4. Exercise Sheet for Algorithms in Numerical Mathematics

Exercise 11: For given $\alpha > 0$, let u_{α} be the solution of the minimization problem (R) from the lecture. Show (for $\alpha > 0$):

- (a) $\alpha \mapsto ||a * u_{\alpha} b||_{L^2}$ increases monotonously,
- (b) $\alpha \mapsto \|u_{\alpha}^{(p)}\|_{L^2}$ decreases monotonously.

Exercise 12: (Condition Number)

- (a) Let λ be a simple zero of the characteristic polynomial of $A \in \mathbb{R}^{n \times n}$. Show that the condition number of the eigenvalue λ of A exists (i.e. $u^*v \neq 0$) and is invariant under unitary similarity transformations (i.e., that the eigenvalue λ of the matrix U^*AU with unitary matrix U, has the same condition number).
- (b) Let $A \in \mathbb{R}^{n \times n}$ be diagonalizable with pairwise different eigenvalues $\lambda_1, \ldots, \lambda_n$ and corresponding eigenvectors v_1, \ldots, v_n and left eigenvectors u_1^*, \ldots, u_n^* . Let further $C \in \mathbb{R}^{n \times n}$ be arbitrary. Show: The matrix $A + \varepsilon C$ has the eigenvectors

$$v_j(\varepsilon) = v_j + \varepsilon \sum_{\substack{i=1\\i\neq j}}^n \frac{1}{\lambda_j - \lambda_i} \frac{u_i^* C v_j}{u_i^* v_i} v_i + O(\varepsilon^2)$$

Note: Express $v'_j(0)$ as a linear combination of v_i . To determine the coefficients of v_i $(i \neq j)$, use that $u_i^* v_j = 0$ for $i \neq j$ (why?). Consider a suitably scaled $v_j(\varepsilon)$ to also get the coefficient of v_j as claimed.

Exercise 13: (Theorem of Gerschgorin)

a) Show: The union of all circular disks

$$K_i = \{\mu \in \mathbb{C} : |\mu - a_{i,i}| \le \sum_{\substack{k=1 \ k \neq i}}^n |a_{i,k}|\}$$

contains all eigenvalues of the $n \times n$ matrix $A = (a_{i,j})$. <u>Hint</u>: Consider the equation $Ax = \lambda x$ component-wise.

b) Draw all Gerschgorin circles of the matrix:

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 6 & 4 \\ 1 & 2 & 10 \end{pmatrix}.$$

How can one further restrict the set of possible eigenvalues? Optional: You can draw the circles using Matlab or Julia.

Programming Exercise 3:

Write a program that adds a normally distributed perturbation to given data and then smoothes this data. Plot the data, the perpetuated data and the smoothed data graphically. Alternatively, try and understand the following Matlab program:

```
N=256;
x=(2*pi/N)*[0:N-1]';
                         % grid
f=sin(x)+0.2*sin(3*x)-0.2*cos(6*x); % undefined function
e=0.1*randn(N,1);
                         % perturbation normally distributed
% with scatter 0.1
b=f+e;
                         % perturbed values in b
bb=fft(b);
                         % inverse FFT
n=[0:N/2-1 -N/2:-1]';
alpha=0.0001;
                         % regularization parameter
uu=bb./(1+alpha*n.^4);
                         % filter
                         % FFT, smoothed data in u
u=ifft(uu);
plot(x,[real(u),f,b]);
                         % plot f,u,b as functions of x
delta=norm(e)/sqrt(N)
d=norm(u-b)/sqrt(N)
```

Test your (or the above) program with several values of the regularization parameter α . Modify the program so that it also computes a smoothed derivative of the function and return the result.

Solutions are discussed on Tuesday 29.04.2025.

Tutor: Georgios Vretinaris - if you have question just come to my office (C3P16) or write me an email.