
Chapter I.
Quantum vs. Classical Dynamics

chap:intro
In this introductory chapter we recapitulate basic elements of quantum mechanics,
emphasizing relationships with classical mechanics and preparing for the later chap-
ters in a reasonably self-contained way. There are, of course, many texts where this
material is presented more extensively and from different viewpoints. To name but a
few, we mention the gentle mathematically-minded introduction by Thaller (2000),
the complementary but visually equally appealing physicalapproach by Brandt &
Dahmen (2001), the substantial brief text by Gustafson & Sigal (2003) from the
mathematical physics point of view and the outreaching bookby Tannor (2007)
with a time-dependent, chemical physics perspective. There are the monumental
classic treatises by Messiah (1962) and Cohen-Tannoudji, Diu & Laloë (1977), and
the historical milestones left behind by Dirac (1930) and von Neumann (1932).

I.1 A First Look

To enter the stage, we begin by formulating the equations of motion of one (or
several) particles in classical and quantum mechanics. We consider a particle of
massm in a conservative force field, which is the negative gradientof a potential
V (x), x ∈ R

3.

I.1.1 Classical Mechanics

In classical dynamics, the state of the particle at any timet is characterized by its
positionq(t) ∈ R

3 andmomentump(t) ∈ R
3. It changes in time according to the

Newtonian equations of motion

mq̈ = −∇V (q) , p = mq̇ ,

where the dots denote differentiation with respect to timet ( ˙ = d/dt). This can
equivalently be written as a first-order system of ordinary differential equations,

q̇ =
p

m

ṗ = −∇V (q) .
(1.1) I:newton-pq

With theHamiltonian function
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Schr“”odinger
equation H(q, p) = T (p) + V (q), T (p) =

|p|2
2m

(here|p|2 = p · p is the squared Euclidean norm), which represents the total energy
as the sum of the kinetic energyT (p) and the potential energyV (q), the differential
equations become Hamilton’s canonical equations of motion

q̇ =
∂H

∂p
(q, p)

ṗ = −∂H
∂q

(q, p) .

(1.2) I:hamil

The formalism extends in a straightforward way to a system ofN particles of masses
m1, . . . ,mN , with the position vectorq = (q1, . . . , qN )T ∈ R

3N and the momen-
tum vectorp = (p1, . . . , pN )T ∈ R

3N collecting the positions and momenta of the
particles. The kinetic energy is then given as the sum of the kinetic energies of the
particles,T (p) =

∑N
n=1 |pn|2/(2mn), and the potentialV (q) = V (q1, . . . , qN )

depends on the positions of all the particles and characterizes their interaction. The
potential might in addition also depend on time to describe phenomena in a time-
varying environment. Adding one more particle has the consequence of adding six
dependentvariables(qN+1(t), pN+1(t)) to the system of ordinary differential equa-
tions. Computations with millions, even billions of particles are routinely done in
classical molecular dynamics simulations.

I.1.2 Quantum Mechanics

In quantum mechanics, the state at timet is described by the complex-valuedwave
functionψ(x, t), depending onx ∈ R

3 in the case of a single particle. Motivated
by de Broglie’s hypothesis of a particle-wave duality of matter, Schrödinger (1926)
postulated the evolution equation that has since been recognized as the fundamental
law for describing non-relativistic particles in physics and chemistry:

i~
∂ψ

∂t
= Hψ . (1.3) I:schroed-eq

Here, i =
√
−1 is the imaginary unit, and~ is Planck’s constant which has the

physical dimension of an action, that is, energy divided by frequency or momentum
times length. Its value is~ = 1.0546 · 10−34 Joule·sec. TheHamiltonian operator
H on the right-hand side is the sum

H = T + V (1.4) I:HTV

of the kinetic energy operatorT and the potentialV . Here,

Tψ = − ~
2

2m
∆ψ =

p · p
2m

ψ (1.5) I:T
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with the Laplacian∆ = ∇ · ∇ (the divergence and gradient are with respect to the
spatial variablex). With themomentum operatorp = −i~∇, the expression of the
kinetic energy looks formally the same as in classical mechanics. On the other hand,
the potential simply acts as a multiplication operator:

(
V ψ

)
(x) = V (x)ψ(x). The

Schrödinger equation (1.3) is thus a partial differentialequation of first order in time
and second order in space.

The usualstatistical interpretationof quantum mechanics, due to Born (1926),
views |ψ(·, t)|2 as a probability density for the position of the particle: the prob-
ability of the particle to be located within a volumeΩ ⊂ R

3 at time t, equals∫
Ω
|ψ(x, t)|2 dx. Moreover, the squared absolute value of the Fourier transform of

the wave function is interpreted as the probability densityfor the momentum of the
particle.

The formalism again extends directly to several particles.As in the classical
case, the multi-particle Hamiltonian is constructed as thesum of the kinetic ener-
gies of the single particles and a potential accounting for external forces and in-
teraction. The Hamiltonian operator now acts on a wave functionψ(x1, . . . , xN , t)
depending on the spatial coordinates corresponding to eachof theN particles. Its
squared absolute value represents the joint probability density of particles1 toN to
be at(x1, . . . , xN ) at timet. The multi-particle wave function is a high-dimensional
object: adding one more particle yields another threeindependentvariables! Com-
putations with direct finite-difference discretizations of Schrödinger’s equation are
out of reach for more than two or three particles.

I.2 The Free Schr̈odinger Equation
sect:free

In the absence of a potential, forV = 0, the Schrödinger equation (1.3) becomes

i~
∂ψ

∂t
(x, t) = − ~

2

2m
∆ψ(x, t) , x ∈ R

d, t ∈ R . (2.1) I:free

I.2.1 Dispersion Relation

Einstein’s equation
E = ~ω (2.2) I:Einstein

relates the energy of emitted electrons to the frequency of incident light in the pho-
toelectric effect, which is explained by light quanta showing the particle nature of
light (Einstein 1905). It was hypothesised by de Broglie (1924) that particle-wave
duality should exist also for matter, and the energy relation (2.2) should be basic
also for matter waves. As we will see in a moment, Equation (2.1) can be under-
stood as resulting from an effort to reconcile (2.2) with theclassical expression for
the energy of a free particle with massm and momentump,

E =
|p|2
2m

, (2.3) I:Eclass
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for solutions of a linear evolution equation

∂ψ

∂t
= P (∂x)ψ , x ∈ R

d, t ∈ R ,

with some (possibly pseudo-) differential operatorP (∂x). A plane waveei(k·x−ωt)

with wave vectork and angular frequencyω is a solution of this equation ifω
satisfies thedispersion relation

ω = ω(k) = iP (ik) .

Clearly, knowing the dispersion relation is tantamount to knowing the evolution
equation with operatorP (∂x).

In relating (2.2) and (2.3), it is assumed that the momentum should be

p = mv , (2.4) I:pmv

where the velocity is taken to be thegroup velocity

v =
∂ω

∂k
, (2.5) I:vg

which is the velocity of the envelope of a localized wave packet (Hamilton 1839,
Rayleigh 1877; see also Sect. I.2.3 below) and thus represents the particle velocity.
With the relations (2.4)–(2.5), the equality of the energies (2.2) and (2.3) becomes
the condition~ω = 1

2m|∂ω/∂k|2, which is satisfied for the dispersion relation of
the free Schrödinger equation (2.1),

~ω =
~

2

2m
|k|2 . (2.6) I:disp

With (2.4)–(2.5), this further yields de Broglie’s relation

p = ~k , (2.7) I:broglie

which together with (2.2) expresses the plane wave asei(k·x−ωt) = e
i
~
(p·x−Et) .

The equality of the energies (2.2) and (2.3) is then the dispersion relation (2.6) of
the Schrödinger equation.

I.2.2 Solution by Fourier Transformation
subsec:fourier

We consider (2.1) together with the initial condition

ψ(x, 0) = ψ0(x) , x ∈ R
d. (2.8) I:init

To concur with the interpretation of|ψ0|2 as a probability density, we assume that
ψ0 has unitL2 norm:
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‖ψ0‖2 =

∫

Rd

|ψ0(x)|2 dx = 1 . (2.9) I:init-norm

This initial-value problem is solved using Fourier transforms. We begin by recalling
the necessary prerequisites; see, e.g., Katznelson (1976), Chap. VI, or Reed & Si-
mon (1975), Chap. IX. For convenience, in the following we choose physical units
such that

~ = 1.

Fourier Transform. Let S denote the Schwartz space of rapidly decaying smooth
functions, that is, of arbitrarily differentiable complex-valued functions onRd

which, together with all their partial derivatives, decay faster than the inverse of
any polynomial as|x| → ∞. For a Schwartz functionϕ ∈ S, the Fourier transform
ϕ̂ = Fϕ given by

ϕ̂(k) =
1

(2π)d/2

∫

Rd

e−ik·x ϕ(x) dx , k ∈ R
d, (2.10) I:fourier

is again a Schwartz function. There is the inversion formula

ϕ(x) =
1

(2π)d/2

∫

Rd

eik·x ϕ̂(k) dk , x ∈ R
d, (2.11) I:inv-fourier

and the Plancherel formula relating theL2 norms ofϕ andϕ̂,

‖ϕ‖ = ‖ϕ̂‖ . (2.12) I:plancherel

The Fourier transform changes partial derivatives into multiplication by the Fourier
variable:

−i∂̂jϕ(k) = kjϕ̂(k) , (2.13) I:fourier-diff

and hence the negative Laplacian is transformed into multiplication by the squared
Euclidean norm|k|2 = k2

1 + · · · + k2
d :

−∆̂ϕ(k) = |k|2ϕ̂(k) . (2.14) I:fourier-lap

By density or duality, the above formulas are extended to appropriate larger spaces
of functions or distributions.

Solution via Fourier Transformation. Formally taking Fourier transforms with
respect to the spatial variablex in (2.1) yields decoupled ordinary differential equa-
tions parametrized by the dual variablek:

i
∂ψ̂

∂t
(k, t) =

|k|2
2m

ψ̂(k, t) , k ∈ R
d,

which are solved by
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ψ̂(k, t) = e−i
|k|2

2m
t ψ̂0(k) . (2.15) I:psi-hat

Obviously,|ψ̂(k, t)|2 = |ψ0(k)|2 for all k andt. We note that for initial data in the
Schwartz space,ψ0 ∈ S, we haveψ̂0 ∈ S and thus further̂ψ(·, t) ∈ S for all realt.
The function obtained by the inverse Fourier transform (2.11),

ψ(x, t) =
1

(2π)d/2

∫

Rd

ei(k·x−
|k|2

2m
t) ψ̂0(k) dk , (2.16) I:psi-free

is thus again a Schwartz function, and by the above transformrules, this function is
verified to be a solution to (2.1)-(2.8). We have unitL2 norm

‖ψ(·, t)‖2 = 1 for all t (2.17) I:psi-norm

by the Plancherel formula, by (2.15) and condition (2.9), sothat|ψ(·, t)|2 remains a
probability density for all times.

The Free-Evolution Operator. With the kinetic energy operatorT = − 1
2m∆, we

use the notation
ψ(·, t) = ψ(t) =: e−itTψ0 .

This defines the evolution operator

e−itT : S → S.

By (2.17) and because the Schwartz spaceS is dense in the Hilbert spaceL2 of
square-integrable functions, we can extend the operator toa norm-preserving oper-
ator

e−itT : L2 → L2,

and we considere−itTψ0 for arbitraryψ0 ∈ L2 as a generalized solution to the free
Schrödinger equation (2.1) with initial state (2.8).

I.2.3 Propagation of Wave Packets with Large Mass
subsec:wavepacket

We consider the free Schrödinger equation (2.1) with~ = 1, and as initial state a
wave packet

ψ0(x) = eip·x a(x) with a ∈ S, p ∈ R
d, (2.18) I:wavepacket

where we are particularly interested inp of large norm, so that a highly oscillatory
complex exponential is modulated by the smooth, rapidly decaying functiona(x).
We show that the following holds for the solution of (2.1), uniformly in p ∈ R

d as
the massm→ ∞:

ψ(x, t) = eip·(x−
p

2m
t) a

(
x− p

m
t
)

+O
( t

m

)
. (2.19) I:large-m

Here we note thephase velocityp/(2m) in the argument of the exponential and the
group velocityv = p/m in the argument ofa, and
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|ψ(x, t)|2 ≈ |ψ0(x − vt)|2 ,

which describes uniform straight motion of the envelope with the group velocityv.
Heavy particles thus show approximately classical behaviour.

Proof of (2.19): We start from formula (2.16) forψ(x, t) and note that̂ψ0(k) =
â(k − p). We decompose|k|2 = |k − p+ p|2 = |p|2 + 2(k − p) · p+ |k − p|2 and
substitute the integration variablek for k − p to obtain

ψ(x, t) = eip·x e−i
|p|2

2m
t 1

(2π)d/2

∫

Rd

eik·x e−ik·
p
m
t e−i

|k|2

2m
t â(k) dk .

With the relatione−i
|k|2

2m
t = 1 + O(|k|2 t

m ), we obtain with the inverse Fourier
transform formula

ψ(x, t) = eip·x−i
|p|2

2m
t 1

(2π)d/2

∫

Rd

eik·(x−
p
m
t) â(k) dk +O

( t

m

)

= eip·x−i
|p|2

2m
t a

(
x− p

m
t
)

+O
( t

m

)
,

where the constant in theO-symbol isC =
∫

Rd |k|2|â(k)| dk. ⊓⊔

I.3 The Schrödinger Equation with a Potential

We now turn to the Schrödinger equation (1.3) with a real-valued potentialV (x),
x ∈ R

d,

i~
∂ψ

∂t
= − ~

2

2m
∆ψ + V ψ. (3.1) I:schroed-V

For convenience we choose again units with~ = 1, as we will usually do when we
treat mathematical rather than physical questions.

I.3.1 Self-Adjoint Operators and Existence of Dynamics

The existence of solutions to (3.1) rests on the theory of self-adjoint unbounded
operators on a Hilbert space. Let us briefly recall the relevant concepts.

Let H be a complex Hilbert space with inner product denoted by〈· | ·〉. A lin-
ear operatorH : D(H) → H, defined on a domainD(H) dense inH, is called
symmetricif

〈Hψ |ϕ〉 = 〈ψ |Hϕ〉 ∀ψ, ϕ ∈ D(H).

The operator isself-adjointif for anyϕ, η ∈ H the relation

〈Hψ |ϕ〉 = 〈ψ | η〉 ∀ψ ∈ D(H) implies ϕ ∈ D(H) and η = Hϕ.
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Every self-adjoint operator is symmetric, but the converseis not true for unbounded
operators. Every self-adjoint operator isclosed: for any sequence(ϕn) in D(H),
the convergenceϕn → ϕ, Hϕn → η implies ϕ ∈ D(H) and η = Hϕ.

An operatorU onH is unitary if it preserves the inner product:

〈Uψ |Uϕ〉 = 〈ψ |ϕ〉 ∀ψ, ϕ ∈ H.

As the following theorem states, for self-adjoint operatorsH the abstract Schrödinger
equation

i
dψ

dt
= Hψ (3.2) I:schroed-abstract

has a unitary evolution.

I:thm:existence Theorem 3.1. Assume thatH is a self-adjoint operator on a Hilbert spaceH. Then,
there is a family of unitary operatorse−itH , t ∈ R, with the following properties:

1. The operatorse−itH have the group property:

e−i(t+s)H = e−itH e−isH for all s, t ∈ R .

2. The mappingt 7→ e−itH is strongly continuous: for everyψ0 ∈ H,

e−itHψ0 → ψ0 in theH-norm ast→ 0 .

3. Equation (3.2) with initial valueψ0 ∈ D(H) has the solutionψ(t) = e−itHψ0 :

i
d

dt
e−itHψ0 = He−itHψ0 ,

where the expressions on both sides of the equality sign indeed exist.

Theorem 3.1 can be proved by first noting that it holds for bounded opera-
tors, then by approximatingH by a sequence of symmetric bounded operatorsHn

and carefully passing to the limit in the exponentialse−itHn ; see Gustafson & Si-
gal (2003), Chap. 2. Another proof is based on the spectral theory of self-adjoint
operators as developed by von Neumann and put to good use in his mathematical
foundations of quantum mechanics (von Neumann, 1932). Based on von Neumann’s
spectral theory, Theorem 3.1 was given by Stone (1932) who also proves an inter-
esting converse: ifU(t), t ∈ R, is a strongly continuous group of unitary operators,
thenU(t) = e−itH for some self-adjoint operatorH .

I.3.2 Potentials Giving Self-Adjoint Operators

In applying Theorem 3.1 to the Schrödinger equation (3.1) on the Hilbert space
H = L2(Rd) of square-integrable functions, we need conditions that ensure that
the HamiltonianH = T + V is a self-adjoint operator. While symmetry is easily
obtained, showing self-adjointness can be quite subtle.



I.3 The Schrödinger Equation with a Potential 9

First we remark thatT = − 1
2m∆ is self-adjoint with the domainD(T ) =

H2(Rd), the Sobolev space of functions which together with their generalized par-
tial derivatives up to order 2 are square integrable. (This is shown using Fourier
transforms.)

Knowing thatT is self-adjoint, what can we say aboutT + V ? The follow-
ing very useful perturbation result is known as theKato-Rellich theorem, see Kato
(1980), Sect. V.4.1, Theorem 4.3:

LetT be a self-adjoint operator on a Hilbert space, andV a symmetric operator
bounded by‖V ψ‖ ≤ a‖ψ‖ + b‖Tψ‖ for all ψ ∈ D(T ), with b < 1. Then,H =
T + V is self-adjoint with domainD(H) = D(T ).

In particular, forT = − 1
2m∆ a bounded potential always gives a self-adjoint

HamiltonianH = T + V with domainH2(Rd). A simple criterion that follows
from the above result with the Sobolev inequality onR

3, is the following (Kato
1980, Sect. V.5.3): Assume

V = V∞ + V2 with V∞ ∈ L∞(R3), V2 ∈ L2(R3).

Then,T+V is self-adjoint with domainD(H) = H2(R3). For example, this applies
to theCoulomb potentialV (x) = |x|−1.

An enlightening discussion and a variety of results on the self-adjointness of
Schrödinger operators are given in Chapter X of Reed & Simon(1975). Remark-
ably, self-adjoint extensions always exist for a potentialbounded from below (ibid.,
p. 177), but they need not be unique, and different extensions can correspond to dif-
ferent physics (ibid., p. 145). A unique self-adjoint extension is known to exist for
every non-negative continuousconfiningpotential, that is, satisfyingV (x) → ∞ as
|x| → ∞; see Hislop & Sigal (1996).

Later in this text, we will not pay much attention to the subtleties of self-
adjointness and, in cases of possible doubt, we simply assume that the potential
is such thatH = T + V yields a well-defined self-adjoint operator onL2(Rd).

I.3.3 Lie–Trotter Product Formula

We have already constructed the free-particle evolution operatore−itT by Fourier
transformation, and for the potential we simply have

(
e−itV ψ

)
(x) = e−itV (x)ψ(x).

We donot havee−i(T+V ) = e−itT e−itV , but there is the following result due to
Trotter (1959), whose finite-dimensional version is credited to Lie. See also Reed &
Simon (1972), Theorem VIII.30, for precisely this version and a short proof.

I:thm:trotter Theorem 3.2. Suppose thatT , V , andH = T + V are self-adjoint operators on a
Hilbert spaceH. Then, for everyt ∈ R andϕ ∈ H,

e−itHϕ = lim
n→∞

(
e−itT/n e−itV/n

)n
ϕ .

In view of the strong continuity ofe−itV , an equivalent statement is
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e−itHϕ = lim
n→∞

(
e−itV/(2n) e−itT/n e−itV/(2n)

)n
ϕ .

We will encounter the short-time approximation (over a small time step∆t)

e−i∆tH ≈ e−i∆tV/2 e−i∆tT e−i∆tV/2 , (3.3) I:strang

known assymmetric Trotter splittingor Strang splitting, repeatedly in this text, in
various versions and disguises. This is one of the most widely used approximations
to the evolution operator in computations.

Relationship with the Störmer–Verlet Method for Classical Mechanics.Con-
sider now a wavepacket as in Sect. I.2.3,ψ0(x) = eip·xa(x), where we think of
a(x) as being localized nearx = q. We consider the Taylor expansion of the poten-
tial V (x) at q,

V (x) = V (q) + ∇V (q) · (x− q) +Q(x, q)

with the quadratic remainder termQ, so that we have

e−i
∆t
2
V (x)ψ0(x) = ei(p·q−

∆t
2
V (q)) ei(p−

∆t
2

∇V (q))·(x−q) e−i
∆t
2
Q(x,q) a(x) . (3.4) I:exp-V

Here the first exponential on the right-hand side carries a phase which is modi-
fied by−∆t

2 V (q) over the half-step∆t2 . In the second exponential, themomentum
p is shifted top − ∆t

2 ∇V (q). We recall that in (2.19) we had a shift frompo-
sition q to q + ∆t p/m for the centre of the wave packet propagated by the free
evolution operatore−i∆tT in the situation of a large massm. Combining these
formulas for changing momenta and positions as they appear from the composi-
tion e−i∆tV/2 e−i∆tT e−i∆tV/2 of (3.3), we arrive at the following scheme: starting
from q0, p0, set

p1/2 = p0 − 1

2
∆t∇V (q0)

q1 = q0 +∆t
p1/2

m
(3.5) I:verlet

p1 = p1/2 − 1

2
∆t∇V (q1) .

This is theSẗormer–Verlet methodfor the numerical solution of the Newtonian equa-
tions of motion (1.1), which is by far the most widely used numerical integration
method in classical molecular dynamics. See Hairer, Lubich& Wanner (2003) for a
discussion of this basic numerical method and its remarkable properties. We further
note from (2.19) and (3.4) that the overall phase (the term inthe exponential that is
independent ofx) is modified to

φ1 = φ0 +∆t

∣∣p1/2
∣∣2

2m
− 1

2
∆t

(
V (q0) + V (q1)

)
,

where the increment is a quadrature formula approximation to the classical action

integral
∫ ∆t
0

( |p(t)|2

2m − V (q(t))
)
dt along the solution(q(t), p(t)) of the classical

equations of motion (1.1). We will explore relationships between (3.3) and (3.5) in
more depth in Chapter V.
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I.4 Averages, Commutators, Uncertainty

We consider again the Schrödinger equation (3.1) with the HamiltonianH = T +V
and look at spatial averages of position, momentum, etc. along the wave function.

I.4.1 Observables and Averages

With the jth position coordinate as multiplication operator,
(
qjψ)(x) = xjψ(x),

and a functionψ of unitL2 norm withqjψ ∈ L2, we associate

〈ψ | qjψ〉 =

∫

Rd

xj |ψ(x)|2 dx ,

which represents thejth component of theposition averageof the stateψ.
With thejth component of the momentum operator,pj = −i~ ∂/∂xj, we form

(for ψ ∈ D(pj) and of unitL2 norm)

〈ψ | pjψ〉 =

∫

Rd

ψ(x)
(
−i~ ∂ψ

∂xj

)
dx =

∫

Rd

~kj |ψ̂(k)|2 dk ,

which is thejth component of themomentum averageof the stateψ. Similarly, we
can consider thetotal energy〈ψ |Hψ〉. It is such averages that can be observed
experimentally.

Noting thatqj , pj , H are self-adjoint operators onL2, more generally we call
any self-adjoint operatorA : D(A) → L2 an observable, and itsaverage in the
stateψ (ψ of unitL2 norm andψ ∈ D(A)) is written, in varying notations,

〈A〉 = 〈A〉ψ = 〈ψ |A |ψ〉 = 〈ψ |Aψ〉 . (4.1) I:brackets

I.4.2 Heisenberg Picture and Ehrenfest Theorem

Evolution of Averages and the Heisenberg Picture.We now study how the av-
erage〈A〉(t) = 〈A〉ψ(t) of an observableA changes in time along a solution
ψ(t) = ψ(·, t) of the Schrödinger equation (1.3). Sinceψ(t) = e−itH/~ψ0, we
have

〈A〉ψ(t) = 〈A(t)〉ψ0
with A(t) = eitH/~Ae−itH/~ . (4.2) I:heis-pic

The operatorA(t) is said to give theHeisenberg pictureof the evolution of the
observable (after Heisenberg, 1925), as opposed to the Schrödinger picture working
with wave functions. For a fixed initial stateψ0, Eq. (4.2) can be written more briefly
as

〈A〉(t) = 〈A(t)〉 . (4.3) I:heis-aver

Heisenberg Equation.A formal calculation, usingddte
−itH/~ = 1

i~He
−itH/~ =

e−itH/~ 1
i~H , yields
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dA

dt
(t) =

1

i~
eitH/~(−HA+AH)e−itH/~

and hence, with thecommutator[A,H ] = AH −HA and with ˙ = d/dt, we have
theHeisenberg equation

Ȧ(t) =
1

i~
[A(t), H ] . (4.4) I:heis-eq

Remark.Some care is needed in giving a precise meaning to the commutator of un-
bounded self-adjoint operators, which in general need not exist. We note, however,
that for initial statesψ0 in a domainD whichA maps intoD(H) andH maps into
D(A), the averages of both sides of (4.4) are well-defined and are indeed equal.

Energy Conservation.SinceH commutes with itself, we obtain from (4.3) and
(4.4) that the total energy is conserved along every solution of the Schrödinger equa-
tion:

d

dt
〈H〉 = 0. (4.5) I:energy-cons

Formal Analogy with Classical Mechanics.The Heisenberg equation (4.4) shows
a close analogy to the corresponding situation in classicalmechanics: a real-valued
function F (q, p) along a solution(q(t), p(t)) of the Hamiltonian equations (1.2)
changes according to

d

dt
F (q(t), p(t)) =

{
F,H

}
(q(t), p(t))

with thePoisson bracket

{
F,G

}
=

d∑

j=1

( ∂F
∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
,

as is seen by the chain rule and using (1.2). Formally thus, one bracket replaces the
other in going from classical to quantum mechanics.

We now consider the Heisenberg equations for the position and momentum opera-
tors, with componentsqj andpj :

q̇j =
1

i~
[qj , H ]

ṗj =
1

i~
[pj , H ] .

For a HamiltonianH = T+V with kinetic energyT = − ~
2

2m ∆ and with a potential
V (x) acting as a multiplication operator, we calculate
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1

i~
[qj , H ]ψ =

1

i~
[qj , T ]ψ = − 1

i~

d∑

ℓ=1

~
2

2m

[
qj ,

∂2

∂x2
ℓ

]
ψ = − i~

m

∂ψ

∂xj
=
pj
m
ψ

1

i~
[pj , H ]ψ =

1

i~
[pj , V ]ψ = − ∂

∂xj
(V ψ) + V

∂ψ

∂xj
= − ∂V

∂xj
ψ .

This gives us equations that look exactly like the classicalequations of motion (1.1):

q̇ =
p

m

ṗ = −∇V .
(4.6) I:heis-pq

Ehrenfest Theorem.When we take averages〈·〉 on both sides of (4.6) according to
(4.3), then we obtain the result by Ehrenfest (1927) that theposition and momen-
tum averages evolve by Newton-like equations. It should be noted, however, that in
general

〈∇V 〉 6= ∇V
(
〈q〉) ,

unless the potential is quadratic.

I.4.3 Heisenberg Uncertainty Relation

Still in analogy with classical mechanics, position and momentum arecanonically
conjugateobservables, which here means that they satisfy (with Kronecker’s delta)

1

i~
[qj , pk] = δjk , (4.7) I:qp-comm

as is readily verified by a direct calculation of the commutator similar to the one
given above. This has an important consequence to which we turn next. We define
thestandard deviationor widthof an observableA in a stateψ as

∆A =
〈
(A− 〈A〉)2

〉1/2
, (4.8) I:dispersion

where the average is taken with respect to the given stateψ.

Theorem 4.1 (Heisenberg Uncertainty Relation).The standard deviations of the
position and momentum operators satisfy the inequality

∆qj ∆pj ≥
~

2
. (4.9) I:heis-uncert

According to Heisenberg (1927), this now world-famous inequality is interpreted as
saying that it is impossible to know both the exact position and exact momentum of
an object at the same time.

Proof. The result follows from (4.7) and from theRobertson-Schrödinger relation
which states that for any observablesA andB,
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∆A∆B ≥ 1

2

∣∣∣
〈
[A,B]

〉∣∣∣ . (4.10) I:rs

This is obtained with the Cauchy-Schwarz inequality and theidentity

−2 Im 〈Aψ |Bψ〉 = 〈ψ | i[A,B]ψ〉

as follows (we may assume〈A〉 = 〈B〉 = 0 for ease of notation):

∆A∆B = ‖Aψ‖·‖Bψ‖ ≥
∣∣〈Aψ |Bψ〉

∣∣ ≥
∣∣Im 〈Aψ |Bψ〉

∣∣ =
1

2

∣∣〈i[A,B]〉
∣∣ . ⊓⊔

I.5 Many-Body Systems

I.5.1 Distinguishable Particles

Consider firstN independent free particles, without any interaction, numbered from
n = 1, . . . , N . The probability density at timet for particlen to be at positionxn
is |ψn(xn, t)|2, the square of the absolute value of the wave function. Sincethe
particles are assumed independent, the joint probability density for particle 1 at
x1, . . . , particleN at xN is the product

∏N
n=1 |ψn(xn, t)|2, which is the squared

absolute value of the product wave functionψ(x1, . . . , xN , t) =
∏N
n=1 ψn(xn, t)

that solves the3N -dimensional free Schrödinger equation

i~
∂ψ

∂t
= Tψ with T =

N∑

n=1

Tn , Tn = − ~
2

2mn
∆n ,

where∆n is the Laplacian with respect to the variablexn. Similarly, if each particle
is subjected to an external potentialVn(xn), then the product wave function solves
a Schrödinger equation with a potential that is the sum of the single-particle poten-
tials. With particles interacting via a potentialV (x1, . . . , xN ), however, the solution
of the multi-particle Schrödinger equation

i~
∂ψ

∂t
= Hψ , H = T + V , ψ = ψ(x1, . . . , xN , t) ,

is in general no longer in product form. As a roughapproximationto the high-
dimensional wave function we might still look for a functionin product form — an
old idea realized in the time-dependentHartree methoddiscussed in Chapter II.

I.5.2 Indistinguishable Particles
subsec:indist

When particles cannot be distinguished in their physical properties, such as mass,
charge, or spin, the potential remains the same under an exchange of the coordinates
of the particles; in the case of identical particles 1 and 2,
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V (x2, x1) = V (x1, x2) . (5.1) I:V-exch

Moreover, the probability density of particle 1 to be atx1 and particle 2 atx2 must
then remain unaltered under an exchange:

|ψ(x2, x1, t)|2 = |ψ(x1, x2, t)|2 . (5.2) I:prob-exch

If φ(x1, x2, t) is somesolution of the Schrödinger equation, then because of (5.1),
so is any linear combination

ψ(x1, x2, t) = a φ(x1, x2, t) + b φ(x2, x1, t) .

Requiring (5.2) yields conditions on the coefficientsa, b: |a|2 = |b|2 andab = ab,
which imply b2 = a2 and hence

b = ±a .
We are thus left with two possibilities, symmetry or antisymmetry:

ψ(x2, x1, t) = ψ(x1, x2, t) (bosons) or (5.3) I:boson

ψ(x2, x1, t) = −ψ(x1, x2, t) (fermions). (5.4) I:fermion

Remarkably, for one kind of physical particle, always one and the same of the two
cases is realized. The two situations lead to very differentphysical behaviour. It is
the antisymmetry (5.4) that is known to hold for electrons, protons and neutrons:
these arefermions. They obey thePauli exclusion principle(Pauli 1925) which
states that like particles cannot simultaneously be in the same quantum state. Note
that (5.4) implies

ψ(x, x, t) = 0 ,

so that two identical fermions cannot be at the same positionat the same time.
A product state does not have the antisymmetric behaviour (5.4) but it can be

antisymmetrized: with two indistinguishable particles,

ψ(x1, x2, t) =
1√
2

(
ϕ1(x1, t)ϕ2(x2, t) − ϕ1(x2, t)ϕ2(x1, t)

)

has the required antisymmetry (and vanishes ifϕ1(·, t) = ϕ2(·, t), in accordance
with the Pauli principle), and so does theSlater determinant

ψ(x1, . . . , xN , t) =
1√
N !

det
(
ϕj(xn, t)

)N
j,n=1

(5.5) I:slater

in the case ofN identical particles. Approximation of the electronic wavefunction
by Slater determinants of orthogonal orbitals (i.e., single-electron wave functions)
ϕj is done in the time-dependentHartree–Fock method, see Chapter II.

It is also of interest to see what is the effect of ignoring antisymmetry in the wave
function of well-separated identical fermionic particles. Suppose thatφ(x1, x2, t) is
a solution of the time-dependent Schrödinger equation which is essentially local-
ized near(〈x1〉(t), 〈x2〉(t)) but which is not antisymmetric. As long as〈x1〉(t) and
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〈x2〉(t) remain clearly separated (well beyond the widths∆x1(t) and∆x2(t)), the
antisymmetrization ofφ does not deviate substantially fromφ in a neighbourhood
of (〈x1〉(t), 〈x2〉(t)), so that the particles can be considered to be distinguishable by
their well-separated positions. This observation often justifies ignoring antisymme-
try in the treatment of identicalnucleiof a molecule, for which the above localiza-
tion and separation condition is usually met in chemistry. On the other hand, for the
less localizedelectronsa careful treatment of antisymmetry is essential.

I.5.3 The Molecular Hamiltonian

For a molecule, the Hamiltonian is the sum of the kinetic energy of the nuclei and
the electrons, and the potential is the sum of the Coulomb interactions of each pair
of particles:

Hmol = T + V with T = TN + Te and V = VNN + VNe + Vee . (5.6) I:Hmol

For N nuclei of massesMn and electric chargesZne, with position coordinates
xn ∈ R

3, andL electrons of massm and charge−e, with coordinatesyℓ ∈ R
3, the

respective kinetic energy operators are

TN = −
N∑

n=1

~
2

2Mn
∆xn

Te = −
L∑

ℓ=1

~
2

2m
∆yℓ

,

and the potential is the sum of the nucleus-nucleus, nucleus–electron and electron–
electron interactions given by

VNN (x) =
∑

1≤k<n≤N

Zk Zn e
2

|xk − xn|
, VNe(x, y) = −

L∑

ℓ=1

N∑

n=1

Zne
2

|yℓ − xn|
,

Vee(y) =
∑

1≤j<ℓ≤L

e2

|yj − yℓ|
.

It is often convenient to chooseatomic unitswhere~ = 1, the elementary charge
e = 1, the mass of the electronm = 1, and the Bohr radius of the hydrogen atom
r = 1.

The self-adjointness of such Hamiltonian operators, with domainH2(R3N+3L), has
been shown by Kato (1951); see also Reed & Simon (1975), Theorem X.16.

Any attempt to “solve” numerically the molecular Schrödinger equation

i~
∂Ψ

∂t
= Hmol Ψ , Ψ = Ψ(x1, . . . , xN , y1, . . . , yL, t)

faces a variety of severe problems:

– the high dimensionality (even for a small molecule such as CO2, there are 3 nuclei
and 22 electrons, so thatΨ is a function onR75!);
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– multiple scales in the system (the mass of the electron is approximately 1/2000
of the mass of a proton);

– highly oscillatory wave functions.

To obtain satisfactory results in spite of these difficulties, one requires a combina-
tion of model reduction, based on physical insight and/or asymptotic analysis, and
numerical techniquesused on the reduced models that are intermediate between
classical and full quantum dynamics. This is the subject of the following chapters.


