9. Exercise sheet for Algorithmen der Numerischen Mathematik

Exercise 26:

Show: For the cg-method it holds

$$
\frac{\left(d_{k}, g_{k}\right)}{\left(A d_{k}, d_{k}\right)}=\frac{\left(g_{k}, g_{k}\right)}{\left(A d_{k}, d_{k}\right)}, \quad \frac{\left(A d_{k}, g_{k+1}\right)}{\left(A d_{k}, d_{k}\right)}=-\frac{\left(g_{k+1}, g_{k+1}\right)}{\left(g_{k}, g_{k}\right)}
$$

Exercise 27:

Let the eigenvalues of A (symmetric and positiv definit) be $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0$. Show: With $\kappa^{\prime}=\lambda_{2} / \lambda_{n}$ it holds for the error in the cg-method

$$
\left\|x_{k}-x\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa^{\prime}}-1}{\sqrt{\kappa^{\prime}}+1}\right)^{k-1}\left\|x_{0}-x\right\|_{A} \text { for } k \geq 2
$$

If $\lambda_{1} \gg \lambda_{2}$, this is far stronger as the similar estimate with $\kappa=\lambda_{1} / \lambda_{n}$ from the lecture.
Hint: $q_{k}(\lambda)=\widetilde{q}_{k-1}(\lambda) \cdot\left(\lambda_{1}-\lambda\right) / \lambda_{1}$.

Programming exercise 8:

Implement the cg-method for solving a linear equation system $A x=b$ with symmetric positive definite matrix A. Plot the error $\left\|A x_{k}-b\right\|$ for all k. Then test your function using the following two matrices.
Matrix 1:

```
function A = MatrixGenerator(N)
A = -4*diag(ones(N^2,1)) - diag(ones(N*(N-1),1),N) - diag(ones(N*(N-1),1),-N);
for i=0:N-1
    for j=1:N-1
        A(j+i*N,j+1+i*N) = - 1;
        A(j+1+i*N,j+i*N) = -1;
    end
end
```

Matrix 2:

$$
A=\operatorname{sprandsym}\left(N^{\wedge} 2,0.2,0.1\right)+2 * \operatorname{diag}\left(\text { ones }\left(N^{\wedge} 2,1\right)\right)
$$

both for $N=4,20,40$. Further choose $b=\operatorname{ones}\left(N^{2}, 1\right)$.

Programming exercise 9:

Implement the preconditioned cg-method for solving a linear equation system $A x=b$ with symmetric positive definite matrix A. Use (and implement by yourself) the incomplete Cholesky decomposition as a preconditioner. Plot the error $\left\|A x_{k}-b\right\|$ for all k. Test your code for the same test matrices as in programming exercise 8 .

Solutions are discussed on Wednesday 05.07.2023.

Contact person: Dominik Sulz - when you have questions just come to my office (C3P16) or write me an email.

