettings — 0 in the final estimate then gives the result.
(b) We form the difference of (6.16) and (6.15), take the impreduct withu — v
and consider the real part. We then have
d 1d 9 o
||u—wv] - EHU—UH = §EHU_UH =Re(u—v|u—-0)y=I+11+1II
with
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I = —Re{u—v|P(u)iHu— P(v)iHv)
IT = —Re{(u—v|PW)iH(v—1))
III = —Re{u—v|r(v,¢)).

(c) Using the self-adjointness &f = A+ B and condition (6.2), which implies
PL(v)iAv = 0, we write

I = Re(u—v|P*(uw)iHu— P (v)iHv)
= Re(u—v|P(u)iHu) — Re(u —v| PL(v)iBv).
To treat the expressiofY, we split
Il = —Re{u—v|P(w)iA(v —¢)) — Re(u —v| P(v)iB(v —)).

Itis in the first term that condition (6.4) is used. This cdrati impliesP(v)v = v
and hence, by (6.11),

v="P), v—tv =P v)v—1)=-P ().
It follows that
(v] P()iA(v =) = = (v| P(0)iAP~(v)¢) = (P (v)idv|¢) =0,
sinceP*(v)iAv = 0 by (6.2). Similarly, (6.2) implies
(u|iAP* (u) (v — 1)) = 0.
These equations yield
(u—v|P(v)iA(v—1)))
= (u]iA(v =) = (u—v| PH(v)iA(v —¢))
—(u[iAP (u) = PH(v)) (v =) + {u —v| P*(0)iAy)
—(idu| (P(u) = P(v))(v = ¥)) + (P*(v)(u = v) | P+ (v)iHY)
—(u—v| Pt()iBy).
We then arrive at the basic equation of the proof,
I+1I = Re(P*(u)(u—wv)|P*(u)iHu)
— Re(u—wv|iB(v—1))

V)
+ Re(iAu | (P(u) — P(v))(v — ¢))
— Re(P*(v)(u—v) | P+ (v)iH1).

With (6.3)—(6.9) we thus obtain

[I+11] < mlu=ol*-6+ u—vl-Bllv— |
e fu =l - flo = ¢l + 5 flu—of* -6
= 260 [Ju —v|* + (B + k) [lu—vf| - o =]
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(d) Together with (6.14) for bounding/ I, this estimate gives
L= vl < Klju— o]l + Cllo — o]
a u—v|| < uUu—"v v
with K = 2k0 andC = ( + 3xu. The Gronwall inequality then implies
t
Ju(t) — v(o)] < e [ fo(s) ~ v s, (617)
0

and the triangle inequality far — ) = (u—v) + (v — ) together withd = |jv — ||
yield the result. a
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