Chapter |I.
Quantum vs. Classical Dynamics

In this introductory chapter we recapitulate basic elemefiqguantum mechanics,

emphasizing relationships with classical mechanics aegaying for the later chap-
ters in a reasonably self-contained way. There are, of egurany texts where this
material is presented more extensively and from differe@awgoints. To name but a
few, we mention the gentle mathematically-minded intrdituncby Thaller (2000),
the complementary but visually equally appealing physaggdroach by Brandt &
Dahmen (2001), the substantial brief text by Gustafson &al5{g003) from the
mathematical physics point of view and the outreaching bmpKannor (2007)
with a time-dependent, chemical physics perspective. &hee the monumental
classic treatises by Messiah (1962) and Cohen-Tannoudji&Daloé (1977), and
the historical milestones left behind by Dirac (1930) and d&umann (1932).

.1 A First Look

To enter the stage, we begin by formulating the equations atfam of one (or
several) particles in classical and quantum mechanics. &sider a particle of
massm in a conservative force field, which is the negative gradafra potential
V(z), z € R3.

I.1.1 Classical Mechanics

In classical dynamics, the state of the particle at any tinsecharacterized by its
positiong(t) € R* andmomentunp(t) € R3. It changes in time according to the
Newtonian equations of motion

where the dots denote differentiation with respect to tinfé = d/dt). This can
equivalently be written as a first-order system of ordinaffecential equations,
i = 2
" )

—VV{(q).

p

With theHamiltonian function
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Schrodinger Ip|?
equation H(q,p) =T(p) + V(q), T(p)=+—

T 2m

(here|p|? = p - pis the squared Euclidean norm), which represents the toéabg
as the sum of the kinetic ener@yp) and the potential energy(q), the differential
equations become Hamilton’s canonical equations of motion

. OH
q = 8—p(q,p)
o (1.2)
p = —a—q(q,p) -
The formalism extends in a straightforward way to a syste phrticles of masses
ma, ..., my, With the position vectog = (q1,...,qn)7 € R*N and the momen-
tum vectorp = (p1,...,pn)" € R3N collecting the positions and momenta of the

particles. The kinetic energy is then given as the sum of thetic energies of the
particles,T'(p) = ij:l lpn|?/(2m,,), and the potential’ (¢) = V(qi,...,qn)
depends on the positions of all the particles and charaetetheir interaction. The
potential might in addition also depend on time to describenq@mena in a time-
varying environment. Adding one more particle has the cgusece of adding six
dependentariables(qn+1(t), pv+1(t)) to the system of ordinary differential equa-
tions. Computations with millions, even billions of pahtis are routinely done in
classical molecular dynamics simulations.

[.1.2 Quantum Mechanics

In guantum mechanics, the state at titrie described by the complex-value@ve
function(x,t), depending on: € R? in the case of a single particle. Motivated
by de Broglie's hypothesis of a particle-wave duality of tagtSchrodinger (1926)
postulated the evolution equation that has since been nézedjas the fundamental
law for describing non-relativistic particles in physieglachemistry:

gy = . 3)

Here,i = +/—1 is the imaginary unit, and is Planck’s constant which has the
physical dimension of an action, that is, energy dividedregfiency or momentum
times length. Its value i = 1.0546 - 1034 Joulesec. TheHamiltonian operator
H on the right-hand side is the sum

H=T+V (1.4)

of the kinetic energy operatdr and the potential’. Here,

K P :
Ty = —o—Ap =12y (1.5)
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with the LaplacianA = V - V (the divergence and gradient are with respect to the
spatial variabler). With themomentum operatgr = —ihV, the expression of the
kinetic energy looks formally the same as in classical meidsaOn the other hand,
the potential simply acts as a multiplication opera{dfy)) (z) = V (z)y(z). The
Schradinger equation (1.3) is thus a partial differerg@ation of first order in time
and second order in space.

The usuabktatistical interpretatiorof quantum mechanics, due to Born (1926),
views |1 (-, )|? as a probability density for the position of the particlee fbrob-
ability of the particle to be located within a volunf@ C R3 at timet, equals
[ [(z, t)|* dz. Moreover, the squared absolute value of the Fourier toamsbf
the wave function is interpreted as the probability denfsitythe momentum of the
particle.

The formalism again extends directly to several partickes.in the classical
case, the multi-particle Hamiltonian is constructed assilma of the kinetic ener-
gies of the single particles and a potential accounting fbereal forces and in-
teraction. The Hamiltonian operator now acts on a wave fanet(z1, ..., zy,t)
depending on the spatial coordinates corresponding to @fitte N particles. Its
squared absolute value represents the joint probabilitgitieof particlesl to NV to
be at(x1, ...,z ) attimet. The multi-particle wave function is a high-dimensional
object: adding one more particle yields another thnelependentariables! Com-
putations with direct finite-difference discretizatiorfsSzhrodinger’s equation are
out of reach for more than two or three particles.

1.2 The Free Schibdinger Equation

In the absence of a potential, for= 0, the Schrodinger equation (1.3) becomes
L 0y r? d
2h§($,t):—2—Aw((E,t)7 reR s teR. (21) I:free
m

[.2.1 Dispersion Relation

Einstein’s equation
B=ho 22)

relates the energy of emitted electrons to the frequenayaidént light in the pho-
toelectric effect, which is explained by light quanta shagvthe particle nature of
light (Einstein 1905). It was hypothesised by de BroglieZ4pthat particle-wave
duality should exist also for matter, and the energy refa{id2) should be basic
also for matter waves. As we will see in a moment, Equatioth)(2an be under-
stood as resulting from an effort to reconcile (2.2) with ¢dfessical expression for
the energy of a free particle with massand momenturp,

2
gk 23)

2m’
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for solutions of a linear evolution equation

o _

d
8t_P(6m)z/1, zeRY teR,

with some (possibly pseudo-) differential operai(id,. ). A plane wave:*(¥#—«t)
with wave vectork and angular frequency is a solution of this equation &
satisfies tha&ispersion relation

w=w(k) =1P(ik).

Clearly, knowing the dispersion relation is tantamount tmking the evolution
equation with operatoP(9,,).

In relating (2.2) and (2.3), it is assumed that the momentuoolsl be

p=mv. @)
where the velocity is taken to be tigeoup velocity

ow

b=, (2.5)

which is the velocity of the envelope of a localized wave agkamilton 1839,
Rayleigh 1877; see also Sect.1.2.3 below) and thus repietienparticle velocity.
With the relations (2.4)—(2.5), the equality of the enesdi22) and (2.3) becomes
the conditionw = $m|dw/0k|?, which is satisfied for the dispersion relation of
the free Schrodinger equation (2.1),

h -
hw = o |k|*. (2.6) |1:disp
With (2.4)—(2.5), this further yields de Broglie’s relatio

@

which together with (2.2) expresses the plane wave'ds' ) = et (pa—Et)
The equality of the energies (2.2) and (2.3) is then the dispe relation (2.6) of
the Schrodinger equation.

[.2.2 Solution by Fourier Transformation

subsec: four | er |

We consider (2.1) together with the initial condition

Y(x,0) =o(z),  zeR™L (2.8)

To concur with the interpretation ¢f)y|? as a probability density, we assume that
1o has unitL? norm:
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lnlP = [ o) do=1. 2.9)

This initial-value problem is solved using Fourier tramsfis. We begin by recalling
the necessary prerequisites; see, e.g., Katznelson (19fép. VI, or Reed & Si-
mon (1975), Chap. IX. For convenience, in the following weabe physical units
such that

h=1.

Fourier Transform. Let S denote the Schwartz space of rapidly decaying smooth
functions, that is, of arbitrarily differentiable complealued functions oriR?¢
which, together with all their partial derivatives, decagter than the inverse of
any polynomial asz| — oo. For a Schwartz functiop € S, the Fourier transform

» = Fp given by

1

P(k) = a7 /R o), ke R, (2.10)

is again a Schwartz function. There is the inversion formula

_ 1 ik-x d . "
w(x)_W/Rde p(k) dk , x € RY, (2.11) [I:inv-fourier

and the Plancherel formula relating thé norms ofy and,

llell = 1]l - (2.12) |1: pl ancherel

The Fourier transform changes partial derivatives intotiplidation by the Fourier
variable:

—id;p(k) = k;@(k), (2.13) [I:fourier-diff |

and hence the negative Laplacian is transformed into nlighifoon by the squared
Euclidean normk|? = k% + - - - + k2:

—Ap(k) = |k*3(k) . (2.14) |1:fourier-lap

By density or duality, the above formulas are extended to@pyate larger spaces
of functions or distributions.

Solution via Fourier Transformation. Formally taking Fourier transforms with
respect to the spatial variahilgn (2.1) yields decoupled ordinary differential equa-
tions parametrized by the dual variatate

e k2 ~ g
—(k.t) = — (k. t keR
zat(,) o (k, 1), € R4,

which are solved by
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Blkt) = ™57 Go (k). (2.15)
Obviously,|t(k, t)|? = |1 (k)|? for all k andt. We note that for initial data in the

Schwartz space), € S, we havey, € S and thus furtherzAJ(-, t) € S for all realt.
The function obtained by the inverse Fourier transformi}.1

1 LI .
) = g [ R Bl ke, 216)

is thus again a Schwartz function, and by the above trangfoles, this function is
verified to be a solution to (2.1)-(2.8). We have ulitnorm

G0 =1 forallt (2.17)

by the Plancherel formula, by (2.15) and condition (2.9)hsd|« (-, )|* remains a
probability density for all times.

The Free-Evolution Operator. With the kinetic energy operatdr = —ﬁA, we
use the notation

(-, t) =(t) =: e Ty .
This defines the evolution operator

e .8 - 8.

By (2.17) and because the Schwartz sp&ds dense in the Hilbert spade® of
square-integrable functions, we can extend the operagntorm-preserving oper-
ator

ef’itT . L2 N L2,
and we consider~ Ty, for arbitraryy, € L? as a generalized solution to the free
Schradinger equation (2.1) with initial state (2.8).

[.2.3 Propagation of Wave Packets with Large Mass

)sec: wavepacket |

We consider the free Schrodinger equation (2.1) wite 1, and as initial state a

wave packet .
Yo(x) = ePTa(x) with aecS, peR?, (2.18)

where we are particularly interestedzrof large norm, so that a highly oscillatory
complex exponential is modulated by the smooth, rapidlyagiey functiona(z).
We show that the following holds for the solution of (2.1)jformly in p € R? as
the massn — oc:

P(z,t) = eip (2=t a(:v — %t) + O(%) . (2.19)

Here we note thehase velocity/(2m) in the argument of the exponential and the
group velocityy = p/m in the argument of, and
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[W(z,)|* = [vo(z —vt)[?,

which describes uniform straight motion of the envelopédlie group velocity.
Heavy particles thus show approximately classical behavio

Proof of (2.19): We start from formula (2.16) fas(z,t) and note tha@o(k) =
a(k — p). We decomposg|* = |k —p +p|> = [p|* + 2(k — p) - p + |k — p|* and
substitute the integration variablefor £ — p to obtain

ip- _"p‘zt 1 ik- —ik- 2t _“k‘zt/\
Y(z,t) =eP T e om W‘/RdeZ Te "mte  am ' a(k) dk .

1el2
With the relatione "=t = 1 + O(|k|*L), we obtain with the inverse Fourier
transform formula

U(x t) — ez’p.m—izp—r‘:t 1 etk (z—21) a(k) dk + O(i)
) (27T)d/2 Rd m
— ip-m—i%t _ £ i
= e 2 a(:c mt) + O(m) )
where the constant in th@-symbol isC = [, |k[*[a(k)| dk. O

|.3 The Schrodinger Equation with a Potential

We now turn to the Schrodinger equation (1.3) with a redled potentialV/ (),
x € RY,
o) A

w2y vy, @)

For convenience we choose again units itk 1, as we will usually do when we
treat mathematical rather than physical questions.

[.3.1 Self-Adjoint Operators and Existence of Dynamics

The existence of solutions to (3.1) rests on the theory dfadjbint unbounded
operators on a Hilbert space. Let us briefly recall the reiegancepts.

Let H be a complex Hilbert space with inner product denoted-by). A lin-
ear operatofd : D(H) — H, defined on a domai(H) dense inH, is called
symmetridf

(HY|@)= (W |Hp) Vb, € D(H).

The operator iself-adjointif for any ¢, n € H the relation

(Hy | ) = (¢ |n) Yo € D(H) implies @€ D(H) andn = He.
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Every self-adjoint operator is symmetric, but the convéssmt true for unbounded
operators. Every self-adjoint operatora®sed for any sequencép,,) in D(H),
the convergence,, — ¢, Hy, — n implies ¢ € D(H) and n = H.

An operatoiU onH is unitary if it preserves the inner product:

(Up|Up) = |yp)  Vib,p€H.

As the following theorem states, for self-adjoint operaf@ithe abstract Schrodinger
equation
Ay

i = Hy (3.2) [I:schroed-abstract

has a unitary evolution.

:thm exi st ence | Theorem 3.1. Assume thakl is a self-adjoint operator on a Hilbert spa@é. Then,

there is a family of unitary operatoks ¥, t ¢ R, with the following properties:

1. The operators~*# have the group property:
e Wt H — g—itH o—isH forall s,t € R.
2. The mapping — e~ is strongly continuous: for eveny, € H,
e ™y — 1hy intheH-normast — 0.

3. Equation (3.2) with initial valugy € D(H) has the solution)(t) = e~ :

d —i
e Hpg = He "My,

where the expressions on both sides of the equality sigrethexist.

Theorem 3.1 can be proved by first noting that it holds for latmehopera-
tors, then by approximating by a sequence of symmetric bounded operakfys
and carefully passing to the limit in the exponentiats’~; see Gustafson & Si-
gal (2003), Chap. 2. Another proof is based on the spectearthof self-adjoint
operators as developed by von Neumann and put to good use mathematical
foundations of quantum mechanics (von Neumann, 1932).dBasgon Neumann’s
spectral theory, Theorem 3.1 was given by Stone (1932) wém @loves an inter-
esting converse: i/ (t), t € R, is a strongly continuous group of unitary operators,
thenU (t) = e~ for some self-adjoint operatdi .

1.3.2 Potentials Giving Self-Adjoint Operators

In applying Theorem 3.1 to the Schrddinger equation (3rithe Hilbert space
H = L?(R?) of square-integrable functions, we need conditions thatienthat
the HamiltonianH = T + V is a self-adjoint operator. While symmetry is easily
obtained, showing self-adjointness can be quite subtle.



l:thmtrotter |

1.3 The Schrodinger Equation with a Potential 9

First we remark thaf’ = —5-A is self-adjoint with the domaiD(T') =
H?(R%), the Sobolev space of functions which together with theiregalized par-
tial derivatives up to order 2 are square integrable. (Thishown using Fourier
transforms.)

Knowing thatT is self-adjoint, what can we say abdiit+ VV? The follow-
ing very useful perturbation result is known as #a&o-Rellich theoremsee Kato
(1980), Sect. V.4.1, Theorem 4.3;

LetT be a self-adjoint operator on a Hilbert space, avich symmetric operator
bounded by| V|| < al|®| + b|| T forall v € D(T), withb < 1. Then,H =
T + V is self-adjoint with domaiD(H) = D(T).

In particular, forT" = —ﬁA a bounded potential always gives a self-adjoint
HamiltonianH = T + V with domain H2(R<). A simple criterion that follows
from the above result with the Sobolev inequality Bp, is the following (Kato

1980, Sect. V.5.3): Assume
V=Ve+Va with V,e&L>®R?, Ve L*R3).

Then,T+V is self-adjoint with domaiD (H) = H?(R?). For example, this applies
to theCoulomb potential/ (z) = |z|~!.

An enlightening discussion and a variety of results on tHeagointness of
Schrodinger operators are given in Chapter X of Reed & Sid®75). Remark-
ably, self-adjoint extensions always exist for a poterii@inded from belowilpid.,
p. 177), but they need not be unique, and different extessian correspond to dif-
ferent physicsibid., p. 145). A unique self-adjoint extension is known to exat f
every non-negative continuoaenfiningpotential, that is, satisfyiny (z) — oo as
|z] — oo; see Hislop & Sigal (1996).

Later in this text, we will not pay much attention to the seb#s of self-
adjointness and, in cases of possible doubt, we simply assbat the potential
is such thatd = T + V yields a well-defined self-adjoint operator a#(R?).

1.3.3 Lie—Trotter Product Formula

We have already constructed the free-particle evolutieerapre 7 by Fourier
transformation, and for the potential we simply hgwe™V 1) (z) = e~V (@y(z).
We donot havee #T+V) = ¢—T ¢=itV hyt there is the following result due to
Trotter (1959), whose finite-dimensional version is credlto Lie. See also Reed &
Simon (1972), Theorem VI11.30, for precisely this versiarda short proof.

Theorem 3.2. Suppose thdt’, V, andH = T + V are self-adjoint operators on a
Hilbert spaceH. Then, for every € R andy € H,

e—itH 5 — —itT/n —itV/n\"
p=lim (e e V.

n—oo

In view of the strong continuity of~*", an equivalent statement is
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e~itH o, — lim (e—itV/(Qn) o—itT/n e—itV/(gn))nso'

n—oo

We will encounter the short-time approximation (over a d$niale stepAt)

e—iAtH ~ e—iAtV/Q e—iAtT e—iAtV/Q ’ (33) I:strang

known assymmetric Trotter splittingr Strang splitting repeatedly in this text, in
various versions and disguises. This is one of the most wigsdd approximations
to the evolution operator in computations.

Relationship with the Stormer—Verlet Method for Classical Mechanics.Con-
sider now a wavepacket as in Sect. .2/3(x) = e?%a(z), where we think of
a(z) as being localized near= ¢. We consider the Taylor expansion of the poten-
tial V' (x) atg,

Viz)=V(g) +VV(g) - (z —q) + Qz,q)

with the quadratic remainder ter@, so that we have

e 2 V@ (z) = eI 2V (@) ilp= 2 VV(9) (7-0) ~i5°Q@.a) (). (3.4)

Here the first exponential on the right-hand side carries as@lwhich is modi-
fied by—%v(q) over the half-step%—t. In the second exponential, theomentum

p is shifted top — % VV(q). We recall that in (2.19) we had a shift fropo-
sition ¢ to ¢ + At p/m for the centre of the wave packet propagated by the free
evolution operatoe—*4*” in the situation of a large mass. Combining these
formulas for changing momenta and positions as they appear the composi-
tion e ~1AtV/2 o —iALT —iAtV/2 of (3,3), we arrive at the following scheme: starting
from ¢°, p°, set

1
p/? = P’ = 5AtVV(q")
1/2
L V3 3.5) [I:verlet
R @)
1
pto= p? - ZAVV(eh).

This is theSHrmer—Verlet methofbr the numerical solution of the Newtonian equa-
tions of motion (1.1), which is by far the most widely used rarival integration
method in classical molecular dynamics. See Hairer, Lukitkanner (2003) for a
discussion of this basic numerical method and its remaekataperties. We further
note from (2.19) and (3.4) that the overall phase (the terthérexponential that is
independent of) is modified to

2
2]
2m

where the increment is a quadrature formula approximatiché classical action

integral fOAt(% — V(q(t))) dt along the solution(q(t), p(t)) of the classical
equations of motion (1.1). We will explore relationshipsvieen (3.3) and (3.5) in
more depth in Chapter V.

o=+ At — AL (V) + V().
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l.4 Averages, Commutators, Uncertainty

We consider again the Schrodinger equation (3.1) with theitonianH = T+ V'
and look at spatial averages of position, momentum, etagaioe wave function.

[.4.1 Observables and Averages

With the jth position coordinate as multiplication operat(nqup)(x) = z;9(x),
and a function) of unit L? norm withg;¢ € L?, we associate

Wlaw) = [ oo da.

which represents thith component of theosition averagef the state).
With the jth component of the momentum operaigr= —ikh 0/0x;, we form
(for ¢» € D(p;) and of unitL? norm)

Wlost) = [ D) (—ings) do = [ ks 00 P .
Rd Zj R4

which is thejth component of thenomentum averagef the state). Similarly, we
can consider théotal energy(y | Hy). It is such averages that can be observed
experimentally.

Noting thatg;, p;, H are self-adjoint operators ab?, more generally we call
any self-adjoint operatod : D(A4) — L? anobservableand itsaverage in the
stateyy (v of unit L2 norm andy € D(A)) is written, in varying notations,

(4) = (A)y = (W] A| ) = (6| A¥). (4.0)

1.4.2 Heisenberg Picture and Ehrenfest Theorem

Evolution of Averages and the Heisenberg PictureWe now study how the av-
erage(A)(t) = (A)yr of an observabled changes in time along a solution
Y(t) = (-, t) of the Schrodinger equation (1.3). Singét) = e~ "H/Myy, we

have
(Ao = (AW)y,  with A(5) = /Mg M0 (42)

The operatorA(t) is said to give theHeisenberg picturedf the evolution of the
observable (after Heisenberg, 1925), as opposed to thédolyer picture working
with wave functions. For a fixed initial statg, Eq. (4.2) can be written more briefly

as

(A)(0) = (AG). 43)
Heisenberg Equation.A formal calculation, usingse="*#/" = L He=tH/h =
e H/MLH, yields
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%(t} = %e“H/h(—HA + AH)e HH/M
2

and hence, with theommutatofA4, H] = AH — HA and with " = d/dt, we have
theHeisenberg equation

. 1 :

Alt) = o [A(0), H]. @.4)

RemarkSome care is needed in giving a precise meaning to the cortonofain-
bounded self-adjoint operators, which in general need xist.a\e note, however,
that for initial states), in a domainD which A maps intoD(H) and H maps into
D(A), the averages of both sides of (4.4) are well-defined anchdesed equal.

Energy Conservation.Since H commutes with itself, we obtain from (4.3) and
(4.4) that the total energy is conserved along every salgfdhe Schrodinger equa-
tion:

—(H) =0. (4.5) [I:energy-cons

Formal Analogy with Classical Mechanics.The Heisenberg equation (4.4) shows
a close analogy to the corresponding situation in classiesmhanics: a real-valued
function F(q, p) along a solution(q(t), p(t)) of the Hamiltonian equations (1.2)
changes according to

S F(a(t),p(t)) = {F, H} (a(0) (1)

with the Poisson bracket

d

oF 0G  OF 0G
F7 G = a. a9 9. 9. )
e ; (aqg' dp;  Op; 5613‘)
as is seen by the chain rule and using (1.2). Formally thus poacket replaces the
other in going from classical to quantum mechanics.

We now consider the Heisenberg equations for the positiodmasmentum opera-
tors, with componentg; andp;:

1
o= —lg; H
qﬂ Zh[qﬂ7 ]
5, — l[ . HI
p] - Zh p]a .

For a Hamiltoniard = T'+V with kinetic energyl” = —% A and with a potential
V' (x) acting as a multiplication operator, we calculate
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1 1 1 an?, 92 i O :
_[qj’H]w:'_[qj7T]w:_‘_Z_[qj’W]¢: (] _w:&d]

ih ih ih 2 7 m dxr; m
=1
1 1 0 o oV

This gives us equations that look exactly like the clas®qalations of motion (1.1):

p

oom (@5)

p = —VV.

Ehrenfest Theorem.When we take averagés on both sides of (4.6) according to
(4.3), then we obtain the result by Ehrenfest (1927) thapibsition and momen-
tum averages evolve by Newton-like equations. It shoulddied) however, that in
general

(VV) #VV((q)).
unless the potential is quadratic.

1.4.3 Heisenberg Uncertainty Relation

Still in analogy with classical mechanics, position and neatnm arecanonically
conjugateobservables, which here means that they satisfy (with kakeres delta)

1
gy = 0 @7

as is readily verified by a direct calculation of the commutaimilar to the one
given above. This has an important consequence to which muenxt. We define
the standard deviatiomr width of an observablel in a statey) as

Ad= (4= )", 48)

where the average is taken with respect to the given gtate

Theorem 4.1 (Heisenberg Uncertainty Relation)The standard deviations of the
position and momentum operators satisfy the inequality

h
Agj Apj > 3 (4.9) |[1:heis-uncert

According to Heisenberg (1927), this now world-famous uredy is interpreted as
saying that it is impossible to know both the exact positiod exact momentum of
an object at the same time.

Proof. The result follows from (4.7) and from tHeobertson-Sclidinger relation
which states that for any observablésnd B,
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AAAB = 2(14, B])|. (4.10)

This is obtained with the Cauchy-Schwarz inequality anddkeetity

—2Tm (Av) | Bap) = (3 | i[A, BJy)

as follows (we may assuniel) = (B) = 0 for ease of notation):

AAAB = || AY||[|BY|| > [(A¢ | B)| > [Im (A¢ | By)| = %|<i[A,B]>\- o

.5 Many-Body Systems

[.5.1 Distinguishable Particles

Consider firstV independent free particles, without any interaction, nerat from
n = 1,..., N. The probability density at timefor particlen to be at position,,
iS ¢ (zn, )|, the square of the absolute value of the wave function. Sinee
particles are assumed independent, the joint probabiétysity for particle 1 at
z1,..., particle N atz is the producll'[ivz1 [{n (21, )|, which is the squared
absolute value of the product wave functigfz, ..., xy,t) = Hle Un (T, t)
that solves th@ N-dimensional free Schrodinger equation

Ty with T=> T,, To=—5—4n,
My

o _
ot

ih
n=1
whereA,, is the Laplacian with respect to the variable Similarly, if each particle

is subjected to an external potentigl(z,,), then the product wave function solves
a Schradinger equation with a potential that is the sum @fkihgle-particle poten-

tials. With particles interacting via a potentid(z1, . . . , zx ), however, the solution
of the multi-particle Schrodinger equation

. Oy

ZI:LE:HM H=T+V, v=y(x1,...,2N,1),

is in general no longer in product form. As a rougpproximationto the high-
dimensional wave function we might still look for a functionproduct form — an
old idea realized in the time-dependétartree methodliscussed in Chapter II.

1.5.2 Indistinguishable Particles

subsec: i ndi st |

When particles cannot be distinguished in their physicapprties, such as mass,
charge, or spin, the potential remains the same under amargelof the coordinates
of the particles; in the case of identical particles 1 and 2,
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V(z2,21) = V(1,22). (5.1)

Moreover, the probability density of particle 1 to beratand particle 2 at, must
then remain unaltered under an exchange:

(a3, 21, = b, 22, D (52)

If ¢(x1,x2,t) is somesolution of the Schrddinger equation, then because 0§,(5.1
so is any linear combination

1/1(1'171'2at) = a¢($1,$2,t) + b(b((EQ,(El,t) .

Requiring (5.2) yields conditions on the coefficient$: |a|?> = |b|?> andab = ab,
which imply 5% = a2 and hence
b= =+a.

We are thus left with two possibilities, symmetry or antisyetry:

Y(zo,21,t) = (x1,20,t)  (bOsons)  or (5.3)
U(xg,1,t) = —tp(21,22,t)  (fermions). (5.4)

Remarkably, for one kind of physical particle, always ond #re same of the two
cases is realized. The two situations lead to very diffepbysical behaviour. It is
the antisymmetry (5.4) that is known to hold for electrom®tpns and neutrons:
these ardermions They obey thePauli exclusion principlg(Pauli 1925) which
states that like particles cannot simultaneously be in dmeesquantum state. Note
that (5.4) implies

Y(x,z,t) =0,

so that two identical fermions cannot be at the same posititime same time.
A product state does not have the antisymmetric behaviad) (it it can be
antisymmetrized: with two indistinguishable particles,

Y(x1, T2, 1) = %(@1(171,15)%02(502%) - <P1($27t)<ﬂ2(171at))

has the required antisymmetry (and vanisheg;if-,t) = 2(-, ), in accordance
with the Pauli principle), and so does tBiater determinant

1
’[/)(Ila <oy TN, t) = W det((pj (Ina t))j\,]nZI (55)

in the case ofV identical particles. Approximation of the electronic wduaction
by Slater determinants of orthogonal orbitals (i.e., spgllectron wave functions)
; is done in the time-dependédrartree—Fock methagdsee Chapter 1.

Itis also of interest to see what is the effect of ignoringgmmetry in the wave
function of well-separated identical fermionic particl8sippose thap(x;, x2, 1) is
a solution of the time-dependent Schrodinger equatiorchvis essentially local-
ized near({(xz1)(t), (x2)(t)) but which is not antisymmetric. As long &s;)(¢) and
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(x2)(t) remain clearly separated (well beyond the widths, (¢) and Az (¢)), the
antisymmetrization of does not deviate substantially framin a neighbourhood
of ({x1)(t), (x=2)(t)), so that the particles can be considered to be distinguishgb
their well-separated positions. This observation oftestifigs ignoring antisymme-
try in the treatment of identicaducleiof a molecule, for which the above localiza-
tion and separation condition is usually met in chemistryte other hand, for the
less localizectlectronsa careful treatment of antisymmetry is essential.

[.5.3 The Molecular Hamiltonian

For a molecule, the Hamiltonian is the sum of the kinetic gn@f the nuclei and
the electrons, and the potential is the sum of the Coulor@rastions of each pair
of particles:

Hypo=T+V with T=Ty+1T. and V =Vyny + Vne+ Vee. (5.6)

For N nuclei of massed/,, and electric charge&,,e, with position coordinates
z, € R3, andL electrons of mass: and charge-e, with coordinateg, € R3, the
respective kinetic energy operators are

K2 K2
TN:_ZMAI" Te:_Z%Ayev

n=1

and the potential is the sum of the nucleus-nucleus, nuetdestron and electron—
electron interactions given by

2 L N 2
Van(@) = Y ZrZne” VNE(x’y):_ZZfL’

b
1<k<n<N |2k = @n] =1n=11
2

‘/ee (y) = Z 67

V<iTiey v — wel

It is often convenient to choosgomic unitswhereh = 1, the elementary charge
e = 1, the mass of the electron = 1, and the Bohr radius of the hydrogen atom
r=1.

The self-adjointness of such Hamiltonian operators, watmein /72 (R3V+3L) has
been shown by Kato (1951); see also Reed & Simon (1975), €hexr16.

Any attempt to “solve” numerically the molecular Schrogin equation

. ov
ZhE: molw7 !p:kp(xla"wx]\/ayla"'aylnt)

faces a variety of severe problems:

— the high dimensionality (even for a small molecule such ag,@t&re are 3 nuclei
and 22 electrons, so thétis a function orR™!);
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— multiple scales in the system (the mass of the electron isoappately 1/2000
of the mass of a proton);
— highly oscillatory wave functions.

To obtain satisfactory results in spite of these difficgltiene requires a combina-
tion of model reductionbased on physical insight and/or asymptotic analysis, and
numerical techniquessed on the reduced models that are intermediate between
classical and full guantum dynamics. This is the subjecheffbllowing chapters.



