8. Exercise sheet for Algorithmen der Numerischen Mathematik

Exercise 23:

Let A be a $m \times n$ matrix with given singular value decomposition $A=U \Sigma V^{T}$ with $\Sigma=\left[\begin{array}{cc}\Sigma_{r} & 0 \\ 0 & 0\end{array}\right]$, Σ_{r} non singular.

Show that the solution of the linear fitting problem

$$
\|A x-b\|_{2}=\min , \quad\|x\|_{2}=\min
$$

is given by

$$
x=A^{+} b, \quad \text { with } A^{+}=V \Sigma^{+} U^{T} \text { and } \Sigma^{+}=\left[\begin{array}{cc}
\Sigma_{r}^{-1} & 0 \\
0 & 0
\end{array}\right]
$$

Exercise 24:

Let $V \leq W \leq \mathbb{R}^{n}$ and $V^{\perp}=\left\{w \in W: w^{T} A v=0\right.$ for all $\left.v \in V\right\}$ be the subspace of W conjugate to $V\left(A \in \mathbb{R}^{n \times n}\right.$ symmetric positive definite). Show that to all $w \in W$ there exist uniquely defined $v \in V$ and $d \in V^{\perp}$ with

$$
w=v+d
$$

where $v=\sum_{j=0}^{k-1} \frac{\left(A d_{j}, w\right)}{\left(A d_{j}, d_{j}\right)} d_{j}$, if d_{0}, \ldots, d_{k-1} is an A-orthogonal basis of V (i.e. $\left(A d_{i}, d_{j}\right)=0$ for $\left.i \neq j\right)$.
Exercise 25: (Method of steepest descent)
How can the method of steepest descent be used to solve the linear equation system $A x=b$ with symmetric positive definite matrix A ?
Show: In the norm $\|v\|_{A}=\sqrt{v^{T} A v}$, it holds for the error

$$
\left\|x_{k}-x\right\|_{A} \leq\left(1-\frac{1}{\operatorname{cond}_{2}(A)}\right)^{k / 2}\left\|x_{0}-x\right\|_{A}
$$

$\left(\operatorname{cond}_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\lambda_{\max }(A) / \lambda_{\min }(A)\right.$.) Hence the procedure converges (but very slowly if A is ill conditioned).
Note: Use (for example) the following structure for the proof.

$$
\begin{aligned}
\left\|x_{k}-x\right\|_{A}^{2} & =\ldots=d_{k}^{T} A^{-1} d_{k}=\ldots=d_{k}^{T} A^{-1} d_{k-1}=\ldots \\
& =d_{k-1}^{T} A^{-1} d_{k-1}\left(1-\frac{d_{k-1}^{T} d_{k-1}}{d_{k-1}^{T} A d_{k-1}} \frac{d_{k-1}^{T} d_{k-1}}{d_{k-1}^{T} A^{-1} d_{k-1}}\right) \leq \ldots=\left\|x_{k-1}-x\right\|_{A}^{2}\left(1-\frac{1}{\operatorname{cond}_{2}(A)}\right)
\end{aligned}
$$

Programming exercise 7:

Write a Matlab program that solves the problem from exercise 23 in the proposed way. Test your code for at least one rectangular matrix A of your choice, i.e. $m>n$.
Hint. You may use the 'svd'-function of Matlab. You do not need to program the singular value decomposition by yourself.

Solutions are discussed on Wednesday 28.06.2023.

Contact person: Dominik Sulz - when you have questions just come to my office (C3P16) or write me an email.

