11. Exercise sheet for Algorithmen der Numerischen Mathematik

Exercise 32: Understand a simplex step using the following linear optimization task as an example

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+3 x_{3}=12 \\
x \geq 0 \\
x_{1}+x_{2}+x_{3}=\min !
\end{array}\right.
$$

$x=(12,0,0)^{T}$ is chosen as the initial edge. Consider the following:
(a) How does the cost $x_{1}+x_{2}+x_{3}$ change as the second component of x grows?
(b) How does the cost $x_{1}+x_{2}+x_{3}$ change as the third component of x grows?
(c) Which component of x is increased in the first step of the simplex procedure and why?
(d) What does the new edge look like then?
(e) Why is this edge optimal?

Exercise 33: Determine an edge for the linear optimization task

$$
\left\{\begin{array}{l}
x_{1}-x_{2}-x_{3}=6 \\
x \geq 0 \\
x_{1}+x_{2}+x_{3}=\min !
\end{array}\right.
$$

with the "phase I" of the simplex algorithm.

Exercise 34: Consider for $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$ with $n \geq m$ the problem

$$
\left\{\begin{array}{l}
A x=b x \geq 0 \\
c^{T} x=\min !
\end{array}\right.
$$

with admissible set $D=\left\{y \in \mathbb{R}^{n} ; A y=b, y \geq 0\right\}$. Show: if $\operatorname{rang}(A)=m$, then there always exists an edge $x \in D$.
Hint: $x \in D$ is an edge if and only if x cannot be represented as a convex combination of two points $y, z \in D$, i.e. if

$$
x=(1-\lambda) y+\lambda z \text { with } \lambda \in[0,1], y, z \in D \quad \Rightarrow \quad x=y=z
$$

Further consider: a given $x \in \mathbb{R}^{n}$ with $x_{i} \geq 0$ for $i \in \mathcal{I}$ and $x_{i}=0$ für $i \notin \mathcal{I}$, where $\mathcal{I} \subseteq\{1, \ldots, n\}$ is an m-elementary subset, and $A_{\mathcal{I}}=\left(A e_{j}\right)_{j \in \mathcal{I}}$ is an edge if $A_{\mathcal{I}}$ is regular. Then consider a vector $x \in D$ with minimal number of non-vanishing components and show that the reduced matrix $A_{\mathcal{I}}$ has full rank, where \mathcal{I} are those indices whose associated x-component does not vanish. Finally, use $\operatorname{rank}(A)=m$.

Exercise 35: (Conditions for optimality)
For the linear optimization task $A x=b, x \geq 0, c^{T} x$ minimal! let

$$
L(x, y):=c^{T} x-y^{T}(A x-b)
$$

be the Lagrange function. Show for $x \geq 0: x, y$ are optimal for the primal and dual problems, respectively, if and only if (x, y) is the saddle point of L, i.e.

$$
\max _{v \in \mathbb{R}^{m}} L(x, v)=L(x, y)=\min _{u \in \mathbb{R}_{+}^{n}} L(u, y)
$$

Note: Choose skillfully for the reverse directions v and u.

To get admitted to the exam you need at least 22 crosses Solutions are discussed on Wednesday 19.07.2023.
Contact person: Dominik Sulz - when you have questions just come to my office (C3P16) or write me an email.

